JP2015146381A - 冷却器 - Google Patents

冷却器 Download PDF

Info

Publication number
JP2015146381A
JP2015146381A JP2014018551A JP2014018551A JP2015146381A JP 2015146381 A JP2015146381 A JP 2015146381A JP 2014018551 A JP2014018551 A JP 2014018551A JP 2014018551 A JP2014018551 A JP 2014018551A JP 2015146381 A JP2015146381 A JP 2015146381A
Authority
JP
Japan
Prior art keywords
heating element
space
heat
cooling
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014018551A
Other languages
English (en)
Other versions
JP6176134B2 (ja
Inventor
福田 健太郎
Kentaro Fukuda
健太郎 福田
和樹 岩谷
Kazuki Iwatani
和樹 岩谷
憲志郎 村松
Kenshiro Muramatsu
憲志郎 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014018551A priority Critical patent/JP6176134B2/ja
Publication of JP2015146381A publication Critical patent/JP2015146381A/ja
Application granted granted Critical
Publication of JP6176134B2 publication Critical patent/JP6176134B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】冷媒流体の自励振動変位を伴い発熱体を冷却する冷却器であって、冷却能力の低下を防止することができる冷却器を提供する。
【解決手段】外部加熱器20を有する放熱抑制部19は、発熱体収容空間14a内の熱が発熱体収容壁141を介して放熱されることを抑制する。従って、発熱体収容空間14a内で気化された冷媒の再凝縮が抑制される。そのため、冷媒の自励振動における振幅に伴う加熱部14から冷却部16への熱移動が減少し難くなり、冷却器10の冷却能力の低下を防止することが可能である。
【選択図】図1

Description

本発明は、冷媒を用いて発熱体を冷却する冷却器に関するものである。
流体が封入された流体容器内の流体を加熱する加熱部と、その加熱部により加熱され気化した蒸気を冷却する冷却部とを有する蒸気エンジンが、特許文献1に開示されている。その特許文献1の蒸気エンジンは、蒸気の膨脹圧力により液体を流動変位させて機械的エネルギを出力するとともに、蒸気を冷却部にて冷却して液化することにより流体容器内の流体を自励振動変位させる。
特許第4411829号公報
特許文献1の蒸気エンジンは、上述のように機械的エネルギを出力するものであるが、機械的エネルギを得ることとは別の目的に活用することができる。例えば、発明者らは、加熱部から冷却部への熱移動が流体容器内での流体の自励振動変位により促進されるので、冷却すべき発熱体で加熱部を構成したとすれば、その発熱体を冷却するための冷媒流体として流体容器内の流体を用いることができると考えた。すなわち、特許文献1の蒸気エンジンを、その発熱体を冷却する冷却器として活用することが可能であると考えた。
しかし、特許文献1の蒸気エンジンのような構成を有する冷却器では、例えば加熱部まわりの外気温度の低下等に起因して加熱部内から加熱部の外部への放熱量が大きくなると、加熱部内において冷媒流体が発熱体の熱によって気化されても再凝縮し易くなる。そうなれば、流体容器内での流体の自励振動における振幅が小さくなり、その結果、加熱部から冷却部への熱移動が減少することにより冷却器の冷却能力が低下することになる。
本発明は上記点に鑑みて、冷媒流体の自励振動変位を伴い発熱体を冷却する冷却器であって、冷却能力の低下を防止することができる冷却器を提供することを目的とする。
上記目的を達成するため、請求項1に記載の冷却器の発明では、発熱体(12)が収容される発熱体収容空間(14a)を形成している発熱体収容壁(141)を有し、発熱体からの熱により、発熱体収容空間内に入っている冷媒流体を加熱し気化させる加熱部(14)と、
発熱体収容空間と連通している冷却部空間(16a)を形成しており、加熱部で気化され冷却部空間へ流入してきた冷媒流体を冷却して液化させる冷却部(16)と、
冷却部空間と連通している吸収部空間(28a)を形成しており、冷媒流体の加熱および冷却による体積変化を吸収する吸収部(28)と、
発熱体収容空間内の熱が発熱体収容壁を介して放熱されることを抑制する放熱抑制部(19)とを備え、
発熱体収容空間、冷却部空間、及び吸収部空間は全体として、冷媒流体が封入された一空間(32)を構成し、
加熱部および冷却部は、冷媒流体に気化と液化とを繰り返させることにより、上記一空間内で冷媒流体を自励振動させることを特徴とする。
上述の発明によれば、放熱抑制部は発熱体収容空間内の熱が発熱体収容壁を介して放熱されることを抑制するので、発熱体収容空間内で気化された冷媒流体の再凝縮が抑制される。そのため、冷媒流体の自励振動における振幅に伴う発熱体から冷却部への熱移動が減少し難くなり、冷却器の冷却能力の低下を防止することが可能である。
なお、この欄および特許請求の範囲で記載した括弧内の各符号は、後述する実施形態に記載した各符号に対応したものである。
第1実施形態の冷却器10の全体構成を示す図であり、その冷却器10の断面図である。 図1の冷却器10において冷媒の気液界面26が自励振動しているときのタイムチャートである。 図1の冷却器10において、発熱体収容壁141の温度と駆動補助装置18の振幅との関係を示したイメージ図である。 図1に相当する図であって、第2実施形態の冷却器10の全体構成を示す図である。 図1に相当する図であって、第3実施形態の冷却器10の全体構成を示す図である。 図1に相当する図であって、第4実施形態の冷却器10の全体構成を示す図である。 図1に相当する図であって、第5実施形態の冷却器10の全体構成を示す図である。 図1に相当する図であって、第6実施形態の冷却器10の全体構成を示す図である。
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
(第1実施形態)
図1は、本実施形態の冷却器10の全体構成を示す図であり、断面図示されている。冷却器10は、その冷却器10内に封入された冷媒を利用して発熱体12を冷却する。図1に示すように、冷却器10は、加熱部14、冷却部16、駆動補助装置18、および放熱抑制部19等を備えている。冷却器10の冷媒は、常温では液体で、発熱体12により加熱されることにより沸騰する流体である。なお、図1の矢印DR1は、冷却器10が設置された状態での上下方向DR1すなわち鉛直方向DR1を表している。
発熱体12は、冷却器10により冷却される部材であり、具体的には、冷却が必要な半導体素子などである。一例を挙げれば、インバータの半導体素子モジュールである。発熱体12の電気端子12a、12bは加熱部14から突き出ており、発熱体12は、その電気端子12a、12bに通電されることにより発熱する。本実施形態では、発熱体12は2つ設けられている。
加熱部14には、発熱体12が収容される発熱体収容空間14aが形成されており、加熱部14は、その発熱体収容空間14a内に発熱体12を有している。そして、加熱部14は、その発熱体12からの熱により、発熱体収容空間14a内に入っている冷媒すなわち冷媒流体を加熱し沸騰気化させる。
詳細には、加熱部14は、加熱部空間としての発熱体収容空間14aを形成している箱状の発熱体収容壁141を備えている。そして、その発熱体収容壁141内において、発熱体12は、発熱体12まわりが気体または液体の冷媒で満たされるように収容されている。例えば本実施形態では、発熱体収容空間14a全体が気体または液体の冷媒で満たされており、その冷媒が全て液体となっているときには2つの発熱体12全体もしくは一部が液体の冷媒に漬かるようになっている。なお、発熱体収容空間14aの冷却部16側である一端は後述の冷却部16の冷却部空間16aに連通しているが、発熱体収容空間14aの他端は閉塞されている。
冷却部16は、発熱体収容空間14aと連通している冷却部空間16aを形成しており、加熱部14で気化され冷却部空間16aへ流入してきた気体の冷媒を冷却して液化させる。具体的に冷却部16は、冷却部壁161と冷却装置162とを備えている。冷却部16は、加熱部14に対し水平方向に並んで配置されている。
冷却部壁161は管状の形状を成しており、その内側に冷却部空間16aを形成している。冷却装置162は、冷却部壁161の周りに設けられた多数の冷却フィン162aから構成されている。そして、冷却装置162は、冷却部空間16a内の冷媒を、外気と熱交換させることにより冷却する。すなわち、冷却部16は、冷媒を冷却する際に、その冷媒からの熱を、冷却部16の外部すなわち冷却部16まわりの外部空間16bへ放熱する。
冷却部壁161は、高い放熱性能が得られるように、例えば薄肉の金属、好ましくは薄肉のアルミニウム合金で構成されている。また、冷却部壁161、冷却装置162、および発熱体収容壁141は一体となって、アルミニウム合金等の金属から成り冷媒が収容される1つの冷媒容器を構成している。
冷却部空間16aは管状に形成された空間であり、その長手方向に直交する管路断面積が極めて小さい管路で構成されている。そのため、冷却部空間16a内に冷媒の気液界面26が存在する場合には、その気液界面26は、重力方向に拘わらず、冷媒の表面張力により、冷却部空間16aの長手方向を向くように維持される。すなわち、冷却部空間16aの長手方向において、気液界面26を境に加熱部14側には気体冷媒が存在し、その反対側には液体冷媒が存在する。
例えば、冷媒が加熱部14で加熱されることにより、気体になった冷媒の体積が増すほど、冷却部空間16a内において気液界面26は、発熱体収容空間14aから遠ざかる方向すなわち図1の左方向に移動する。そうすると、冷却部16は、液体冷媒も冷却するが、それと共に、加熱部で気化された気体冷媒も冷却し凝縮させる。
駆動補助装置18は、一軸方向または略一軸方向へ伸縮する伸縮部28と、錘30とを備えている。伸縮部28は、冷媒の加熱および冷却によって発熱体収容空間14a内および冷却部空間16a内で生じる冷媒の体積変化を吸収する。すなわち、伸縮部28は、その冷媒の体積変化を吸収する吸収部として機能する。そして、伸縮部28は、伸縮部28の内側に、冷却部空間16aと連通している吸収部空間としての伸縮部空間28aを形成している。
伸縮部28は、例えば蛇腹等で構成されており、本実施形態では上下方向DR1に伸縮する。駆動補助装置18は機械的な動作を行う部分であるので、冷却器10における駆動部と呼んでもよい。伸縮部28が上下に伸縮すると、それに伴い、伸縮部空間28aも上下に伸縮する。伸縮部空間28a内は液体冷媒で満たされている。
また、伸縮部28の下端は冷却部壁161に対して固定されており、伸縮部空間28aの下端は冷却部空間16aに連通している。その一方で、伸縮部28の上端には錘30が固定されており、伸縮部空間28aの上端は閉塞されている。従って、この伸縮部空間28a、上述の発熱体収容空間14a、および冷却部空間16aは全体として、冷媒が封入された一空間としての気密な冷媒封入空間32を構成している。そして、冷却部空間16a内の冷媒が伸縮部空間28a内へ流入すると、伸縮部空間28aが伸びて伸縮部28の上端および錘30が上昇する。逆に、伸縮部空間28aが縮んで伸縮部28の上端および錘30が下降すると、伸縮部空間28a内の冷媒が冷却部空間16a内へ流出する。すなわち、その冷媒は、伸縮部28を伸縮作動させる作動流体として機能している。
錘30は、伸縮部28が上下に伸縮する際の慣性を増すために設けられている。錘30は、高密度の部材であれば良く、例えば鉄で構成されている。
放熱抑制部19は、発熱体収容空間14a内が発熱体12の発熱によって高温になるので、その発熱体収容空間14a内の熱が発熱体収容壁141を介して発熱体収容空間14aの外部すなわち加熱部14の外部へ放熱されることを抑制する。具体的に放熱抑制部19は、外部加熱器20と壁温度センサ21と発熱体温度センサ22と制御器24とから構成されている。
外部加熱器20は電気ヒータなどの発熱装置である。外部加熱器20は、発熱体収容壁141の外側を覆っている。詳細には、発熱体収容壁141の外側の全部を覆っている。そして、外部加熱器20は、その発熱体収容壁141の外側から発熱体収容壁141を加熱する。例えば外部加熱器20は、外部加熱器20を制御する制御部としての制御器24からの制御信号に従って発熱量を調節し、外部加熱器20の発熱動作のオンオフは制御器24によって切り替えられる。なお、発熱体収容壁141の外側の全部とは、詳細に言えば、発熱体収容壁141には冷却部壁161が連結されているので、発熱体収容壁141において冷却部壁161に連結されている部位を除いた外側の全部である。
壁温度センサ21は、発熱体収容壁141の温度たとえば発熱体収容壁141の内側壁面の温度を検出し、その発熱体収容壁141の温度を示す検出信号を制御器24へ出力する。
発熱体温度センサ22は、それぞれの発熱体12に対して設けられている。そして、発熱体温度センサ22は、それぞれの発熱体12の温度を検出し、その検出した温度を示す検出信号を制御器24へ出力する。発熱体温度センサ22は、詳細には発熱体12の表面に設けられており、発熱体12の表面温度を発熱体12の温度として検出する。
制御器24は、CPU、ROM、RAM等からなる周知のマイクロコンピュータとその周辺回路とから構成された電子制御装置であり、ROM等に予め記憶されたコンピュータプログラムに従って種々の制御処理を実行する。
具体的に、制御器24は、壁温度センサ21により検出される発熱体収容壁141の温度と、発熱体温度センサ22により検出される発熱体12の温度とに基づいて外部加熱器20の発熱量を調節する。詳細には、制御器24は、発熱体収容壁141の温度を発熱体12の温度に近付けるように、外部加熱器20に発熱体収容壁141を加熱させる。なお、発熱体12は複数設けられているので、例えば個々の発熱体12の温度の平均値が、外部加熱器20の温度制御に用いられる。
このように構成された冷却器10では、発熱体収容空間14a内の液体冷媒が発熱体12により加熱され沸騰させられると冷媒の気体部分が増し、それと共に冷媒全体の体積が増加し伸縮部28の上端が上昇する。冷媒の気体部分がある程度増し例えば気液界面26が図1のように冷却部空間16a内に入ると、冷却部16が、その冷媒の気体部分を冷却し凝縮させる。
冷媒の気体部分が凝縮することにより気体部分が少なくなると、それと共に冷媒全体の体積が減少し伸縮部28の上端が下降する。そして、発熱体12の一部または全部が液体の冷媒に浸かるようになる。発熱体12が液体の冷媒に浸かると、上述したように再び発熱体収容空間14a内の液体の冷媒が沸騰し蒸発する。
このように、冷却器10において加熱部14および冷却部16は、冷媒に蒸発と凝縮とを繰り返させることにより、冷媒封入空間32内で冷媒の気液界面26を自励振動させる。要するに、冷媒封入空間32内で冷媒を自励振動させる。そして、伸縮部28は、その冷媒の自励振動に伴う冷媒全体の体積変化を吸収する。更に、伸縮部28は、所定のばね定数を持っているので、その伸縮部28の伸縮方向における釣合い点に向って伸縮量に応じた反力を生じ、冷媒の自励振動を補助する役割を果たす。
この気液界面26の自励振動すなわち冷媒の自励振動に伴い冷媒が蒸発と凝縮とを繰り返すことで、発熱体12から冷媒を介し外気に至る熱伝達経路において高い熱伝達率を得つつ、発熱体12の熱を、冷媒と冷却部壁161と冷却装置162とを介し、冷却部16から外気へ放出させることができる。
また、冷却部空間16a内および伸縮部空間28a内において気液界面26から離れた部位の液体冷媒はサブクール状態になっている。従って、そのサブクール状態の液体冷媒が、伸縮部28の上端が下降すると共に発熱体12まわりに流れ込むので、発熱体12を冷却する高い冷却性能を得ることができる。
図2は、冷媒の気液界面26が自励振動しているときのタイムチャートである。この図2では、発熱体収容壁141の温度すなわち加熱部壁温、冷媒の凝縮に伴い加熱部壁141としての発熱体収容壁141へ放熱される凝縮熱量、冷媒封入空間32内の圧力すなわち冷媒の圧力、駆動部である駆動補助装置18の変位すなわち錘30の変位が、上から順に示されている。また、図2では、外部加熱器20を含む放熱抑制部19の効果を説明するために、外部加熱器20による加熱がある場合を実線のタイムチャートで示し、外部加熱器20による加熱が無い場合を破線のタイムチャートで示している。また、加熱部壁温のタイムチャート内には、発熱体12の温度が一点鎖線で示されている。
本実施形態のように外部加熱器20によって発熱体収容壁141が加熱されると、図2の1段目の加熱部壁温のタイムチャートに示すように、外部加熱器20による加熱が無い場合よりも、その発熱体収容壁141の温度が発熱体12の温度に近づけられる。そうなると、発熱体12の温度と発熱体収容壁141の温度との温度差が小さくなるので、2段目の凝縮熱量のタイムチャートに示すように、発熱体収容壁141へ放熱される凝縮熱量が減少する。
その凝縮熱量が減少すると、発熱体収容空間14aで冷却部空間16aへ流れずに再凝縮する冷媒の凝縮量が減るので、3段目の冷媒の圧力のタイムチャートに示すように、冷媒封入空間32内において変動する冷媒圧力の最高値が高くなり、それと共に、冷媒が高圧で保持される期間が長くなる。その一方で、変動する冷媒圧力の最低値は、外部加熱器20による加熱があると、加熱がない場合と比較して僅かに増加するものの、その増加幅は僅かである。
従って、外部加熱器20によって発熱体収容壁141が加熱されると、外部加熱器20による加熱が無い場合と比較して、4段目の駆動補助装置18の変位のタイムチャートに示すように、駆動補助装置18の変位における振幅すなわち冷媒の自励振動における振幅が増大する。その結果、加熱部14の発熱体収容空間14aと冷却部16の冷却部空間16aとの間で往復する冷媒量すなわち冷却器10の作動流体供給量が増加するので、冷却器10が発熱体12を冷却する冷却能力が大きくなる。すなわち、駆動補助装置18の振幅は冷却器10の冷却能力を示す指標値であり、駆動補助装置18の振幅が増大するほど、冷却器10の冷却能力は大きくなる。
上述したように、発熱体収容壁141の温度が高くなるほど発熱体収容空間14a内の冷媒の再凝縮が防止され易くなるので、発熱体収容壁141の温度を発熱体12の温度に比して遙かに高温にしない限り、冷却器10の冷却能力は基本的に大きくなる傾向にある。この発熱体収容壁141の温度と駆動補助装置18の振幅との関係が図3に示されている。
図3に示すように、発熱体収容壁141の温度を高くするほど駆動補助装置18の振幅を増大させることができるが、発熱体収容壁141の温度が、図3でTMPxとして示す発熱体12の温度を超えた場合には、発熱体12の温度以下の場合と比較して、発熱体収容壁141の温度に対する駆動補助装置18の振幅の増大率が小さくなる。この図3の関係は実験的に求められたものである。
この図3の関係から、効率良く冷却器10の冷却能力を大きくするためには、発熱体収容壁141の温度を発熱体12の温度に一致させるように外部加熱器20の発熱量を制御するのが良いと考えられる。従って、本実施形態では、上述したように、外部加熱器20は、発熱体収容壁141の温度を発熱体12の温度に近付けるように制御されている。
上述したように、本実施形態によれば、放熱抑制部19は発熱体収容空間14a内の熱が発熱体収容壁141を介して放熱されることを抑制するので、発熱体収容空間14a内で気化された冷媒の再凝縮が抑制される。そのため、冷媒の自励振動における振幅に伴う加熱部14から冷却部16への熱移動が減少し難くなり、冷却器10の冷却能力の低下を防止することが可能である。このように発熱体12の冷却に寄与する部位である加熱部14をその周りから敢えて加熱することにより、発熱体12の冷却が促進される。本実施形態の冷却器10はこの点において独創性がある。
また、本実施形態によれば、放熱抑制部19は、発熱体収容壁141の外側からその発熱体収容壁141を加熱する外部加熱器20を有しているので、外気温等の影響を抑えて、発熱体収容壁141の温度制御を容易に行うことが可能である。
また、本実施形態によれば、放熱抑制部19は、発熱体収容壁141の温度を発熱体12の温度に近付けるように発熱体収容壁141を加熱するので、冷却器10の冷却能力を大きくするように適度に外部加熱器20を発熱させることが可能である。
また、本実施形態によれば、放熱抑制部19は、発熱体収容壁141の温度と発熱体12の温度とに基づいて外部加熱器20の発熱量を調節するので、発熱体収容壁141の温度を発熱体12の温度へ精度良く近づけることが可能である。
また、本実施形態によれば、発熱体12からの発熱が止まっているときには、発熱体12が液体の冷媒に浸るので、発熱体12からの熱が発熱開始時点において冷媒に伝わり易く、冷媒の自励振動を開始させ易いという利点がある。
(第2実施形態)
次に、本発明の第2実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。また、前述の実施形態と同一または均等な部分については省略または簡略化して説明する。後述の第3実施形態以降でも同様である。
図4は、本実施形態の冷却器10の全体構成を示す図であり、図1と同様に断面図示されている。図4に示すように、本実施形態では、第1実施形態と比較して放熱抑制部19が異なっている。具体的に、本実施形態の放熱抑制部19は、外部加熱器20(図1参照)と壁温度センサ21と発熱体温度センサ22と制御器24とを備えておらず、それらに替えて、複数の副発熱体42を備えている。そして、放熱抑制部19は、その副発熱体42からの熱によって発熱体収容壁141を加熱する。
放熱抑制部19に設けられた副発熱体42は、発熱体収容空間14a内の発熱体12と同様の半導体素子モジュールであるが、副発熱体42の発熱量、例えば単位時間当たりの発熱量は、主発熱体としての発熱体12よりも小さい。例えば、副発熱体42は、発熱体12と共に共通の装置を構成する電気部品である。
副発熱体42は、副発熱体42の熱が発熱体収容壁141へ伝わり易いように、発熱体収容壁141の外側に固定されている。例えば、副発熱体42は、副発熱体42と発熱体収容壁141との間で熱伝達させ易い接着剤によって発熱体収容壁141に固定されている。副発熱体42は、このように配置されることにより、発熱体収容壁141の外側から発熱体収容壁141を加熱する。
本実施形態において冷媒の気液界面26が自励振動しているときのタイムチャートを示したとすれば、第1実施形態の図2と同様の図になる。但し、図2において実線のタイムチャートは副発熱体42による加熱がある場合を示し、破線のタイムチャートは副発熱体42による加熱が無い場合を示す。
本実施形態でも、上述の第1実施形態のように発熱体収容壁141が加熱され、発熱体収容空間14a内で気化された冷媒の再凝縮が抑制されるので、冷却器10の冷却能力の低下を防止することが可能である。
また、本実施形態によれば、放熱抑制部19は、副発熱体42の熱によって発熱体収容壁141を加熱するので、その副発熱体42の熱は発熱体収容壁141に放熱される。従って、発熱体12の冷却に加えて、副発熱体42も冷却することが可能である。
(第3実施形態)
次に、本発明の第3実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。
図5は、本実施形態の冷却器10の全体構成を示す図であり、図1と同様に断面図示されている。図5に示すように、本実施形態では、第1実施形態と比較して放熱抑制部19が異なっている。具体的に、本実施形態の放熱抑制部19は、外部加熱器20(図1参照)と壁温度センサ21と発熱体温度センサ22と制御器24とを備えておらず、それらに替えて、断熱性を有する部材すなわち断熱材46を備えている。
放熱抑制部19を構成している断熱材46は、発熱体収容壁141の外側の全部を覆っている。その発熱体収容壁141の外側の全部とは、詳細に言えば、発熱体収容壁141には冷却部壁161が連結されているので、発熱体収容壁141において冷却部壁161に連結されている部位を除いた外側の全部である。断熱材46は、例えば、金属よりも熱伝導率の低い材料、フッ素樹脂、グラスウール、または、発泡スチロール等の発泡体で構成されている。
本実施形態において冷媒の気液界面26が自励振動しているときのタイムチャートを示したとすれば、第1実施形態の図2と同様の図になる。但し、図2において実線のタイムチャートは断熱材46が設けられている場合を示し、破線のタイムチャートは断熱材46が設けられていない場合を示す。
本実施形態でも、発熱体収容空間14a内の熱が発熱体収容壁141を介して放熱されることが上述の第1実施形態のように抑制され、それにより、発熱体収容空間14a内で気化された冷媒の再凝縮が抑制されるので、冷却器10の冷却能力の低下を防止することが可能である。
また、本実施形態によれば、放熱抑制部19は、発熱体収容壁141の外側の全部を覆う断熱材46から構成されているので、例えば第1実施形態の外部加熱器20は発熱のためのエネルギ源を必要とするところ、そのようなエネルギ源を必要としないという利点がある。
(第4実施形態)
次に、本発明の第4実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。
図6は、本実施形態の冷却器10の全体構成を示す図であり、図1と同様に断面図示されている。図6に示すように、本実施形態では、第1実施形態と比較して放熱抑制部19が異なっている。具体的に言えば、第1実施形態の放熱抑制部19は、外部加熱器20(図1参照)と壁温度センサ21と発熱体温度センサ22と制御器24とから構成されているが、本実施形態の放熱抑制部19は、図6に示す外側空間加熱装置50から構成されている。
外側空間加熱装置50は、発熱体収容壁141の外側を取り巻く外側空間14bを加熱する。すなわち、発熱体収容壁141周りの雰囲気温度を上昇させる。そのために、外側空間加熱装置50は、送風空気流路501と送風機502とを備えている。発熱体収容壁141の外側空間14bとは、言い換えれば、加熱部14を取り巻いている加熱部14周りの空間である。
送風空気流路501は、筒状のダクト内に形成され、熱媒体としての空気が流れる流路であり、U字状の流路となるように形成されている。詳細には、送風空気流路501は、冷却部16まわりの外部空間16bから発熱体収容壁141の外側空間14bへと空気が流れるように形成されている。
送風機502は例えば軸流式の電動送風機である。送風機502は、送風空気流路501内において、冷却部16まわりの外部空間16bよりも空気流れ上流側に配置され、冷却部16に向けて送風する。従って、送風空気流路501内においては、空気流れ上流側から、送風機502、冷却部16、加熱部14の順で配置されている。
従って、送風空気流路501は、冷却部16から放熱された熱で加熱された空気を発熱体収容壁141の外側空間14bへ導く。そして、外側空間加熱装置50は、その送風空気流路501を流れる空気によって上記外側空間14bを加熱する。
本実施形態において冷媒の気液界面26が自励振動しているときのタイムチャートを示したとすれば、第1実施形態の図2と同様の図になる。但し、図2において実線のタイムチャートは、発熱体収容壁141周りの雰囲気温度が冷却器10の設置場所の温度に対して外側空間加熱装置50により上昇させられている場合を示し、破線のタイムチャートは、外側空間加熱装置50が無く発熱体収容壁141周りの雰囲気温度が上記設置場所の温度になっている場合を示す。
本実施形態によれば、外側空間加熱装置50は、発熱体収容壁141の外側空間14bを加熱するので、外側空間加熱装置50が無く発熱体収容壁141が単に露出している構成と比較して、発熱体収容壁141周りの雰囲気温度が高くなる。従って、本実施形態でも、発熱体収容空間14a内の熱が発熱体収容壁141を介して放熱されることが上述の第1実施形態のように抑制され、それにより、発熱体収容空間14a内で気化された冷媒の再凝縮が抑制されるので、冷却器10の冷却能力の低下を防止することが可能である。また、発熱体収容壁141から外側空間14bへの放熱を抑制するために、冷却部16からの廃熱を活用することができる。
(第5実施形態)
次に、本発明の第5実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。
図7は、本実施形態の冷却器10の全体構成を示す図であり、図1と同様に断面図示されている。図7に示すように、本実施形態では、第1実施形態と比較して放熱抑制部19が異なっている。具体的に、第1実施形態の放熱抑制部19は、外部加熱器20(図1参照)と壁温度センサ21と発熱体温度センサ22と制御器24とから構成されているが、本実施形態の放熱抑制部19は、図7に示す介装部54から構成されている。
放熱抑制部19を構成している介装部54は、発熱体収容壁141の外側を取り巻く外側空間14bと発熱体収容壁141との間に介装されており、第1実施形態の外部加熱器20(図1参照)と同様に発熱体収容壁141の外側の全部を覆っている。そして、介装部54は、上記外側空間14bと発熱体収容壁141との間での熱伝達を抑制する熱伝達抑制構造を有している。
詳細に言うと、介装部54は、発熱体収容壁141の外側を覆う壁541を有しており、その壁541は、断熱性を有する介装空間54aを発熱体収容壁141周りにおいて気密に形成している。そして、その介装空間54aは真空に保持されている。すなわち、介装部54は真空容器として機能し、発熱体収容壁141の外側空間14bと発熱体収容壁141との間が真空に保持された構造を上記の熱伝達抑制構造として有している。なお、上記の介装空間54aの真空とは、絶対真空に限らず介装空間54a内の圧力が大気圧よりも低い状態を意味するものである。
本実施形態において冷媒の気液界面26が自励振動しているときのタイムチャートを示したとすれば、第1実施形態の図2と同様の図になる。但し、図2において実線のタイムチャートは介装部54が設けられている場合を示し、破線のタイムチャートは介装部54が設けられていない場合を示す。
本実施形態でも、発熱体収容空間14a内の熱が発熱体収容壁141を介して放熱されることが上述の第1実施形態のように抑制され、それにより、発熱体収容空間14a内で気化された冷媒の再凝縮が抑制されるので、冷却器10の冷却能力の低下を防止することが可能である。
また、本実施形態によれば、放熱抑制部19は、上記の熱伝達抑制構造を有する介装部54から構成されているので、例えば第1実施形態の外部加熱器20は発熱のためのエネルギ源を必要とするところ、そのようなエネルギ源を必要としないという利点がある。
(第6実施形態)
次に、本発明の第6実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。
図8は、本実施形態の冷却器10の全体構成を示す図であり、図1と同様に断面図示されている。図8に示すように、本実施形態では、第1実施形態と比較して放熱抑制部19が異なっている。具体的には、本実施形態の放熱抑制部19が有する外部加熱器20の取付位置が第1実施形態と異なっている。
発熱体12は、上述したように、冷却が必要な半導体素子などであるので、発熱体12の表面全体が一様に同じ温度で発熱するのではなく、発熱体12の部位によって温度が異なる。すなわち、発熱体12には、高温になる部位もあれば、それほど高温にならない部位もある。本実施形態では、図8に点ハッチングで示すように、発熱体12は、その一部分に、発熱体12の中で最も発熱する最発熱部位12cを有している。このように発熱体12が温度分布を有することは、上述の何れの実施形態でも同じである。図8では、発熱体12の中央部分が最発熱部位12cとなっている。
本実施形態では、外部加熱器20は、発熱体収容壁141の外側全体を加熱するのではなく、発熱体収容壁141の外側の一部分を加熱する。具体的に、外部加熱器20は、最発熱部位12cよりも冷却部16寄りに配置され、その冷却部16寄りの外側部分を覆っている。図8に示す外部加熱器20は、発熱体収容壁141の外側を環状に取り巻くように設けられている。なお、その冷却部16寄りの配置とは、最発熱部位12cよりも冷却部16側に限って外部加熱器20が設けられているということではなく、最発熱部位12cの中心位置に対して外部加熱器20の中心位置が冷却部16側にずれているということである。
このように外部加熱器20が配置されている理由は、発熱体収容空間14aと冷却部空間16aとにわたって流れる冷媒は振動流であるため、発熱体収容壁141の内面の中で冷却部16に近い領域は冷媒に触れている時間が長いからである。すなわち、外部加熱器20が無いとすれば、その冷却部16に近い領域の温度が最も低下し易いからである。従って、その冷却部16に近い領域に応じた部位、要するに、上記の最発熱部位12cよりも冷却部16寄りの部位を加熱するのが有効である。
本実施形態において冷媒の気液界面26が自励振動しているときのタイムチャートを示したとすれば、第1実施形態の図2と同様の図になる。
本実施形態でも、上述の第1実施形態のように発熱体収容壁141が加熱され、発熱体収容空間14a内で気化された冷媒の再凝縮が抑制されるので、冷却器10の冷却能力の低下を防止することが可能である。
また、本実施形態によれば、外部加熱器20は、最発熱部位12cよりも冷却部16寄りに配置されているので、冷媒の再凝縮抑制に効果的な部位を効率良く加熱することが可能である。
(他の実施形態)
(1)上述の第1実施形態において、制御器24は、発熱体収容壁141の温度と発熱体12の温度とに基づいて外部加熱器20の発熱量を調節するが、それらの温度の一方だけに基づいて外部加熱器20の発熱量を調節してもよい。或いは、それらの温度が何れも検出されずに、外部加熱器20の発熱量が一定値に保持されていてもよい。
(2)上述の第1実施形態において、制御器24は、発熱体収容壁141の温度を発熱体12の温度に近付けるように、外部加熱器20に発熱体収容壁141を加熱させるが、そのような温度制御に限らず、例えば、発熱体収容壁141の温度の温度が発熱体12の温度以上になるように、外部加熱器20に発熱体収容壁141を加熱させても差し支えない。このようにしたとしても、図3から判るように、冷却器10の冷却能力を十分に大きくすることが可能である。
(3)上述の第2実施形態において、副発熱体42は複数設けられているが、副発熱体42は1つであってもよい。
(4)上述の第2実施形態において、副発熱体42は発熱体収容空間14a内の発熱体12と同様の半導体素子モジュールであるが、半導体素子モジュールではない部品であってもよいし、更に言えば電気部品でなくても差し支えない。
(5)上述の第3実施形態において、断熱材46は発熱体収容壁141の外側の全部を覆っているが、発熱体収容空間14a内での気体冷媒の再凝縮を十分に抑制できれば、その発熱体収容壁141の外側の一部分を覆っているだけでも差し支えない。
(6)上述の第4実施形態において、送風空気流路501を流れる熱媒体は空気であるが、熱交換できれば、水、冷媒等の液体もしくは気体であっても差し支えない。
(7)上述の第5実施形態において、介装部54は、発熱体収容壁141の外側空間14bと発熱体収容壁141との間が真空に保持された構造を上記の熱伝達抑制構造として有しているが、その熱伝達抑制構造は、そのように真空に保持された構造に限るものではない。例えば、介装空間54a内は空気等の気体で満たされ、介装空間54a内において、その気体の対流が抑制されていてもよい。
すなわち、介装部54は、気体の対流が抑制された介装空間54aが外側空間14bと発熱体収容壁141との間に設けられている構造を熱伝達抑制構造として有していてもよい。要するに、介装部54は、その内部の気体の対流が抑制された対流抑制容器として機能してもよい。例えば、介装空間54a内の気体の対流が抑制された構造としては、介装空間54aが気密に保持されその介装空間54a内が仕切板等によって独立した多数の部屋に細かく仕切られている構造が考えられる。
(8)上述の各実施形態において、発熱体収容壁141は、アルミニウム合金等の金属で構成されているが、冷却部壁161と気密に接合でき冷媒封入空間32の気密性を確保できるのであれば、樹脂や上述の断熱材46と同じ材料で構成されていても差し支えない。
(9)上述の第1および第6実施形態において、外部加熱器20は、発熱体収容壁141の外側から発熱体収容壁141を加熱するが、発熱体収容壁141の内壁面が加熱されればよいので、例えば、外部加熱器20は、発熱体収容壁141に埋め込まれており、発熱体収容壁141を壁厚の内部から加熱しても差し支えない。
(10)上述の各実施形態において、発熱体収容空間14aおよび冷却部空間16aは、その長手方向が水平方向となるように設けられているが、例えば冷媒封入空間32が特許文献1に記載された流体容器のようにU字状に形成されていても差し支えない。
(11)上述の各実施形態では、冷却器10は、冷却部空間16aの長手方向が水平方向を向くように設置されているが、冷却部空間16a内の気液界面26の向きは冷媒の表面張力により維持されるので、冷却器10の設置向きに限定はない。
(12)上述の各実施形態において、発熱体12からの発熱が止まると、発熱体12全体が液体冷媒に浸るが、発熱体12の一部分が液体冷媒に浸るのでも差し支えない。
(13)上述の各実施形態において、冷却部16は、冷却部空間16a内の冷媒を外気と熱交換させることにより冷却するが、冷却部16まわりに冷却水が流れる配管を設け、冷媒を、その冷却水と熱交換させることにより冷却しても差し支えない。
(14)上述の各実施形態において、駆動補助装置18は錘30を備えているが、錘30は無くても差し支えない。或いは、錘30が、冷媒の振動を助長するように慣性力を付加する他の部品又は装置に置き換わっていても差し支えない。
(15)上述の各実施形態において、伸縮部28は蛇腹等で構成され上下に伸縮するが、例えばダイヤフラム等で構成されていてもよいし、或いは、冷媒の振動を吸収できれば伸縮しない構成であっても差し支えない。
(16)上述の各実施形態において、発熱体12は、冷却が必要な半導体素子などであるが、電気部品である必要はない。
なお、本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。
10 冷却器
12 発熱体
14 加熱部
14a 発熱体収容空間
16 冷却部
16a 冷却部空間
19 放熱抑制部
28 伸縮部(吸収部)
28a 伸縮部空間(吸収部空間)
32 冷媒封入空間(一空間)

Claims (13)

  1. 発熱体(12)が収容される発熱体収容空間(14a)を形成している発熱体収容壁(141)を有し、前記発熱体からの熱により、前記発熱体収容空間内に入っている冷媒流体を加熱し気化させる加熱部(14)と、
    前記発熱体収容空間と連通している冷却部空間(16a)を形成しており、前記加熱部で気化され前記冷却部空間へ流入してきた前記冷媒流体を冷却して液化させる冷却部(16)と、
    前記冷却部空間と連通している吸収部空間(28a)を形成しており、前記冷媒流体の加熱および冷却による体積変化を吸収する吸収部(28)と、
    前記発熱体収容空間内の熱が前記発熱体収容壁を介して放熱されることを抑制する放熱抑制部(19)とを備え、
    前記発熱体収容空間、前記冷却部空間、及び前記吸収部空間は全体として、前記冷媒流体が封入された一空間(32)を構成し、
    前記加熱部および前記冷却部は、前記冷媒流体に気化と液化とを繰り返させることにより、前記一空間内で前記冷媒流体を自励振動させることを特徴とする冷却器。
  2. 前記放熱抑制部は、前記発熱体収容壁を加熱する外部加熱器(20)を有していることを特徴とする請求項1に記載の冷却器。
  3. 前記放熱抑制部は、前記発熱体収容壁の温度を前記発熱体の温度に近付けるように前記発熱体収容壁を加熱することを特徴とする請求項2に記載の冷却器。
  4. 前記放熱抑制部は、前記発熱体収容壁の温度が前記発熱体の温度以上になるように前記発熱体収容壁を加熱することを特徴とする請求項2に記載の冷却器。
  5. 前記冷却部は前記加熱部と並んで設けられており、
    前記外部加熱器は、前記発熱体の中で最も発熱する部位(12c)よりも前記冷却部寄りに配置されていることを特徴とする請求項2ないし4のいずれか1つに記載の冷却器。
  6. 前記放熱抑制部は、前記外部加熱器の発熱量を前記発熱体の温度または前記発熱体収容壁の温度に基づいて調節することを特徴とする請求項2ないし5のいずれか1つに記載の冷却器。
  7. 前記放熱抑制部には、前記発熱体よりも発熱量が小さい副発熱体(42)が設けられ、前記放熱抑制部は、その副発熱体からの熱によって前記発熱体収容壁を加熱することを特徴とする請求項1に記載の冷却器。
  8. 前記放熱抑制部は、前記発熱体収容壁の外側の全部または一部を覆い断熱性を有する部材(46)から構成されていることを特徴とする請求項1に記載の冷却器。
  9. 前記放熱抑制部は、前記発熱体収容壁の外側を取り巻く外側空間(14b)を加熱する外側空間加熱装置(50)から構成されていることを特徴とする請求項1に記載の冷却器。
  10. 前記冷却部は、前記冷媒流体を冷却する際にその冷媒流体からの熱を前記冷却部の外部へ放熱するものであり、
    前記外側空間加熱装置は、前記冷却部から放熱された熱で加熱された熱媒体を前記外側空間へ導く流路(501)を有し、その外側空間を前記熱媒体によって加熱することを特徴とする請求項9に記載の冷却器。
  11. 前記放熱抑制部は、前記発熱体収容壁の外側を取り巻く外側空間(14b)と前記発熱体収容壁との間に介装された介装部(54)から構成され、
    前記介装部は、前記外側空間と前記発熱体収容壁との間での熱伝達を抑制する熱伝達抑制構造を有していることを特徴とする請求項1に記載の冷却器。
  12. 前記介装部は、前記外側空間と前記発熱体収容壁との間が真空に保持された構造を前記熱伝達抑制構造として有していることを特徴とする請求項11に記載の冷却器。
  13. 前記介装部は、気体の対流が抑制された空間が前記外側空間と前記発熱体収容壁との間に設けられている構造を前記熱伝達抑制構造として有していることを特徴とする請求項11に記載の冷却器。
JP2014018551A 2014-02-03 2014-02-03 冷却器 Expired - Fee Related JP6176134B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014018551A JP6176134B2 (ja) 2014-02-03 2014-02-03 冷却器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014018551A JP6176134B2 (ja) 2014-02-03 2014-02-03 冷却器

Publications (2)

Publication Number Publication Date
JP2015146381A true JP2015146381A (ja) 2015-08-13
JP6176134B2 JP6176134B2 (ja) 2017-08-09

Family

ID=53890493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014018551A Expired - Fee Related JP6176134B2 (ja) 2014-02-03 2014-02-03 冷却器

Country Status (1)

Country Link
JP (1) JP6176134B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7334832B2 (ja) 2018-04-25 2023-08-29 カシオ計算機株式会社 ネイルプリント装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123963A (en) * 1979-03-16 1980-09-24 Hitachi Ltd Boiling cooler
JPH0332436U (ja) * 1989-08-04 1991-03-29
JPH05190715A (ja) * 1992-01-17 1993-07-30 Toshiba Corp 沸騰冷却装置
JP2004084523A (ja) * 2002-08-26 2004-03-18 Denso Corp 蒸気エンジン
WO2009099057A1 (ja) * 2008-02-08 2009-08-13 National University Corporation Yokohama National University 自励振動型ヒートパイプ
JP2010054122A (ja) * 2008-08-28 2010-03-11 Mitsubishi Electric Corp 可変コンダクタンスヒートパイプ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123963A (en) * 1979-03-16 1980-09-24 Hitachi Ltd Boiling cooler
JPH0332436U (ja) * 1989-08-04 1991-03-29
JPH05190715A (ja) * 1992-01-17 1993-07-30 Toshiba Corp 沸騰冷却装置
JP2004084523A (ja) * 2002-08-26 2004-03-18 Denso Corp 蒸気エンジン
WO2009099057A1 (ja) * 2008-02-08 2009-08-13 National University Corporation Yokohama National University 自励振動型ヒートパイプ
JP2010054122A (ja) * 2008-08-28 2010-03-11 Mitsubishi Electric Corp 可変コンダクタンスヒートパイプ

Also Published As

Publication number Publication date
JP6176134B2 (ja) 2017-08-09

Similar Documents

Publication Publication Date Title
JP4706520B2 (ja) 外燃機関
US11653477B2 (en) Thermal management with variable conductance heat pipe
JP6044437B2 (ja) 冷却器
JP6102815B2 (ja) 冷却器
JP6176134B2 (ja) 冷却器
JP6459430B2 (ja) 冷却器
JP5054599B2 (ja) 結露抑制装置およびそれを備えた環境試験装置
JP3895322B2 (ja) 電気装置及び電子装置の少なくとも一方のための冷却装置
JPWO2013172004A1 (ja) 冷却装置の接続構造、冷却装置、および冷却装置の接続方法
JP5913157B2 (ja) 極低温冷却装置及び液面調整機構
EP2167888A1 (en) Condenser heatsink
JP6048308B2 (ja) 冷却器
JP6172060B2 (ja) 冷却器
JP2006295021A (ja) 電力機器
JP2008224062A (ja) 蓄冷式冷凍機、凝縮器および蓄冷式冷凍方法
JP5942918B2 (ja) 冷却器
JP6056633B2 (ja) 冷却器
JP6417990B2 (ja) 冷却器
JP6350319B2 (ja) 冷却器
JP6848417B2 (ja) 冷却装置
JP6390566B2 (ja) 冷却器
JP6406892B2 (ja) 冷却装置
JP5035109B2 (ja) 外燃機関
JP2005337336A (ja) 液化ガス気化装置
JP5569328B2 (ja) 熱機関

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170626

R151 Written notification of patent or utility model registration

Ref document number: 6176134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees