JP2015153491A - Nonaqueous electrolyte secondary battery, and power storage device - Google Patents

Nonaqueous electrolyte secondary battery, and power storage device Download PDF

Info

Publication number
JP2015153491A
JP2015153491A JP2014024175A JP2014024175A JP2015153491A JP 2015153491 A JP2015153491 A JP 2015153491A JP 2014024175 A JP2014024175 A JP 2014024175A JP 2014024175 A JP2014024175 A JP 2014024175A JP 2015153491 A JP2015153491 A JP 2015153491A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
secondary battery
electrolyte secondary
positive electrode
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014024175A
Other languages
Japanese (ja)
Other versions
JP6260775B2 (en
Inventor
明法 矢吹
Akinori Yabuki
明法 矢吹
顕 岸本
Akira Kishimoto
顕 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2014024175A priority Critical patent/JP6260775B2/en
Publication of JP2015153491A publication Critical patent/JP2015153491A/en
Application granted granted Critical
Publication of JP6260775B2 publication Critical patent/JP6260775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery which enables the improvement of the charge and discharge cycle characteristics at a high voltage and in addition, the suppression of the increase in battery thickness.SOLUTION: A nonaqueous electrolyte secondary battery comprises: a positive electrode; a negative electrode; a separator; and a nonaqueous electrolyte. In the nonaqueous electrolyte secondary battery, the nonaqueous electrolyte has a molybdenum compound dissolved therein; and when LSV measurement or constant current charging is performed, an oxidation reaction current is observed in a positive electrode potential range of 4.2-4.4 V (vs. Li/Li). The molybdenum compound is preferably an organic molybdenum compound, such as hexacarbonyl molybdenum, or bis(acetylacetonato) molybdenum dioxide.

Description

本発明は、非水電解液二次電池、特に、非水電解液に特徴を有する非水電解液二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery characterized by a non-aqueous electrolyte.

リチウム二次電池に代表される非水電解液二次電池は、ノートパソコンや携帯電話などのモバイル機器の電源として用いられてきたが、近年、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)などの自動車用電源としても用いられている。   Non-aqueous electrolyte secondary batteries represented by lithium secondary batteries have been used as power sources for mobile devices such as notebook computers and mobile phones, but in recent years, electric vehicles (EV), hybrid vehicles (HEV), plugs, etc. It is also used as a power source for vehicles such as in-hybrid vehicles (PHEV).

非水電解液二次電池は、一般に、正極活物質を含む正極と、負極活物質を含む負極と、セパレータと、非水溶媒及びリチウム塩を含有する非水電解液とを備えている。
非水電解液二次電池を構成する正極活物質としてはリチウム含有遷移金属酸化物が、負極活物質としてはグラファイトに代表される炭素材料が、非水電解液としては、エチレンカーボネート等の環状カーボネートとジエチルカーボネート等の鎖状カーボネートを主構成成分とする非水溶媒に六フッ化リン酸リチウム(LiPF)等の電解質を溶解したものが広く知られている。
A non-aqueous electrolyte secondary battery generally includes a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, a separator, and a non-aqueous electrolyte containing a non-aqueous solvent and a lithium salt.
A lithium-containing transition metal oxide is used as the positive electrode active material constituting the non-aqueous electrolyte secondary battery, a carbon material typified by graphite is used as the negative electrode active material, and a cyclic carbonate such as ethylene carbonate is used as the non-aqueous electrolyte. In addition, a solution in which an electrolyte such as lithium hexafluorophosphate (LiPF 6 ) is dissolved in a non-aqueous solvent containing a chain carbonate such as diethyl carbonate as a main constituent is widely known.

そして、種々の目的で、上記のような非水電解液(非水電解質)にモリブデン化合物などの添加剤を添加する発明も知られている(特許文献1〜4参照)。   And the invention which adds additives, such as a molybdenum compound, to the above non-aqueous electrolytes (non-aqueous electrolyte) for the various objectives is also known (refer patent documents 1-4).

特許文献1には、特に高温状況下における非水電解質電池のサイクル特性を向上させることを目的(段落[0003]、[0005])として、非水電解質にケイモリブデン酸などのなどのヘテロポリ酸を添加する発明(請求項8参照)が開示されている。これによれば、上記化合物を添加することにより、70℃、1Cにおいて上限電圧4.2V、下限電圧3.0Vとする充放電サイクル試験での400サイクル後の1C容量維持率が、未添加の場合では65%であったのに対して84%に向上したことが示されている(段落[0223]、[0227])。   In Patent Document 1, a heteropoly acid such as silicomolybdic acid is added to the non-aqueous electrolyte for the purpose of improving the cycle characteristics of the non-aqueous electrolyte battery, particularly under high temperature conditions (paragraphs [0003] and [0005]). The invention to be added (see claim 8) is disclosed. According to this, by adding the above compound, the 1C capacity maintenance rate after 400 cycles in the charge / discharge cycle test in which the upper limit voltage is 4.2 V and the lower limit voltage is 3.0 V at 70 ° C. and 1 C is not added. In some cases, it was shown to be improved to 84% from 65% (paragraphs [0223] and [0227]).

特許文献2には、充放電効率を維持しつつ高温環境下における電池の膨張を抑制することのできる電解液およびそれを用いた電池を提供することを課題(段落[0007])として、非水電解液に二酸化二塩化モリブデンなどの周期律表第4族〜14族から選ばれる元素に酸素およびハロゲンが配位した化合物を添加する発明(請求項1)が開示されている。これによれば、上記化合物を添加することにより、4.2Vの充電状態の非水電解液二次電池における90℃で4時間放置した後の電池膨張率(電池厚みの増加率)が、未添加の場合では44%であったのに対して21%まで抑制されたことが示されている(段落、[0061]、[0069])。   In Patent Document 2, as an object (paragraph [0007]) to provide an electrolytic solution capable of suppressing expansion of a battery in a high temperature environment while maintaining charge / discharge efficiency and a battery using the same (paragraph [0007]), non-aqueous An invention is disclosed in which an electrolyte and a compound in which oxygen and halogen are coordinated to an element selected from Groups 4 to 14 of the periodic table such as molybdenum dichloride are added. According to this, by adding the above compound, the battery expansion rate (rate of increase in battery thickness) after standing at 90 ° C. for 4 hours in a non-aqueous electrolyte secondary battery in a charged state of 4.2 V is not yet increased. It was shown that it was suppressed to 21% compared to 44% in the case of addition (paragraphs, [0061], [0069]).

特許文献3には、充放電効率を維持しつつ高温保存時における膨張を抑制することのできる電池を提供することを目的(段落[0005])として、非水電解液に塩化モリブデンなどのハロゲン化物を添加する発明(請求項1、5)が開示されている。これによれば、上記化合物を添加することにより、4.2Vの充電状態の非水電解液二次電池における90℃で4時間放置した後の電池膨張率(電池厚みの増加率)が、未添加の場合では33%であったのに対して11%まで抑制されたことが示されている(段落、[0048]、[0052])。   In Patent Document 3, for the purpose of providing a battery capable of suppressing expansion during high-temperature storage while maintaining charge / discharge efficiency (paragraph [0005]), a halide such as molybdenum chloride is used as a non-aqueous electrolyte. The invention which adds (Claim 1, 5) is disclosed. According to this, by adding the above compound, the battery expansion rate (rate of increase in battery thickness) after standing at 90 ° C. for 4 hours in a non-aqueous electrolyte secondary battery in a charged state of 4.2 V is not yet increased. It was shown that it was suppressed to 11% compared with 33% in the case of addition (paragraphs, [0048] and [0052]).

特許文献4には、高エネルギー密度を維持しつつ、正極活物質の熱暴走時の発熱挙動を抑制することにより、安全性を高めた非水系二次電池を提供することを目的(段落[0009])として、非水電解液に酸化モリブデンやモリブデン酸ジリチウムなどのモリブデン化合物を添加する発明(請求項1、段落[0036])が開示されている。これによれば、上記化合物を添加することにより、約250℃における正極活物質と電解液の発熱量を低減できことが示されている(図2、段落[0041])。   Patent Document 4 aims to provide a non-aqueous secondary battery with improved safety by suppressing the heat generation behavior during thermal runaway of the positive electrode active material while maintaining a high energy density (paragraph [0009]. ]), An invention in which a molybdenum compound such as molybdenum oxide or dilithium molybdate is added to the non-aqueous electrolyte (claim 1, paragraph [0036]) is disclosed. According to this, it is shown that the calorific value of the positive electrode active material and the electrolytic solution at about 250 ° C. can be reduced by adding the above compound (FIG. 2, paragraph [0041]).

特開2011−181354号公報JP 2011-181354 A 特開2009−123576号公報JP 2009-123576 A 特開2008−305772号公報JP 2008-307772 A 特開2005−25992号公報JP 2005-25992 A

上記の特許文献1〜3の発明においては、非水電解液に添加したモリブデン化合物が高電圧作動下での充放電サイクル試験の寿命の改善に効果があるかどうかは確認されていない。上記の特許文献4の発明においては、非水電解液に添加した酸化モリブデンやモリブデン酸ジリチウムなどが、充放電サイクル試験の寿命の改善に効果があるかどうかは確認されていない。また、既知のモリブデン化合物である酸化モリブデンやモリブデン酸ジリチウムの添加では、特に高電圧における充放電サイクル特性の改善と電池厚みの増加抑制が不十分であった。
そこで、本発明は、上記の課題に鑑みなされたものであって、充放電サイクル特性が改善でき、又は、これに加えて電池厚みの増加が抑制できる非水電解液二次電池を提供することを課題とする。
In the inventions of the above Patent Documents 1 to 3, it has not been confirmed whether the molybdenum compound added to the non-aqueous electrolyte is effective in improving the life of the charge / discharge cycle test under high voltage operation. In the invention of Patent Document 4 above, it has not been confirmed whether molybdenum oxide or dilithium molybdate added to the non-aqueous electrolyte is effective in improving the life of the charge / discharge cycle test. Further, addition of molybdenum oxide or dilithium molybdate, which are known molybdenum compounds, has been insufficient in improving charge / discharge cycle characteristics and suppressing increase in battery thickness, particularly at high voltage.
Therefore, the present invention has been made in view of the above problems, and provides a non-aqueous electrolyte secondary battery that can improve charge / discharge cycle characteristics or can suppress an increase in battery thickness in addition to this. Is an issue.

本発明の構成及び作用効果について、技術思想を交えて説明する。但し、作用機構については推定を含んでおり、その正否は、本発明を制限するものではない。なお、本発明は、その精神又は主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、後述の実施の形態若しくは実施例は、あらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、すべて本発明の範囲内のものである。   The configuration and operational effects of the present invention will be described with the technical idea. However, the action mechanism includes estimation, and the correctness does not limit the present invention. It should be noted that the present invention can be implemented in various other forms without departing from the spirit or main features thereof. For this reason, the following embodiments or examples are merely examples in all respects, and should not be interpreted in a limited manner. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

本発明においては、上記課題を解決するために、以下の手段を採用する。
(1)正極、負極、セパレータ及び非水電解液を備えた非水電解液二次電池であって、前記非水電解液は、モリブデン化合物が溶解しており、かつ、LSV測定又は定電流充電を行ったときに正極電位4.2〜4.4V(vs.Li/Li)の範囲に酸化反応電流が観察されることを特徴とする非水電解液二次電池。
(2)正極、負極、セパレータ及び非水電解液を備えた非水電解液二次電池であって、前記非水電解液は、ヘキサカルボニルモリブデン又はビス(アセチルアセトナト)モリブデンジオキシドが溶解していることを特徴とする非水電解液二次電池。
(3)前記(1)又は(2)の非水電解液二次電池を複数個備えた蓄電装置。
In the present invention, in order to solve the above problems, the following means are adopted.
(1) A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, wherein the non-aqueous electrolyte has a molybdenum compound dissolved therein, and LSV measurement or constant current charging A non-aqueous electrolyte secondary battery characterized in that an oxidation reaction current is observed in a range of positive electrode potential 4.2 to 4.4 V (vs. Li / Li + ) when
(2) A non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, wherein the non-aqueous electrolyte has hexacarbonyl molybdenum or bis (acetylacetonato) molybdenum dioxide dissolved therein. A nonaqueous electrolyte secondary battery.
(3) A power storage device comprising a plurality of the nonaqueous electrolyte secondary batteries of (1) or (2).

本発明によれば、充放電サイクル特性、特に高電圧作動下での充放電サイクル特性の改善が可能となる。   According to the present invention, charge / discharge cycle characteristics, particularly charge / discharge cycle characteristics under high voltage operation can be improved.

本発明に係る非水電解液二次電池の一実施形態を示す概略断面図Schematic sectional view showing an embodiment of a non-aqueous electrolyte secondary battery according to the present invention 本発明に係る非水電解液二次電池を複数個備えた蓄電装置を示す概略図Schematic which shows the electrical storage apparatus provided with two or more nonaqueous electrolyte secondary batteries which concern on this invention ヘキサカルボニルモリブデンを添加した非水電解液を用いた3端子セルのdQ/dVプロットを示す図The figure which shows the dQ / dV plot of the 3 terminal cell using the non-aqueous electrolyte which added hexacarbonyl molybdenum. ビス(アセチルアセトナト)モリブデンを添加した非水電解液を用いた3端子セルのdQ/dVプロットを示す図The figure which shows the dQ / dV plot of the 3 terminal cell using the non-aqueous electrolyte which added bis (acetylacetonato) molybdenum. モリブデン化合物を添加しない非水電解液を用いた3端子セルのdQ/dVプロットを示す図The figure which shows the dQ / dV plot of 3 terminal cell using the non-aqueous electrolyte which does not add a molybdenum compound. 酸化モリブデンを添加した非水電解液を用いた3端子セルのdQ/dVプロットを示す図The figure which shows the dQ / dV plot of the 3 terminal cell using the non-aqueous electrolyte to which molybdenum oxide was added モリブデン酸ジリチウムを添加した非水電解液を用いた3端子セルのdQ/dVプロットを示す図The figure which shows the dQ / dV plot of the 3 terminal cell using the non-aqueous electrolyte which added the dilithium molybdate. モリブデン酸を添加した非水電解液を用いた3端子セルのdQ/dVプロットを示す図The figure which shows the dQ / dV plot of the 3 terminal cell using the non-aqueous electrolyte to which molybdic acid was added 2−エチルヘキサン酸モリブデンを添加した非水電解液を用いた3端子セルのdQ/dVプロットを示す図The figure which shows the dQ / dV plot of the 3 terminal cell using the non-aqueous electrolyte which added 2-ethyl hexanoic acid molybdenum.

図1に、本発明に係る非水電解液二次電池の一実施形態である矩形状の非水電解液二次電池1の外観斜視図を示す。なお、同図は、容器内部を透視した図としている。図1に示す非水電解液二次電池1は、電極群2が電池容器3に収納されている。電極群2は、正極活物質を備える正極と、負極活物質を備える負極とが、セパレータを介して捲回されることにより形成されている。正極は、正極リード4’を介して正極端子4と電気的に接続され、負極は、負極リード5’を介して負極端子5と電気的に接続されている。   FIG. 1 shows an external perspective view of a rectangular nonaqueous electrolyte secondary battery 1 which is an embodiment of a nonaqueous electrolyte secondary battery according to the present invention. In the figure, the inside of the container is seen through. In the nonaqueous electrolyte secondary battery 1 shown in FIG. 1, an electrode group 2 is housed in a battery container 3. The electrode group 2 is formed by winding a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material via a separator. The positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode lead 4 ′, and the negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode lead 5 ′.

ここで、セパレータに保持されている非水電解液は、非水溶媒と当該非水溶媒に溶解した電解質塩とを含むものであるが、本発明においては、さらに、特定のモリブデン化合物を含む点に特徴を有する。   Here, the non-aqueous electrolyte solution retained in the separator includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent. In the present invention, the non-aqueous electrolyte further includes a specific molybdenum compound. Have

本発明者らは、特許文献4に示されているような従来の無機モリブデン化合物は、非水電解液に添加するとその多くが溶け残ってしまうのに対し、特定の有機モリブデン化合物は、非水電解液に添加した場合、完全に溶解し、この非水電解液存在下で、正極を作用極として定電流充電を行ったときに正極電位4.2〜4.3V(vs.Li/Li)付近に正極活物質への充電反応以外の酸化反応電流が観察されること(これは、正極を作用極としてLSV測定を行ったときに正極電位4.2〜4.3V(vs.Li/Li)付近に正極活物質への充電反応以外の酸化反応電流が観察されることも意味する)、及び、この非水電解液を備えた非水電解液二次電池は、高電圧作動下での充放電サイクル特性が改善されることを知見して、本発明を完成するに至った。この作用機構については確定的ではないが、4.3V(vs.Li/Li)を超える正極電位としたときに、添加した有機モリブデン化合物により、正極表面に非水電解液の劣化を防止する被膜が形成されるものと推察している。 The present inventors have found that conventional inorganic molybdenum compounds as shown in Patent Document 4 are mostly undissolved when added to a non-aqueous electrolyte, whereas specific organic molybdenum compounds are non-aqueous. When added to the electrolytic solution, it completely dissolves, and in the presence of this non-aqueous electrolytic solution, when constant current charging is performed using the positive electrode as a working electrode, the positive electrode potential is 4.2 to 4.3 V (vs. Li / Li + ) Oxidation reaction current other than the charge reaction to the positive electrode active material is observed in the vicinity (this is a positive electrode potential of 4.2 to 4.3 V (vs. Li / Li + ) also means that an oxidation reaction current other than the charging reaction to the positive electrode active material is observed in the vicinity), and the non-aqueous electrolyte secondary battery equipped with this non-aqueous electrolyte is operated under high voltage operation. Knowing that the charge / discharge cycle characteristics of The invention has been completed. Although this mechanism of action is not definitive, when the positive electrode potential exceeds 4.3 V (vs. Li / Li + ), the added organic molybdenum compound prevents deterioration of the non-aqueous electrolyte on the positive electrode surface. It is assumed that a film is formed.

ここで、「LSV測定」(Linear Sweep Voltammetry)とは、作用極に正極を用い、対極にLi金属を用いた非水電解液二次電池を、電流が検知されない自然電位から正極の電位を線形的に高電位へ掃引したときに副反応の進行が検知できる電位掃引速度の条件で電極間に流れる電流を測定することを意味し、「定電流充電」とは、作用極に正極を、対極にLi金属を用いた非水電解液二次電池を、副反応の進行が検知できる一定電流の条件で充電して、電池電圧の変化を測定することを意味する。   Here, “LSV measurement” (Linear Sweep Voltammetry) is a non-aqueous electrolyte secondary battery that uses a positive electrode as a working electrode and Li metal as a counter electrode, and linearizes the potential of the positive electrode from a natural potential where no current is detected. This means that the current flowing between the electrodes is measured under the condition of a potential sweep rate at which the progress of the side reaction can be detected when the potential is swept to a high potential. This means that a non-aqueous electrolyte secondary battery using Li metal is charged under a constant current condition in which the progress of a side reaction can be detected, and the change in battery voltage is measured.

本発明において、充放電サイクル特性を改善するために、非水電解液に添加する有機モリブデン化合物は、ヘキサカルボニルモリブデン、又はビス(アセチルアセトナト)モリブデンジオキシドが好ましい。なかでも、ヘキサカルボニルモリブデンを添加することにより、上記の充放電サイクル特性の改善に加えて、非水電解液二次電池の電池厚みの増加抑制が可能となる。   In the present invention, in order to improve charge / discharge cycle characteristics, the organic molybdenum compound added to the non-aqueous electrolyte is preferably hexacarbonylmolybdenum or bis (acetylacetonato) molybdenum dioxide. In particular, by adding hexacarbonylmolybdenum, it is possible to suppress the increase in battery thickness of the non-aqueous electrolyte secondary battery in addition to the improvement of the charge / discharge cycle characteristics.

非水電解液中における有機モリブデン化合物の含有量は、充放電サイクル特性を改善するために、0.1〜5.0wt%が好ましく、0.5〜2.0wt%がより好ましい。   The content of the organomolybdenum compound in the non-aqueous electrolyte is preferably 0.1 to 5.0 wt%, more preferably 0.5 to 2.0 wt% in order to improve charge / discharge cycle characteristics.

本発明において、非水電解液を構成する非水溶媒は、限定されるものではなく、一般に非水電解液二次電池の非水電解液に使用される非水溶媒が使用できる。例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、スチレンカーボネート、カテコールカーボネート、1−フェニルビニレンカーボネート、1,2−ジフェニルビニレンカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート、トリフルオロプロピレンカーボネート等の環状カーボネート、γ−ブチロラクトン、γ−バレロラクトン、プロピオラクトン等の環状カルボン酸エステル、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジフェニルカーボネート等の鎖状カーボネート、酢酸メチル、酪酸メチル等の鎖状カルボン酸エステル、テトラヒドロフラン若しくはその誘導体、1,3−ジオキサン、ジメトキシエタン、ジエトキシエタン、メトキシエトキシエタン、メチルジグライム等のエーテル類、アセトニトリル、ベンゾニトリル等のニトリル類、ジオキサラン若しくはその誘導体等の単独又はそれら2種以上の混合物等を挙げることができる。特に、エチレンカーボネート、プロピレンカーボネート、フルオロエチレンカーボネート等の環状カーボネート及びジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネートを含有するものが好ましい。また、これらの非水溶媒は、任意の割合で混合して用いることができる。   In the present invention, the non-aqueous solvent constituting the non-aqueous electrolyte is not limited, and a non-aqueous solvent generally used for a non-aqueous electrolyte of a non-aqueous electrolyte secondary battery can be used. For example, propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, styrene carbonate, catechol carbonate, 1-phenyl vinylene carbonate, 1,2-diphenyl vinylene carbonate, vinylene carbonate, vinyl ethylene carbonate, fluoroethylene carbonate, difluoroethylene carbonate, Cyclic carbonates such as trifluoropropylene carbonate, cyclic carboxylic acid esters such as γ-butyrolactone, γ-valerolactone, propiolactone, chain carbonates such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, diphenyl carbonate, methyl acetate, butyric acid Chain carboxylic acid ester such as methyl, tetrahydrofuran or Derivatives of 1,3-dioxane, dimethoxyethane, diethoxyethane, methoxyethoxyethane, methyl diglyme and other ethers, acetonitrile, benzonitrile and other nitriles, dioxalane or derivatives thereof alone or in combination of two or more thereof A mixture etc. can be mentioned. In particular, those containing cyclic carbonates such as ethylene carbonate, propylene carbonate and fluoroethylene carbonate and chain carbonates such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate are preferred. Moreover, these non-aqueous solvents can be used by mixing at an arbitrary ratio.

本発明の非水電解液を構成する電解質塩(リチウム塩)は、限定されるものではなく、一般に非水電解液二次電池に使用される広電位領域において安定であるリチウム塩が使用できる。例えば、LiBF、LiPF、LiClO、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO等が挙げられる。これらは単独で用いてもよく、2種以上混合して用いてもよい。 The electrolyte salt (lithium salt) constituting the non-aqueous electrolyte of the present invention is not limited, and lithium salts that are stable in a wide potential region generally used for non-aqueous electrolyte secondary batteries can be used. For example, LiBF 4 , LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 and the like. These may be used alone or in combination of two or more.

非水電解液における電解質塩の濃度としては、優れた高率放電特性を有する非水電解液二次電池を確実に得るために、0.1mol/l〜5.0mol/lが好ましく、1.0mol/l〜2.0mol/lがより好ましい。   The concentration of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol / l to 5.0 mol / l in order to reliably obtain a non-aqueous electrolyte secondary battery having excellent high rate discharge characteristics. 0 mol / l to 2.0 mol / l is more preferable.

本発明の非水電解液二次電池を構成する正極に使用する正極活物質は、電気化学的にリチウムイオンを挿入・脱離可能なものであれば、特に制限はなく、一般に非水電解液二次電池の正極活物質に使用される正極活物質が使用できる。例えば、遷移金属酸化物、遷移金属硫化物、リチウム遷移金属複合酸化物、リチウム含有ポリアニオン金属複合化合物等が挙げられる。遷移金属酸化物としては、マンガン酸化物、鉄酸化物、銅酸化物、ニッケル酸化物、バナジウム酸化物、遷移金属硫化物としては、モリブデン硫化物、チタン硫化物等が挙げられる。リチウム遷移金属複合酸化物としては、リチウムマンガン複合酸化物、リチウムニッケル複合酸化物、リチウムコバルト複合酸化物、リチウムニッケルコバルト複合酸化物、リチウムニッケルマンガン複合酸化物、リチウムニッケルコバルトマンガン複合酸化物等が挙げられる。リチウム含有ポリアニオン金属複合化合物としては、リン酸鉄リチウム、リン酸コバルトリチウム等が挙げられる。さらに、ジスルフィド、ポリピロール、ポリアニリン、ポリパラスチレン、ポリアセチレン、ポリアセン系材料等の導電性高分子化合物、擬グラファイト構造炭素質材料等が挙げられる。中でもリチウムニッケルコバルトマンガン複合酸化物が高容量の点から好ましい。   The positive electrode active material used for the positive electrode constituting the non-aqueous electrolyte secondary battery of the present invention is not particularly limited as long as it can electrochemically insert and desorb lithium ions, and is generally non-aqueous electrolyte. The positive electrode active material used for the positive electrode active material of a secondary battery can be used. Examples include transition metal oxides, transition metal sulfides, lithium transition metal composite oxides, lithium-containing polyanion metal composite compounds, and the like. Examples of the transition metal oxide include manganese oxide, iron oxide, copper oxide, nickel oxide, vanadium oxide, and examples of the transition metal sulfide include molybdenum sulfide and titanium sulfide. Examples of the lithium transition metal composite oxide include lithium manganese composite oxide, lithium nickel composite oxide, lithium cobalt composite oxide, lithium nickel cobalt composite oxide, lithium nickel manganese composite oxide, and lithium nickel cobalt manganese composite oxide. Can be mentioned. Examples of the lithium-containing polyanion metal composite compound include lithium iron phosphate and lithium cobalt phosphate. Further, conductive polymer compounds such as disulfide, polypyrrole, polyaniline, polyparastyrene, polyacetylene, and polyacene materials, pseudographite-structured carbonaceous materials, and the like can be given. Among these, lithium nickel cobalt manganese composite oxide is preferable from the viewpoint of high capacity.

正極集電体の材質としては特に制限は無く、公知のものを任意に用いることができる。具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料、カーボンクロス、カーボンペーパー等の炭素質材料が挙げられる。中でも金属材料、特にアルミニウムが好ましい。   There is no restriction | limiting in particular as a material of a positive electrode electrical power collector, A well-known thing can be used arbitrarily. Specific examples include metal materials such as aluminum, stainless steel, nickel plating, titanium, and tantalum, and carbonaceous materials such as carbon cloth and carbon paper. Of these, metal materials, particularly aluminum, are preferred.

本発明の非水電解液二次電池を構成する負極に使用する負極活物質は、電気化学的にリチウムイオンを挿入・脱離可能なものであれば、特に制限はなく、炭素質材料、酸化錫や酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金、SnやSi等のリチウムと合金形成可能な金属等が挙げられる。炭素質材料としては、天然グラファイト、人造グラファイト、コークス類、難黒鉛化性炭素、低温焼成易黒鉛化性炭素、フラーレン、カーボンナノチューブ、カーボンブラック、活性炭等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。中でも炭素質材料が安全性の点から好ましい。   The negative electrode active material used for the negative electrode constituting the non-aqueous electrolyte secondary battery of the present invention is not particularly limited as long as it can electrochemically insert and desorb lithium ions. Examples thereof include metal oxides such as tin and silicon oxide, metal composite oxides, lithium alloys such as lithium alone and lithium aluminum alloys, and metals that can form alloys with lithium such as Sn and Si. Examples of the carbonaceous material include natural graphite, artificial graphite, coke, non-graphitizable carbon, low-temperature calcinable graphitizable carbon, fullerene, carbon nanotube, carbon black, activated carbon and the like. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio. Among these, carbonaceous materials are preferable from the viewpoint of safety.

負極集電体としては、公知のものを任意に用いることができる。例えば、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられ、中でも銅が加工し易さとコストの点から好ましい。   Any known negative electrode current collector can be used. For example, metal materials such as copper, nickel, stainless steel, nickel-plated steel and the like can be mentioned. Among them, copper is preferable from the viewpoint of ease of processing and cost.

セパレータとしては、微多孔性膜や不織布等を、単独あるいは併用することが好ましい。セパレータを構成する材料としては、例えばポリエチレン、ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−パーフルオロビニルエーテル共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−フルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロアセトン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−プロピレン共重合体、フッ化ビニリデン−トリフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン−テトラフルオロエチレン共重合体等を挙げることができる。中でもポリエチレン、ポリプロピレン等に代表されるポリオレフィン系樹脂を主成分とする微多孔性膜であることが好ましい。   As the separator, it is preferable to use a microporous membrane or a nonwoven fabric alone or in combination. Examples of the material constituting the separator include polyolefin resins typified by polyethylene and polypropylene, polyester resins typified by polyethylene terephthalate and polybutylene terephthalate, polyvinylidene fluoride, and vinylidene fluoride-hexafluoropropylene copolymer. , Vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, vinylidene fluoride-hexafluoro Acetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride-tetrafluoro Ethylene - hexafluoropropylene copolymer, vinylidene fluoride - ethylene - can be mentioned tetrafluoroethylene copolymer. Among these, a microporous film mainly composed of a polyolefin resin typified by polyethylene, polypropylene and the like is preferable.

その他の電池の構成要素としては、端子、絶縁板、電池ケース等があるが、これらの部品は従来用いられてきたものをそのまま用いて差し支えない。   Other battery components include a terminal, an insulating plate, a battery case, and the like, but these components may be used as they are.

本発明に係る非水電解液二次電池の形状については特に限定されるものではなく、円筒型電池、角型電池(矩形状の電池)、扁平型電池等が一例として挙げられる。本発明は、上記の非水電解液二次電池を複数備える蓄電装置としても実現することができる。蓄電装置の一実施形態を図2に示す。図2において、蓄電装置30は、複数の蓄電ユニット20を備えている。それぞれの蓄電ユニット20は、複数の非水電解液二次電池1を備えている。前記蓄電装置30は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として搭載することができる。   The shape of the nonaqueous electrolyte secondary battery according to the present invention is not particularly limited, and examples thereof include a cylindrical battery, a square battery (rectangular battery), a flat battery, and the like. The present invention can also be realized as a power storage device including a plurality of the above nonaqueous electrolyte secondary batteries. One embodiment of a power storage device is shown in FIG. In FIG. 2, the power storage device 30 includes a plurality of power storage units 20. Each power storage unit 20 includes a plurality of non-aqueous electrolyte secondary batteries 1. The power storage device 30 can be mounted as a power source for vehicles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV).

以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はその要旨を超えない限り、これらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely using an Example and a comparative example, this invention is not limited to these Examples, unless the summary is exceeded.

(実施例1)
1mol/LのLiPFを含有するエチレンカーボネート(EC):エチルメチルカーボネート(EMC)がvol%で30:70の混合溶媒に、ヘキサカルボニルモリブデンを0.1wt%添加して、実施例1に係る非水電解液を作製した。ヘキサカルボニルモリブデンが完全に溶解した無色の溶液が得られた。
Example 1
Example 1 According to Example 1, 0.1 wt% of hexacarbonylmolybdenum was added to a mixed solvent of ethylene carbonate (EC): ethyl methyl carbonate (EMC) containing 1 mol / L LiPF 6 at a vol% of 30:70. A non-aqueous electrolyte was prepared. A colorless solution in which hexacarbonylmolybdenum was completely dissolved was obtained.

(実施例2)
1mol/LのLiPFを含有するエチレンカーボネート(EC):エチルメチルカーボネート(EMC)がvol%で30:70の混合溶媒に、ヘキサカルボニルモリブデンを0.5wt%添加して、実施例2に係る非水電解液を作製した。ヘキサカルボニルモリブデンが完全に溶解した無色の溶液が得られた。
(Example 2)
Example 2 relates to Example 2 by adding 0.5 wt% of hexacarbonylmolybdenum to a mixed solvent of ethylene carbonate (EC): ethyl methyl carbonate (EMC) containing 1 mol / L LiPF 6 at a vol% of 30:70. A non-aqueous electrolyte was prepared. A colorless solution in which hexacarbonylmolybdenum was completely dissolved was obtained.

(実施例3)
1mol/LのLiPFを含有するエチレンカーボネート(EC):エチルメチルカーボネート(EMC)がvol%で30:70の混合溶媒に、ヘキサカルボニルモリブデンを1.0wt%添加して、実施例3に係る非水電解液を作製した。ヘキサカルボニルモリブデンが完全に溶解した無色の溶液が得られた。
(Example 3)
Example 3 involves adding 1.0 wt% of hexacarbonylmolybdenum to a mixed solvent of ethylene carbonate (EC): ethyl methyl carbonate (EMC) containing 1 mol / L LiPF 6 at a vol% of 30:70. A non-aqueous electrolyte was prepared. A colorless solution in which hexacarbonylmolybdenum was completely dissolved was obtained.

(実施例4)
1mol/LのLiPFを含有するエチレンカーボネート(EC):エチルメチルカーボネート(EMC)がvol%で30:70の混合溶媒に、ヘキサカルボニルモリブデンを2.0wt%添加して、実施例4に係る非水電解液を作製した。ヘキサカルボニルモリブデンがわずかに溶け残った無色の溶液が得られた。
Example 4
According to Example 4, ethylene carbonate (EC) containing 1 mol / L of LiPF 6 : ethyl methyl carbonate (EMC) is added in a mixed solvent of vol% 30:70 and 2.0 wt% of hexacarbonylmolybdenum. A non-aqueous electrolyte was prepared. A colorless solution was obtained in which the hexacarbonylmolybdenum remained slightly dissolved.

(実施例5)
1mol/LのLiPFを含有するEC:EMCがvol%で30:70の混合溶媒に、ビス(アセチルアセトナト)モリブデンジオキシドを0.1wt%添加して、実施例5に係る非水電解液を作製した。ビス(アセチルアセトナト)モリブデンジオキシドが完全に溶解した黄色透明の溶液が得られた。
(Example 5)
Non-aqueous electrolyte according to Example 5 by adding 0.1 wt% of bis (acetylacetonato) molybdenum dioxide to a mixed solvent of EC: EMC containing 1 mol / L LiPF 6 and vol% of 30:70 Was made. A clear yellow solution in which bis (acetylacetonato) molybdenum dioxide was completely dissolved was obtained.

(実施例6)
1mol/LのLiPFを含有するEC:EMCがvol%で30:70の混合溶媒に、ビス(アセチルアセトナト)モリブデンジオキシドを0.5wt%添加して、実施例6に係る非水電解液を作製した。ビス(アセチルアセトナト)モリブデンジオキシドが完全に溶解した黄色透明の溶液が得られた。
(Example 6)
Nonaqueous electrolyte according to Example 6 by adding 0.5 wt% of bis (acetylacetonato) molybdenum dioxide to a mixed solvent of EC: EMC containing 1 mol / L LiPF 6 and vol% of 30:70 Was made. A clear yellow solution in which bis (acetylacetonato) molybdenum dioxide was completely dissolved was obtained.

(実施例7)
1mol/LのLiPFを含有するEC:EMCがvol%で30:70の混合溶媒に、ビス(アセチルアセトナト)モリブデンジオキシドを1.0wt%添加して、実施例7に係る非水電解液を作製した。ビス(アセチルアセトナト)モリブデンジオキシドが完全に溶解した黄色透明の溶液が得られた。
(Example 7)
Non-aqueous electrolyte according to Example 7 by adding 1.0 wt% of bis (acetylacetonato) molybdenum dioxide to a mixed solvent of EC: EMC containing 1 mol / L LiPF 6 and vol% of 30:70 Was made. A clear yellow solution in which bis (acetylacetonato) molybdenum dioxide was completely dissolved was obtained.

(実施例8)
1mol/LのLiPFを含有するEC:EMCがvol%で30:70の混合溶媒に、ビス(アセチルアセトナト)モリブデンジオキシドを2.0wt%添加して、実施例8に係る非水電解液を作製した。ビス(アセチルアセトナト)モリブデンジオキシドが完全に溶解した黄色透明の溶液が得られた。
(Example 8)
Nonaqueous electrolyte according to Example 8 by adding 2.0 wt% of bis (acetylacetonato) molybdenum dioxide to a mixed solvent of EC: EMC containing 1 mol / L LiPF 6 and vol% of 30:70 Was made. A clear yellow solution in which bis (acetylacetonato) molybdenum dioxide was completely dissolved was obtained.

(比較例1)
ヘキサカルボニルモリブデンを添加していないこと以外は実施例3と同様にして、比較例1に係る非水電解液を作製した。
(Comparative Example 1)
A nonaqueous electrolytic solution according to Comparative Example 1 was produced in the same manner as in Example 3 except that hexacarbonylmolybdenum was not added.

(比較例2)
ヘキサカルボニルモリブデンの代わりに酸化モリブデンを添加したこと以外は実施例3と同様にして、比較例2に係る非水電解液を作製した。酸化モリブデンは完全には溶解しないで溶け残っていた。
(Comparative Example 2)
A nonaqueous electrolytic solution according to Comparative Example 2 was produced in the same manner as Example 3 except that molybdenum oxide was added instead of hexacarbonylmolybdenum. Molybdenum oxide was not completely dissolved but remained undissolved.

(比較例3)
ヘキサカルボニルモリブデンの代わりにモリブデン酸ジリチウムを添加したこと以外は実施例3と同様にして、比較例3に係る非水電解液を作製した。モリブデン酸ジリチウムは完全には溶解しないで溶け残っていた。
(Comparative Example 3)
A nonaqueous electrolytic solution according to Comparative Example 3 was produced in the same manner as in Example 3 except that dilithium molybdate was added instead of hexacarbonylmolybdenum. Dilithium molybdate did not completely dissolve but remained undissolved.

(比較例4)
ヘキサカルボニルモリブデンの代わりにモリブデン酸を添加したこと以外は実施例3と同様にして、比較例4に係る非水電解液を作製した。モリブデン酸は完全には溶解しないで溶け残っていた。
(Comparative Example 4)
A nonaqueous electrolytic solution according to Comparative Example 4 was produced in the same manner as in Example 3 except that molybdic acid was added instead of hexacarbonylmolybdenum. Molybdic acid was not completely dissolved but remained undissolved.

(比較例5)
ヘキサカルボニルモリブデンの代わりに2−エチルヘキサン酸モリブデンを添加したこと以外は実施例3と同様にして、比較例5に係る非水電解液を作製した。2−エチルヘキサン酸モリブデンが完全には溶解しないで溶け残った赤褐色の溶液が得られた。
(Comparative Example 5)
A nonaqueous electrolytic solution according to Comparative Example 5 was produced in the same manner as Example 3 except that molybdenum 2-ethylhexanoate was added instead of hexacarbonylmolybdenum. A reddish brown solution in which molybdenum 2-ethylhexanoate was not completely dissolved but remained undissolved was obtained.

(正極の作製)
正極活物質としてLiNi1/3Mn1/3Co1/3を用い、正極活物質:PVdF:AB=93:3:4(質量比)の合材を、正極活物質が単位電極面積あたり17mg/cm含まれるようにAl箔上にコート後、プレスして正極を得た。
(Preparation of positive electrode)
LiNi 1/3 Mn 1/3 Co 1/3 O 2 was used as the positive electrode active material, the positive electrode active material: PVdF: AB = 93: 3: 4 (mass ratio), and the positive electrode active material was unit electrode area After coating on an Al foil so as to contain 17 mg / cm 2 per piece, the resultant was pressed to obtain a positive electrode.

(3端子セルの作製)
上記のようにして作製した正極を作用極とし、Li金属を対極及び参照極として、作用極と対極が一定の間隔を空けて対向するように固定した。参照極は、作用極及び対極のいずれにも接触しないよう、一定の間隔を空けて固定した。次に、実施例3及び7、比較例1〜5に係る非水電解液を一定量入れたビーカー中に、作用極、対極及び参照極が完全に浸漬するように配置し、密閉することによって3端子セルを作製した。
(Production of 3-terminal cell)
The positive electrode produced as described above was used as a working electrode, Li metal was used as a counter electrode and a reference electrode, and the working electrode and the counter electrode were fixed so as to face each other with a certain interval. The reference electrode was fixed at a fixed interval so as not to contact either the working electrode or the counter electrode. Next, by placing and sealing the working electrode, the counter electrode, and the reference electrode in a beaker containing a certain amount of the non-aqueous electrolyte solution according to Examples 3 and 7 and Comparative Examples 1 to 5, and sealing it A three-terminal cell was produced.

(定電流充電試験)
上記のようにして作製した3端子セルを、6Vを作用極の上限電位として0.02CA(1CA=15mA)の電流を流し続けたときの電位変化を測定し、dQ/dVプロットにあらわした。定電流充電試験の結果を図3〜9に示す。
(Constant current charging test)
The three-terminal cell produced as described above was measured for potential change when a current of 0.02 CA (1 CA = 15 mA) was continuously applied with 6 V as the upper limit potential of the working electrode, and was represented in a dQ / dV plot. The results of the constant current charging test are shown in FIGS.

図3及び4に示すように、ヘキサカルボニルモリブデン及びビス(アセチルアセトナト)モリブデンジオキシドを添加した実施例3及び7の非水電解液を用いた電池では、定電流充電過程のdQ/dVプロットにおいて、正極電位4.2〜4.3V(vs.Li/Li)付近にスケールオーバーしたピークが観察された。このプロットでピークが現れることは、定電流充電の充電曲線においてその電位付近に平坦部が現れることと対応する。また、図5に示すように、モリブデン化合物を添加しない比較例1の非水電解液を用いた電池では、定電流充電過程のdQ/dVプロットにおいて正極電位5.2〜5.3V(vs.Li/Li)付近に同様のピークが観察される。従って、4.2〜4.3V(vs.Li/Li)付近のピークは有機モリブデン化合物の分解によるものであり、5.2〜5.3V(vs.Li/Li)付近のピークは非水電解液を構成する非水溶媒の分解によるものと考えられる。これに対して、図6〜9に示すように、無機モリブデン化合物や2−エチルヘキサン酸モリブデンを添加した比較例2〜5の非水電解液を用いた電池では、定電流充電過程のdQ/dVプロットにおいて正極電位4.2〜4.3V(vs.Li/Li)付近にピークは観察されなかった。これらのデータより、実施例3及び7の非水電解液、即ち、LSV測定又は定電流充電を行ったときに正極電位4.2〜4.4V(vs.Li/Li+)の範囲に正極活物質への充電反応以外の酸化反応電流が観察される非水電解液に添加したヘキサカルボニルモリブデン及びビス(アセチルアセトナト)モリブデンジオキシド等の有機モリブデン化合物は、比較例2〜5の非水電解液に添加したモリブデン化合物と非水電解液中における挙動が異なることが推測される。 As shown in FIGS. 3 and 4, in the batteries using the non-aqueous electrolytes of Examples 3 and 7 to which hexacarbonylmolybdenum and bis (acetylacetonato) molybdenum dioxide were added, in the dQ / dV plot of the constant current charging process Further, a scale-over peak was observed in the vicinity of the positive electrode potential 4.2 to 4.3 V (vs. Li / Li + ). The appearance of a peak in this plot corresponds to the appearance of a flat portion in the vicinity of the potential in the charging curve for constant current charging. As shown in FIG. 5, in the battery using the non-aqueous electrolyte of Comparative Example 1 to which no molybdenum compound was added, the positive electrode potential was 5.2 to 5.3 V (vs. Similar peaks are observed in the vicinity of (Li / Li + ). Therefore, the peak in the vicinity of 4.2 to 4.3 V (vs. Li / Li + ) is due to the decomposition of the organomolybdenum compound, and the peak in the vicinity of 5.2 to 5.3 V (vs. Li / Li + ) is This is considered to be due to decomposition of the non-aqueous solvent constituting the non-aqueous electrolyte. On the other hand, as shown in FIGS. 6 to 9, in the battery using the non-aqueous electrolyte of Comparative Examples 2 to 5 to which an inorganic molybdenum compound or molybdenum 2-ethylhexanoate was added, the dQ / In the dV plot, no peak was observed near the positive electrode potential of 4.2 to 4.3 V (vs. Li / Li + ). From these data, the non-aqueous electrolytes of Examples 3 and 7, that is, when the positive electrode potential was in the range of positive electrode potential 4.2 to 4.4 V (vs. Li / Li +) when LSV measurement or constant current charging was performed. Organic molybdenum compounds such as hexacarbonylmolybdenum and bis (acetylacetonato) molybdenum dioxide added to the nonaqueous electrolytic solution in which an oxidation reaction current other than the charging reaction to the substance is observed are the nonaqueous electrolytic solutions of Comparative Examples 2-5 It is presumed that the behavior of the molybdenum compound added to the non-aqueous electrolyte is different.

(負極の作製)
負極活物質として黒鉛を用い、負極活物質:SBR:CMCが96.7:2.1:1.2(質量比)の合材を、負極活物質が単位電極面積あたり10mg/cm含まれるようにCu箔上にコート後、プレスして負極を得た。
(Preparation of negative electrode)
Graphite is used as the negative electrode active material, and the negative electrode active material: SBR: CMC is a mixture of 96.7: 2.1: 1.2 (mass ratio), and the negative electrode active material is contained at 10 mg / cm 2 per unit electrode area. Thus, after coating on Cu foil, it pressed and obtained the negative electrode.

(非水電解液二次電池の作製)
上記のようにして作製した正極、負極を、ポリエチレンからなるセパレータを介して捲回して得た電極群2を電池容器3に挿入した。実施例1及び2、比較例1〜4に係る非水電解液を一次注液し、30分静置した後、0.2CA(1CA=800mA)の電流値で90分間予備充電し、1時間静置した。次に、二次注液した後、封口して非水電解液二次電池1を作製した。
(Preparation of non-aqueous electrolyte secondary battery)
The electrode group 2 obtained by winding the positive electrode and the negative electrode produced as described above through a separator made of polyethylene was inserted into the battery container 3. After first injecting the non-aqueous electrolytes according to Examples 1 and 2 and Comparative Examples 1 to 4 and allowing them to stand for 30 minutes, they were precharged for 90 minutes at a current value of 0.2 CA (1 CA = 800 mA) for 1 hour. Left to stand. Next, after the secondary injection, the non-aqueous electrolyte secondary battery 1 was produced by sealing.

(初期充放電)
上記のようにして作製した非水電解液二次電池について、温度25℃の下、以下の条件(1CA=800mA)で、2サイクルの初期充放電を行った。
1サイクル目について、充電は、電流0.2CA、電圧4.35V、終止時間8時間の定電流定電圧充電とし、放電は、電流0.2CA、終止電圧2.75Vの定電流放電とした。
2サイクル目について、充電は、電流1CA、電圧4.35V、終止時間3時間の定電流定電圧充電とし、放電は、電流1CA、終止電圧2.75Vの定電流放電とした。
(Initial charge / discharge)
About the non-aqueous-electrolyte secondary battery produced as mentioned above, initial charge / discharge of 2 cycles was performed on the following conditions (1CA = 800mA) under the temperature of 25 degreeC.
For the first cycle, the charging was a constant current and constant voltage charging with a current of 0.2 CA, a voltage of 4.35 V, and a termination time of 8 hours, and the discharging was a constant current discharging with a current of 0.2 CA and a termination voltage of 2.75 V.
For the second cycle, the charging was a constant current and constant voltage charging with a current of 1 CA, a voltage of 4.35 V, and a termination time of 3 hours, and the discharging was a constant current discharging with a current of 1 CA and a termination voltage of 2.75 V.

(充放電サイクル試験)
初期充放電後の非水電解液二次電池について、温度45℃の下、以下の条件(1CA=800mA)で、充放電サイクル試験を行った。
充電は、電流1CA、電圧4.35V、終止時間3時間の定電流定電圧充電とし、放電は、電流1CA、終止電圧2.75Vの定電流放電とした。
1サイクル目の放電容量に対するあるサイクルの放電容量の割合をそのサイクルの放電容量維持率とした。
(Charge / discharge cycle test)
The non-aqueous electrolyte secondary battery after the initial charge / discharge was subjected to a charge / discharge cycle test under the following conditions (1CA = 800 mA) at a temperature of 45 ° C.
Charging was performed at a constant current and constant voltage with a current of 1 CA and a voltage of 4.35 V, and a termination time of 3 hours, and discharging was performed at a constant current of a current of 1 CA and a termination voltage of 2.75 V.
The ratio of the discharge capacity of a certain cycle to the discharge capacity of the first cycle was defined as the discharge capacity maintenance rate of that cycle.

(電池厚みの測定)
初期充放電後の電池厚みと充放電サイクル試験100サイクル後の電池厚みをノギスを用いて測定した。
(Measurement of battery thickness)
The battery thickness after initial charge / discharge and the battery thickness after 100 charge / discharge cycle tests were measured using calipers.

充放電サイクル試験の結果を80サイクル後の放電容量維持率で比較して表1に示す。また、初期充放電後の電池厚みに対する100サイクル後の電池厚み増加率を、表2に示す。   The results of the charge / discharge cycle test are shown in Table 1 by comparing the discharge capacity retention rate after 80 cycles. Table 2 shows the battery thickness increase rate after 100 cycles with respect to the battery thickness after the initial charge / discharge.

Figure 2015153491
Figure 2015153491

Figure 2015153491
Figure 2015153491

表1より、本発明の有機モリブデン化合物を添加し、LSV測定又は定電流充電を行ったときに正極電位4.2〜4.4V(vs.Li/Li)の範囲に正極活物質への充電反応以外の酸化反応電流が観察される非水電解液を用いた電池は、比較例に係るモリブデン化合物を添加した非水電解液を用いた電池(正極電位4.2〜4.4V(vs.Li/Li)の範囲に正極活物質への充電反応以外の酸化反応電流が観察されない)と比較して、80サイクル後の放電容量維持率が高く、充放電サイクル特性が優れていることがわかる。
また、表2より、有機モリブデン化合物として、ヘキサカルボニルモリブデンを用いた場合には、充放電サイクル特性の改善に加えて、非水電解液二次電池の電池厚みの増加も抑制されていることがわかる。
From Table 1, when the organomolybdenum compound of the present invention was added and LSV measurement or constant current charging was performed, the positive electrode active material was within the positive electrode potential range of 4.2 to 4.4 V (vs. Li / Li + ). A battery using a non-aqueous electrolyte in which an oxidation reaction current other than the charging reaction is observed is a battery using a non-aqueous electrolyte to which a molybdenum compound according to a comparative example is added (positive electrode potential 4.2 to 4.4 V (vs. .Li / Li + ) oxidation reaction current other than the charge reaction to the positive electrode active material is not observed), and the discharge capacity retention rate after 80 cycles is high and the charge / discharge cycle characteristics are excellent. I understand.
Moreover, from Table 2, when hexacarbonylmolybdenum is used as the organic molybdenum compound, in addition to improving the charge / discharge cycle characteristics, an increase in the battery thickness of the non-aqueous electrolyte secondary battery is also suppressed. Recognize.

(符号の説明)
1 非水電解液二次電池
2 電極群
3 電池容器
4 正極端子
4’ 正極リード
5 負極端子
5’ 負極リード
20 蓄電ユニット
30 蓄電装置
(Explanation of symbols)
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte secondary battery 2 Electrode group 3 Battery container 4 Positive electrode terminal 4 'Positive electrode lead 5 Negative electrode terminal 5' Negative electrode lead 20 Power storage unit 30 Power storage device

本発明に係る非水電解液二次電池は、充放電サイクル特性が優れているので、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車などの自動車用電源として有用である。   Since the non-aqueous electrolyte secondary battery according to the present invention has excellent charge / discharge cycle characteristics, it is useful as a power source for vehicles such as electric vehicles, hybrid vehicles, and plug-in hybrid vehicles.

Claims (3)

正極、負極、セパレータ及び非水電解液を備えた非水電解液二次電池であって、前記非水電解液は、モリブデン化合物が溶解しており、かつ、LSV測定又は定電流充電を行ったときに正極電位4.2〜4.4V(vs.Li/Li)の範囲に酸化反応電流が観察されることを特徴とする非水電解液二次電池。 A non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, wherein the non-aqueous electrolyte has a molybdenum compound dissolved therein, and LSV measurement or constant current charging was performed. A nonaqueous electrolyte secondary battery characterized in that an oxidation reaction current is sometimes observed in a positive electrode potential range of 4.2 to 4.4 V (vs. Li / Li + ). 正極、負極、セパレータ及び非水電解液を備えた非水電解液二次電池であって、前記非水電解液は、ヘキサカルボニルモリブデン又はビス(アセチルアセトナト)モリブデンジオキシドが溶解していることを特徴とする非水電解液二次電池。   A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, wherein the non-aqueous electrolyte is dissolved in hexacarbonyl molybdenum or bis (acetylacetonato) molybdenum dioxide. Non-aqueous electrolyte secondary battery characterized. 請求項1又は2記載の非水電解液二次電池を複数個備えた蓄電装置。   The electrical storage apparatus provided with two or more nonaqueous electrolyte secondary batteries of Claim 1 or 2.
JP2014024175A 2014-02-12 2014-02-12 Nonaqueous electrolyte secondary battery and power storage device Active JP6260775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014024175A JP6260775B2 (en) 2014-02-12 2014-02-12 Nonaqueous electrolyte secondary battery and power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014024175A JP6260775B2 (en) 2014-02-12 2014-02-12 Nonaqueous electrolyte secondary battery and power storage device

Publications (2)

Publication Number Publication Date
JP2015153491A true JP2015153491A (en) 2015-08-24
JP6260775B2 JP6260775B2 (en) 2018-01-17

Family

ID=53895569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014024175A Active JP6260775B2 (en) 2014-02-12 2014-02-12 Nonaqueous electrolyte secondary battery and power storage device

Country Status (1)

Country Link
JP (1) JP6260775B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305772A (en) * 2007-05-08 2008-12-18 Sony Corp Nonaqueous electrolyte solution secondary battery and nonaqueous electrolyte solution
JP2012018796A (en) * 2010-07-07 2012-01-26 Sony Corp Nonaqueous electrolyte battery and nonaqueous electrolyte
JP2012023030A (en) * 2010-06-17 2012-02-02 Sony Corp Nonaqueous electrolyte battery and nonaqueous electrolyte
JP2013254740A (en) * 2005-12-14 2013-12-19 Lg Chem Ltd Nonaqueous electrolyte and secondary battery including the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254740A (en) * 2005-12-14 2013-12-19 Lg Chem Ltd Nonaqueous electrolyte and secondary battery including the same
JP2008305772A (en) * 2007-05-08 2008-12-18 Sony Corp Nonaqueous electrolyte solution secondary battery and nonaqueous electrolyte solution
JP2012023030A (en) * 2010-06-17 2012-02-02 Sony Corp Nonaqueous electrolyte battery and nonaqueous electrolyte
JP2012018796A (en) * 2010-07-07 2012-01-26 Sony Corp Nonaqueous electrolyte battery and nonaqueous electrolyte

Also Published As

Publication number Publication date
JP6260775B2 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
JP6238582B2 (en) Acetonitrile electrolyte containing high-concentration metal salt and secondary battery containing the electrolyte
JP6631404B2 (en) Non-aqueous electrolyte for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of manufacturing non-aqueous electrolyte secondary battery
JP5392259B2 (en) Nonaqueous electrolyte and lithium battery using the same
CN109585921B (en) Lithium ion battery non-aqueous electrolyte and lithium ion battery
KR102525619B1 (en) Rechargeable lithium battery
KR20160085783A (en) Electrolyte of high-voltage lithium ion battery and high-voltage lithium ion battery
JP2009218065A (en) Lithium secondary battery and method for manufacturing the same
JP2008027782A (en) Lithium secondary battery
CN113130890B (en) Lithium ion battery
JP2016219420A (en) Electrolytic solution for battery and battery
CN112467209A (en) High-voltage lithium ion battery with high and low temperature performance
JP2017168375A (en) Nonaqueous electrolyte solution for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
JP2016048624A (en) Lithium secondary battery
JP2018513542A (en) Non-aqueous electrolyte for lithium ion battery and lithium ion battery
JP2016219421A (en) Electrolytic solution for battery and battery
CN107919498B (en) Non-aqueous electrolyte for lithium ion battery and lithium ion battery using same
JPWO2016121350A1 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6102494B2 (en) Non-aqueous electrolyte and lithium ion secondary battery
JP6566253B2 (en) Nonaqueous electrolyte for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing nonaqueous electrolyte secondary battery
JP6656623B2 (en) Non-aqueous electrolyte for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery
JPWO2014108979A1 (en) Nonaqueous electrolyte for secondary battery and lithium secondary battery
JP2017152222A (en) Nonaqueous electrolyte solution for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
JP5405353B2 (en) Non-aqueous electrolyte secondary battery
JP6763144B2 (en) Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries and non-aqueous electrolyte secondary batteries
JP6260775B2 (en) Nonaqueous electrolyte secondary battery and power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171128

R150 Certificate of patent or registration of utility model

Ref document number: 6260775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150