JP2015141094A - Polyimide film dimension stability evaluation method - Google Patents

Polyimide film dimension stability evaluation method Download PDF

Info

Publication number
JP2015141094A
JP2015141094A JP2014013797A JP2014013797A JP2015141094A JP 2015141094 A JP2015141094 A JP 2015141094A JP 2014013797 A JP2014013797 A JP 2014013797A JP 2014013797 A JP2014013797 A JP 2014013797A JP 2015141094 A JP2015141094 A JP 2015141094A
Authority
JP
Japan
Prior art keywords
polyimide film
test piece
dimensional change
temperature
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014013797A
Other languages
Japanese (ja)
Other versions
JP6153088B2 (en
Inventor
恭子 宮内
Kyoko Miyauchi
恭子 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014013797A priority Critical patent/JP6153088B2/en
Publication of JP2015141094A publication Critical patent/JP2015141094A/en
Application granted granted Critical
Publication of JP6153088B2 publication Critical patent/JP6153088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for accurately and easily evaluating a dimension change ratio of a polyimide film used as an electronic component base film in a transport direction (MD direction) and width direction (TD direction) of the polyimide film, by reducing affection of a moisture absorption state of the film.SOLUTION: There is provided the polyimide film dimension stability evaluation method for calculating a dimension change ratio from testing piece length of a polyimide film measured in accordance with a temperature profile set by using a constant load tension measurement mode of a thermal mechanic analyzer (TMA), and comparing and evaluating the dimension change ratio by the calculated dimension change ratio.

Description

本発明は、フレキシブルプリント配線板用銅張積層板などの電子部品の基板に用いられるポリイミドフィルムの寸法安定性を評価する方法に関し、更に詳しくは、ポリイミドフィルムを熱機械分析装置(TMA、Thermo Mechanical Analyzer)を用いてフィルムの延伸方向に対して平行並びに垂直にフィルム試験片を設置して引張モードにて、温度プロファイルによる寸法変化を測定して、その寸法安定性を評価する方法に関する。   The present invention relates to a method for evaluating the dimensional stability of a polyimide film used for a substrate of an electronic component such as a copper-clad laminate for a flexible printed wiring board. More specifically, the present invention relates to a thermomechanical analyzer (TMA, Thermo Mechanical). The present invention relates to a method for evaluating the dimensional stability by installing a film specimen in parallel and perpendicular to the stretching direction of the film using Analyzer and measuring the dimensional change due to the temperature profile in the tensile mode.

ポリイミドフィルムは優れた耐熱性を有している上、機械的特性、電気的特性、および化学的特性において、他のプラスチック材料と比べて遜色ない特性を有することから、例えばプリント配線板(PWB)、フレキシブルプリント配線板(FPC)、テープ自動ボンディング用テープ(TAB)、チップオンフィルム(COF)等の電子部品用の絶縁基板材料として一般的に使用されている。通常、PWB、FPC、TAB、及びCOFは、ポリイミドフィルムの少なくとも片面に金属導体層として銅を被覆して銅被覆ポリイミド基板を形成した後、この基板をパターニング加工することによって作製することができる。   Polyimide film has excellent heat resistance and mechanical properties, electrical properties, and chemical properties that are comparable to other plastic materials. For example, printed wiring board (PWB) It is generally used as an insulating substrate material for electronic parts such as flexible printed wiring boards (FPC), tape automatic bonding tapes (TAB), and chip-on-film (COF). Usually, PWB, FPC, TAB, and COF can be prepared by coating copper as a metal conductor layer on at least one surface of a polyimide film to form a copper-coated polyimide substrate, and then patterning the substrate.

近年、携帯電子機器などの電子装置の小型化・薄型化に伴い、上記TABやCOFの配線ピッチ(配線幅及びスペース幅)も益々狭くなっており、これに対応できるように高密度で精密なパターンで配線加工が可能なものが求められている。
このような状況の下、導体層(銅層)の厚みを薄くでき、且つ厚みを自由にコントロールできる2層めっき基板が注目されている。この2層めっき基板は、ポリイミドフィルムの片面に金属層をめっきして形成されるが、より高密度で精密な配線加工が可能になるように、その基板のベースフィルムの寸法変化率をできる限り小さくすることが要件になっている。
In recent years, with the miniaturization and thinning of electronic devices such as portable electronic devices, the wiring pitch (wiring width and space width) of the TAB and COF has been increasingly narrowed. There is a demand for wiring patterns that can be processed.
Under such circumstances, a two-layer plated substrate that can reduce the thickness of the conductor layer (copper layer) and can control the thickness freely has been attracting attention. This two-layer plated substrate is formed by plating a metal layer on one side of a polyimide film, but the dimensional change rate of the base film of the substrate is made as much as possible so that higher-density and precise wiring processing is possible. It is a requirement to make it smaller.

従来から、フレキシブルプリント配線板用銅張積層板用ベースフィルムに関しては、例えば非特許文献1にはフレキシブルプリント配線板用銅張積層板の試験方法としてスクリーン印刷によって設けた評点パターン(a、b、c、d)間の距離を、積層された銅層をエッチング後に測定し、MD方向(フィルムの搬送方向)の寸法変化率dL(%)及びTD方向(フィルムの幅方向)の寸法変化率dL(%)を算出する手法が記載されている。 Conventionally, regarding a base film for a copper-clad laminate for a flexible printed wiring board, for example, in Non-Patent Document 1, as a test method for a copper-clad laminate for a flexible printed wiring board, a rating pattern (a, b, The distance between c and d) is measured after etching the laminated copper layer, and the dimensional change rate dL m (%) in the MD direction (film transport direction) and the dimensional change rate in the TD direction (film width direction). A method for calculating dL t (%) is described.

また、非特許文献2においては、プリント配線板用銅張積層板の試験方法として、寸法変化率の測定手法が記載されており、全面銅箔をエッチングにより除去した後、プラスチックフィルムに穴を開け、試験前後での穴間隔(常態:l、エッチング後:l、加熱処理後:l)を測定して寸法変化率を算出する手法が記載されている。 Non-Patent Document 2 describes a method for measuring a dimensional change rate as a test method for a copper-clad laminate for a printed wiring board. After removing the entire copper foil by etching, a hole is made in a plastic film. , And a method of calculating a dimensional change rate by measuring a hole interval before and after the test (normal state: l 0 , after etching: l 1 , after heat treatment: l 2 ).

しかし、試料寸法に関し、非特許文献1では240×300mm、非特許文献2では長さ300mm×幅300mmと明記されており、いずれの方法でも幅方向に対する詳細な寸法特性を評価することが難しいという問題があった。   However, regarding sample dimensions, Non-Patent Document 1 specifies 240 × 300 mm and Non-Patent Document 2 specifies length 300 mm × width 300 mm, and it is difficult to evaluate detailed dimensional characteristics in the width direction by either method. There was a problem.

また、非特許文献1及び2では、寸法測定時の温湿度条件が規定されておらず、例えばその分子鎖に親水基であるカルボニル基を持つポリイミドフィルムを測定する場合、フィルム自体の吸水性が高い為に吸湿による寸法変化の影響が大きく、正確な寸法変化率を得ることが難しいという問題があった。   Further, in Non-Patent Documents 1 and 2, the temperature and humidity conditions at the time of dimension measurement are not stipulated. For example, when measuring a polyimide film having a carbonyl group that is a hydrophilic group in its molecular chain, the film itself has water absorption. Due to its high size, the effect of dimensional change due to moisture absorption is large, and it is difficult to obtain an accurate dimensional change rate.

さらに、非特許文献1ではスクリーン印刷による評点パターンの形成が必要であり、また非特許文献2では穴あけ機による測定対象の穴形成が必要である為に、測定者による差異が発現しやすく、高い精度を保つことが難しいという問題もあった。   Further, in Non-Patent Document 1, it is necessary to form a score pattern by screen printing, and in Non-Patent Document 2, since it is necessary to form a hole to be measured by a punching machine, a difference due to a measurer is likely to occur and is high. There was also a problem that it was difficult to maintain accuracy.

以上のような種々の問題があるため、フレキシブルプリント配線板用銅張積層板用基板のベースフィルムとして一般的に採用されるポリイミドフィルムの寸法変化率を、湿度の影響を抑え、精度よくかつ簡便に評価できる方法が望まれている。   Due to the various problems described above, the dimensional change rate of polyimide film generally used as a base film for copper-clad laminates for flexible printed wiring boards can be controlled accurately and easily with reduced humidity. Therefore, a method that can be evaluated is desired.

JIS C 6471 フレキシブルプリント配線板用銅張積層板試験方法JIS C 6471 Test method for copper-clad laminates for flexible printed wiring boards JIS C 6481 プリント配線板用銅張積層板試験方法JIS C 6481 Test method for copper-clad laminates for printed wiring boards

本発明の目的は、フレキシブルプリント配線板用銅張積層板用ベースフィルムとして使用するポリイミドフィルムの寸法安定性を評価するために、熱機械分析装置(TMA)を用いて寸法変化率を算出する評価方法であって、フィルムの搬送方向(MD方向)及びフィルムの幅方向(TD方向)の寸法変化率を、フィルムの吸湿状態の影響を低減して、精度よく、かつ簡便に評価できる方法を提供することにある。   An object of the present invention is to evaluate the dimensional change rate using a thermomechanical analyzer (TMA) in order to evaluate the dimensional stability of a polyimide film used as a base film for a copper-clad laminate for a flexible printed wiring board. A method that can accurately and easily evaluate the dimensional change rate in the film transport direction (MD direction) and the film width direction (TD direction) by reducing the influence of the moisture absorption state of the film. There is to do.

本発明が提供するポリイミドフィルムの評価方法の第1の発明は、ポリイミドフィルムの寸法安定性評価方法であって、熱機械分析装置(TMA:Thermo Mechanical Analyzer)の定荷重引張測定モードを用い、下記試験条件下で測定した前記ポリイミドフィルムの試験片長から、下記式(1)から(3)を用いて寸法変化率を算出し、算出した寸法変化率を下記評価手順により比較、評価することを特徴とするポリイミドフィルムの寸法安定性評価方法である。   1st invention of the evaluation method of the polyimide film which this invention provides is a dimensional stability evaluation method of a polyimide film, Comprising: Using the constant load tension measurement mode of a thermomechanical analyzer (TMA: Thermo Mechanical Analyzer), the following From the test piece length of the polyimide film measured under test conditions, the dimensional change rate is calculated using the following formulas (1) to (3), and the calculated dimensional change rate is compared and evaluated by the following evaluation procedure. This is a method for evaluating the dimensional stability of a polyimide film.

[試験条件]
(a).試験片は、短冊状で、ポリイミドフィルムのTD方向を、試験片の幅方向とする試験片M系列と、ポリイミドフィルムのMD方向を、試験片の幅方向とする試験片T系列を、ポリイミドフィルムの幅方向における中心線位置、及び前記中心線位置から幅方向に等間隔の複数位置からサンプリングする。
(b).雰囲気は不活性雰囲気。
(c).試験片に与える温度プロファイルは、第1段階で一旦基準点となる室温tから100℃以上、200℃以下の温度に達した後に冷却して温度t(但し、t=25±2℃)とし、続いて第2段階として、温度tから温度t(但し、t=150±2℃)まで昇温、保持し、その後、第3段階として、冷却して温度t(但し、t=25±2℃)にて保持する。
(d).試験片長の測定は、試験片毎に、温度t、t、t、tにおける標点間距離p、p、p、pの値を測定する。
(e).寸法変化率の算出は、(d)で得た各試験片毎のp〜pの値を、下記式(1)〜(3)に代入して各試験片毎の寸法変化率dL、dL、dL、dLを算出する。
[Test conditions]
(A). The test piece is strip-shaped, and a test piece M series in which the TD direction of the polyimide film is the width direction of the test piece and a test piece T series in which the MD direction of the polyimide film is the width direction of the test piece are polyimide films. Are sampled from the center line position in the width direction and a plurality of positions equidistant from the center line position in the width direction.
(B). The atmosphere is inert.
(C). The temperature profile given to the test piece is a temperature t 1 (however, t 1 = 25 ± 2 ° C.) after reaching a temperature of 100 ° C. or more and 200 ° C. or less once from the room temperature t 0 which is a reference point in the first stage. Then, as the second stage, the temperature is raised and maintained from the temperature t 1 to the temperature t 2 (where t 2 = 150 ± 2 ° C.), and then the third stage is cooled to the temperature t 3 (however, , T 3 = 25 ± 2 ° C.).
(D). The test piece length is measured by measuring the distances between the gauge points p 0 , p 1 , p 2 , and p 3 at temperatures t 0 , t 1 , t 2 , and t 3 for each test piece.
(E). The dimensional change rate is calculated by substituting the values of p 0 to p 3 for each test piece obtained in (d) into the following formulas (1) to (3), and the dimensional change rate dL 0 for each test piece. , DL 1 , dL 2 , dL 3 are calculated.

[評価手順]
(イ).試験片M系列及び試験片T系列における寸法変化の基準位置を、測定に供したポリイミドフィルムの幅方向における中心線位置から採られた試験片とする。
(ロ).試験片M系列毎、及び試験片T系列毎に、前記基準位置の試験片における寸法変化率dLと、フィルムの幅方向の最外側に位置する試験片における寸法変化率dLを比較し、寸法変化安定性を評価する。
[Evaluation procedure]
(I). The reference position of the dimensional change in the test piece M series and the test piece T series is a test piece taken from the center line position in the width direction of the polyimide film subjected to the measurement.
(B). For each specimen M series and each specimen T series, the dimensional change rate dL 3 in the test piece at the reference position is compared with the dimensional change ratio dL 3 in the test piece located on the outermost side in the width direction of the film, Evaluate dimensional change stability.

Figure 2015141094
Figure 2015141094

本発明の第2の発明は、第1の発明における熱機械分析装置(TMA)の定荷重引張測定モードにおける定荷重が、ポリイミドフィルムの弾性限内の荷重であることを特徴とするポリイミドフィルムの寸法安定性評価方法である。   According to a second aspect of the present invention, there is provided a polyimide film characterized in that the constant load in the constant load tensile measurement mode of the thermomechanical analyzer (TMA) in the first aspect is a load within the elastic limit of the polyimide film. This is a dimensional stability evaluation method.

本発明の第3の発明は、第1及び第2の発明のけるポリイミドフィルムが、電子部品の基板用ポリイミドフィルムであることを特徴とするポリイミドフィルムの寸法安定性評価方法である。   A third invention of the present invention is a method for evaluating the dimensional stability of a polyimide film, wherein the polyimide film according to the first and second inventions is a polyimide film for a substrate of an electronic component.

本発明のポリイミドフィルムの評価方法によれば、精度よく、かつ簡便にポリイミドフィルムの寸法安定性を、汎用的に使用される熱機械分析装置(TMA)を用いて評価できる。   According to the method for evaluating a polyimide film of the present invention, the dimensional stability of the polyimide film can be accurately and easily evaluated using a general-purpose thermomechanical analyzer (TMA).

さらに、フレキシブルプリント配線板における高密度、且つ精密な配線加工を可能とするためには、その基板のベースフィルムの寸法変化率をできる限り小さくすることが必要であり、従って、この寸法変化率を精度よく評価して、高密度、且つ精密な配線加工に適するフィルムの選別を簡便にできるようにするため、本発明が特定する条件でTMAを用いて、その寸法変化率を測定することで、0.01μmの高い精度で寸法変化率を算出することが可能となり、工業上顕著な効果を奏するものである。   Furthermore, in order to enable high-density and precise wiring processing in a flexible printed wiring board, it is necessary to make the dimensional change rate of the base film of the substrate as small as possible. In order to evaluate accurately and enable easy selection of a film suitable for high-density and precise wiring processing, by measuring the dimensional change rate using TMA under the conditions specified by the present invention, It becomes possible to calculate the dimensional change rate with a high accuracy of 0.01 μm, which has a remarkable industrial effect.

本発明に係る試験片のサンプリング法を示す図で、(a)はサンプリング箇所を示す図、(b)は試験片の形状を示す図である。It is a figure which shows the sampling method of the test piece which concerns on this invention, (a) is a figure which shows a sampling location, (b) is a figure which shows the shape of a test piece. 本発明に係るTMA装置による寸法測定における説明図で、(a)は測定チャックに両端を把持、固定された試験片で構成される測定サンプルを示し、(b)は寸法測定におけるTMA装置の測定部を示す図である。It is explanatory drawing in the dimension measurement by the TMA apparatus which concerns on this invention, (a) shows the measurement sample comprised by the test piece which hold | gripped both ends to the measurement chuck | zipper, (b) measured the TMA apparatus in dimension measurement FIG. 本発明にかかるTMA測定の温度プロファイルである。It is a temperature profile of TMA measurement concerning the present invention. 実施例におけるポリイミドフィルムの測定データの一例である。It is an example of the measurement data of the polyimide film in an Example.

以下に、本発明について具体的に説明する。
本発明のフレキシブルプリント配線板用銅張積層板用ポリイミドフィルムの評価方法の特徴とする所は、フレキシブルプリント配線板用銅張積層板などの電子部品の基板に用いられるポリイミドフィルムの寸法安定性を、熱機械分析装置(TMA、Thermo Mechanical Analyzer)を用い、フィルム試験片を定荷重引張モードにて試験、評価する方法である。
The present invention will be specifically described below.
The feature of the evaluation method of the polyimide film for copper-clad laminates for flexible printed wiring boards of the present invention is that the dimensional stability of the polyimide film used for substrates of electronic components such as copper-clad laminates for flexible printed wiring boards is increased. In this method, a film test piece is tested and evaluated in a constant load tension mode using a thermomechanical analyzer (TMA, Thermo Mechanical Analyzer).

その試験条件について説明する。
(a).試験片
使用する試験片は、図1(a)に示すようなポリイミドフィルム1のTD方向を、試験片の幅方向とする試験片M系列と、ポリイミドフィルム1のMD方向を、試験片の幅方向とする試験片T系列を、ポリイミドフィルムの幅方向における中心線位置C、及び前記中心線位置Cから幅方向に等間隔dの複数位置C 、C 、C 、C からサンプリングした図1(b)に示す短冊状試験片Sである。
なお、サンプリングする位置は、少なくとも、基準点となる中心線位置Cを含んで、少なくとも2か所以上とする。実施例では片側3か所の場合(試料1A〜1E、2A〜2E)を示しているが、幅方向の両側からサンプリングしても良い。
試験片M系列と試験片T系列は、図1(a)に示すように対比する位置関係でのサンプリングが望ましい。
The test conditions will be described.
(A). Test piece The test piece used is a test piece M series in which the TD direction of the polyimide film 1 as shown in FIG. 1A is the width direction of the test piece, and the MD direction of the polyimide film 1 is the width of the test piece. The test piece T series to be oriented is a center line position C in the width direction of the polyimide film, and a plurality of positions C M R , C O R , C M L , C O at equal intervals d from the center line position C in the width direction. a strip specimen S shown in FIG. 1 (b) sampled from L.
The sampling positions include at least two or more locations including the center line position C as a reference point. In the embodiment, the case of three places on one side (samples 1A to 1E, 2A to 2E) is shown, but sampling may be performed from both sides in the width direction.
The test piece M series and the test piece T series are preferably sampled in a positional relationship as shown in FIG.

試験片の厚みは、ポリイミドフィルムが使用される用途によって変わるが0.2〜1mmの範囲で良好な測定が可能で、その幅は、通常2〜6mmである。さらに、長さは幅の数倍程度とし、通常20〜50mm程度とすればよい。
この評価に供する試料を複数枚、同一形状で採取して評価測定し、その結果を比較解析することにより、フィルムの面内のバラつきや寸法安定性の傾向など、従来のJIS法では得られなかった詳細な情報を得ることができる。
Although the thickness of a test piece changes with uses in which a polyimide film is used, a favorable measurement is possible in the range of 0.2-1 mm, and the width | variety is 2-6 mm normally. Furthermore, the length is about several times the width, and usually about 20 to 50 mm.
Samples to be used for this evaluation are collected in the same shape, measured and evaluated, and the results are compared and analyzed, which cannot be obtained by conventional JIS methods such as in-plane variations in film and dimensional stability. Detailed information can be obtained.

(b).試験時の雰囲気
試験時における試料回りの雰囲気は不活性雰囲気が良く、窒素ガス、アルゴンガスなどを使用して試験雰囲気を形成する。これらのガスを使用する際には、ガス中の水分を除去した乾燥ガスとして使用する。
(B). Atmosphere at the time of testing The atmosphere around the sample at the time of testing is preferably an inert atmosphere, and a test atmosphere is formed using nitrogen gas, argon gas, or the like. When these gases are used, they are used as a dry gas from which moisture in the gas has been removed.

(c).試験片に与える温度プロファイル
本発明では、電子部品のベースフィルムに用いられるポリイミドフィルムの寸法変化率を評価する目的で、プリント配線板の製造時の温度プロファイルとしている。その温度プロファイルを図3に図示して示す。なお、この温度プロファイルは、対象とする用途に合わせた条件とすることも可能である。
(C). Temperature profile given to test piece In the present invention, for the purpose of evaluating the dimensional change rate of a polyimide film used for a base film of an electronic component, a temperature profile at the time of manufacturing a printed wiring board is used. The temperature profile is shown in FIG. Note that this temperature profile can also be set according to the intended application.

図3から、本発明における温度プロファイルは、先ず第1段階で一旦基準点となる室温t(厳密に測定する際には、tと同じく25℃±2℃とする)から100℃以上、200℃以下の温度に達した後に冷却して温度t(但し、t=25±2℃)とし、続いて第2段階として、温度tから温度t(但し、t=150±2℃)まで昇温、保持し、その後、第3段階として、冷却して温度t(但し、t=25±2℃)にて保持する。 From FIG. 3, the temperature profile in the present invention is first from the room temperature t 0 (25 ° C. ± 2 ° C. as in t 1 when measured strictly), which is once a reference point in the first stage, to 100 ° C. or more. After reaching a temperature of 200 ° C. or lower, the system is cooled to a temperature t 1 (where t 1 = 25 ± 2 ° C.). Subsequently, as a second stage, the temperature t 1 is changed to a temperature t 2 (where t 2 = 150 ±). The temperature is raised to 2 ° C. and held, and then cooled and held at a temperature t 3 (where t 3 = 25 ± 2 ° C.) as a third stage.

測定における温度プロファイルを与える昇降温速度については、毎分3℃以上、10℃以下、特に毎分5℃を条件とした測定が望ましい。
毎分3℃未満ではTMA装置での温度制御が難しく、毎分10℃を超えると測定対象フィルムが設定温度に至るのに充分な時間ではなく測定感度が低下するため好ましくない。
なお、図3中の符号PIは、試験片に用いた「ポリイミドフィルム」を意味するものである。
About the temperature rising / falling speed which gives the temperature profile in a measurement, the measurement on condition of 3 degreeC / min or more and 10 degrees C / min, especially 5 degreeC / min is desirable.
If the temperature is less than 3 ° C. per minute, it is difficult to control the temperature with the TMA apparatus. If the temperature exceeds 10 ° C. per minute, it is not preferable because the measurement sensitivity is not sufficient for the film to be measured to reach the set temperature.
In addition, the code | symbol PI in FIG. 3 means the "polyimide film" used for the test piece.

(d).試験片長の測定
図4は、図3の温度プロファイルに伴って変化した試験片長挙動を示す測定データの一例を表す曲線で、試験片毎に、温度t、t、t、tにおける試験片長(標点間距離:GL)p、p、p、pの値を試験片長として測定する。
(D). Measurement of Specimen Length FIG. 4 is a curve showing an example of measurement data showing the behavior of the specimen length changed with the temperature profile of FIG. 3, and the temperature at each of the specimens at temperatures t 0 , t 1 , t 2 , t 3 is shown. Test piece length (distance between gauge points: GL) The values of p 0 , p 1 , p 2 , and p 3 are measured as test piece lengths.

(e).寸法変化率の算出
前記(d)で得た各試験片毎のp〜pの値を、下記式(1)〜(3)に代入して各試験片毎の寸法変化率dL、dL、dL、dLを算出する。
(E). Calculation of dimensional change rate The value of p 0 to p 3 for each test piece obtained in (d) above is substituted into the following formulas (1) to (3), and the dimensional change rate dL 0 for each test piece. dL 1 , dL 2 , dL 3 are calculated.

Figure 2015141094
Figure 2015141094

(f).試験片長測定条件
図2は、TMA装置による寸法測定における説明図で、図2(a)は測定サンプルを示し、図2(b)は寸法測定におけるTMA装置の測定部を示す図である。
TMA装置を用いて、(d)の試験片長を測定する際に試験片Sを、図2(a)に示すように測定チャック3、3により両端を把持、固定された測定サンプル2に形成する。
その測定サンプル2は、図2(b)に示すようにTMA装置の引張モード用治具10、11で構成する測定位置に取り付けられる。その際、測定位置に保持する荷重については、ポリイミドフィルムの弾性限内で試験片の保持が可能な程度の荷重が望ましく、上記本発明の試験片の形態においては、3g以上、7g未満、特に5gでの測定が望ましい。3g未満の場合はフィルムの保持が不十分で測定データに振動によるノイズが加わりやすく、7gを超えるとフィルムに外力が加わってしまう為精度が高い測定ができない。
(F). Test Specimen Length Measurement Conditions FIG. 2 is an explanatory diagram in dimension measurement by a TMA apparatus, FIG. 2 (a) shows a measurement sample, and FIG. 2 (b) shows a measurement unit of the TMA apparatus in dimension measurement.
Using the TMA apparatus, when measuring the length of the test piece (d), the test piece S is formed into a measurement sample 2 held and fixed at both ends by the measurement chucks 3 and 3 as shown in FIG. .
The measurement sample 2 is attached to a measurement position constituted by the tensile mode jigs 10 and 11 of the TMA apparatus as shown in FIG. At that time, the load held at the measurement position is preferably a load that can hold the test piece within the elastic limit of the polyimide film. In the test piece form of the present invention, the load is 3 g or more and less than 7 g. Measurement at 5 g is desirable. If it is less than 3 g, the film is not sufficiently held, and noise due to vibration is likely to be added to the measurement data. If it exceeds 7 g, an external force is applied to the film, so high-precision measurement cannot be performed.

すなわち、本発明に係る評価方法における寸法変化率の測定では、室温(t)から昇温させて100℃以上、200℃以下の設定温度に達した後に25±2℃(t)まで冷却し保持する第1段階と、その後ポリイミドフィルムをベースフィルムとした場合において25±2℃(t)から150±2℃(t)まで昇温、保持した後25±2℃(t)に保持する第2段階を連続して不活性ガス雰囲気中で測定することで、測定中に大気雰囲気中の水分を吸湿することなく、寸法変化を精度よく測定することができる。 That is, in the measurement of the dimensional change rate in the evaluation method according to the present invention, the temperature is raised from room temperature (t 0 ), and after reaching a set temperature of 100 ° C. or higher and 200 ° C. or lower, cooling to 25 ± 2 ° C. (t 1 ). In the case where a polyimide film is used as a base film, the temperature is raised from 25 ± 2 ° C. (t 1 ) to 150 ± 2 ° C. (t 2 ), and then held 25 ± 2 ° C. (t 3 ). By continuously measuring the second stage held in the inert gas atmosphere, the dimensional change can be accurately measured without absorbing moisture in the air atmosphere during the measurement.

[評価手順]
上記(a)から(f)により求めた寸法変化率を用いた寸法安定性の評価を下記に示す。
(イ).試験片T系列、及び試験片M系列における寸法変化の基準位置を、測定に供したポリイミドフィルムの幅方向における中心線位置Cから採られた試験片(図1(a)における試験片1A及び試験片2A)とする。
[Evaluation procedure]
Evaluation of dimensional stability using the dimensional change rate obtained from (a) to (f) above is shown below.
(I). The test piece taken from the center line position C in the width direction of the polyimide film subjected to the measurement was used as the reference position of the dimensional change in the test piece T series and the test piece M series (test piece 1A and test in FIG. 1A). Let's say piece 2A)

(ロ).試験片M系列毎、及び試験片T系列毎に、前記基準位置の試験片における寸法変化率dLと、フィルムの幅方向の最外側に位置する試験片(図1(a)における試験片1D、1E及び試験片2D、2E)における寸法変化率dLを比較し、寸法変化安定性を評価する。 (B). For each specimen M series and each specimen T series, the dimensional change rate dL 3 in the specimen at the reference position, and the specimen located on the outermost side in the width direction of the film (the specimen 1D in FIG. 1A). , 1E and specimen 2D, to compare the dimensional change rate dL 3 in 2E), to evaluate the dimensional change stability.

さらに、本発明では以下に示すポリイミドフィルムの特性を評価することも可能である。
(ハ)試験片毎の寸法変化率dLの評価は、使用したポリイミドフィルムの含有水分量について推定することができる。
例えば、dLが負の値となった場合には、含有水分の除去によってフィルムが収縮したと考えられる。
Furthermore, in this invention, it is also possible to evaluate the characteristic of the polyimide film shown below.
(C) The evaluation of the dimensional change rate dL 1 for each test piece can be estimated for the moisture content of the polyimide film used.
For example, when dL 1 becomes a negative value, it is considered that the film contracted due to the removal of the contained water.

(ニ)試験片毎の寸法変化率dLの評価は、加熱処理によるポリイミドフィルムの伸張傾向を推定することができる。
例えばdLがより大きな値を示す場合はポリイミドフィルムの膨張係数が高いと推定でき、さらに30分間の温度保持の間での寸法変化挙動についても評価が可能である。
(D) Evaluation of dimensional change dL 2 specimens per can estimate the expansion tendency of the polyimide film by heat treatment.
For example, when showing the dL 2 Gayori larger value can be estimated with high expansion coefficient of the polyimide film, it is possible to further evaluation for dimensional change behavior among the temperature hold of 30 minutes.

(ホ)試験片毎の寸法変化率dLの評価は、加熱処理後の寸法安定性を推定することができる。
例えば、dLが正の値の場合は加熱処理後に伸張したと推定でき、dLが負の値の場合は加熱処理後に収縮したと推定できる。さらに25±2℃(t)に1時間以上保った後に測定するため、加熱処置後の寸法安定性についても評価が可能である。
(E) Evaluation of the dimensional change rate dL 3 for each test piece can estimate the dimensional stability after the heat treatment.
For example, when dL 3 is a positive value, it can be estimated that the film has expanded after the heat treatment, and when dL 3 is a negative value, it can be estimated that the film has contracted after the heat treatment. Furthermore, since the measurement is performed after maintaining at 25 ± 2 ° C. (t 3 ) for 1 hour or longer, it is possible to evaluate the dimensional stability after the heat treatment.

以下に本発明の実施例、比較例を示して詳細に説明するが、本発明は以下の実施例により何ら制限されることはない。
測定用試料として、A社及びB社の2種類のポリイミドフィルムA、Bを用いた。
測定装置及び測定条件は、TMA装置にブルカー・エイエックス株式会社製「TMA−4030SA」を使用し、窒素雰囲気下において昇温・冷却速度を毎分5℃に設定し、荷重を5gとして、測定を行った。
EXAMPLES Hereinafter, examples and comparative examples of the present invention will be described in detail, but the present invention is not limited by the following examples.
Two types of polyimide films A and B from Company A and Company B were used as measurement samples.
Measurement equipment and measurement conditions were measured using a Bruker Ax Co., Ltd. “TMA-4030SA” as the TMA equipment, setting the heating / cooling rate to 5 ° C./min in a nitrogen atmosphere, and setting the load to 5 g. Went.

評価用ポリイミドフィルムとして、幅524mmのポリイミドフィルムAを使用し、図1(a)に示すようにフィルムの中心と中心から間隔dを100mmごとにそれぞれ2枚で合計5枚とし、試料の長手方向がフィルムの搬送方向と垂直(TD)になるような試験片T系列の試験片1A〜1Eを、幅5mm×長さ約30mmの短冊状の測定サンプル(図1(b)参照)として採取した。   As a polyimide film for evaluation, a polyimide film A having a width of 524 mm was used, and as shown in FIG. 1A, the distance d from the center of the film was 2 for each 100 mm, for a total of 5 sheets. Test specimens 1A to 1E of T series, which are perpendicular to the film transport direction (TD), were collected as strip-shaped measurement samples (see FIG. 1B) having a width of 5 mm and a length of about 30 mm. .

[試料1A]
TMA装置の測定チャック3、3に試料1A(図2(a)、符号S)を把持、固定して測定サンプル2(図2(a)参照)を形成し、図2(b)に示す引張モード用治具10、11で構成する測定位置に取り付け、TD方向に5gの荷重が付加した。次いで引張モード用治具10、11間の距離(標点間距離GL)p(1A)を測長したところ、p(1A)=23.2000mmであった。
測定は、まず室温から105℃まで昇温させた後、一旦25℃(t)まで冷却した後、30分間保持した。この保持時の試料寸法p(1A)=23.1856mmであった。次に引き続き25℃(t)から150℃(t)まで昇温し、30分間保持した。その保持時の試料寸法p(1A)=23.2258mmであった。続いて25℃(t)まで冷した後、90分間保持し、この保持後の試料寸法p(1A)=23.1849mmであった。
[Sample 1A]
A sample 1A (FIG. 2A, symbol S) is held and fixed on the measurement chucks 3 and 3 of the TMA apparatus to form a measurement sample 2 (see FIG. 2A), and the tension shown in FIG. It was attached to the measurement position constituted by the mode jigs 10 and 11, and a load of 5 g was applied in the TD direction. Next, when the distance between the tensile mode jigs 10 and 11 (distance GL between the gauge points) p 0 (1A) was measured, it was p 0 (1A) = 23.2000 mm.
In the measurement, the temperature was first raised from room temperature to 105 ° C., then cooled to 25 ° C. (t 1 ), and held for 30 minutes. The sample size p 1 (1A) at the time of holding was 23.1856 mm. Next, the temperature was raised from 25 ° C. (t 1 ) to 150 ° C. (t 2 ) and held for 30 minutes. The sample size p 2 (1A) at the time of holding was 23.2258 mm. Subsequently, after cooling to 25 ° C. (t 3 ), the sample was held for 90 minutes, and the sample size p 3 (1A) after this holding was 23.1849 mm.

試料1Aの測定点t(RT−105℃−25℃)における寸法変化率は、dL(1A)は−0.062%と、フィルムは収縮していたことがわかる。原因として、フィルムが水分を吸湿したものと推定される。
他の測定点における寸法変化率は、測定点t(25℃−150℃)では寸法変化率dL(1A)は0.173%、測定点t(150℃−25℃)では寸法変化率dL(1A)は−0.003%であった。
The dimensional change rate at the measurement point t 1 (RT-105 ° C.-25 ° C.) of the sample 1A was −0.062% for dL 1 (1A), indicating that the film was contracted. The cause is presumed that the film absorbed moisture.
Dimensional change at the other measurement points, the measurement point t 2 (25 ℃ -150 ℃) the dimensional change dL 2 (1A) is 0.173%, the dimensional change in the measurement point t 3 (150 ℃ -25 ℃) The rate dL 3 (1A) was −0.003%.

[試料1B]
試料1A同様の条件で測定を行った結果、その寸法変化率は、dL(1B)は−0.088%、dL(1B)は0.174%、dL(1B)は−0.003%であった。
[Sample 1B]
Sample 1A 1 was measured under the same conditions, the dimensional change rate, dL 1 (1B) is -0.088%, dL 2 (1B) is 0.174%, dL 3 (1B) is -0. It was 003%.

[試料1C]
試料1A同様の条件で測定を行った結果、その寸法変化率は、dL(1C)は−0.095%、dL(1C)は0.178%、dL(1C)は−0.002%であった。
[Sample 1C]
Sample 1A 1 was measured under the same conditions, the dimensional change rate, dL 1 (1C) is -0.095%, dL 2 (1C) is 0.178%, dL 3 (1C) -0. It was 002%.

[試料1D]
試料1A同様の条件で測定を行った結果、その寸法変化率は、dL(1D)は−0.060%、dL(1D)は0.172%、dL(1D)は−0.004%であった。
[Sample 1D]
As a result of the measurement under the same conditions as the sample 1A, the dimensional change rate was -0.060% for dL 1 (1D), 0.172% for dL 2 (1D), and -0.0.d for dL 3 (1D). It was 004%.

[試料1E]
試料1A同様の条件で測定を行った結果、その寸法変化率は、dL(1E)は−0.055%、dL(1E)は0.175%、dL(1E)は−0.003%であった。
[Sample 1E]
Sample 1A 1 was measured under the same conditions, the dimensional change rate, dL 1 (1E) is -0.055%, dL 2 (1E) is 0.175%, dL 3 (1E) -0. It was 003%.

以上の試料1A〜1Eの寸法変化率の測定結果から、dLはいずれもマイナスの数値で収縮状態にあり、フィルム全体において、吸湿していたことがわかる。またポリイミドフィルムの幅(TD)方向の寸法変化率dLは−0.002〜−0.003%であると算定され、ポリイミドフィルムAの加熱処理後のTD方向の寸法変化率dLは極めて小さく安定しており、フレキシブルプリント配線板用銅張積層板用ベースフィルムとして良好な寸法安定性を有していると評価できた。 From the measurement results of the dimensional change rates of the above samples 1A to 1E, it can be seen that dL 1 is in a contracted state with a negative value, and the entire film has absorbed moisture. The dimensional change rate dL 3 in the width (TD) direction of the polyimide film is calculated to be −0.002 to −0.003%, and the dimensional change rate dL 3 in the TD direction after the heat treatment of the polyimide film A is extremely high. It was small and stable and could be evaluated as having good dimensional stability as a base film for copper-clad laminates for flexible printed wiring boards.

評価用ポリイミドフィルムとして、実施例1と同じフィルムを使用し、フィルムの中心と中心から間隔を100mmごとにそれぞれ2枚で合計5枚とし、試料の長手方向がフィルムの搬送方向と平行(MD)になるようにフィルム幅5mm×長さ約23mmの短冊状の測定サンプルとして2A〜2Eの5枚の試料を採取した。   As the polyimide film for evaluation, the same film as in Example 1 is used, and the distance from the center of the film is 2 for each 100 mm, for a total of 5 sheets, and the longitudinal direction of the sample is parallel to the film transport direction (MD) Thus, five samples 2A to 2E were collected as strip-shaped measurement samples having a film width of 5 mm and a length of about 23 mm.

[試料2A]
測定チャックに試料2Aを取り付け、実施例1と同様にして評価した。測定用治具間の距離p(2A)は23.4300mmであった。25℃(t)まで冷却した後の試料寸法p(2A)は23.4182mmであった。次に引き続き25℃(t)から150℃(t)まで昇温し、30分間保持した後の試料寸法p(2A)は23.4626mmであった。最後に25℃(t)まで冷した後の試料寸法p(2A)は23.4176mmであった。
[Sample 2A]
Sample 2A was attached to the measurement chuck and evaluated in the same manner as in Example 1. The distance p 0 (2A) between the measuring jigs was 23.4300 mm. The sample dimension p 1 (2A) after cooling to 25 ° C. (t 1 ) was 23.4182 mm. Next, the sample size p 2 (2A) after the temperature was raised from 25 ° C. (t 1 ) to 150 ° C. (t 2 ) and held for 30 minutes was 23.4626 mm. The sample size p 3 (2A) after finally cooling to 25 ° C. (t 3 ) was 23.4176 mm.

この場合のdL(2A)は−0.050%とフィルムが収縮したことから、吸湿していたと推定できる。dL(2A)は0.140%、dL(2A)は−0.003%であった。
実施例1と同様に、測定した。
In this case, dL 1 (2A) was −0.050%, and it was estimated that moisture was absorbed because the film contracted. dL 2 (2A) was 0.140% and dL 3 (2A) was −0.003%.
Measurement was performed in the same manner as in Example 1.

試料2B〜試料2Eについても試料2Aと同様の条件で測定を行った結果、試料2Bでは、dL(2B)は−0.051%、dL(2B)は0.180%、dL(2B)は−0.008%であった。
試料2Cでは、dL(2C)は−0.042%、dL(2C)は0.188%、dL(2C)は−0.009%であった。
試料2Dでは、dL(2D)は−0.043%、dL(2D)は0.152%、dL(2D)は−0.008%であった。
試料2Eでは、dL(2E)は−0.049%、dL(2E)は0.165%、dL(2E)は−0.006%であった。
As a result of measuring Sample 2B to Sample 2E under the same conditions as Sample 2A, dL 1 (2B) is −0.051%, dL 2 (2B) is 0.180%, dL 3 ( 2B) was -0.008%.
In sample 2C, dL 1 (2C) was −0.042%, dL 2 (2C) was 0.188%, and dL 3 (2C) was −0.009%.
In sample 2D, dL 1 (2D) was −0.043%, dL 2 (2D) was 0.152%, and dL 3 (2D) was −0.008%.
In sample 2E, dL 1 (2E) was −0.049%, dL 2 (2E) was 0.165%, and dL 3 (2E) was −0.006%.

以上の試料2A〜2Eの寸法変化率の測定結果から、幅(MD)方向の寸法変化率dLは−0.003〜−0.009%であると算定され、ポリイミドフィルムAの加熱処理後の幅(MD)方向の寸法変化率は小さく安定しており、フレキシブルプリント配線板用銅張積層板用ベースフィルムとして良好な寸法安定性を有していると評価できた。 From the measurement result of the dimensional change rate of the above samples 2A to 2E, the dimensional change rate dL 3 in the width (MD) direction is calculated to be −0.003 to −0.009%, and after the heat treatment of the polyimide film A The rate of dimensional change in the width (MD) direction was small and stable, and could be evaluated as having good dimensional stability as a base film for copper-clad laminates for flexible printed wiring boards.

評価用ポリイミドフィルムとして、幅524mmのポリイミドフィルムBを使用して、実施例1と同様にサンプリングを行い、試料の長手方向がフィルムの搬送方向と垂直(TD)になるような試験片T系列の試験片3A〜3Eの5枚の試料を採取した。   As a polyimide film for evaluation, using a polyimide film B having a width of 524 mm, sampling was performed in the same manner as in Example 1, and a test piece T series in which the longitudinal direction of the sample was perpendicular (TD) to the transport direction of the film. Five samples of test pieces 3A to 3E were collected.

[試料3A]
実施例1と同条件で測定を行った結果、測定用治具間の距離p(3A)=23.5200mm、試料寸法p(3A)は23.4832mm、p(3A)は23.5225mm、p(3A)は23.4814mmであった。
この場合のdL(3A)は−0.156%とフィルムが収縮したことから吸湿していたと推定できる。また、実施例1のポリイミドフィルムAと比較して、より吸湿していたフィルムと推定できる。dL(3A)は0.167%、dL(3A)は−0.008%であった。
[Sample 3A]
As a result of measurement under the same conditions as in Example 1, the distance between the measurement jigs p 0 (3A) = 23.5200 mm, the sample size p 1 (3A) was 23.4832 mm, and p 2 (3A) was 23. 5225 mm and p 3 (3A) were 23.4814 mm.
In this case, dL 1 (3A) was −0.156%, and it can be estimated that moisture was absorbed because the film contracted. Moreover, it can be presumed that the film absorbs more moisture than the polyimide film A of Example 1. dL 2 (3A) is 0.167%, dL 3 (3A) was -0.008%.

実施例1と同様に、試料3B〜試料3Eについて、測定した。
試料3A同様の条件で測定を行った結果、試料3Bでは、dL(3B)は−0.140%、dL(3B)は0.165%、dL(3B)は−0.003%であった。
試料3Cでは、dL(3C)は−0.073%、dL(3C)は0.166%、dL(3C)は−0.008%であった。
試料3Dでは、dL(3D)は−0.056%、dL(3D)は0.166%、dL(3D)は−0.010%であった。
試料3Eでは、dL(3E)は−0.132%、dL(3E)は0.158%、dL(3E)は−0.022%であった。
In the same manner as in Example 1, measurement was performed on Sample 3B to Sample 3E.
As a result of measurement under the same conditions as Sample 3A, in Sample 3B, dL 1 (3B) was −0.140%, dL 2 (3B) was 0.165%, and dL 3 (3B) was −0.003%. Met.
In sample 3C, dL 1 (3C) was −0.073%, dL 2 (3C) was 0.166%, and dL 3 (3C) was −0.008%.
In sample 3D, dL 1 (3D) was −0.056%, dL 2 (3D) was 0.166%, and dL 3 (3D) was −0.010%.
In sample 3E, dL 1 (3E) was −0.132%, dL 2 (3E) was 0.158%, and dL 3 (3E) was −0.022%.

試料3A〜3Eの寸法変化率から、ポリイミドフィルムBの幅(TD)方向の寸法変化率dLは−0.003〜−0.022%であると算定され、このポリイミドフィルムBの加熱処理後の幅(MD)方向の寸法変化率は、比較的小さく、フレキシブルプリント配線板用銅張積層板用ベースフィルムとして良好な寸法安定性を有し十分使用することはできるが、ポリイミドフィルムAと比較すると幅(TD)方向で寸法変化が増加する傾向があることがわかった。 From the dimensional change rate of the samples 3A to 3E, the dimensional change rate dL 3 in the width (TD) direction of the polyimide film B is calculated to be −0.003 to −0.022%. The dimensional change rate in the width (MD) direction is relatively small and can be used sufficiently as a base film for copper-clad laminates for flexible printed wiring boards, but it can be used sufficiently. Compared with polyimide film A Then, it turned out that a dimensional change tends to increase in the width (TD) direction.

(比較例1)
実施例1で評価した幅524mmのポリイミドフィルムAを、「JIS C 6481」の手法に準拠して300×300mmに切り出し、0.8〜1.2mmの穴をあけた。
試料を温度20±2℃、相対湿度60〜70%の室内に24時間放置し、TD方向の穴間隔を測定し、常態の試料寸法lとした。その後150℃、30分間の加熱処理を行い、TD方向の穴間隔を測定し、加熱処理後の寸法lとした。但し、銅張積層基板ではない為、エッチング処置及びエッチング後の寸法l1は測定しないこととした。
加熱処理後の寸法変化率DSを下記式(4)にて算出したところ、寸法変化率DS=0.047%であった。
(Comparative Example 1)
The polyimide film A having a width of 524 mm evaluated in Example 1 was cut into a size of 300 × 300 mm according to the method of “JIS C 6481”, and a 0.8 to 1.2 mm hole was formed.
The sample was left in a room at a temperature of 20 ± 2 ° C. and a relative humidity of 60 to 70% for 24 hours, and the hole interval in the TD direction was measured to obtain a normal sample size 10 . Then 0.99 ° C., subjected to a heat treatment of 30 minutes, to measure the hole spacing in the TD direction, and the dimensions l 2 after the heat treatment. However, since it is not a copper clad laminated substrate, the etching treatment and the dimension l 1 after etching were not measured.
When the dimensional change rate DS 2 after the heat treatment was calculated by the following formula (4), the dimensional change rate DS 2 = 0.047%.

Figure 2015141094
Figure 2015141094

(比較例2)
比較例1で評価した300×300mmに切り出したポリイミドフィルムAについて、「JIS C 6481」の手法に準拠してMD方向の常態試料寸法l、150℃、30分間の加熱処理後のMD方向の寸法lを測定した。加熱処理後の寸法変化率DSは−0.002%であった。
(Comparative Example 2)
About the polyimide film A cut out to 300 × 300 mm evaluated in Comparative Example 1, the normal sample size l 0 in the MD direction in accordance with the method of “JIS C 6481”, 150 ° C., the MD direction after the heat treatment for 30 minutes. The dimension l 2 was measured. Dimensional change DS 2 after the heat treatment was -0.002%.

(比較例3)
幅524mmのポリイミドフィルムBを、比較例1と同様に「JIS C 6481」の手法に準拠して300×300mmに切り出し、0.8〜1.2mmの穴をあけた。
TD方向の常態試料寸法l、150℃、30分間の加熱処理後のMD方向の寸法lを測定した。加熱処理後の寸法変化率DSは、0.011%であった。
(Comparative Example 3)
A polyimide film B having a width of 524 mm was cut into a size of 300 × 300 mm in accordance with the method of “JIS C 6481” in the same manner as in Comparative Example 1, and a hole of 0.8 to 1.2 mm was formed.
A normal sample dimension l 0 in the TD direction, a dimension l 2 in the MD direction after heat treatment at 150 ° C. for 30 minutes was measured. Dimensional change DS 2 after the heat treatment was 0.011%.

上記のように、比較例1〜3の従来法である「JIS C 6481」の手法に準拠した評価方法では、本発明のようなフィルムの面内ばらつきなど詳細な情報が得られず、また得られた寸法変化率の数値も精度に問題のある数値であり、正確な評価が困難であることがわかり、本発明の評価方法によれば、フィルムの吸湿性の影響を抑え、精度よくかつ簡便に測定でき、フィルムの面内ばらつきの情報が得られる。   As described above, the evaluation method based on the method of “JIS C 6481” which is the conventional method of Comparative Examples 1 to 3 cannot obtain detailed information such as in-plane variation of the film as in the present invention. The numerical value of the obtained dimensional change rate is also a numerical value having a problem in accuracy, and it is found that accurate evaluation is difficult. According to the evaluation method of the present invention, the influence of the hygroscopicity of the film is suppressed, and it is accurate and simple. And information on in-plane variation of the film can be obtained.

1 ポリイミドフィルム
2 測定サンプル
3 測定チャック
10、11 引張モード用治具
S 試験片
DESCRIPTION OF SYMBOLS 1 Polyimide film 2 Measurement sample 3 Measurement chucks 10 and 11 Tensile mode jig S Test piece

Claims (3)

ポリイミドフィルムの寸法安定性評価方法であって、
熱機械分析装置(Thermo Mechanical Analyzer,TMA)の定荷重引張測定モードを用い、
下記試験条件下で測定した前記ポリイミドフィルムの試験片長から、下記式(1)から(3)を用いて寸法変化率を算出し、算出した寸法変化率を下記評価手順により比較、評価することを特徴とするポリイミドフィルムの寸法安定性評価方法。

(記)
[試験条件]
(a).試験片は短冊状で、
前記ポリイミドフィルムのTD方向を、試験片の幅方向とする試験片M系列と、
前記ポリイミドフィルムのMD方向を、試験片の幅方向とする試験片T系列を、
前記ポリイミドフィルムの幅方向における中心線位置、及び前記中心線位置から幅方向に等間隔の複数位置からサンプリングする。
(b).雰囲気は不活性雰囲気。
(c).試験片に与える温度プロファイルは、
第1段階で一旦基準点となる室温tから100℃以上、200℃以下の温度に達した後に冷却して温度t(但し、t=25±2℃)とし、続いて第2段階として、温度tから温度t(但し、t=150±2℃)まで昇温、保持し、その後、第3段階として、冷却して温度t(但し、t=25±2℃)にて保持する。
(d).試験片長の測定は、試験片毎に、
温度t、t、t、tにおける標点間距離p、p、p、pの値を測定する。
(e).寸法変化率の算出は、
前記(d)で得た試験片毎のp〜pの値を、下記式(1)〜(3)に代入して各試験片毎の寸法変化率dL、dL、dL、dLを算出する。

[評価手順]
(イ).前記試験片M系列及び試験片T系列における寸法変化の基準位置を、測定に供したポリイミドフィルムの幅方向における中心線位置から採られた試験片とする。
(ロ).試験片M系列毎、及び試験片T系列毎に、前記基準位置の試験片における寸法変化率dLと、フィルムの幅方向の最外側に位置する試験片における寸法変化率dLを比較し、寸法変化安定性を評価する。
Figure 2015141094
A method for evaluating the dimensional stability of a polyimide film,
Using the constant load tensile measurement mode of the thermomechanical analyzer (Thermo Mechanical Analyzer, TMA)
From the test piece length of the polyimide film measured under the following test conditions, the dimensional change rate is calculated using the following formulas (1) to (3), and the calculated dimensional change rate is compared and evaluated by the following evaluation procedure. A method for evaluating the dimensional stability of a polyimide film.

(Record)
[Test conditions]
(A). The specimen is strip-shaped,
A test piece M series in which the TD direction of the polyimide film is the width direction of the test piece,
A test piece T series in which the MD direction of the polyimide film is the width direction of the test piece,
Sampling is performed from a center line position in the width direction of the polyimide film and a plurality of positions at equal intervals in the width direction from the center line position.
(B). The atmosphere is inert.
(C). The temperature profile given to the specimen is
In the first stage, the temperature reaches a temperature of t 1 (where t 1 = 25 ± 2 ° C.) after reaching a temperature of 100 ° C. or more and 200 ° C. or less from room temperature t 0 which is a reference point, and then the second step. The temperature is raised and maintained from the temperature t 1 to the temperature t 2 (where t 2 = 150 ± 2 ° C.), and then cooled and the temperature t 3 (where t 3 = 25 ± 2 ° C.) as the third stage. ).
(D). The test piece length is measured for each test piece.
The values of the distances p 0 , p 1 , p 2 , and p 3 between the gauge points at the temperatures t 0 , t 1 , t 2 , and t 3 are measured.
(E). The calculation of the dimensional change rate is
By substituting the values of p 0 to p 3 for each test piece obtained in (d) into the following formulas (1) to (3), the dimensional change rates dL 0 , dL 1 , dL 2 for each test piece, to calculate the dL 3.

[Evaluation procedure]
(I). The reference position of the dimensional change in the test piece M series and the test piece T series is a test piece taken from the center line position in the width direction of the polyimide film subjected to the measurement.
(B). For each specimen M series and each specimen T series, the dimensional change rate dL 3 in the test piece at the reference position is compared with the dimensional change ratio dL 3 in the test piece located on the outermost side in the width direction of the film, Evaluate dimensional change stability.
Figure 2015141094
前記熱機械分析装置(TMA)の定荷重引張測定モードにおける定荷重が、前記ポリイミドフィルムの弾性限内の荷重であることを特徴とする請求項1記載のポリイミドフィルムの寸法安定性評価方法。   The method for evaluating dimensional stability of a polyimide film according to claim 1, wherein the constant load in the constant load tensile measurement mode of the thermomechanical analyzer (TMA) is a load within an elastic limit of the polyimide film. 前記ポリイミドフィルムが、電子部品の基板用ポリイミドフィルムであることを特徴とする請求項1又は2に記載のポリイミドフィルムの寸法安定性評価方法。   The polyimide film dimensional stability evaluation method according to claim 1, wherein the polyimide film is a polyimide film for a substrate of an electronic component.
JP2014013797A 2014-01-28 2014-01-28 Dimensional stability evaluation method of polyimide film Active JP6153088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014013797A JP6153088B2 (en) 2014-01-28 2014-01-28 Dimensional stability evaluation method of polyimide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014013797A JP6153088B2 (en) 2014-01-28 2014-01-28 Dimensional stability evaluation method of polyimide film

Publications (2)

Publication Number Publication Date
JP2015141094A true JP2015141094A (en) 2015-08-03
JP6153088B2 JP6153088B2 (en) 2017-06-28

Family

ID=53771541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014013797A Active JP6153088B2 (en) 2014-01-28 2014-01-28 Dimensional stability evaluation method of polyimide film

Country Status (1)

Country Link
JP (1) JP6153088B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112394029A (en) * 2019-08-13 2021-02-23 宝山钢铁股份有限公司 Simulation liquid for evaluating film binding force on surface of coated iron and evaluation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149899A (en) * 1991-03-18 1993-06-15 Fuji Photo Film Co Ltd Dimension change measurement device
JP2002055615A (en) * 2000-05-15 2002-02-20 Yupo Corp Label form
JP2003166959A (en) * 2001-12-04 2003-06-13 Sumitomo Bakelite Co Ltd Measuring method of coefficient of linear expansion, and sample-mounting chuck used for the same
JP2011075372A (en) * 2009-09-30 2011-04-14 Ube Industries Ltd Method for measuring heat shrinkage behavior of film
WO2012056697A1 (en) * 2010-10-29 2012-05-03 三井化学株式会社 Inspection method for polyimide film, polyimide film manufacturing process using same, and polyimide film manufacturing equipment
JP2015121483A (en) * 2013-12-24 2015-07-02 住友金属鉱山株式会社 Evaluation method of plastic film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149899A (en) * 1991-03-18 1993-06-15 Fuji Photo Film Co Ltd Dimension change measurement device
JP2002055615A (en) * 2000-05-15 2002-02-20 Yupo Corp Label form
JP2003166959A (en) * 2001-12-04 2003-06-13 Sumitomo Bakelite Co Ltd Measuring method of coefficient of linear expansion, and sample-mounting chuck used for the same
JP2011075372A (en) * 2009-09-30 2011-04-14 Ube Industries Ltd Method for measuring heat shrinkage behavior of film
WO2012056697A1 (en) * 2010-10-29 2012-05-03 三井化学株式会社 Inspection method for polyimide film, polyimide film manufacturing process using same, and polyimide film manufacturing equipment
JP2015121483A (en) * 2013-12-24 2015-07-02 住友金属鉱山株式会社 Evaluation method of plastic film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112394029A (en) * 2019-08-13 2021-02-23 宝山钢铁股份有限公司 Simulation liquid for evaluating film binding force on surface of coated iron and evaluation method thereof
CN112394029B (en) * 2019-08-13 2023-03-17 宝山钢铁股份有限公司 Simulation liquid for evaluating film binding force on surface of coated iron and evaluation method thereof

Also Published As

Publication number Publication date
JP6153088B2 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
JP6153088B2 (en) Dimensional stability evaluation method of polyimide film
JP2017179391A (en) Copper foil for flexible printed wiring board, and copper clad laminate, flexible printed wiring board and electronic device using the same
JP6201184B2 (en) Evaluation method of resin film
JP2006283078A (en) Rolled copper foil for copper-clad laminate, and manufacturing method therefor
JP2015121483A (en) Evaluation method of plastic film
CN106576428B (en) The manufacturing method of flexible copper wiring plate and its flexible copper-clad laminate used with support membrane
JP6201187B2 (en) Evaluation method of plastic film
JP6127871B2 (en) Evaluation method of maximum warpage of double-layer plating substrate
KR20180109364A (en) Flexible Copper Clad Layer With Good Bending Resistance And Test Methods Thereof
TWI651988B (en) Copper clad laminate and circuit board
JP2009158382A (en) Copper foil
JP5671902B2 (en) Method for manufacturing resistive thin film element with copper conductor layer
JP6578419B2 (en) Method for producing copper clad laminate
KR20190131431A (en) Copper foil for flexible printed substrate, and copper clad laminate using the same, flexible printed substrate and electronic equipment
JP5788225B2 (en) Rolled copper foil, copper-clad laminate, flexible printed wiring board, and electronic equipment
JP7217122B2 (en) Metal-clad laminate and its manufacturing method
WO2024014057A1 (en) Copper foil for flexible printed substrate, and copper-clad laminate, flexible printed substrate and electronic device using same
JP2009004588A (en) Copper clad polyimide substrate
US6338776B1 (en) Dielectric processing with included stabilization periods
Li et al. Study on process technique of PCBs with ladder conductive lines
JP2024012028A (en) Copper foil for flexible printed substrate, and copper-clad laminate, flexible printed substrate, and electronic device that employ the same
JP2015045526A (en) Evaluation method of thermal expansion coefficient of resin film surface layer
JP2013067853A (en) Rolled copper foil, copper-clad laminate, flexible printed wiring board and electronic device
JP2013082984A (en) Rolled copper foil, copper-clad laminate, flexible printed wiring board, and electronic equipment
JP2019107805A (en) Double-sided copper-clad laminate and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170508

R150 Certificate of patent or registration of utility model

Ref document number: 6153088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170521