JP2015140277A - Method for producing oxide ceramic having water repellency - Google Patents

Method for producing oxide ceramic having water repellency Download PDF

Info

Publication number
JP2015140277A
JP2015140277A JP2014013889A JP2014013889A JP2015140277A JP 2015140277 A JP2015140277 A JP 2015140277A JP 2014013889 A JP2014013889 A JP 2014013889A JP 2014013889 A JP2014013889 A JP 2014013889A JP 2015140277 A JP2015140277 A JP 2015140277A
Authority
JP
Japan
Prior art keywords
oxide
manufacturing
water repellency
oxide ceramic
atmospheric gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014013889A
Other languages
Japanese (ja)
Inventor
中島 章
Akira Nakajima
章 中島
敏宏 磯部
Toshihiro Isobe
敏宏 磯部
滉一郎 吉川
Koichiro Yoshikawa
滉一郎 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2014013889A priority Critical patent/JP2015140277A/en
Publication of JP2015140277A publication Critical patent/JP2015140277A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new production method for imparting water repellency to an oxide ceramic surface without using an organic substance.SOLUTION: There is provided a method for producing an oxide ceramic in which a molded body constituted of a metal oxide is sintered while introducing an atmospheric gas (for example, synthetic gas) containing oxygen prepared in a substantially absolute dry condition into a sintering furnace, wherein the moisture concentration of the atmospheric gas is preferably adjusted to be 1000 ppm or less and more preferably to be 100 ppm or less. The oxide ceramic is excellent in water repellent durability and can be safely applied to applications requiring high safety.

Description

本発明は、酸化物セラミックスの製造方法に関し、より詳細には、撥水性を有する酸化物セラミックスの製造方法に関する。   The present invention relates to a method for producing oxide ceramics, and more particularly to a method for producing oxide ceramics having water repellency.

一般に、酸化物セラミックスは、イオン結合性の割合が大きいことからその表面エネルギーが高く、親水的な表面特性を有する。このため、これまでの酸化物セラミックスの撥水化処理は、シランやワックス、ポリマー等の表面エネルギーが低い有機物を酸化物セラミックスの表面に付着させる方法が一般的であった。   In general, oxide ceramics have a high surface energy due to a large proportion of ionic bonds, and have hydrophilic surface characteristics. For this reason, the conventional water repellency treatment of oxide ceramics is generally performed by attaching an organic substance having a low surface energy such as silane, wax, or polymer to the surface of the oxide ceramic.

しかしながら、有機物を表面に付着させるこれまでの方法では、撥水耐久性の低下が避けられず、用途(例えば、食器)によっては安全性も懸念されることから、有機物を用いないで酸化物セラミックスの表面に撥水性を付与するための新たな手法が渇望されていた。   However, conventional methods of attaching organic substances to the surface inevitably degrade water repellency, and there are concerns about safety depending on the application (for example, tableware). A new method for imparting water repellency to the surface of the material has been eagerly desired.

この点につき、最近、希土類酸化物セラミックスの撥水性に関する報告がなされた(非特許文献1)。当報告においては、希土類では4f軌道が外側の5s2p6軌道の電子にシールドされるがゆえに水と相互作用できないことが撥水化の原因として説明されており、その証左として、同様の条件で焼成した非希土類系の酸化物セラミックス(アルミナ)が撥水化しないことを示している。 In recent years, a report on the water repellency of rare earth oxide ceramics has been made (Non-Patent Document 1). In this report, it is explained that in rare earths, the 4f orbitals are shielded by electrons in the outer 5s 2 p 6 orbits and cannot interact with water as the cause of water repellency. It shows that the non-rare earth oxide ceramics (alumina) fired with the above does not become water repellent.

G. Azimi, R. Dhiman, H-M. Kwon, A. T. Paxson, K. K. Varanasi, NATURE MATERIALS, 12, 315-320 (2013)G. Azimi, R. Dhiman, H-M. Kwon, A. T. Paxson, K. K. Varanasi, NATURE MATERIALS, 12, 315-320 (2013)

本発明は、上記従来技術における課題に鑑みてなされたものであり、本発明は、有機物を用いないで酸化物セラミックスの表面に撥水性を付与するための新規な製造方法を提供することを目的とする。   The present invention has been made in view of the above problems in the prior art, and an object of the present invention is to provide a novel manufacturing method for imparting water repellency to the surface of an oxide ceramic without using an organic substance. And

本発明者らは、非特許文献1の内容を精査する中で、希土類酸化物が合成空気中で焼成されている点に着目し、そこから、当報告における希土類酸化物セラミックスの撥水化は、そもそもの原因が希土類の電子構造にあるのではなく、酸化物を絶乾状態に近い雰囲気で焼成した点にあるのではないかという仮説を得るに至った。   In examining the contents of Non-Patent Document 1, the present inventors paid attention to the fact that rare earth oxides are fired in synthetic air. From this, the water repellency of rare earth oxide ceramics in this report is In the first place, the hypothesis is that the cause is not the rare earth electronic structure, but the fact that the oxide is fired in an atmosphere that is almost completely dry.

本発明者らは、上記仮説を実証すべく、広範囲の酸化物を合成空気中で焼成して酸化物セラミックスを作製し、その撥水性を検証した。その結果、希土類のみならず、非希土類系の酸化物からなる酸化物セラミックスが撥水性を発現する現象を見出し、本発明に至ったのである。   In order to verify the above hypothesis, the present inventors fabricated a wide range of oxides in synthetic air to produce oxide ceramics, and verified their water repellency. As a result, not only rare earths but also oxide ceramics composed of non-rare earth oxides have been found to exhibit water repellency, leading to the present invention.

上述したように、本発明によれば、有機物を用いないで酸化物セラミックスの表面に撥水性を付与するための新規な製造方法が提供される。   As described above, according to the present invention, there is provided a novel manufacturing method for imparting water repellency to the surface of an oxide ceramic without using an organic substance.

本発明の酸化物セラミックスの製造方法の工程図。The process drawing of the manufacturing method of oxide ceramics of the present invention. 実施例の撥水状態を示す写真。The photograph which shows the water-repellent state of an Example.

以下、図1に示す工程図に基づいて、本発明の酸化物セラミックスの製造方法を説明する。   Hereinafter, the manufacturing method of the oxide ceramics of the present invention will be described based on the process chart shown in FIG.

(工程1)
工程1では、原料となる酸化物の粉体を用意する。本発明では、原料として、希土類金属の酸化物を用いることができる。希土類金属の酸化物の例としては、Gd2O3、Eu2O3、CeO2などを挙げることができる。
(Process 1)
In step 1, an oxide powder as a raw material is prepared. In the present invention, a rare earth metal oxide can be used as a raw material. Examples of rare earth metal oxides include Gd 2 O 3 , Eu 2 O 3 , and CeO 2 .

また、本発明では、原料として、非希土類系の金属酸化物を用いることもできる。非希土類系の金属酸化物の例としては、Al2O3、YSZ(Y2O3安定化ZrO2)、TiO2などを挙げることができる。 In the present invention, a non-rare earth metal oxide can also be used as a raw material. Examples of non-rare earth metal oxides include Al 2 O 3 , YSZ (Y 2 O 3 stabilized ZrO 2 ), TiO 2 and the like.

さらに、本発明では、原料として、非金属の酸化物を用いることもできる。非金属の酸化物の例としては、SiO2などを挙げることができる。 Furthermore, in the present invention, a non-metallic oxide can also be used as a raw material. Examples of non-metallic oxides include SiO 2 .

(工程2)
工程2では、用意した酸化物の粉体を使用して成形体を形成する。本発明では、使用する原料や所望する形状に応じて適切な成形法(金型プレス成形法、静水圧成形法、射出成形法、スリップキャスト法、押出成形法)を選択すればよく、本発明は、成形法を限定するものではない。
(Process 2)
In step 2, a molded body is formed using the prepared oxide powder. In the present invention, an appropriate molding method (mold press molding method, hydrostatic pressure molding method, injection molding method, slip casting method, extrusion molding method) may be selected according to the raw material used and the desired shape. Does not limit the molding method.

(工程3)
工程3では、形成した成形体を焼成(焼結)する。ここで、本発明は、絶乾状態に近い雰囲気で成形体を焼成することを特徴とする。具体的には、略絶乾状態に調製され、酸素を含有する雰囲気ガスを焼結炉に導入しながら成形体を焼成する。このとき、雰囲気ガスの水分および有機物の濃度は、いずれも1000 ppm以下であることが望ましく、より望ましくは100 ppmである。また、雰囲気ガスにおける酸素濃度は、通常は0.1%以上であって、且つ、成形体を構成する酸化物の酸化状態を大きく変化させない濃度であることが望ましい。本発明では、上述した条件を満たす雰囲気ガスとして、合成空気を用いることができ、アルゴンなどの不活性ガスを主成分とする酸素含有ガスを用いることもできる。
(Process 3)
In step 3, the formed molded body is fired (sintered). Here, the present invention is characterized in that the molded body is fired in an atmosphere close to an absolutely dry state. Specifically, the molded body is fired while an atmosphere gas containing oxygen prepared in a substantially absolutely dry state is introduced into a sintering furnace. At this time, the concentration of the moisture and the organic substance in the atmospheric gas is preferably 1000 ppm or less, and more preferably 100 ppm. Further, the oxygen concentration in the atmospheric gas is usually 0.1% or more, and it is desirable that the concentration does not change the oxidation state of the oxide constituting the compact. In the present invention, synthetic air can be used as the atmospheric gas that satisfies the above-described conditions, and an oxygen-containing gas whose main component is an inert gas such as argon can also be used.

なお、工程3における焼成温度は、成形体を構成する酸化物の種類およびその粒子径に応じて適切な温度を選択すればよく、また、焼成は、常圧焼結法および加圧焼結法のいずれを用いて行ってもよい。   The firing temperature in step 3 may be selected appropriately depending on the type of oxide constituting the compact and the particle size thereof, and firing may be performed under normal pressure sintering or pressure sintering. Any of these may be used.

以上、説明したように、本発明の製法によれば、有機物を用いることなく、酸化物セラミックスの表面に撥水性を付与することが可能になる。本発明に係る酸化物セラミックスは、撥水耐久性に優れ、高度の安全性が要求される用途にも安心して適用することができる。   As described above, according to the production method of the present invention, it becomes possible to impart water repellency to the surface of the oxide ceramic without using an organic substance. The oxide ceramic according to the present invention is excellent in water repellency durability and can be applied with peace of mind to applications that require a high level of safety.

以下、本発明の酸化物セラミックスの製造方法について、実施例を用いてより具体的に説明を行なうが、本発明は、後述する実施例に限定されるものではない。   Hereinafter, although the manufacturing method of the oxide ceramic of this invention is demonstrated more concretely using an Example, this invention is not limited to the Example mentioned later.

(成形体の作製)
Al2O3(大明化学、タイミクロンTM-DAR 99.99%)、YSZ(東ソー、TZ-3Y (97%ZrO2・3%Y2O3)、Gd2O3(和光純薬工業、特級試薬 99.9%)、およびEu2O3(和光純薬工業、特級試薬 99.9%)につき、それぞれの粉体を成形圧100MPaで一軸加圧成形して円盤状の成形体(直径1cm、厚さ5mm)を形成した。なお、Gd2O3およびEu2O3に関しては、ノメウ乳鉢を用いて15分間手粉砕した粉体を用いた。
(Production of molded body)
Al 2 O 3 (Daiming Chemical, Tymicron TM-DAR 99.99%), YSZ (Tosoh, TZ-3Y (97% ZrO 2 · 3% Y 2 O 3 ), Gd 2 O 3 (Wako Pure Chemical Industries, special grade reagent) 99.9%) and Eu 2 O 3 (Wako Pure Chemical Industries, 99.9% special grade reagent), and each powder was uniaxially pressed at a molding pressure of 100 MPa to form a disk-shaped compact (diameter 1 cm, thickness 5 mm) In addition, regarding Gd 2 O 3 and Eu 2 O 3 , powder that was pulverized by hand for 15 minutes using a Nome mortar was used.

(成形体の焼成)
上述した手順で形成した4種類の成形体を以下の手順で焼成した。焼成炉内において、炉床から離間して設置したアルミナセッタ−上に白金箔を敷き、その上に成形体を静置した後、汚染防止のために、成形体の上から緻密質アルミナルツボを被せた。
(Baking of molded body)
Four types of molded bodies formed by the above-described procedure were fired by the following procedure. In a firing furnace, a platinum foil is laid on an alumina setter set apart from the hearth, and the molded body is allowed to stand on it. Then, to prevent contamination, a dense alumina crucible is placed over the molded body. I covered it.

その後、焼成炉内に合成空気(純度99.9%、有機物100ppm以下、水分100ppm以下)を流量1.6L/minで導入しながら1600℃で5時間焼成して焼結体を得た。   Thereafter, the sintered body was obtained by firing at 1600 ° C. for 5 hours while introducing synthetic air (purity 99.9%, organic matter 100 ppm or less, moisture 100 ppm or less) into the firing furnace at a flow rate of 1.6 L / min.

併せて、比較例として、上記4種類の成形体を上述したのと同様に焼成炉内にセットした後、(合成空気の導入を行わない)大気雰囲気で、1600℃で5時間焼成して焼結体を得た。   In addition, as a comparative example, the above four types of molded bodies were set in a firing furnace in the same manner as described above, and then fired at 1600 ° C. for 5 hours in an air atmosphere (no introduction of synthetic air). A ligature was obtained.

なお、上述した手順で得た全ての焼結体(実施例、比較例)について、XPS測定により不純物の混入がないことを確認するとともに、相対密度が95%以上であることを確認した。   In addition, about all the sintered compacts (Example, comparative example) obtained by the procedure mentioned above, it was confirmed by XPS measurement that no impurities were mixed and that the relative density was 95% or more.

(水接触角の測定)
上述した手順で得た各焼結体の表面に5つの水滴(3マイクロリットル)を滴下し、接触角計(協和界面科学社製、DM-500)を使用して、接線法により水接触角を測定した。下記表1は、実施例の試料(合成空気を導入しながら焼成したAl2O3、YSZ、Gd2O3、Eu2O3)に係る水接触角の測定結果(5点の平均値および標準偏差)をまとめて示す。また、図2(a)、(b)、(c)および(d)は、実施例の試料の上に滴下された水滴の写真を示す。
(Measurement of water contact angle)
Five water droplets (3 microliters) are dropped on the surface of each sintered body obtained by the procedure described above, and the water contact angle is measured by the tangential method using a contact angle meter (DM-500, manufactured by Kyowa Interface Science Co., Ltd.). Was measured. Table 1 below shows the measurement results of water contact angles (average values of 5 points and samples) of the examples (Al 2 O 3 , YSZ, Gd 2 O 3 , Eu 2 O 3 baked while introducing synthetic air). Standard deviation) is shown together. 2 (a), (b), (c) and (d) show photographs of water droplets dropped on the sample of the example.

上記表1および図2に示す結果から、実施例の試料において撥水性が発現したことが確認された。   From the results shown in Table 1 and FIG. 2, it was confirmed that water repellency was developed in the samples of Examples.

一方、比較例の試料(大気雰囲気で焼成したAl2O3、YSZ、Gd2O3、Eu2O3)では、表面に滴下した水滴が濡れ広がり測定不能となった。 On the other hand, in the sample of the comparative example (Al 2 O 3 , YSZ, Gd 2 O 3 , Eu 2 O 3 baked in the air atmosphere), water droplets dropped on the surface spread and became impossible to measure.

(サンプルの研磨)
実施例の試料(Al2O3、YSZ、Gd2O3、Eu2O3)の表面をダイヤモンドディスク(#100)で荒削りをした後、3種類のダイヤンドスラリーを順番(9ミクロン→3ミクロン→1ミクロン)に使用して段階的に研磨を行い、最後に、CeO2スラリー(0.5ミクロン)を使用して表面を鏡面に仕上げた。
(Polishing the sample)
After roughing the surface of the sample of the example (Al 2 O 3 , YSZ, Gd 2 O 3 , Eu 2 O 3 ) with a diamond disk (# 100), three types of diamond slurries were sequentially added (9 microns → 3 Polishing was performed step by step using a micron → 1 micron), and finally the surface was mirror finished using a CeO 2 slurry (0.5 micron).

上述した手順で研磨した実施例の試料の研磨面に5つの水滴(3マイクロリットル)を滴下し(但し、Gd2O3については1点のみ)、上述したのと同じ手順で水接触角を測定した。下記表2は、研磨後の実施例の試料に係る水接触角の測定結果(5点の平均値および標準偏差)をまとめて示す。 Five water droplets (3 microliters) are dropped on the polished surface of the sample of the example polished by the procedure described above (however, only one point for Gd 2 O 3 ), and the water contact angle is set by the same procedure as described above. It was measured. Table 2 below collectively shows the measurement results (average value and standard deviation of 5 points) of the water contact angle according to the sample of the example after polishing.

上記表2に示す結果から、実施例の試料が表面の研磨によって撥水性を失わないことが確認された。この結果から、実施例において発現した撥水性が不純物の混入によって偶発的に発生したものではなく、本発明の製法で製造された酸化物セラミックスの持つ本質であることが示唆された。   From the results shown in Table 2 above, it was confirmed that the samples of the examples did not lose water repellency by polishing the surface. From these results, it was suggested that the water repellency expressed in the examples was not accidentally generated due to the mixing of impurities, but was the essence possessed by the oxide ceramics produced by the production method of the present invention.

Claims (8)

酸化物で構成される成形体を略絶乾状態の雰囲気で焼成することを特徴とする、酸化物セラミックスの製造方法。   A method for producing an oxide ceramic, characterized in that a molded body made of an oxide is fired in an almost completely dry atmosphere. 略絶乾状態に調製された酸素を含有する雰囲気ガスを焼結炉に導入しながら前記成形体を焼成することを特徴とする、請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the molded body is fired while introducing an atmospheric gas containing oxygen prepared in a substantially absolutely dry state into a sintering furnace. 前記雰囲気ガスの水分濃度は、1000ppm以下であることを特徴とする、請求項2に記載の製造方法。   The manufacturing method according to claim 2, wherein the moisture concentration of the atmospheric gas is 1000 ppm or less. 前記雰囲気ガスは、合成空気であることを特徴とする、請求項2または3に記載の製造方法。   The manufacturing method according to claim 2, wherein the atmospheric gas is synthetic air. 前記酸化物は、金属酸化物である、請求項1〜4のいずれか一項に記載の製造方法。   The said oxide is a manufacturing method as described in any one of Claims 1-4 which is a metal oxide. 前記金属酸化物は、Gd、EuおよびCeOからなる群から選択される少なくとも1種の希土類金属の酸化物である、請求項5に記載の製造方法。 The manufacturing method according to claim 5, wherein the metal oxide is an oxide of at least one rare earth metal selected from the group consisting of Gd 2 O 3 , Eu 2 O 3 and CeO 2 . 前記金属酸化物は、Al、YSZおよびTiOからなる群から選択される少なくとも1種の非希土類金属の酸化物である、請求項5に記載の製造方法。 The manufacturing method according to claim 5, wherein the metal oxide is an oxide of at least one non-rare earth metal selected from the group consisting of Al 2 O 3 , YSZ and TiO 2 . 請求項1〜7のいずれか一項に記載された製造方法を用いて製造された酸化物セラミックス。
The oxide ceramics manufactured using the manufacturing method as described in any one of Claims 1-7.
JP2014013889A 2014-01-29 2014-01-29 Method for producing oxide ceramic having water repellency Pending JP2015140277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014013889A JP2015140277A (en) 2014-01-29 2014-01-29 Method for producing oxide ceramic having water repellency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014013889A JP2015140277A (en) 2014-01-29 2014-01-29 Method for producing oxide ceramic having water repellency

Publications (1)

Publication Number Publication Date
JP2015140277A true JP2015140277A (en) 2015-08-03

Family

ID=53770882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014013889A Pending JP2015140277A (en) 2014-01-29 2014-01-29 Method for producing oxide ceramic having water repellency

Country Status (1)

Country Link
JP (1) JP2015140277A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017493A1 (en) 2018-07-18 2020-01-23 国立大学法人東京工業大学 Complex oxide ceramic, method for producing same, and article
WO2022014607A1 (en) 2020-07-14 2022-01-20 日本板硝子株式会社 Glass article with water repellent film and method for manufacturing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208336A (en) * 1996-01-30 1997-08-12 Ootake Seramu Kk Basic porous body and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208336A (en) * 1996-01-30 1997-08-12 Ootake Seramu Kk Basic porous body and its production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
G.AZIMI,R.DHIMAN,H-M.KWON,A.T.PAXSON,K.K.VARANASI: "Hydrophobicity of rare-earth oxide ceramics", NATURE MATERIALS, vol. 12, JPN6017048277, 20 January 2013 (2013-01-20), GB, pages 315-320 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017493A1 (en) 2018-07-18 2020-01-23 国立大学法人東京工業大学 Complex oxide ceramic, method for producing same, and article
KR20210033471A (en) 2018-07-18 2021-03-26 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 Composite oxide ceramics, manufacturing method, and article
US11851344B2 (en) 2018-07-18 2023-12-26 Tokyo Institute Of Technology Complex oxide ceramic, method for producing same, and article
WO2022014607A1 (en) 2020-07-14 2022-01-20 日本板硝子株式会社 Glass article with water repellent film and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP5718599B2 (en) Zirconia sintered body, and composition for sintering and calcined body
KR101665155B1 (en) Zirconia sintered body, and mixture, pre-sintered compact and pre-sintered calcined body for sintering zirconia sintered body
KR102134054B1 (en) Light transmitting metal oxide sintered body manufacturing method and light transmitting metal oxide sintered body
AU2016383554B2 (en) Method for producing a shaped body
JP2018504408A5 (en)
KR20070121781A (en) Sintered yttria, anticorrosion member and process for producing the same
JP4894379B2 (en) Rare earth sintered body and manufacturing method thereof
JP5931542B2 (en) Firing member made of zirconia sintered body
JP2015140277A (en) Method for producing oxide ceramic having water repellency
Suárez et al. Sintering kinetics of 8Y–cubic zirconia: Cation diffusion coefficient
CN107129301A (en) A kind of PLZT/ alumina composite ceramics material and preparation method thereof
JP5465143B2 (en) Tool material for SiC firing
JP6218617B2 (en) Dental zirconia sintered body, crown frame, bridge frame
EP2990391A1 (en) Nano-porous corundum ceramics and methods of manufacture
WO2015025951A1 (en) Porous ceramic and method for producing same
JP5983525B2 (en) Method for producing translucent metal oxide sintered body
KR101925215B1 (en) Polycrystal zirconia compounds and preparing method of the same
Kolar Chemical research needed to improve high-temperature processing of advanced ceramic materials (Technical report)
US10077213B1 (en) Method for fabricating an alumina body having nano-sized open-cell pores that are stable at high temperatures
JP6366976B2 (en) Heat treatment member made of porous ceramics
JP7293821B2 (en) Calcined body
TWI403488B (en) Yttria sintered body, rare-earth sintered body, and corrosion-resistant material, and manufacturing method
JP2006111459A (en) Ceramic composite and method for producing the same
WO2024005207A1 (en) Method for producing sintered body
JP2022170716A (en) Method for producing sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180626