JP2015144208A - 電子部品の実装構造体 - Google Patents

電子部品の実装構造体 Download PDF

Info

Publication number
JP2015144208A
JP2015144208A JP2014017173A JP2014017173A JP2015144208A JP 2015144208 A JP2015144208 A JP 2015144208A JP 2014017173 A JP2014017173 A JP 2014017173A JP 2014017173 A JP2014017173 A JP 2014017173A JP 2015144208 A JP2015144208 A JP 2015144208A
Authority
JP
Japan
Prior art keywords
land
covering portion
external electrode
electronic component
covering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014017173A
Other languages
English (en)
Other versions
JP5958479B2 (ja
Inventor
中川 聖之
Seishi Nakagawa
聖之 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2014017173A priority Critical patent/JP5958479B2/ja
Priority to US14/600,134 priority patent/US10342130B2/en
Priority to CN201510043578.XA priority patent/CN104822231B/zh
Publication of JP2015144208A publication Critical patent/JP2015144208A/ja
Application granted granted Critical
Publication of JP5958479B2 publication Critical patent/JP5958479B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/06Mountings specially adapted for mounting on a printed-circuit support
    • H01G2/065Mountings specially adapted for mounting on a printed-circuit support for surface mounting, e.g. chip capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3442Leadless components having edge contacts, e.g. leadless chip capacitors, chip carriers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10015Non-printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10636Leadless chip, e.g. chip capacitor or resistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10954Other details of electrical connections
    • H05K2201/10984Component carrying a connection agent, e.g. solder, adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/0465Shape of solder, e.g. differing from spherical shape, different shapes due to different solder pads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/048Self-alignment during soldering; Terminals, pads or shape of solder adapted therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

【課題】実装時において電子部品が起立してしまう実装不具合の発生を抑制しつつ、高い実装位置精度および十分な接合強度が確保された実装構造体を提供する。【解決手段】実装構造体1Aは、外部電極15,16を含む電子部品10と、ランド25,26を含む配線基板20Aと、半田接合材からなる接合部31,32とを備える。接合部31は、外部電極15とランド25とを接合し、接合部32は、外部電極16とランド26とを接合する。外部電極15,16は、配線基板20Aに対向する素体11の主面11a2を覆う被覆部15a,16aと、素体11の長さ方向Lにおいて相対して位置する端面11b1,11b2を覆う被覆部15b,16bとをそれぞれ含む。上記長さ方向Lにおける被覆部15aおよび被覆部16a間の距離Deと、上記長さ方向Lにおけるランド25およびランド26間の距離Dlとが、0.91≰Dl/De≰1.09の条件を充足する。【選択図】図7

Description

本発明は、直方体形状の電子部品が半田接合材を用いて配線基板に実装されてなる電子部品の実装構造体(以下、単に実装構造体とも称する)に関する。
近年、電子機器のコンパクト化の要請に伴い、受動部品としての抵抗素子やコンデンサ素子等に代表される電子部品の小型化が進んでいる。たとえば、コンデンサ素子の一種である積層セラミックコンデンサにおいては、その小型化が飛躍的に進んでおり、高さ方向、幅方向および奥行き方向における外形寸法のいずれもが1.0[mm]を下回る積層セラミックコンデンサが汎用されるに至っている。
一般に、電子部品は、部品本体である素体の表面に設けられた一対の外部電極を有しており、配線基板に設けられた一対のランドに対してこれら一対の外部電極が対応付けて半田接合材によって接合されることにより、配線基板に実装される。
通常、上述した一対の外部電極は、配線基板に対向配置される素体の底面のみならず、所定方向において相対して位置する素体の一対の端面にまで跨るように設けられることが多く、さらには、上記底面および上記一対の端面のみならず、当該端面に隣接する一対の側面および天面にも跨るように(すなわち、上記所定方向に位置する素体の一対の端部を覆うように)設けられることも多い。
このように構成することにより、半田接合材を用いた接合の際に、素体の端面、あるいはこれに加えて一対の側面を覆うように設けられた外部電極の表面に沿って半田接合材が濡れ上がることになるため、高いセルフアライメント効果が発揮されることとなって電子部品がより適切な位置に実装されることになるとともに、電子部品と配線基板との間の接合強度が高く維持されることになる。
しかしながら、上記構成の電子部品にあっては、これを実装する際に、一対の外部電極のうちの一方が配線基板から離れ、配線基板上において電子部品が意図した姿勢とは異なる起立した姿勢となって実装されてしまう現象が発生することが知られている。当該現象は、一般にツームストーン現象あるいはマンハッタン現象と称され、実装不具合の一つとなっている。
上記現象は、一対の外部電極の各々の端面に濡れ上がった溶融した半田接合材の表面張力に起因して電子部品に加えられることとなる外力に不均衡が生じることで発生するものであり、実装時における配線基板に対する電子部品の載置位置の位置ずれや、供給する半田接合材の供給位置の位置ずれ、半田接合材の供給量の過多、一対の外部電極の外形の不対称性等、種々の要因によって発生するものである。
従来、当該現象が発生することを防止する観点から、各部品の外形寸法の高精度化を図りつつ、実装時における各部品間の位置決め精度を高めたり、半田接合材の供給量を適切に管理したりする等の対策がとられている。
一方で、当該現象が発生することを防止する他の手法として、特開平5−243074号公報(特許文献1)には、一対の外部電極の各々の端面を覆うように半田接合材が濡れ広がり難い金属層を形成することが提案されている。
特開平5−243074号公報
しかしながら、上記現象は、実装される電子部品が小型であればあるほどその発生頻度が高まる傾向にあり、高さ方向、幅方向および奥行き方向における外形寸法が0.5[mm]以下の非常に小型の電子部品において、特に大きな問題として顕在化している。
すなわち、各部品の外形寸法の高精度化を図るとともに半田接合材の供給量を適切に管理した場合であっても、非常に小型の電子部品においてはそもそも高精度でのハンドリングが非常に困難であるため、実装時における各部品間の位置決め精度を高めることには自ずと限界があり、当該対策のみでは十分に上記現象の発生頻度を低減することができない。
また、上記特許文献1に開示される手法を採用した場合には、第一に、上述したセルフアライメント効果が大幅に損なわれてしまって電子部品の実装位置に位置ずれが生じ易くなってしまう問題が発生し、第二に、上述した如くの非常に小型の電子部品においては、そもそも一対の外部電極の各々の端面を覆うように半田接合材が濡れ広がり難い金属層を形成すること自体が困難である。
したがって、本発明は、上述した問題点を解決すべくなされたものであり、実装時において電子部品が起立してしまう実装不具合の発生を抑制しつつ、高い実装位置精度および十分な接合強度が確保された実装構造体を提供することを目的とする。
本発明に基づく電子部品の実装構造体は、直方体形状の電子部品が半田接合材を用いて配線基板に実装されてなるものである。上記電子部品は、厚み方向において相対して位置する第1主面および第2主面、上記厚み方向と直交する長さ方向において相対して位置する第1端面および第2端面、ならびに、上記厚み方向および上記長さ方向のいずれにも直交する幅方向において相対して位置する第1側面および第2側面を含む素体と、上記長さ方向において互いに離間して位置する第1外部電極および第2外部電極とを含んでいる。上記第1外部電極は、上記第1端面寄りに位置する部分の上記第2主面を覆う第1被覆部と、上記第1端面を覆う第2被覆部とを少なくとも有しており、上記第2外部電極は、上記第2端面寄りに位置する部分の上記第2主面を覆う第3被覆部と、上記第2端面を覆う第4被覆部とを少なくとも有している。上記配線基板は、主表面を有する基材部と、互いに離間して位置するように上記主表面上に形成された第1ランドおよび第2ランドとを含んでいる。上記電子部品は、上記第1被覆部が上記第1ランドに対向するとともに上記第3被覆部が上記第2ランドに対向するように配置されており、上記半田接合材は、上記第1外部電極と上記第1ランドとを接合する第1接合部、および、上記第2外部電極と上記第2ランドとを接合する第2接合部を含んでいる。上記第1接合部は、上記第1ランドに固着しているとともに、上記第1被覆部および上記第2被覆部に跨るように上記第1外部電極に固着しており、上記第2接合部は、上記第2ランドに固着しているとともに、上記第3被覆部および上記第4被覆部に跨るように上記第2外部電極に固着している。上記本発明に基づく電子部品の実装構造体においては、上記長さ方向における上記電子部品の最大外形寸法をLcとした場合に、当該Lcが、Lc≦0.5[mm]の条件を充足しており、上記長さ方向における上記第1被覆部と上記第2被覆部との間の距離をDeとし、上記長さ方向における上記第1ランドと上記第2ランドとの間の距離をDlとした場合に、当該Deおよび当該Dlが、0.91≦Dl/De≦1.09の条件を充足している。
上記本発明に基づく電子部品の実装構造体においては、上記Deおよび上記Dlが、Dl/De≦1.00の条件をさらに充足していることが好ましい。
上記本発明に基づく電子部品の実装構造体においては、上記第1ランドの上記第2ランドが位置する側とは反対側の端部から上記第2ランドの上記第1ランドが位置する側とは反対側の端部までの上記長さ方向における寸法をLbとした場合に、上記Lcおよび当該Lbが、1.00≦Lb/Lc≦1.32の条件をさらに充足していることが好ましい。
上記本発明に基づく電子部品の実装構造体にあっては、上記第1外部電極の表層部および上記第2外部電極の表層部が、成分としてSnを含んでいてもよく、その場合に、上記半田接合材が、成分としてSn、AgおよびCuを含んでいてもよい。
上記本発明に基づく電子部品の実装構造体にあっては、上記第1外部電極の表層部および上記第2外部電極の表層部が、成分としてSnを含んでいてもよく、その場合に、上記半田接合材が、成分としてSnおよびSbを含んでいてもよい。
上記本発明に基づく電子部品の実装構造体にあっては、上記第1外部電極が、上記第1端面寄りに位置する部分の上記第1側面を覆う第5被覆部と、上記第1端面寄りに位置する部分の上記第2側面を覆う第6被覆部と、上記第1端面寄りに位置する部分の上記第1主面を覆う第7被覆部とをさらに有しているとともに、上記第2外部電極が、上記第2端面寄りに位置する部分の上記第1側面を覆う第8被覆部と、上記第2端面寄りに位置する部分の上記第2側面を覆う第9被覆部と、上記第2端面寄りに位置する部分の上記第1主面を覆う第10被覆部とをさらに有していてもよく、その場合には、上記第1接合部が、上記第1ランドに固着しているとともに、上記第1被覆部、上記第2被覆部、上記第3被覆部、上記第4被覆部および上記第5被覆部に跨るように上記第1外部電極に固着していてもよく、また、上記第2接合部が、上記第2ランドに固着しているとともに、上記第6被覆部、上記第7被覆部、上記第8被覆部、上記第9被覆部および上記第10被覆部に跨るように上記第2外部電極に固着していてもよい。
上記本発明に基づく電子部品の実装構造体にあっては、上記電子部品が、積層セラミックコンデンサであってもよい。
本発明によれば、実装時において電子部品が起立してしまう実装不具合の発生を抑制しつつ、高い実装位置精度および十分な接合強度が確保された実装構造体とすることができる。
本発明の実施の形態1における実装構造体に具備される積層セラミックコンデンサの斜視図である。 図1に示すII−II線に沿った模式断面図である。 図2に示すIIIA−IIIA線およびIIIB−IIIB線に沿った模式断面図である。 本発明の実施の形態1における実装構造体に具備される配線基板の概略斜視図である。 図4に示すV−V線に沿った模式断面図である。 図5に示すVIA−VIA線およびVIB−VIB線に沿った模式断面図である。 本発明の実施の形態1における実装構造体の模式断面図である。 図7に示すVIIIA−VIIIA線およびVIIIB−VIIIB線に沿った模式断面図である。 本発明の実施の形態1における実装構造体を製造する際の製造フローを示す図である。 本発明が適用されていない実装構造体において、実装の際に電子部品が起立した姿勢となってしまう現象が発生するメカニズムを説明するための概念図である。 第1検証試験における検証例1の製造条件および試験結果を示す表である。 第1検証試験における検証例1の試験結果を示すグラフである。 第2検証試験における検証例2の製造条件および試験結果を示す表である。 第2検証試験における検証例3の製造条件および試験結果を示す表である。 第2検証試験における検証例4の製造条件および試験結果を示す表である。 第2検証試験における検証例2ないし検証例4の試験結果を示すグラフである。 本発明の実施の形態2における実装構造体に具備される配線基板の概略斜視図である。 図17に示すXVIII−XVIII線に沿った模式断面図である。 図18に示すXIXA−XIXA線およびXIXB−XIXB線に沿った模式断面図である。 本発明の実施の形態2における実装構造体の模式断面図である。 図20に示すXXIA−XXIA線およびXXIB−XXIB線に沿った模式断面図である。
以下、本発明の実施の形態について、図を参照して詳細に説明する。なお、以下に示す実施の形態においては、同一のまたは共通する部分について図中同一の符号を付し、その説明は繰り返さない。
以下に示す実施の形態においては、電子部品の実装構造体として、積層セラミックコンデンサが配線基板に実装されてなる回路基板を例示して説明を行なう。また、本発明が適用されて配線基板に実装される電子部品としては、その他の種類のコンデンサ素子や各種の抵抗素子等、どのようなものであってもよい。
(実施の形態1)
図1は、本発明の実施の形態1における実装構造体に具備される積層セラミックコンデンサの斜視図である。また、図2は、図1に示すII−II線に沿った模式断面図であり、図3は、図2に示すIIIA−IIIA線およびIIIB−IIIB線に沿った模式断面図である。まず、これら図1ないし図3を参照して、本実施の形態における実装構造体に具備される積層セラミックコンデンサ10について説明する。
図1ないし図3に示すように、積層セラミックコンデンサ10は、全体として直方体形状を有する電子部品であり、素体11と、一対の外部電極としての第1外部電極15および第2外部電極16とを備えている。なお、直方体形状には、コーナー部および稜線部が丸みを帯びたものも含まれる。
図2および図3に示すように、素体11は、直方体形状を有しており、所定方向に沿って交互に積層された誘電体層12および内部電極層13にて構成されている。誘電体層12は、たとえばチタン酸バリウムを主成分とするセラミックス材料にて形成されている。また、誘電体層12は、後述するセラミックシートの原料となるセラミックス粉末の副成分としてのMn化合物、Mg化合物、Si化合物、Co化合物、Ni化合物、希土類化合物等を含んでいてもよい。一方、内部電極層13は、たとえばNi、Cu、Ag、Pd、Ag−Pd合金、Au等に代表される金属材料にて形成されている。
素体11は、誘電体層12となるセラミックシート(いわゆるグリーンシート)の表面に内部電極層13となる導電性ペーストが印刷された素材シートを複数準備し、これら複数の素材シートを積層して圧着および焼成することによって製作される。
なお、誘電体層12の材質は、上述したチタン酸バリウムを主成分とするセラミックス材料に限られず、他の高誘電率のセラミックス材料(たとえば、CaTiO、SrTiO、CaZrO等を主成分とするもの)を誘電体層12の材質として選択してもよい。また、内部電極層13の材質も、上述した金属材料に限られず、他の導電材料を内部電極層13の材質として選択してもよい。
図1および図2に示すように、第1外部電極15および第2外部電極16は、素体11の所定方向の両端部の外表面を覆うように互いに離間して設けられている。第1外部電極15および第2外部電極16は、それぞれ導電膜にて構成されている。
第1外部電極15および第2外部電極16は、たとえば焼結金属層とめっき層の積層膜にて構成される。焼結金属層は、たとえばCu、Ni、Ag、Pd、Ag−Pd合金、Au等のペーストを焼き付けることで形成される。めっき層は、たとえばNiめっき層とこれを覆うSnめっき層とによって構成される。めっき層は、これに代えてCuめっき層やAuめっき層であってもよい。また、第1外部電極15および第2外部電極16は、めっき層のみによって構成されていてもよい。さらには、第1外部電極15および第2外部電極16として、導電性樹脂ペーストを利用することも可能である。
ここで、第1外部電極15および第2外部電極16の表層部は、成分としてSnを含んでいることが好ましい。当該構成としては、上述した最外層にSnめっき層が形成されてなる構成が好適に利用できる。
図2に示すように、積層方向に沿って誘電体層12を挟んで隣り合う一対の内部電極層13のうちの一方は、積層セラミックコンデンサ10の内部において第1外部電極15に電気的に接続されており、積層方向に沿って誘電体層12を挟んで隣り合う一対の内部電極層13のうちの他方は、積層セラミックコンデンサ10の内部において第2外部電極16に電気的に接続されている。これにより、一対の外部電極としての第1外部電極15および第2外部電極16間は、複数のコンデンサ要素が電気的に並列に接続された状態となっている。
ここで、図1ないし図3に示すように、素体11における誘電体層12と内部電極層13との積層方向を厚み方向Tとして定義し、第1外部電極15および第2外部電極16が並ぶ方向を積層セラミックコンデンサ10の長さ方向Lとして定義し、これら長さ方向Lおよび厚み方向Tのいずれにも直交する方向を幅方向Wとして定義し、以降の説明においては、当該用語を使用する。なお、後述する配線基板20Aの向きを特定する場合においても、積層セラミックコンデンサ10が実装される向きに合わせて当該配線基板20Aの向きをこれら用語を用いて説明することとする。
また、素体11が有する6つの表面のうち、厚み方向Tにおいて相対して位置する一対の表面を第1主面11a1および第2主面11a2と定義し、長さ方向Lにおいて相対して位置する一対の表面を第1端面11b1および第2端面11b2と定義し、幅方向Wにおいて相対して位置する一対の表面を第1側面11c1および第2側面11c2として定義し、以降の説明においては、当該用語を使用する。
図1ないし図3に示すように、素体11の表面を覆うように互いに離間して設けられた第1外部電極15および第2外部電極16は、それぞれ素体11の長さ方向Lにおける端部を覆うように設けられている。
具体的には、図2および図3を参照して、第1外部電極15は、第1端面11b1寄りに位置する部分の第2主面11a2を覆う第1被覆部15aと、第1端面11b1を覆う第2被覆部15bと、第1端面11b1寄りに位置する部分の第1側面11c1を覆う第5被覆部15cと、第1端面11b1寄りに位置する部分の第2側面11c2を覆う第6被覆部15dと、第1端面11b1寄りに位置する部分の第1主面11a1を覆う第7被覆部15eとを有している。
一方、第2外部電極16は、第2端面11b2寄りに位置する部分の第2主面11a2を覆う第3被覆部16aと、第2端面11b2を覆う第4被覆部16bと、第2端面11b2寄りに位置する部分の第1側面11c1を覆う第8被覆部16cと、第2端面11b2寄りに位置する部分の第2側面11c2を覆う第9被覆部16dと、第2端面11b2寄りに位置する部分の第1主面11a1を覆う第10被覆部16eとを有している。
これにより、積層セラミックコンデンサ10の厚み方向Tにおける最大外形寸法Tcは、第1外部電極15の第1被覆部15aの露出表面と第1外部電極15の第7被覆部15eの露出表面との間の厚み方向Tに沿った距離のうちの最大値Te1、または、第2外部電極16の第3被覆部16aの露出表面と第2外部電極16の第10被覆部16eの露出表面との間の厚み方向Tに沿った距離のうちの最大値Te2によって規定される。なお、通常は、これら最大値Te1,Te2が同じ大きさとなるように構成される。
また、積層セラミックコンデンサ10の長さ方向Lにおける最大外形寸法Lcは、第1外部電極15の第2被覆部15bの露出表面と第2外部電極16の第4被覆部16bの露出表面との間の長さ方向Lに沿った距離のうちの最大値によって規定される。なお、当該最大外形寸法Lcは、後述する配線基板20Aの第1ランド25の第2ランド26が位置する側とは反対側の端部から第2ランド26の第1ランド25が位置する側とは反対側の端部までの長さ方向Lにおける寸法Lb(図5等参照)との間で所定の条件を充足するように構成されていることが好ましいが、その詳細については後述することとする。
さらに、積層セラミックコンデンサ10の幅方向Wにおける最大外形寸法Wcは、第1外部電極15の第5被覆部15cの露出表面と第1外部電極15の第6被覆部15dの露出表面との間の幅方向Wに沿った距離のうちの最大値We1、または、第2外部電極16の第8被覆部16cの露出表面と第2外部電極16の第9被覆部16dの露出表面との間の幅方向Wに沿った距離のうちの最大値We2によって規定される。なお、通常は、これら最大値We1,We2が同じ大きさとなるように構成される。また、当該最大外形寸法Wcは、後述する配線基板20Aの第1ランド25および第2ランド26の幅方向Wにおける外形寸法Wl1,Wl2との間で所定の条件を充足するように構成されていることが好ましいが、その詳細については後述することとする。
ここで、第1外部電極15の第1被覆部15aの長さ方向Lにおける外形寸法Le1および第2外部電極16の第3被覆部16aの長さ方向Lにおける外形寸法Le2は、これらが同等となるように構成されることが好ましく、第1外部電極15の第1被覆部15aと第2外部電極16の第3被覆部16aとの間の長さ方向Lに沿った距離Deは、これらの間の絶縁性を確保するのに十分な距離とされる。また、当該距離Deは、後述する配線基板20Aの第1ランド25と第2ランド26との間の長さ方向Lに沿った距離Dl(図5等参照)との間で所定の条件を充足するように構成されているが、その詳細については後述することとする。
なお、本実施の形態における積層セラミックコンデンサ10は、長さ方向Lにおける最大外形寸法Lcが最も長くなるように構成されており、厚み方向Tにおける最大外形寸法Tcおよび幅方向Wにおける最大外形寸法Wcが上記長さ方向Lにおける最大外形寸法Lcの約半分の大きさで同等の寸法となるように構成されている。
ここで、積層セラミックコンデンサ10の最大外形寸法Lc,Wc,Tcの代表値としては、たとえば0.4[mm]×0.2[mm]×0.2[mm]、0.25[mm]×0.125[mm]×0.125[mm]等が挙げられる。
図4は、本実施の形態における実装構造体に具備される配線基板の概略斜視図である。また、図5は、図4に示すV−V線に沿った模式断面図であり、図6は、図5に示すVIA−VIA線およびVIB−VIB線に沿った模式断面図である。次に、これら図4ないし図6を参照して、本実施の形態における実装構造体に具備される配線基板20Aについて説明する。
図4ないし図6に示すように、配線基板20Aは、全体として平板状の形状を有しており、基材部21と、導電パターン23とを備えている。
基材部21は、一対の主表面を有する平板状の形状を有しており、少なくともその一方の主表面上に上述した導電パターン23が形成されている。基材部21の材質としては、エポキシ樹脂等の樹脂材料やアルミナ等のセラミックス材料からなるもの、あるいはこれらに無機材料または有機材料からなるフィラーや織布等が添加されたもの等を用いることができる。一般的には、基材部21としては、エポキシ樹脂からなる母材にガラス製の織布が添加されたガラスエポキシ基板が好適に利用される。
導電パターン23は、基材部21の主表面上に設けられており、所定の形状にパターニングされている。導電パターン23は、第1ランド25および第2ランド26を形成する部分と、これら第1ランド25および第2ランド26から引き出された配線部24とを含んでいる。導電パターン23の材質としては、各種の導電材料が利用できるが、一般的には銅箔等の金属材料が好適に利用される。
導電パターン23の第1ランド25および第2ランド26を形成する部分は、積層セラミックコンデンサ10の第1外部電極15および第2外部電極16に対応した形状に形成されており、積層セラミックコンデンサ10が実装されることとなる配線基板20Aの長さ方向Lに沿って並んで配置されている。
ここで、第1ランド25の長さ方向Lにおける外形寸法Ll1および第2ランド26の長さ方向Lにおける外形寸法Ll2は、これらが同等となるように構成されることが好ましく、第1ランド25と第2ランド26との間の長さ方向Lに沿った距離Dlは、これらの間の絶縁性を確保するのに十分な距離とされる。また、第1ランド25と第2ランド26との間の長さ方向Lに沿った距離Dlは、上述した積層セラミックコンデンサ10の第1被覆部15aと第3被覆部16aとの間の長さ方向Lに沿った距離Deとの間で、0.91≦Dl/De≦1.09の条件を充足するように構成されている。
また、第1ランド25の第2ランド26が位置する側とは反対側の端部から第2ランド26の第1ランド25が位置する側とは反対側の端部までの長さ方向Lにおける寸法Lbは、上述した積層セラミックコンデンサ10の長さ方向Lにおける最大外形寸法Lcとの間で、1.00≦Lb/Lc≦1.32の条件を充足するように構成されていることが好ましい。
さらには、第1ランド25の幅方向Wにおける外形寸法Wl1および第2ランド26の幅方向Wにおける外形寸法Wl2は、これらが同等となるように構成されることが好ましく、それぞれ積層セラミックコンデンサ10の第1被覆部15aの幅方向Wにおける最大値We1および第3被覆部16aの幅方向Wにおける最大値We2との間で、1.00≦Wl1/We1≦1.30、および、1.00≦Wl2/We2≦1.30の条件を充足するように構成されていることが好ましい。
図7は、本実施の形態における実装構造体の模式断面図であり、図8は、図7に示すVIIIA−VIIIA線およびVIIIB−VIIIB線に沿った模式断面図である。次に、これら図7および図8を参照して、本実施の形態における実装構造体1Aについて説明する。
図7および図8に示すように、実装構造体1Aは、上述した構成の配線基板20Aに上述した構成の積層セラミックコンデンサ10が実装されてなるものであり、これら積層セラミックコンデンサ10および配線基板20Aに加えて、半田接合材からなる第1接合部31および第2接合部32を備えている。
積層セラミックコンデンサ10は、第1外部電極15の第1被覆部15aが配線基板20Aの第1ランド25に対向するとともに、第2外部電極16の第3被覆部16aが配線基板20Aの第2ランド26に対向するように、素体11の第2主面11a2が配線基板20Aに対面した状態で配置されている。
上述した第1接合部31は、これら対向配置された第1外部電極15と第1ランド25とを接合しており、第1ランド25の表面に固着するとともに、第1外部電極15の第1被覆部15a、第2被覆部15b、第5被覆部15c、第6被覆部15dおよび第7被覆部15eに跨るように第1外部電極15の表面に固着している。
一方、上述した第2接合部32は、これら対向配置された第2外部電極16と第2ランド26とを接合しており、第2ランド26の表面に固着するとともに、第2外部電極16の第3被覆部16a、第4被覆部16b、第8被覆部16c、第9被覆部16dおよび第10被覆部16eに跨るように第2外部電極16の表面に固着している。
第1接合部31および第2接合部32は、上述したように半田接合材によって構成されており、たとえば半田合金と有機材料であるフラックスとの混合物である半田ペーストを溶融および固化させることで形成されるものである。当該半田接合材は、Snを含む半田合金を主成分としている。当該半田接合材としては、たとえばこれに含まれる金属成分のうち、Agの含有量が0[wt%]より大きく3.5[wt%]以下であり、Cuの含有量が0.5[wt%]以上0.7[wt%]以下である3元系のもの(溶融温度:217[℃]〜228[℃])や、高温半田としての、これに含まれる金属成分のうち、Sbの含有量が5[wt%]以上10[wt%]以下であるもの(溶融温度:240[℃]〜260[℃])等を用いることが好ましい。
ここで、第1接合部31となる半田ペーストは、積層セラミックコンデンサ10の実装時においてこれが溶融することで第1外部電極15の表面において濡れ広がり、その際に第1被覆部15aを覆うばかりでなく第2被覆部15b、第5被覆部15c、第6被覆部15dおよび第7被覆部15eを覆うように濡れ上がることになる。そのため、その後に濡れ広がった半田接合材が固化することにより、第1接合部31は、上述したように第1被覆部15a、第2被覆部15b、第5被覆部15c、第6被覆部15dおよび第7被覆部15eに跨るように第1外部電極15の表面に固着した状態で形成されることになる。
また、第2接合部32となる半田ペーストも、積層セラミックコンデンサ10の実装時においてこれが溶融することで第2外部電極16の表面において濡れ広がり、その際に第3被覆部16aを覆うばかりでなく第4被覆部16b、第8被覆部16c、第9被覆部16dおよび第10被覆部16eを覆うように濡れ上がることになる。そのため、その後に濡れ広がった半田接合材が固化することにより、第2接合部32は、上述したように第3被覆部16a、第4被覆部16b、第8被覆部16c、第9被覆部16dおよび第10被覆部16eに跨るように第2外部電極16の表面に固着した状態で形成されることになる。
図9は、本実施の形態における実装構造体の製造方法を示すフロー図である。次に、この図9を参照して、本実施の形態における実装構造体の製造方法について具体的に説明する。
上述した本実施の形態における実装構造体1Aを製造するに当たっては、まず、上述した構成の積層セラミックコンデンサ10と、上述した構成の配線基板20Aとが準備される。
次に、図9に示すように、配線基板20Aに半田ペーストが供給される(工程S1)。当該工程S1は、好ましくはステンシルを用いたスクリーン印刷法によって行なわれる。
具体的には、配線基板20Aの第1ランド25および第2ランド26に対応した位置および大きさの第1孔部および第2孔部が設けられてなる平板状のステンシル(版)が予め準備され、当該第1孔部および第2孔部がそれぞれ配線基板20Aの第1ランド25および第2ランド26に重なるようにステンシルが配線基板20A上に位置決めして載置され、当該第1孔部および第2孔部が半田ペーストによって充填されるように半田ペーストの印刷が行なわれる。その際、ステンシルの表面に半田ペーストが残留することがないようにスキージ等を用いて余剰の半田ペーストが掻き取られる。これにより、配線基板20Aの第1ランド25上および第2ランド26上に所定量の半田ペーストが供給されることになる。
なお、上述した工程S1においては、スクリーン印刷法を利用して半田ペーストを第1ランド25上および第2ランド26上に供給する場合を例示したが、他の方法を利用して半田ペーストを第1ランド25上および第2ランド26上に供給してもよいし、半田ペーストを積層セラミックコンデンサ10の第1外部電極15の第1被覆部15a上および第2外部電極16の第3被覆部16a上に供給することとしてもよいし、これら第1ランド25および第1被覆部15aならびに第2ランド26および第3被覆部16a上の双方に供給することとしてもよい。
次に、配線基板20Aに積層セラミックコンデンサ10が載置される(工程S2)。当該工程S2においては、好ましくはチップマウンターが用いられ、積層セラミックコンデンサ10の第1外部電極15の第1被覆部15aが、第1接合部31となる半田ペーストを介して配線基板20Aの第1ランド25に対向配置されるとともに、積層セラミックコンデンサ10の第2外部電極16の第3被覆部16aが、第2接合部32となる半田ペーストを介して配線基板20Aの第2ランド26に対向配置されることとなるように、高精度に積層セラミックコンデンサ10が位置決めされて配線基板20A上に載置される。
次に、リフローが行なわれる(工程S3)。当該工程S3においては、配線基板20A上に半田ペーストを介して載置された積層セラミックコンデンサ10が、当該配線基板20Aおよび半田ペーストごとたとえばリフロー炉に投入されることによって行なわれる。これにより、半田ペーストが加熱されて溶融し、その後半田ペーストが冷却されて固化することにより、上述した第1接合部31および第2接合部32が形成されることになり、積層セラミックコンデンサ10が配線基板20Aに実装される。
以上により、図7および図8に示す実装構造体1Aが製造されることになる。なお、上記においては、リフロー炉を用いたいわゆるリフロー半田付けを行なう場合を例示したが、噴流半田供給装置を用いたいわゆるフロー半田付けを行なってもよい。
次に、本実施の形態における実装構造体1Aとすることにより、実装時において積層セラミックコンデンサ10が起立した姿勢となって実装されてしまう現象が抑制できる理由について詳細に説明する。なお、図10は、本発明が適用されていない実装構造体において、実装の際に電子部品(積層セラミックコンデンサ)が起立した姿勢となってしまう現象が発生するメカニズムを説明するための概念図である。
図10に示すように、実装時において溶融した半田接合材30によって電子部品としての積層セラミックコンデンサ10に加えられる外力は、溶融した半田接合材30が第1外部電極15の底面部分および第2外部電極16の底面部分にそれぞれ濡れ広がることでこれを配線基板20A側に向けて引張する力Fa1,Fa2と、溶融した半田接合材30が第1外部電極15の端面部分および第2外部電極16の端面部分にそれぞれ濡れ上がることでこれを配線基板20A側に向けて引張する力Fb1,Fb2と、溶融した半田接合材30が第1外部電極15の一対の側面部分および第2外部電極16の一対の側面部分にそれぞれ濡れ上がることでこれを配線基板20A側に向けて引張する力Fc1,Fc2とに分けられる。
ここで、実装時において積層セラミックコンデンサ10が起立した姿勢となって実装されてしまう現象は、たとえば図10において示すように、積層セラミックコンデンサ10が第2ランド26寄りに位置するように配線基板20Aに対して位置ずれを起こして載置された場合に、第2外部電極16の端面部分に濡れ上がる溶融した半田接合材30の量よりも、より多くの溶融した半田接合材30が第1外部電極15の端面部分において濡れ上がることになり、これによって力Fa1が力Fa2よりも大きくなる(すなわち、力Fa1と力Fa2とが不均衡になる)ことで積層セラミックコンデンサ10が図中に示す矢印A方向に回転し、これによって第2外部電極16が配線基板20Aから離間することが一因となって生じるものである。
そのため、従来は、この力Fa1と力Fa2との不均衡がそもそも生じ難くなるように、第1ランド25の第2ランド26が位置する側とは反対側の端部から第2ランド26の第1ランド25が位置する側とは反対側の端部までの長さ方向Lにおける寸法Lbが、積層セラミックコンデンサ10の長さ方向における最大外形寸法Lcと同等程度となるように、比較的小さく抑える手法が採用されていた。
その場合、第1外部電極15の端面部分および第2外部電極16の端面部分に形成される半田フィレットが必然的に小さくなるため、固着力の低下が懸念されることになり、従来は、第1ランド25と第2ランド26との間の長さ方向Lに沿った距離Dlが縮められることで第1ランド25の長さ方向Lにおける外形寸法Le1および第2ランド26の長さ方向Lにおける外形寸法Le2が大きく確保することが同時に行なわれていた。
しかしながら、このように構成した場合には、素体11に対向配置される部分の第1ランド25および第2ランド26の面積が増加することになり、当該面積が増加することにより、第1ランド25上および第2ランド26上において濡れ広がった溶融した半田接合材30と積層セラミックコンデンサ10の素体11とが接触することになる。
ここで、素体11は、そもそも半田接合材30に対する濡れ性において大幅に劣るものであるため、素体11と溶融した半田接合材30とが互いに反撥し合うことになり、溶融した半田接合材30によって素体11を押し上げようとする力Fd1,Fd2が、それぞれ素体11の第1外部電極15寄りに位置する部分と第2外部電極16寄りに位置する部分とに生じることになる。
ここで、積層セラミックコンデンサ10が上述したように配線基板20Aに対して位置ずれして載置されている限りにおいては、少なからず積層セラミックコンデンサ10の端面部分に生じる力Fb1と力Fb2とに不均衡が生じているため、この素体11を押し上げようとする力Fd1,Fd2が当該力Fb1および力Fb2と相まって積層セラミックコンデンサ10が図中に示す矢印A方向に回転することが誘発されてしまう結果となり、結局のところ第2外部電極16が配線基板20Aから離間することで実装時において積層セラミックコンデンサ10が起立した姿勢となって実装されてしまう現象が生じてしまう。
このように、従来においては、実装時において積層セラミックコンデンサ10が起立した姿勢となって実装されてしまう現象の要因が、第1外部電極15の端面部分と第2外部電極16の端面部分において生じる溶融した半田接合材30に起因した引張力の差のみにあると考えられていたが、本発明者らは、研究の結果、第1ランド25および第2ランド26に対向配置される部分の素体11の面積にも十分な配慮がなされるべきであることを突き止めるに至った。
したがって、上述したように、本実施の形態における実装構造体1Aにあっては、第1ランド25と第2ランド26との間の長さ方向Lに沿った距離Dlと、積層セラミックコンデンサ10の第1被覆部15aと第3被覆部16aとの間の長さ方向Lに沿った距離Deとが、0.91≦Dl/De≦1.09の条件を充足するように構成されている。
このように構成することにより、溶融した半田接合材が積層セラミックコンデンサ10の素体11を押し上げる力を十分に小さくすることができ、万が一、積層セラミックコンデンサ10が配線基板20Aに対して位置ずれを起こして載置された場合にも、上述した素体11に対向配置される部分の第1ランド25および第2ランド26の面積を小さくすることが可能になり、実装時において積層セラミックコンデンサ10が起立した姿勢となって実装されてしまう実装不具合を大幅に抑制することができる。なお、上記条件は、後述する第1検証試験によって導き出されたものである。
また、当該実装不具合をより確実に防止する観点からは、上述した距離Dlおよび距離Deが、さらにDl/De≦1.00の条件を充足していることが好ましい。このように構成することにより、積層セラミックコンデンサ10が配線基板20Aに対して位置ずれを起こして載置された場合にも、第1ランド25または第2ランド26に対向配置される部分の素体11の面積をさらに大幅に小さくすることができ、上記実装不具合の発生をさらに抑制することができる。
ここで、第1接合部31および第2接合部32による接合強度は、図7および図8に示すように、第1外部電極15の第1被覆部15aと第1ランド25との間に位置する空間および第2外部電極16の第3被覆部16aと第2ランド26との間に位置する空間が所定量の半田接合材によって充填されていることに加え、第1外部電極15の第2被覆部15b、第5被覆部15cおよび第6被覆部15dと第2外部電極16の第4被覆部16b、第8被覆部16cおよび第9被覆部16dとにそれぞれ半田接合材に固着していることにより、十分に確保することができる。
また、上述したように、本実施の形態における実装構造体1Aにあっては、さらに、第1ランド25の第2ランド26が位置する側とは反対側の端部から第2ランド26の第1ランド25が位置する側とは反対側の端部までの長さ方向Lにおける寸法Lbと、積層セラミックコンデンサ10の長さ方向Lにおける最大外形寸法Lcとが、1.00≦Lb/Lc≦1.32の条件を充足するように構成されていることが好ましい。このように構成することにより、第1接合部31および第2接合部32による接合面積が増加することになるため、接合強度をさらに十分に確保しつつ上記実装不具合の発生をさらに抑制することができる。なお、上記条件は、後述する第2検証試験によって導き出されたものである。
さらには、上述したように、本実施の形態における実装構造体1Aにあっては、さらに、第1ランド25の幅方向Wにおける外形寸法Wl1および第2ランド26の幅方向Wにおける外形寸法Wl2と、積層セラミックコンデンサ10の第1被覆部15aの幅方向Wにおける最大値We1および第3被覆部16aの幅方向Wにおける最大値We2とが、それぞれ、1.00≦Wl1/We1≦1.30、および、1.00≦Wl2/We2≦1.30の条件を充足するように構成されていることが好ましい。このように構成することにより、第1接合部31および第2接合部32による接合面積が増加することになるため、接合強度をさらに十分に確保しつつ上記実装不具合の発生をさらに抑制することができる。
なお、本実施の形態における実装構造体1Aは、積層セラミックコンデンサ10の素体11の第1端面11b1、第2端面11b2、および、これらに隣接する第1側面11c1、第2側面11c2を覆うように設けられた第1外部電極15および第2外部電極16の表面に沿って半田接合材が濡れ上がることで第1接合部31および第2接合部32が形成されるものであるため、高いセルフアライメント効果が発揮されることになり、その結果、積層セラミックコンデンサ10がより適切な位置に実装されるものにもなる。
加えて、本実施の形態における実装構造体1Aにあっては、上述したように、第1外部電極15および第2外部電極16の表層部がSnを含むように構成されているとともに、半田接合材として、Snを主成分とし、金属成分のうちのAgの含有量が0[wt%]より大きく3.5[wt%]以下であり、Cuの含有量が0.5[wt%]以上0.7[wt%]以下である3元系のものを用いてもよい。
このような構成においては、上記3元系の半田接合材の溶融温度(217[℃]〜228[℃])が、第1外部電極15および第2外部電極の表層部に含まれるSnの溶融温度(230[℃])よりも低くなるため、当該Snが溶融するまでの間に素体11を押し上げる力(すなわち、上記力Fd1,Fd2)が発生し続けることになるが、上記条件を充足していることにより、当該力の発生が抑制できるため、本実施の形態における構成が好適に利用できる。
また、本実施の形態における実装構造体1Aにあっては、上述したように、第1外部電極15および第2外部電極16の表層部がSnを含むように構成されているとともに、半田接合材として、Snを主成分とし、金属成分のうちのSbの含有量が5[wt%]以上10[wt%]以下であるいわゆる高温半田を用いてもよい。
このような構成においては、上記高温半田の溶融温度(240[℃]〜260[℃])が、第1外部電極15および第2外部電極の表層部に含まれるSnの溶融温度(230[℃])よりも高くなるため、当該高温半田が溶融した直後に第1外部電極15および第2外部電極16への半田接合材の大きな濡れ上がりが発生することになるが、上記条件を充足していることにより、当該半田接合材の大きな濡れ上がりがあっても上述した実装不具合が生じることが大幅に抑制できる。なお、当該高温半田は、電子部品が複数回にわたって実装されることで製造される実装構造体(たとえばIC部品を含むMPU、携帯型電子機器の電源・通信回路部等の実装モジュール)等において好適に適用されるものである。
以上において説明したように、本実施の形態における実装構造体1Aとすることにより、実装時において積層セラミックコンデンサ10が起立してしまう実装不具合の発生を抑制しつつ、高い実装位置精度および十分な接合強度が確保された実装構造体とすることができる。
(第1検証試験)
図11は、第1検証試験における検証例1の製造条件および試験結果を示す表である。また、図12は、第1検証試験における検証例1の試験結果を示すグラフである。次に、これら図11および図12を参照して、上述した本発明の実施の形態1に関連して行なった第1検証試験について説明する。
本第1検証試験は、積層セラミックコンデンサの第1被覆部と第3被覆部との間の長さ方向Lに沿った距離Deと、配線基板の第1ランドと第2ランドとの間の長さ方向Lに沿った距離Dlとの関係が、積層セラミックコンデンサが起立してしまう実装不具合にどの程度の影響を与えているかを検証した試験である。本第1検証試験においては、検証例1として、図11に示す各種寸法の積層セラミックコンデンサおよび配線基板を準備し、これを半田ペーストを用いてリフロー半田付けによって接合することで積層セラミックコンデンサを配線基板に実装し、その際にどの程度の割合で積層セラミックコンデンサが起立してしまう実装不具合が発生するか、その不良率を確認した。
ここで、検証例1において使用した積層セラミックコンデンサの最大外形寸法Lc,Wc,Tcは、0.25[mm]×0.125[mm]×0.125[mm]であり、第1外部電極および第2外部電極の長さ方向Lにおける外形寸法Le1,Le2は、いずれも0.07[mm]とし、第1被覆部と第2被覆部との間の長さ方向Lに沿った距離Deは、0.11[mm]とした。
これに対し、配線基板としては、実装時において積層セラミックコンデンサの端面部分に生じ得る上記力Fb1および力Fb2の不均衡の影響を最小限とするために、第1ランドの第2ランドが位置する側とは反対側の端部から第2ランドの第1ランドが位置する側とは反対側の端部までの長さ方向Lにおける寸法Lbを積層セラミックコンデンサの最大外形寸法Lcと同じ0.25[mm]に設定し、また、第1ランドおよび第2ランドの幅方向Wにおける寸法も積層セラミックコンデンサの最大外形寸法Wcと同じ0.125[mm]に設定した。
その一方で、配線基板に設けられた第1ランドおよび第2ランドの長さ方向Lにおける外形寸法Ll1,Ll2を0.08[mm]から0.05[mm]の間で段階的に異なるようにし、これにより第1ランドと第2ランドとの間の長さ方向Lに沿った距離Dlを0.09[mm]から0.15[mm]の間で段階的に異ならしめた。そのため、各サンプルにおけるDl/Deは、それぞれ0.82、0.91、1.00、1.09、1.18、1.27、1.36である。なお、各サンプルはそれぞれ複数準備し、実装後における積層セラミックコンデンサの姿勢を目視によって観察することで不良率を算出した。
なお、試験結果における「接合強度」の欄は、第1被覆部と第1ランドとの間に位置する空間および第3被覆部と第2ランドとの間に位置する空間が十分に半田接合材によって充填された状態となる条件のものを「優」とし、これら空間が概ね半田接合材によって充填された状態となる条件のものを「良」とし、これら空間を充填する半田接合材に大きな不足が生じる条件のものを「不可」とした。
また、試験結果における「評価」の欄は、接合強度が「優」または「良」のもののうち、上記接合不良が発生する不良率が0.5[%]以下のものを「優」とし、接合強度が「優」または「良」のもののうち、上記接合不良が発生する不良率が0.5[%]より大きく1.0[%]以下のものを「良」とし、接合強度が「優」または「良」のもののうち、上記接合不良が発生する不良率が1.0[%]より大きく2.0[%]以下のものを「良」とした。なお、上記接合不良が発生する不良率が2.0[%]を超えるものは、接合強度の如何を問わず「不可」とした。
図11および図12に示されるように、第1検証試験の結果によると、第1検証例においては、0.91≦Dl/De≦1.09の条件を充足することにより、高い接合強度を維持しつつ上記接合不良が発生する不良率が2.0[%]以下に抑えられることが確認された。ここで、Dl/De=0.81の条件を充足するものについて上記接合不良が高くなった結果は、配線基板に対して積層セラミックコンデンサが位置ずれして配置された場合に、第1ランドまたは第2ランドに対向配置される部分の素体の面積が比較的大きく増加することにより、上記力Fd1,Fd2が積層セラミックコンデンサの回転を誘発することが起因しているものと推察される。
以上の第1検証試験の結果に基づけば、0.91≦Dl/De≦1.09の条件を充足することにより、実装時において積層セラミックコンデンサが起立してしまう実装不具合の発生を抑制しつつ、高い実装位置精度および十分な接合強度が確保された実装構造体とすることができるが理解される。
(第2検証試験)
図13ないし図15は、第2検証試験における検証例2ないし検証例4の製造条件および試験結果を示す表である。また、図16は、第2検証試験における検証例2ないし検証例4の試験結果を示すグラフである。次に、これら図13ないし図16を参照して、上述した本発明の実施の形態1に関連して行なった第2検証試験について説明する。
本第2検証試験は、上述した第1検証試験の結果を踏まえた上で、第1ランドの第2ランドが位置する側とは反対側の端部から第2ランドの第1ランドが位置する側とは反対側の端部までの長さ方向Lにおける寸法Lbと、積層セラミックコンデンサの最大外形寸法Lcとの関係が、積層セラミックコンデンサが起立してしまう実装不具合にどの程度の影響を与えているかを検証した試験である。本第2検証試験においては、検証例2ないし検証例4として、図13ないし図15に示す各種寸法の積層セラミックコンデンサおよび配線基板を準備し、これを半田ペーストを用いてリフロー半田付けによって接合することで積層セラミックコンデンサを配線基板に実装し、その際にどの程度の割合で積層セラミックコンデンサが起立してしまう実装不具合が発生するか、その不良率を確認した。
ここで、検証例2ないし検証例4において使用した積層セラミックコンデンサの最大外形寸法Lc,Wc,Tcは、0.25[mm]×0.125[mm]×0.125[mm]であり、第1外部電極および第2外部電極の長さ方向Lにおける外形寸法Le1,Le2は、いずれも0.07[mm]とし、第1被覆部と第2被覆部との間の長さ方向Lに沿った距離Deは、0.11[mm]とした。
これに対し、配線基板としては、検証例2ないし検証例4において、第1ランドと第2ランドとの間の長さ方向Lに沿った距離Dlをそれぞれ0.1[mm]、0.11[mm]、0.12[mm]に設定し、これによりDl/Deは、それぞれ0.91、1.00、1.09とした。なお、第1ランドおよび第2ランドの幅方向Wにおける寸法は、積層セラミックコンデンサの最大外形寸法Wcと同じ0.125[mm]に設定した。
その一方で、検証例2ないし検証例4においては、配線基板に設けられた第1ランドおよび第2ランドの長さ方向Lにおける外形寸法Ll1,Ll2を0.055[mm]から0.135[mm]の間で段階的に異なるようにし、これにより第1ランドの第2ランドが位置する側とは反対側の端部から第2ランドの第1ランドが位置する側とは反対側の端部までの長さ方向Lにおける寸法Lbを0.21[mm]から0.37[mm]の間で段階的に異ならしめた。そのため、検証例2ないし検証例4の各サンプルにおけるLb/Lcは、それぞれ0.84、1.00、1.16、1.32、1.48である。なお、各サンプルはそれぞれ複数準備し、実装後における積層セラミックコンデンサの姿勢を目視によって観察することで不良率を算出した。
なお、試験結果における「接合強度」の欄は、第1被覆部と第1ランドとの間に位置する空間および第3被覆部と第2ランドとの間に位置する空間が十分に半田接合材によって充填された状態となる条件のものを「優」とし、これら空間が概ね半田接合材によって充填された状態となる条件のものを「良」とし、これら空間を充填する半田接合材に大きな不足が生じる条件のものを「不可」とした。
また、試験結果における「評価」の欄は、接合強度が「優」または「良」のもののうち、上記接合不良が発生する不良率が0.5[%]以下のものを「優」とし、接合強度が「優」または「良」のもののうち、上記接合不良が発生する不良率が0.5[%]より大きく1.0[%]以下のものを「良」とし、接合強度が「優」または「良」のもののうち、上記接合不良が発生する不良率が1.0[%]より大きく2.0[%]以下のものを「良」とした。なお、上記接合不良が発生する不良率が2.0[%]を超えるものは、接合強度の如何を問わず「不可」とした。
図13および図16に示されるように、第2検証試験の結果によると、第2検証例においては、1.00≦Lb/Lc≦1.32の条件を充足することにより、高い接合強度を維持しつつ上記接合不良が発生する不良率が2.0[%]以下に抑えられることが確認された。
また、図14および図16に示されるように、第2検証試験の結果によると、第3検証例においても、1.00≦Lb/Lc≦1.32の条件を充足することにより、高い接合強度を維持しつつ上記接合不良が発生する不良率が2.0[%]以下に抑えられることが確認された。
さらに、図15および図16に示されるように、第2検証試験の結果によると、第4検証例においても、1.00≦Lb/Lc≦1.32の条件を充足することにより、高い接合強度を維持しつつ上記接合不良が発生する不良率が2.0[%]以下に抑えられることが確認された。
以上の第2検証試験の結果に基づけば、0.91≦Dl/De≦1.09の条件を充足するとともに、1.00≦Lb/Lc≦1.32の条件を充足することにより、実装時において積層セラミックコンデンサが起立してしまう実装不具合の発生を抑制しつつ、さらに高い実装位置精度および十分な接合強度が確保された実装構造体とすることができるが理解される。
(実施の形態2)
図17は、本実施の形態における実装構造体に具備される配線基板の概略斜視図である。また、図18は、図17に示すXVIII−XVIII線に沿った模式断面図であり、図19は、図18に示すXIXA−XIXA線およびXIXB−XIXB線に沿った模式断面図である。次に、これら図17ないし図19を参照して、本実施の形態における実装構造体に具備される配線基板20Bについて説明する。
図17ないし図18に示すように、配線基板20Bは、全体として平板状の形状を有しており、基材部21と、半田レジスト22と、導電パターン23とを備えている。
基材部21は、一対の主表面を有する平板状の形状を有しており、少なくともその一方の主表面上に上述した半田レジスト22および導電パターン23が形成されている。基材部21の材質としては、上述した実施の形態1における配線基板20Aと同様に、エポキシ樹脂等の樹脂材料やアルミナ等のセラミックス材料からなるもの、あるいはこれらに無機材料または有機材料からなるフィラーや織布等が添加されたもの等を用いることができる。一般的には、基材部21としては、エポキシ樹脂からなる母材にガラス製の織布が添加されたガラスエポキシ基板が好適に利用される。
導電パターン23は、基材部21の主表面上に設けられており、所定の形状にパターニングされている。導電パターン23は、後述する第1ランド25および第2ランド26を形成する部分と、これら第1ランド25および第2ランド26から引き出された配線部24とを含んでいる。導電パターン23の材質としては、上述した実施の形態1における配線基板20Aと同様に各種の導電材料が利用できるが、一般的には銅箔等の金属材料が好適に利用される。
導電パターン23の第1ランド25および第2ランド26を形成する部分は、積層セラミックコンデンサ10の第1外部電極15および第2外部電極16に対応した形状に形成されており、その表面25a,26aが半田レジスト22によって覆われることなく露出した状態となっている。これに対し、第1ランド25および第2ランド26を形成する部分の周囲に位置する導電パターン23と、配線部24とは、いずれも半田レジスト22によって覆われている。
半田レジスト22は、基材部21の主表面上および導電パターン23の主表面上に設けられており、所定の形状にパターニングされている。半田レジスト22は、積層セラミックコンデンサ10を配線基板20Bに実装する際に、後述する半田接合材が配線基板20Bの意図しない部分に付着してしまうことを防止するためのものであり、当該半田接合材が形成される領域を除く部分を主として覆っている。
半田レジスト22には、積層セラミックコンデンサ10の第1外部電極15および第2外部電極16に対応した形状の一対の開口部22a,22bが設けられており、当該一対の開口部22a,22bによって上述した第1ランド25および第2ランド26の外形が規定されている。
以上により、配線基板20Bは、導電パターン23のうちの第1ランド25の表面25aおよび半田レジスト22の開口部22aの壁面22a1によって形成されることになる半田レジスト22の第1空隙部27と、導電パターン23のうちの第2ランド26の表面26aおよび半田レジスト22の開口部22bの壁面22b1によって形成されることになる半田レジスト22の第2空隙部28とを有することになり、これら第1空隙部27および第2空隙部28が、積層セラミックコンデンサ10が実装されることとなる配線基板20Bの長さ方向Lに沿って並んで配置されることになる。
なお、ランドを形成する部分の周囲に位置する導電パターンが半田レジストによって覆われることにより、半田レジストに設けられた開口部によってランドの外形が規定される上記構成は、一般にオーバーレジスト構造と称されるものであるが、ランドを形成する部分の周囲に導電パターンを設けず、ランドを形成する部分の導電パターンの外周縁と開口部の周縁とを合致させたり、あるいはランドを形成する部分の導電パターンの外周縁を開口部の周縁よりも内側に配置されたりした構成の配線基板としてもよい。なお、導電パターン23が基材部21から剥離してしまうことを防止する観点からは、上述したオーバーレジスト構造を採用することがより好ましい。
ここで、第1ランド25と第2ランド26との間の長さ方向Lに沿った距離Dlは、上述した実施の形態1における配線基板20Aと同様の条件を充足するように構成されており、第1ランド25の第2ランド26が位置する側とは反対側の端部から第2ランド26の第1ランド25が位置する側とは反対側の端部までの長さ方向Lにおける寸法Lbや、第1ランド25の長さ方向Lにおける外形寸法Ll1および第2ランド26の長さ方向Lにおける外形寸法Ll2、第1ランド25の幅方向Wにおける外形寸法Wl1および第2ランド26の幅方向Wにおける外形寸法Wl2は、いずれも上述した実施の形態1における配線基板20Aと同様の条件を充足するように構成されることが好ましい。
図20は、本実施の形態における実装構造体の模式断面図であり、図21は、図20に示すXXIA−XXIA線およびXXIB−XXIB線に沿った模式断面図である。次に、これら図20および図21を参照して、本実施の形態における実装構造体1Bについて説明する。
図20および図21に示すように、実装構造体1Bは、上述した実施の形態1における積層セラミックコンデンサ10が、上述した配線基板20Bが実装されてなるものであり、これら積層セラミックコンデンサ10および配線基板20Bに加えて、半田接合材からなる第1接合部31および第2接合部32を備えている。
積層セラミックコンデンサ10は、第1外部電極15の第1被覆部15aが配線基板20Bの第1ランド25に対向するとともに、第2外部電極16の第3被覆部16aが配線基板20Bの第2ランド26に対向するように、素体11の第2主面11a2が配線基板20Bに対面した状態で配置されている。
上述した第1接合部31は、これら対向配置された第1外部電極15と第1ランド25とを接合しており、第1ランド25の表面に固着するとともに、第1外部電極15の第1被覆部15a、第2被覆部15b、第5被覆部15c、第6被覆部15dおよび第7被覆部15eに跨るように第1外部電極15の表面に固着している。
一方、上述した第2接合部32は、これら対向配置された第2外部電極16と第2ランド26とを接合しており、第2ランド26の表面に固着するとともに、第2外部電極16の第3被覆部16a、第4被覆部16b、第8被覆部16c、第9被覆部16dおよび第10被覆部16eに跨るように第2外部電極16の表面に固着している。
ここで、本実施の形態における実装構造体1Bにあっては、第1ランド25と第2ランド26との間の長さ方向Lに沿った距離Dlと、積層セラミックコンデンサ10の第1被覆部15aと第3被覆部16aとの間の長さ方向Lに沿った距離Deとが、0.91≦Dl/De≦1.09の条件を充足するように構成されている。
このように構成することにより、上述した実施の形態1における場合と同様に、実装時において積層セラミックコンデンサ10が起立した姿勢となって実装されてしまう実装不具合を大幅に抑制することができる。
また、当該実装不具合をより確実に防止する観点からは、上述した距離Dlおよび距離Deが、さらにDl/De≦1.00の条件を充足していることが好ましい。このように構成することにより、上述した実施の形態1における場合と同様に、上記実装不具合の発生をさらに抑制することができる。
また、本実施の形態における実装構造体1Bにあっては、さらに、第1ランド25の第2ランド26が位置する側とは反対側の端部から第2ランド26の第1ランド25が位置する側とは反対側の端部までの長さ方向Lにおける寸法Lbと、積層セラミックコンデンサ10の長さ方向Lにおける最大外形寸法Lcとが、1.00≦Lb/Lc≦1.32の条件を充足するように構成されていることが好ましい。このように構成することにより、上述した実施の形態1における場合と同様に、接合強度をさらに十分に確保しつつ上記実装不具合の発生をさらに抑制することができる。
さらには、本実施の形態における実装構造体1Bにあっては、さらに、第1ランド25の幅方向Wにおける外形寸法Wl1および第2ランド26の幅方向Wにおける外形寸法Wl2と、積層セラミックコンデンサ10の第1被覆部15aの幅方向Wにおける最大値We1および第3被覆部16aの幅方向Wにおける最大値We2とが、それぞれ、1.00≦Wl1/We1≦1.30、および、1.00≦Wl2/We2≦1.30の条件を充足するように構成されていることが好ましい。このように構成することにより、上述した実施の形態1における場合と同様に、接合強度をさらに十分に確保しつつ上記実装不具合の発生をさらに抑制することができる。
以上において説明したように、本実施の形態における実装構造体1Bとすることにより、実装時において積層セラミックコンデンサ10が起立してしまう実装不具合の発生を抑制しつつ、高い実装位置精度および十分な接合強度が確保された実装構造体とすることができる。
なお、上述した本発明の実施の形態1および2においては、内部電極層が配線基板の主表面に対して平行(すなわち、内部電極層の積層方向が当該主表面に垂直)となるように電子部品が配線基板に実装されてなる実装構造体に本発明を適用した場合を例示して説明を行なったが、本発明は、内部電極層が配線基板の主表面に対して垂直(すなわち、内部電極の積層方向が当該主表面に平行)となるように電子部品が配線基板に実装されてなる実装構造体にも当然にその適用が可能である。
また、上述した本発明の実施の形態1および2においては、一対の外部電極の各々が、素体の長さ方向に位置する端面および当該端面寄りの底面(第2主面)のみならず、当該端面寄りの一対の側面および天面(第1主面)をも覆うように構成された電子部品を具備してなる実装構造体に本発明を適用した場合を例示して説明を行なったが、本発明は、一対の外部電極の各々が、少なくとも素体の長さ方向に位置する端面および当該端面寄りの底面(第2主面)を覆うように構成された電子部品を具備してなる実装構造体に好適に適用できるものである。
今回開示した上記実施の形態はすべての点で例示であって、制限的なものではない。本発明の技術的範囲は特許請求の範囲によって画定され、また特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。
1A,1B 実装構造体、10 積層セラミックコンデンサ、11 素体、12 誘電体層、13 内部電極層、15 第1外部電極、15a 第1被覆部、15b 第2被覆部、15c 第5被覆部、15d 第6被覆部、15e 第7被覆部、16 第2外部電極、16a 第3被覆部、16b 第4被覆部、16c 第8被覆部、16d 第9被覆部、16e 第10被覆部、20A,20B 配線基板、21 基材部、22 半田レジスト、22a,22b 開口部、22a1,22b1 壁面、23 導電パターン、24 配線部、25 第1ランド、25a 表面、26 第2ランド、26a 表面、27 第1空隙部、28 第2空隙部、31 第1接合部、32 第2接合部。

Claims (7)

  1. 直方体形状の電子部品が半田接合材を用いて配線基板に実装されてなる電子部品の実装構造体であって、
    前記電子部品は、厚み方向において相対して位置する第1主面および第2主面、前記厚み方向と直交する長さ方向において相対して位置する第1端面および第2端面、ならびに、前記厚み方向および前記長さ方向のいずれにも直交する幅方向において相対して位置する第1側面および第2側面を含む素体と、前記長さ方向において互いに離間して位置する第1外部電極および第2外部電極とを含み、
    前記第1外部電極は、前記第1端面寄りに位置する部分の前記第2主面を覆う第1被覆部と、前記第1端面を覆う第2被覆部とを少なくとも有し、
    前記第2外部電極は、前記第2端面寄りに位置する部分の前記第2主面を覆う第3被覆部と、前記第2端面を覆う第4被覆部とを少なくとも有し、
    前記配線基板は、主表面を有する基材部と、互いに離間して位置するように前記主表面上に形成された第1ランドおよび第2ランドとを含み、
    前記電子部品は、前記第1被覆部が前記第1ランドに対向するとともに前記第3被覆部が前記第2ランドに対向するように配置され、
    前記半田接合材は、前記第1外部電極と前記第1ランドとを接合する第1接合部、および、前記第2外部電極と前記第2ランドとを接合する第2接合部を含み、
    前記第1接合部は、前記第1ランドに固着するとともに、前記第1被覆部および前記第2被覆部に跨るように前記第1外部電極に固着し、
    前記第2接合部は、前記第2ランドに固着するとともに、前記第3被覆部および前記第4被覆部に跨るように前記第2外部電極に固着し、
    前記長さ方向における前記電子部品の最大外形寸法をLcとした場合に、前記Lcが、Lc≦0.5[mm]の条件を充足し、
    前記長さ方向における前記第1被覆部と前記第2被覆部との間の距離をDeとし、前記長さ方向における前記第1ランドと前記第2ランドとの間の距離をDlとした場合に、前記Deおよび前記Dlが、0.91≦Dl/De≦1.09の条件を充足している、電子部品の実装構造体。
  2. 前記Deおよび前記Dlが、Dl/De≦1.00の条件をさらに充足している、請求項1に記載の電子部品の実装構造体。
  3. 前記第1ランドの前記第2ランドが位置する側とは反対側の端部から前記第2ランドの前記第1ランドが位置する側とは反対側の端部までの前記長さ方向における寸法をLbとした場合に、前記Lcおよび前記Lbが、1.00≦Lb/Lc≦1.32の条件をさらに充足している、請求項1または2に記載の電子部品の実装構造体。
  4. 前記第1外部電極の表層部および前記第2外部電極の表層部が、成分としてSnを含み、
    前記半田接合材が、成分としてSn、AgおよびCuを含んでいる、請求項1から3のいずれかに記載の電子部品の実装構造体。
  5. 前記第1外部電極の表層部および前記第2外部電極の表層部が、成分としてSnを含み、
    前記半田接合材が、成分としてSnおよびSbを含んでいる、請求項1から3のいずれかに記載の電子部品の実装構造体。
  6. 前記第1外部電極が、前記第1端面寄りに位置する部分の前記第1側面を覆う第5被覆部と、前記第1端面寄りに位置する部分の前記第2側面を覆う第6被覆部と、前記第1端面寄りに位置する部分の前記第1主面を覆う第7被覆部とをさらに有し、
    前記第2外部電極が、前記第2端面寄りに位置する部分の前記第1側面を覆う第8被覆部と、前記第2端面寄りに位置する部分の前記第2側面を覆う第9被覆部と、前記第2端面寄りに位置する部分の前記第1主面を覆う第10被覆部とをさらに有し、
    前記第1接合部が、前記第1ランドに固着するとともに、前記第1被覆部、前記第2被覆部、前記第3被覆部、前記第4被覆部および前記第5被覆部に跨るように前記第1外部電極に固着し、
    前記第2接合部が、前記第2ランドに固着するとともに、前記第6被覆部、前記第7被覆部、前記第8被覆部、前記第9被覆部および前記第10被覆部に跨るように前記第2外部電極に固着している、請求項1から5のいずれかに記載の電子部品の実装構造体。
  7. 前記電子部品が、積層セラミックコンデンサである、請求項1から6のいずれかに記載の電子部品の実装構造体。
JP2014017173A 2014-01-31 2014-01-31 電子部品の実装構造体 Active JP5958479B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014017173A JP5958479B2 (ja) 2014-01-31 2014-01-31 電子部品の実装構造体
US14/600,134 US10342130B2 (en) 2014-01-31 2015-01-20 Structure mounted with electronic component
CN201510043578.XA CN104822231B (zh) 2014-01-31 2015-01-28 电子部件的安装构造体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014017173A JP5958479B2 (ja) 2014-01-31 2014-01-31 電子部品の実装構造体

Publications (2)

Publication Number Publication Date
JP2015144208A true JP2015144208A (ja) 2015-08-06
JP5958479B2 JP5958479B2 (ja) 2016-08-02

Family

ID=53732359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014017173A Active JP5958479B2 (ja) 2014-01-31 2014-01-31 電子部品の実装構造体

Country Status (3)

Country Link
US (1) US10342130B2 (ja)
JP (1) JP5958479B2 (ja)
CN (1) CN104822231B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11412616B2 (en) 2019-03-26 2022-08-09 Canon Kabushiki Kaisha Printed circuit board and electronic device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6112060B2 (ja) * 2013-06-19 2017-04-12 株式会社村田製作所 セラミック電子部品およびその製造方法
KR101813361B1 (ko) * 2016-02-03 2017-12-28 삼성전기주식회사 전자부품 및 전자부품 실장 회로보드
JP7040062B2 (ja) * 2018-01-31 2022-03-23 Tdk株式会社 電子部品
KR102505433B1 (ko) * 2018-04-20 2023-03-03 삼성전기주식회사 전자 부품
KR20190116164A (ko) * 2019-09-02 2019-10-14 삼성전기주식회사 적층 세라믹 전자부품
US20210090809A1 (en) 2019-09-20 2021-03-25 Samsung Electro-Mechanics Co., Ltd. Board having multilayer capacitor mounted thereon and multilayer capacitor package
DE112022000532T5 (de) * 2021-01-07 2023-10-26 KYOCERA AVX Components Corporation Mehrschichtiger Keramikkondensator mit Ultrabreitbandleistung
US20230045941A1 (en) * 2021-08-09 2023-02-16 Samsung Electro-Mechanics Co., Ltd. Electronic component and board having the same mounted thereon

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281892A (ja) * 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd 電子部品実装体及びその製造方法
WO2006048932A1 (ja) * 2004-11-04 2006-05-11 Renesas Technology Corp. 電子装置及び電子装置の製造方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3612963A (en) * 1970-03-11 1971-10-12 Union Carbide Corp Multilayer ceramic capacitor and process
JPH05243074A (ja) 1992-03-02 1993-09-21 Taiyo Yuden Co Ltd チップ状電子部品及びその端子電極形成方法
US6179935B1 (en) * 1997-04-16 2001-01-30 Fuji Electric Co., Ltd. Solder alloys
JPH1117308A (ja) * 1997-06-27 1999-01-22 Kyocera Corp 電子部品の実装構造
CZ20001915A3 (cs) 1997-11-24 2001-08-15 Avx Corporation Tenkovrstvý kondenzátor a způsob jeho výroby
JP4827157B2 (ja) * 2002-10-08 2011-11-30 Tdk株式会社 電子部品
JP2005108966A (ja) * 2003-09-29 2005-04-21 Tdk Corp 電子部品の実装方法
JP3976020B2 (ja) * 2004-02-12 2007-09-12 株式会社豊田自動織機 表面実装用電子部品の表面実装構造
JP2006012976A (ja) * 2004-06-23 2006-01-12 Toshiba Lighting & Technology Corp セラミックコンデンサ、基板装置および放電灯点灯装置
JP2006173270A (ja) * 2004-12-14 2006-06-29 Tdk Corp チップ型電子部品
KR20070107746A (ko) * 2005-03-01 2007-11-07 엑스2와이 어테뉴에이터스, 엘.엘.씨 내부 중첩된 조절기
US7414857B2 (en) 2005-10-31 2008-08-19 Avx Corporation Multilayer ceramic capacitor with internal current cancellation and bottom terminals
TWI286830B (en) * 2006-01-16 2007-09-11 Siliconware Precision Industries Co Ltd Electronic carrier board
US20080174931A1 (en) 2007-01-18 2008-07-24 Skamser Daniel J Vertical electrode layer design to minimize flex cracks in capacitors
WO2009001842A1 (ja) * 2007-06-27 2008-12-31 Murata Manufacturing Co., Ltd. 積層セラミック電子部品及びその実装構造
JP2010118499A (ja) * 2008-11-13 2010-05-27 Murata Mfg Co Ltd 積層セラミック電子部品
JP5287658B2 (ja) * 2008-11-14 2013-09-11 株式会社村田製作所 セラミック電子部品
JP2010238651A (ja) * 2009-03-31 2010-10-21 Honda Motor Co Ltd 燃料電池システム
JP5458821B2 (ja) * 2009-11-17 2014-04-02 Tdk株式会社 積層セラミックコンデンサ
JP5405339B2 (ja) * 2010-02-03 2014-02-05 日本メクトロン株式会社 配線回路基板及びその製造方法
KR101058697B1 (ko) * 2010-12-21 2011-08-22 삼성전기주식회사 적층 세라믹 커패시터의 회로 기판 실장 구조, 실장 방법과 이를 위한 회로 기판의 랜드 패턴, 수평 방향으로 테이핑한 적층 세라믹 커패시터의 포장체 및 수평 방향 정렬방법
US8363382B2 (en) * 2011-02-10 2013-01-29 Sfi Electronics Technology Inc. Structure of multilayer ceramic device
JP5884653B2 (ja) * 2011-09-01 2016-03-15 株式会社村田製作所 実装構造
JP5465281B2 (ja) * 2012-06-28 2014-04-09 太陽誘電株式会社 チップ部品の実装構造
KR101474065B1 (ko) * 2012-09-27 2014-12-17 삼성전기주식회사 적층 칩 전자부품, 그 실장 기판 및 포장체
KR101499723B1 (ko) * 2013-08-14 2015-03-06 삼성전기주식회사 적층 세라믹 커패시터의 실장 기판

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281892A (ja) * 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd 電子部品実装体及びその製造方法
WO2006048932A1 (ja) * 2004-11-04 2006-05-11 Renesas Technology Corp. 電子装置及び電子装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11412616B2 (en) 2019-03-26 2022-08-09 Canon Kabushiki Kaisha Printed circuit board and electronic device
US11792936B2 (en) 2019-03-26 2023-10-17 Canon Kabushiki Kaisha Printed circuit board and electronic device

Also Published As

Publication number Publication date
CN104822231A (zh) 2015-08-05
CN104822231B (zh) 2018-03-16
JP5958479B2 (ja) 2016-08-02
US10342130B2 (en) 2019-07-02
US20150223334A1 (en) 2015-08-06

Similar Documents

Publication Publication Date Title
JP5958479B2 (ja) 電子部品の実装構造体
JP6011573B2 (ja) 電子部品
JP6024693B2 (ja) 電子部品
JP6481446B2 (ja) 積層コンデンサの実装構造体
US9144166B2 (en) Electronic component
US10566139B2 (en) Ceramic electronic device
JP2017126715A (ja) 電子部品、実装電子部品および電子部品の実装方法
CN111034375A (zh) 通过在绝缘层中形成的空腔中的焊接点将smd附接至绝缘层
JP4111222B2 (ja) 表面実装型部品
JP6237296B2 (ja) 電子部品の実装構造体およびその製造方法
WO2011135926A1 (ja) 電子部品内蔵基板、および複合モジュール
JP2013073989A (ja) 表面実装型受動素子部品、部品キャリアテープ、部品内蔵配線板
JP2011146510A (ja) 部品内蔵基板および電子回路モジュール
JP2012151359A (ja) キャパシタ内蔵配線板、キャパシタ内蔵配線板の製造方法、キャパシタ
JP4544896B2 (ja) 電子部品
JP2009130147A (ja) チップ状電子部品およびチップ状電子部品の実装方法
JP6885422B2 (ja) 樹脂基板および電子機器
TW200948239A (en) A printed circuit board having an embedded component and a method thereof
JP2000068148A (ja) 積層セラミック部品とその積層セラミック部品連
JP4623987B2 (ja) コンデンサ及びその実装構造
JP2003347160A (ja) 多連型コンデンサ
US20230073043A1 (en) Electronic component with metal terminal, connection structure, and method for manufacturing connection structure
JP2012049154A (ja) フレキシブル多層回路基板の製造方法
JPH0314292A (ja) 高密度実装モジュールの製造方法
JP2010087232A (ja) 電子部品および電子部品用基板ならびにそれらの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160606

R150 Certificate of patent or registration of utility model

Ref document number: 5958479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150