JP2014212167A - Thermoelectric conversion type power generator - Google Patents

Thermoelectric conversion type power generator Download PDF

Info

Publication number
JP2014212167A
JP2014212167A JP2013086543A JP2013086543A JP2014212167A JP 2014212167 A JP2014212167 A JP 2014212167A JP 2013086543 A JP2013086543 A JP 2013086543A JP 2013086543 A JP2013086543 A JP 2013086543A JP 2014212167 A JP2014212167 A JP 2014212167A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
temperature side
high temperature
heating fluid
side electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013086543A
Other languages
Japanese (ja)
Inventor
孝広 地主
Takahiro Jinushi
孝広 地主
昌尚 冨永
Masanao Tominaga
昌尚 冨永
石島 善三
Zenzo Ishijima
善三 石島
森正芳
Masayoshi Mori
正芳 森
山上 武
Takeshi Yamagami
武 山上
松田 洋
Hiroshi Matsuda
洋 松田
翔平 山下
Shohei Yamashita
翔平 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Showa Denko Materials Co Ltd
Original Assignee
Honda Motor Co Ltd
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Hitachi Chemical Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2013086543A priority Critical patent/JP2014212167A/en
Publication of JP2014212167A publication Critical patent/JP2014212167A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • H01L35/30
    • H01L35/32

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric conversion type power generator that can reduce a thermal expansion difference caused by a temperature difference generated by a heating fluid, and effectively suppress damage to high temperature-side electrodes due to thermal stress.SOLUTION: In a thermoelectric conversion module of a thermoelectric conversion type power generator of the type in which a plurality of rectangular low temperature-side electrodes 42a and high temperature-side electrodes 42b are joined onto both sides of thermoelectric elements 41 arrayed in a planar state, and the high temperature-side electrodes 42b are heated by a heating fluid H, all the high temperature-side electrodes 42b are arrayed with the longitudinal direction parallel to the direction of flow of the heating fluid H to reduce the thermal expansion difference caused by the temperature difference between the upstream side and downstream side of the heating fluid H.

Description

本発明は、熱電変換モジュールに温度差を与えて熱エネルギーを電気エネルギーに変換する熱電変換式発電装置に関する。   The present invention relates to a thermoelectric power generation apparatus that converts a thermal energy into an electrical energy by giving a temperature difference to a thermoelectric conversion module.

熱電変換素子を用いて熱エネルギーを電気エネルギーに変換する発電技術が知られている。熱電変換素子は、離間した部位に温度差を与えることで高温部と低温部との間に電位差を生じさせるといったゼーベック効果を利用したもので、温度差が大きいほど発電量が大きくなる。このような熱電変換素子は、複数を電極によって接合した熱電変換素子モジュールという形態で用いられる。例えば特許文献1には、複数の熱電変換素子を平面状に配列し、これら熱電変換素子の両側に熱電変換素子を直列に接続する複数の電極をそれぞれ接合して熱電変換モジュールとし、片側の高温側電極を車両の排気ガスで加熱して熱電変換素子に温度差を生じさせる構成の発電装置(熱電変換スタック)が開示されている。   A power generation technique for converting thermal energy into electrical energy using a thermoelectric conversion element is known. The thermoelectric conversion element uses a Seebeck effect that causes a potential difference between a high temperature part and a low temperature part by giving a temperature difference to a separated part, and the power generation amount increases as the temperature difference increases. Such a thermoelectric conversion element is used in the form of a thermoelectric conversion element module in which a plurality are joined by electrodes. For example, in Patent Document 1, a plurality of thermoelectric conversion elements are arranged in a planar shape, and a plurality of electrodes that connect the thermoelectric conversion elements in series are joined to both sides of these thermoelectric conversion elements to form a thermoelectric conversion module. A power generation device (thermoelectric conversion stack) having a configuration in which a side electrode is heated with vehicle exhaust gas to cause a temperature difference in a thermoelectric conversion element is disclosed.

この種の発電装置では、図10に示すように、電極91は銅板等の金属板によって長方形状に形成されており、隣接する熱電変換素子間に架け渡されてそれら熱電変換素子を接続するように配列されている。そして上記のように排気ガス等の加熱流体を熱源とする場合には、通常、加熱流体の流れる方向(矢印H方向)に対して電極91の配列方向が平行および直角になるように設けられる。   In this type of power generation device, as shown in FIG. 10, the electrode 91 is formed in a rectangular shape by a metal plate such as a copper plate, and spans between adjacent thermoelectric conversion elements to connect the thermoelectric conversion elements. Is arranged. And when heating fluid, such as exhaust gas, is used as a heat source as mentioned above, it is usually provided so that the arrangement direction of the electrodes 91 is parallel and perpendicular to the flowing direction of the heating fluid (arrow H direction).

特開2007−263026号公報JP 2007-263026 A

ところで、高温側電極を加熱する上記排気ガス等の加熱流体は、上流側から下流側に向かうにしたがって熱交換が進むことにより温度が低下し、上流側が高温で下流側が低温となる温度差が生じる。このため、熱電変換モジュール内には加熱流体の上流側から下流側にわたって熱膨張差が生じ、熱膨張差による熱応力が発生して割れや破損を招く場合がある。特に加熱される高温側電極においては、図10に示したように長手方向が加熱流体の流れ方向に直交して配列されたものは、長手方向(長辺方向)の熱膨張差が短手方向(短辺方向)よりも大きいため破損の問題が顕著に起こるものであった。   By the way, the temperature of the heating fluid such as the exhaust gas for heating the high temperature side electrode decreases as heat exchange proceeds from the upstream side toward the downstream side, resulting in a temperature difference in which the upstream side is hot and the downstream side is low. . For this reason, a thermal expansion difference occurs in the thermoelectric conversion module from the upstream side to the downstream side of the heating fluid, and thermal stress due to the thermal expansion difference may be generated, leading to cracking or breakage. In particular, in the high temperature side electrode to be heated, as shown in FIG. 10, when the longitudinal direction is arranged perpendicular to the flow direction of the heating fluid, the difference in thermal expansion in the longitudinal direction (long side direction) is short. Since it was larger than (short side direction), the problem of breakage occurred remarkably.

本発明は上記事情に鑑みてなされたもので、その主たる課題は、加熱流体により発生する温度差に起因する熱膨張差を低減して熱応力による高温側電極の破損を効果的に抑えることができる熱電変換式発電装置を提供することにある。   The present invention has been made in view of the above circumstances, and its main problem is to effectively reduce the high-temperature side electrode damage due to thermal stress by reducing the thermal expansion difference caused by the temperature difference generated by the heated fluid. An object of the present invention is to provide a thermoelectric conversion power generator that can be used.

本発明の熱電変換式発電装置は、平面状に配列された複数の熱電変換素子の、一面側および他面側に、それぞれ複数の高温側電極および複数の低温側電極が前記熱電変換素子を直列に接続する状態に接合された熱電変換モジュールと、前記複数の高温側電極に対向して配設され、加熱流体が一方向に流される加熱流路を有する加熱部と、前記低温側複数の電極に対向して配設された冷却部と、を備え、前記加熱部および前記冷却部によって熱電変換モジュールに温度差が与えられることで発電する熱電変換式発電装置において、前記高温側電極と前記低温側電極は長方形状に形成されており、全ての高温側電極は、その長手方向が前記加熱流路を流れる前記加熱流体の流れ方向と平行に配列されていることを特徴とする。   The thermoelectric conversion power generation device of the present invention includes a plurality of high-temperature side electrodes and a plurality of low-temperature side electrodes connected in series to the one surface side and the other surface side of a plurality of thermoelectric conversion elements arranged in a plane. A thermoelectric conversion module joined in a state of being connected to the heating unit, a heating unit that is disposed to face the plurality of high temperature side electrodes and has a heating channel through which a heating fluid flows in one direction, and the plurality of low temperature side electrodes A thermoelectric conversion power generator that generates power when a temperature difference is given to the thermoelectric conversion module by the heating unit and the cooling unit, and the high temperature side electrode and the low temperature The side electrodes are formed in a rectangular shape, and all the high temperature side electrodes are arranged in parallel with the flow direction of the heating fluid flowing in the heating flow path.

本発明によれば、高温側電極が長手方向を加熱流体の流れ方向と平行に配列されているため、この高温側電極における加熱流体の流れ方向と直交する方向の熱膨張差は平行な方向の場合に比べると小さくなり、したがって高温側電極が受ける加熱流体の上流側と下流側の温度差で生じる熱応力が低減して破損しにくくなる。   According to the present invention, since the high temperature side electrode is arranged in parallel with the flow direction of the heating fluid in the longitudinal direction, the thermal expansion difference in the direction perpendicular to the flow direction of the heating fluid in the high temperature side electrode is in the parallel direction. Therefore, the thermal stress generated by the temperature difference between the upstream side and the downstream side of the heated fluid received by the high temperature side electrode is reduced, and the breakage is less likely to occur.

本発明のより具体的な形態としては、前記複数の高温側電極および前記複数の低温側電極は、それぞれ前記加熱流体の流れ方向と平行な縦列および該縦列に直交する横列を形成する格子状に配列されており、複数の低温側電極のうちの一部は、その長手方向が加熱流体の流れ方向にして配列されている形態が挙げられる。   As a more specific form of the present invention, the plurality of high temperature side electrodes and the plurality of low temperature side electrodes are each in a lattice shape forming a column parallel to the flow direction of the heating fluid and a row orthogonal to the column. It is arranged, and a part of the plurality of low temperature side electrodes may be arranged in such a manner that the longitudinal direction thereof is the flow direction of the heating fluid.

上記形態では、前記複数の高温側電極の前記横列が、4列以上、かつ100列以下であることが好ましい。この理由は、横列が4列以上であると発電する電力を確保することができ、また、横列が100列を超えると熱応力を抑えることが難しくなるからである。   In the said form, it is preferable that the said row | line | column of these high temperature side electrodes is 4 rows or more and 100 rows or less. This is because it is possible to secure electric power to be generated when the number of rows is four or more, and when the number of rows exceeds 100 rows, it is difficult to suppress thermal stress.

また、本発明の高温側電極は、縦横比が1:2〜2.5、長手方向の長さが最大で10mmである形態が実用上好ましい。   Further, the high temperature side electrode of the present invention preferably has an aspect ratio of 1: 2 to 2.5 and a maximum length in the longitudinal direction of 10 mm.

本発明によれば、加熱流体により発生する温度差に起因する熱膨張差を低減して熱応力による高温側電極の破損を効果的に抑えることができるといった効果を奏する。   According to the present invention, there is an effect that the thermal expansion difference due to the temperature difference generated by the heating fluid can be reduced and the breakage of the high temperature side electrode due to thermal stress can be effectively suppressed.

本発明の一実施形態に係る熱電変換式発電装置の全体斜視図である。1 is an overall perspective view of a thermoelectric conversion power generator according to an embodiment of the present invention. 図1のII方向矢視図である。It is an II directional arrow line view of FIG. 図2のIII−III断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 2. 図2のIV−IV断面図である。It is IV-IV sectional drawing of FIG. 同発電装置が備える密閉容器の筐体の構成を示す斜視図である。It is a perspective view which shows the structure of the housing | casing of the airtight container with which the same electric power generating apparatus is provided. 同発電装置が備える熱電変換モジュールを示す正面図である。It is a front view which shows the thermoelectric conversion module with which the same electric power generating apparatus is provided. 熱電変換モジュールの斜視図である。It is a perspective view of a thermoelectric conversion module. 熱電変換モジュールの分解斜視図である。It is a disassembled perspective view of a thermoelectric conversion module. 熱電変換モジュールの構成要素の平面図であって、(a)低温側電極、(b)熱電変換素子、(c)高温側電極である。It is a top view of the component of a thermoelectric conversion module, (a) Low temperature side electrode, (b) Thermoelectric conversion element, (c) High temperature side electrode. 従来の熱電変換モジュールに設けられる高温側電極の配列状態の一例を示す平面図である。It is a top view which shows an example of the arrangement | sequence state of the high temperature side electrode provided in the conventional thermoelectric conversion module.

以下、図面を参照して本発明の一実施形態を説明する。
[1]熱電変換式発電装置の構成
図1〜図4は、一実施形態の熱電変換式発電装置(以下、発電装置)1を示しており、図1は全体斜視図、図2は図1のII方向矢視図、図3、図4はそれぞれ図2のIII−III断面図、IV−IV断面図である。この発電装置1は全体が扁平な直方体状(図1、図3、図4でX方向が長手方向)に形成されており、水冷ジャケット(冷却部)3と、水冷ジャケット3内に収納された密閉容器2を備えている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[1] Configuration of Thermoelectric Conversion Power Generation Device FIGS. 1 to 4 show a thermoelectric conversion power generation device (hereinafter referred to as a power generation device) 1 according to an embodiment. FIG. 1 is an overall perspective view, and FIG. II direction view, FIG. 3 and FIG. 4 are a III-III sectional view and an IV-IV sectional view of FIG. 2, respectively. This power generator 1 is formed in a flat rectangular parallelepiped shape (the X direction is the longitudinal direction in FIGS. 1, 3, and 4), and is housed in a water cooling jacket (cooling portion) 3 and the water cooling jacket 3. A sealed container 2 is provided.

密閉容器2は、扁平管状の筐体20内の中央部に同じく扁平管状の流通管(加熱部)25が収納された二重管構造を呈しており、筐体20と流通管25との間の空間は減圧空間29とされ、この減圧空間29のX方向両端の開口が封止カバー26で気密的に閉塞されている。水冷ジャケット3は密閉容器2の外形にほぼ沿った扁平管状に形成されたもので、その内部に収納された密閉容器2は、開口側の両端部が水冷ジャケット3の両端開口から突出している。   The hermetic container 2 has a double tube structure in which a flat tubular flow pipe (heating unit) 25 is housed in the center of the flat tubular case 20, and between the case 20 and the flow pipe 25. The decompression space 29 is hermetically closed, and the openings at both ends in the X direction of the decompression space 29 are hermetically closed by the sealing covers 26. The water-cooling jacket 3 is formed in a flat tubular shape substantially along the outer shape of the sealed container 2, and the sealed container 2 housed therein has both end portions on the opening side projecting from both end openings of the water-cooled jacket 3.

筐体20は、図5に示すように、長方形状の外枠板部211と外枠板部211内を長手方向(X方向)に分かれた2つの孔213に仕切る内枠板部212とを有する一対の枠板210が、上下方向(Z方向)に間隔を空けて互いに平行に対面し、外枠板部211の長手方向に沿った端縁どうしが側板部215で連結され、長手方向の両端部に開口218を形成する開口管部217が形成された剛性部21と、この剛性部21の上下の枠板210の2つの孔213を塞ぐ長方形状の薄板22とから構成されている。薄板22は可撓性を有し、上下方向に弾性変形可能な板材により2つの孔213を覆う大きさに形成されている。薄板22は、剛性部21の外側から孔213の周囲(外枠板部211と内枠板部212の外面)にろう付け等の接合手段で接合されている。薄板22の材料としては、SUS444等のステンレスあるいはアルミニウム等の耐熱性、耐酸化性を有する金属板が好ましく、その厚さは、例えば0.1mm程度のものが用いられる。   As shown in FIG. 5, the housing 20 includes a rectangular outer frame plate portion 211 and an inner frame plate portion 212 that partitions the inside of the outer frame plate portion 211 into two holes 213 divided in the longitudinal direction (X direction). The pair of frame plates 210 face each other in parallel in the vertical direction (Z direction), and the edges along the longitudinal direction of the outer frame plate portion 211 are connected by the side plate portion 215, The rigid portion 21 is formed with an opening tube portion 217 that forms openings 218 at both ends, and a rectangular thin plate 22 that closes the two holes 213 of the upper and lower frame plates 210 of the rigid portion 21. The thin plate 22 has flexibility and is formed in a size that covers the two holes 213 with a plate material that can be elastically deformed in the vertical direction. The thin plate 22 is joined from the outside of the rigid portion 21 to the periphery of the hole 213 (outer surfaces of the outer frame plate portion 211 and the inner frame plate portion 212) by a joining means such as brazing. As a material of the thin plate 22, a metal plate having heat resistance and oxidation resistance such as stainless steel such as SUS444 or aluminum is preferable, and a thickness of about 0.1 mm is used, for example.

筐体20の内部に収納された流通管25は、筐体20の上下の枠板210と平行な上下一対の長方形状の主板部251の長手方向に沿った端縁どうしが筐体20の側板部215と平行な側板部252で連結されたもので、両端開口縁の外面が、筐体20の剛性部21の開口管部217の内面に、断面が内側にへこんだ断面U字状で全体としては長円状の封止カバー26を介して接合されている。   The distribution pipe 25 housed inside the housing 20 is such that the edges along the longitudinal direction of a pair of upper and lower rectangular main plate portions 251 parallel to the upper and lower frame plates 210 of the housing 20 are side plates of the housing 20. It is connected by a side plate part 252 parallel to the part 215, and the outer surface of the opening edge of both ends is the entire U-shaped cross section with the inner surface of the opening tube part 217 of the rigid part 21 of the housing 20 and the cross section recessed inward. Are joined via an oval sealing cover 26.

流通管25の内部は加熱流体H(図3および図4参照)が一方の開口から他方の開口へ向けて流される加熱流路253を構成し、この加熱流路253には、加熱流体Hの熱を流通管25に伝えるフィン254が配設されている。フィン254は、例えば板材を折り曲げ加工して波板状に形成したものなどが用いられる。フィン254および封止カバー26は、それぞれろう付け等の接合手段で剛性部21および流通管25に接合されている。なお、フィン254は必要に応じて設けられ、フィン254を設けず加熱流路253内を空洞とする場合もある。   The inside of the flow pipe 25 constitutes a heating channel 253 through which a heating fluid H (see FIGS. 3 and 4) flows from one opening to the other opening. Fins 254 that transmit heat to the flow pipe 25 are disposed. As the fin 254, for example, a plate material formed by bending a plate material is used. The fins 254 and the sealing cover 26 are joined to the rigid portion 21 and the flow pipe 25 by joining means such as brazing, respectively. Note that the fins 254 are provided as necessary, and the inside of the heating channel 253 may be hollow without providing the fins 254.

密閉容器2を構成する筐体20の剛性部21、流通管25、封止カバー26は、薄板22と同様の材料が用いられる。このような密閉容器2の、筐体20の薄板22と流通管25の主板部251との間には、熱電変換モジュール4がそれぞれ配設されている。   The same material as that of the thin plate 22 is used for the rigid portion 21, the flow pipe 25, and the sealing cover 26 of the casing 20 that constitute the sealed container 2. The thermoelectric conversion modules 4 are respectively disposed between the thin plate 22 of the casing 20 and the main plate portion 251 of the flow pipe 25 of the sealed container 2.

熱電変換モジュール4は、図6および図7に示すように、平面状に並べられた複数の熱電変換素子41の、一方側の面および他方側の面を、長方形状の銅板等の金属板からなる電極42によりジグザグ状に直列に連結して構成されたもので、一方の面側の電極42が流通管25の主板部251の内面にろう付け等の接合手段で接合されている。また、熱電変換モジュール4の他方の面側の電極42は筐体20の薄板22の内面に対向し、薄板22と電極42との間には緩衝材5が挟まれて保持されている。すなわち薄板22は、熱電変換モジュール4に対し緩衝材5を介して当接している。熱電変換モジュール4は本発明の特徴点であり、後で詳述する。   As shown in FIGS. 6 and 7, the thermoelectric conversion module 4 has one surface and the other surface of a plurality of thermoelectric conversion elements 41 arranged in a plane formed from a metal plate such as a rectangular copper plate. The electrode 42 on one side is joined to the inner surface of the main plate portion 251 of the flow pipe 25 by a joining means such as brazing. The electrode 42 on the other surface side of the thermoelectric conversion module 4 faces the inner surface of the thin plate 22 of the housing 20, and the buffer material 5 is held between the thin plate 22 and the electrode 42. That is, the thin plate 22 is in contact with the thermoelectric conversion module 4 via the buffer material 5. The thermoelectric conversion module 4 is a feature of the present invention and will be described in detail later.

緩衝材5は可撓性を有するシート状のものが好適であり、例えば薄いカーボンシート等が用いられる。なお、本実施形態では薄板22と熱電変換モジュール4との間に緩衝材5を挟み込んでいるが、緩衝材5は必要に応じて用いられ、薄板22が熱電変換モジュール4に直接当接する形態も選択され得る。   The buffer material 5 is preferably a flexible sheet-like material such as a thin carbon sheet. In the present embodiment, the buffer material 5 is sandwiched between the thin plate 22 and the thermoelectric conversion module 4. However, the buffer material 5 is used as necessary, and the thin plate 22 directly contacts the thermoelectric conversion module 4. Can be selected.

熱電変換モジュール4を構成する熱電変換素子41は、耐熱温度が高い種類が用いられ、例えば、シリコン−ゲルマニウム系、マグネシウム−シリコン系、マンガン−シリコン系、珪化鉄系等が好適に用いられる。熱電変換モジュール4が収納された密閉容器2の減圧空間29は、剛性部21と薄板22とからなる筐体20、流通管25および封止カバー2638によって気密的に封止されている。   As the thermoelectric conversion element 41 constituting the thermoelectric conversion module 4, a type having a high heat-resistant temperature is used. For example, a silicon-germanium system, a magnesium-silicon system, a manganese-silicon system, an iron silicide system, or the like is preferably used. The decompression space 29 of the sealed container 2 in which the thermoelectric conversion module 4 is housed is hermetically sealed by the casing 20 including the rigid portion 21 and the thin plate 22, the distribution pipe 25, and the sealing cover 2638.

図4(図4ではフィン254の図示略)に示すように、薄板22の熱電変換モジュール4の周囲部分には、流通管25側に突出する断面三角形状の変形部221が全周にわたって形成されている。この変形部221は、孔213の内周縁と熱電変換モジュール4との間に形成されている。   As shown in FIG. 4 (the fins 254 are not shown in FIG. 4), a deformed portion 221 having a triangular cross-section projecting toward the flow pipe 25 is formed around the entire periphery of the thermoelectric conversion module 4 of the thin plate 22. ing. The deformed portion 221 is formed between the inner peripheral edge of the hole 213 and the thermoelectric conversion module 4.

上記密閉容器2は、水冷ジャケット3内に収納されている。上記のように水冷ジャケット3は密閉容器2の外形にほぼ沿った扁平管状に形成されたもので、密閉容器2は、両端の開口管部217が水冷ジャケット3の両端開口から突出している。水冷ジャケット3は、両端の開口縁に形成された内側に屈曲する封止枠部31が、密閉容器2における剛性部21の外枠板部211の外面に、ろう付け等の手段で気密的に接合されている。水冷ジャケット3内の空間、すなわち剛性部21と水冷ジャケット3との間に形成される空間が、冷却水が供給されて薄板22を冷却するための冷却空間32となっている。水冷ジャケット3における筐体20の各側板部215に対応する箇所の中央部には、冷却水の導入出口33が設けられている。   The sealed container 2 is stored in a water-cooled jacket 3. As described above, the water-cooled jacket 3 is formed in a flat tubular shape substantially along the outer shape of the hermetic container 2, and the hermetic container 2 has open tube portions 217 at both ends projecting from both end openings of the water-cooled jacket 3. In the water-cooling jacket 3, the sealing frame portion 31 formed on the opening edges at both ends is bent inwardly on the outer surface of the outer frame plate portion 211 of the rigid portion 21 in the sealed container 2 by means such as brazing. It is joined. A space in the water cooling jacket 3, that is, a space formed between the rigid portion 21 and the water cooling jacket 3 is a cooling space 32 for cooling the thin plate 22 by supplying cooling water. A cooling water inlet / outlet 33 is provided at a central portion of the water cooling jacket 3 corresponding to each side plate portion 215 of the housing 20.

密閉容器2内には、合計4つの熱電変換モジュール4が収納されているが、これら熱電変換モジュール4は直列に接続されている。そして、図1および図2に示す+・−の2本のリード線49から外部に電気が取り出される。リード線49は、密閉容器2の側板部215および水冷ジャケット3を貫通して外部に引き出され、側板部215および水冷ジャケット3のリード線貫通孔は気密的に塞ぐ処理がなされている。   A total of four thermoelectric conversion modules 4 are accommodated in the sealed container 2, and these thermoelectric conversion modules 4 are connected in series. Then, electricity is taken out from the two lead wires 49 of + • − shown in FIGS. 1 and 2. The lead wire 49 passes through the side plate portion 215 and the water cooling jacket 3 of the sealed container 2 and is drawn to the outside, and the lead wire through hole of the side plate portion 215 and the water cooling jacket 3 is hermetically closed.

冷却空間32の熱電変換モジュール4に対応する箇所には、熱交換手段6が薄板22に接合されている。熱交換手段6は、冷却空間32に供給されて流れる冷却水が接触することで薄板22を放熱させて冷却を促進させるもので、薄板22の可撓性を妨げない状態で設けられている。   The heat exchange means 6 is joined to the thin plate 22 at a location corresponding to the thermoelectric conversion module 4 in the cooling space 32. The heat exchange means 6 is provided in a state in which the cooling of the thin plate 22 is not hindered by the cooling water supplied to the cooling space 32 being brought into contact to dissipate the thin plate 22 to promote cooling.

熱交換手段6は、薄板22の可撓性を妨げないものとして柔軟性を有するフィン等の熱交換部材からなるものが挙げられる。また、硬いフィン等の熱交換部材であっても、複数の独立した熱交換部材が薄板22に対し点在的に接触して設けられて薄板22の可撓性を妨げないようになされていてもよい。   The heat exchange means 6 includes a heat exchange member such as a fin having flexibility as a member that does not hinder the flexibility of the thin plate 22. Moreover, even if it is a heat exchange member such as a hard fin, a plurality of independent heat exchange members are provided in contact with the thin plate 22 in a scattered manner so as not to hinder the flexibility of the thin plate 22. Also good.

上記密閉容器2は、所定箇所に形成された図示せぬ減圧封止口から減圧空間29の空気を吸引して減圧空間29を所定圧力(例えば1〜100Pa程度)に減圧し、減圧封止口を溶接するなどして気密的に封止した状態とされる。これにより密閉容器2においては、減圧空間29の圧力が外部の大気よりも低くなるという圧力差が生じ、この圧力差によって、筐体20の薄板22が熱電変換モジュール4側に加圧される力を受ける。   The sealed container 2 sucks air in the decompression space 29 from a decompression sealing port (not shown) formed at a predetermined location to decompress the decompression space 29 to a predetermined pressure (for example, about 1 to 100 Pa). Are hermetically sealed by welding or the like. As a result, in the sealed container 2, a pressure difference is generated in which the pressure in the decompression space 29 is lower than that in the outside atmosphere, and the force that pressurizes the thin plate 22 of the housing 20 toward the thermoelectric conversion module 4 due to the pressure difference. Receive.

[2]熱電変換モジュール
次に、熱電変換モジュール4を説明する。図8および図9(b)に示すように、熱電変換素子41は立方体状であり、等間隔をおいて格子状に配列されている。本実施形態では、縦列および横列が同数の正方形状に配列されている。これに対し電極42は、隣接する熱電変換素子41間に架け渡されて熱電変換素子41を接続すべく長方形状に形成されている。熱電変換素子41の外面側の電極42は、緩衝材5および薄板22を介して冷却空間32を流れる冷却水により冷却される。また、熱電変換素子41の内面側の電極42は流通管25内の加熱流路253を流れる加熱流体Hによって加熱される。以下、冷却される外面側の電極42を低温側電極42a、加熱される内面側の電極42を高温側電極42bとする。
[2] Thermoelectric Conversion Module Next, the thermoelectric conversion module 4 will be described. As shown in FIG. 8 and FIG. 9B, the thermoelectric conversion elements 41 have a cubic shape and are arranged in a lattice at equal intervals. In the present embodiment, the columns and the rows are arranged in the same number of squares. On the other hand, the electrode 42 is formed in a rectangular shape so as to be bridged between adjacent thermoelectric conversion elements 41 and to connect the thermoelectric conversion elements 41. The electrode 42 on the outer surface side of the thermoelectric conversion element 41 is cooled by cooling water flowing through the cooling space 32 via the buffer material 5 and the thin plate 22. Further, the electrode 42 on the inner surface side of the thermoelectric conversion element 41 is heated by the heating fluid H flowing through the heating flow path 253 in the flow pipe 25. Hereinafter, the outer electrode 42 to be cooled is referred to as a low temperature electrode 42a, and the inner electrode 42 to be heated is referred to as a high temperature electrode 42b.

図8に示すように、低温側電極42aおよび高温側電極42bは、いずれも加熱流体Hの流れ方向と平行な縦列および縦列に直交する横列を形成し、等間隔をおいて格子状に配列されているが、その配列の形態は次のように異なっている。   As shown in FIG. 8, the low temperature side electrode 42a and the high temperature side electrode 42b both form a column parallel to the flow direction of the heating fluid H and a row orthogonal to the column, and are arranged in a lattice at equal intervals. However, the form of the arrangement is different as follows.

すなわち、低温側電極42aは、図9(a)に示すように、加熱流体Hの上流側H1の端部と下流側H2の端部に、複数が、長手方向を加熱流体Hの流れ方向に直交する状態に配列されている。この場合、上流側H1の端部には4個、下流側H2の端部には5個が配列されている。そしてこれら端部の低温側電極42aの間に、複数の低温側電極42aが長手方向を加熱流体Hの流れ方向と平行な状態として配列されている。長手方向が加熱流体Hの流れ方向と平行な低温側電極42aは、この場合、横8列、縦3列である。一方、図9(c)に示すように、高温側電極42bは、全てが、その長手方向を加熱流体Hの流れ方向と平行な状態に配列されている。これら高温側電極42bは、この場合、横8列、縦4列である。低温側電極42aおよび高温側電極42bは、それぞれ熱電変換素子41の外面側および内面側に電気的に直列に接続されている。   That is, as shown in FIG. 9A, the low temperature side electrode 42a has a plurality of longitudinal ends in the flow direction of the heating fluid H at the upstream end H1 end and the downstream end H2 end of the heating fluid H. They are arranged in an orthogonal state. In this case, four are arranged at the end of the upstream side H1, and five are arranged at the end of the downstream side H2. A plurality of low temperature side electrodes 42 a are arranged between the low temperature side electrodes 42 a at these end portions with the longitudinal direction parallel to the flow direction of the heating fluid H. In this case, the low temperature side electrodes 42a whose longitudinal direction is parallel to the flow direction of the heating fluid H are 8 rows and 3 rows. On the other hand, as shown in FIG. 9C, all of the high temperature side electrodes 42 b are arranged in a state in which the longitudinal direction is parallel to the flow direction of the heating fluid H. In this case, the high temperature side electrodes 42b are arranged in 8 rows and 4 columns. The low temperature side electrode 42a and the high temperature side electrode 42b are electrically connected in series to the outer surface side and the inner surface side of the thermoelectric conversion element 41, respectively.

低温側電極42aおよび高温側電極42bは同じ形状、寸法の金属板であり、縦横比が1:2〜2.5程度の金属板が用いられる。また、実際の寸法としては、長手方向の長さが最大で10mm程度が実用上好適とされる。   The low temperature side electrode 42a and the high temperature side electrode 42b are metal plates having the same shape and dimensions, and metal plates having an aspect ratio of about 1: 2 to 2.5 are used. As an actual dimension, a maximum length of about 10 mm in the longitudinal direction is suitable for practical use.

[3]発電装置の作用
上記構成からなる発電装置1では、水冷ジャケット3の一方の導入出口33から冷却水を冷却空間32に導入し、他方の導入出口33から冷却水を排出させ、冷却空間32に冷却水を充満させた状態で流通させることにより、密閉容器2の薄板22を冷却する。また、流通管25内の加熱流路253に、一方の開口から他方の開口に向けて高温の加熱流体Hを流して流通管25を加熱する。薄板22は冷却水で冷却される熱交換手段6により冷却が促進される。冷却された薄板22の温度は熱電変換モジュール4の外面側に伝わり、熱電変換モジュール4の外面側が冷却され、一方、加熱された流通管25の主板部251の温度は熱電変換モジュール4の内面側に伝わり、熱電変換モジュール4の内面側が加熱される。
[3] Action of power generator In the power generator 1 having the above-described configuration, the cooling water is introduced into the cooling space 32 from one introduction outlet 33 of the water cooling jacket 3, and the cooling water is discharged from the other introduction outlet 33, thereby cooling space. The thin plate 22 of the hermetic container 2 is cooled by allowing the cooling water to flow through 32. In addition, the flow pipe 25 is heated by flowing a high-temperature heating fluid H through the heating flow path 253 in the flow pipe 25 from one opening toward the other opening. Cooling of the thin plate 22 is promoted by the heat exchange means 6 that is cooled by cooling water. The temperature of the cooled thin plate 22 is transmitted to the outer surface side of the thermoelectric conversion module 4 and the outer surface side of the thermoelectric conversion module 4 is cooled, while the temperature of the main plate portion 251 of the heated flow pipe 25 is the inner surface side of the thermoelectric conversion module 4. The inner surface side of the thermoelectric conversion module 4 is heated.

密閉容器2においては上記のように内部の減圧空間29が減圧されて外部と圧力差が生じることにより、筐体20の薄板22が熱電変換モジュール4側に加圧される。薄板22は緩衝材5を介して熱電変換モジュール4側に加圧された状態で当接する。   In the hermetic container 2, the internal decompression space 29 is decompressed as described above to generate a pressure difference with the outside, whereby the thin plate 22 of the housing 20 is pressurized toward the thermoelectric conversion module 4. The thin plate 22 comes into contact with the thermoelectric conversion module 4 through the cushioning material 5 in a pressurized state.

上記のようにして熱電変換モジュール4の外面側と内面側に温度差が与えられることで、熱電変換モジュール4は発電し、リード線49から電気が取り出される。   As described above, a temperature difference is given between the outer surface side and the inner surface side of the thermoelectric conversion module 4, so that the thermoelectric conversion module 4 generates power and electricity is extracted from the lead wire 49.

本実施形態の発電装置1は、例えば工場やゴミ焼却炉で発生する排熱ガスや、自動車の排気ガスなどが、上記加熱流体Hとして利用される。   In the power generation apparatus 1 of this embodiment, for example, exhaust heat gas generated in a factory or a garbage incinerator, automobile exhaust gas, or the like is used as the heating fluid H.

[4]一実施形態の作用効果
本実施形態の熱電変換モジュール4では、高温側電極42bは全てが長手方向を加熱流体Hの流れ方向と平行に配列されているため、この高温側電極42bにおける加熱流体Hの流れ方向と直交する方向、すなわち幅方向の熱膨張差は、平行な方向の場合に比べると小さくなる。したがって高温側電極42bが受ける加熱流体Hの上流側と下流側の温度差で生じる熱応力は低減し、高温側電極42bが破損するおそれが低減する。
[4] Effects of One Embodiment In the thermoelectric conversion module 4 of the present embodiment, all the high temperature side electrodes 42b are arranged in parallel with the flow direction of the heating fluid H in the high temperature side electrodes 42b. The difference in thermal expansion in the direction orthogonal to the flow direction of the heating fluid H, that is, in the width direction is smaller than that in the parallel direction. Therefore, the thermal stress generated by the temperature difference between the upstream side and the downstream side of the heating fluid H received by the high temperature side electrode 42b is reduced, and the possibility that the high temperature side electrode 42b is damaged is reduced.

1…熱電変換式発電装置
25…流通管(加熱部)
253…加熱流路
3…水冷ジャケット(冷却部)
4…熱電変換モジュール
41…熱電変換素子
42a…低温側電極
42b…高温側電極
H…加熱流体
DESCRIPTION OF SYMBOLS 1 ... Thermoelectric conversion type generator 25 ... Distribution pipe (heating part)
253 ... Heating channel 3 ... Water cooling jacket (cooling part)
DESCRIPTION OF SYMBOLS 4 ... Thermoelectric conversion module 41 ... Thermoelectric conversion element 42a ... Low temperature side electrode 42b ... High temperature side electrode H ... Heating fluid

Claims (5)

平面状に配列された複数の熱電変換素子の、一面側および他面側に、それぞれ複数の高温側電極および複数の低温側電極が前記熱電変換素子を直列に接続する状態に接合された熱電変換モジュールと、
前記複数の高温側電極に対向して配設され、加熱流体が一方向に流される加熱流路を有する加熱部と、
前記低温側複数の電極に対向して配設された冷却部と、
を備え、
前記加熱部および前記冷却部によって熱電変換モジュールに温度差が与えられることで発電する熱電変換式発電装置において、
前記高温側電極と前記低温側電極は長方形状に形成されており、全ての高温側電極は、その長手方向が前記加熱流路を流れる前記加熱流体の流れ方向と平行に配列されていることを特徴とする熱電変換式発電装置。
Thermoelectric conversion in which a plurality of high temperature side electrodes and a plurality of low temperature side electrodes are joined in a state of connecting the thermoelectric conversion elements in series on one side and the other side of a plurality of thermoelectric conversion elements arranged in a plane Module,
A heating unit that is disposed to face the plurality of high temperature side electrodes and has a heating channel through which a heating fluid flows in one direction;
A cooling unit disposed to face the plurality of electrodes on the low temperature side,
With
In the thermoelectric conversion power generator that generates power by giving a temperature difference to the thermoelectric conversion module by the heating unit and the cooling unit,
The high temperature side electrode and the low temperature side electrode are formed in a rectangular shape, and all the high temperature side electrodes are arranged in parallel with the flow direction of the heating fluid flowing in the heating flow path. A thermoelectric conversion power generator.
前記複数の高温側電極および前記複数の低温側電極は、それぞれ前記加熱流体の流れ方向と平行な縦列および該縦列に直交する横列を形成する格子状に配列されており、複数の低温側電極のうちの一部は、その長手方向が加熱流体の流れ方向に直交して配列されていることを特徴とする請求項1に記載の熱電変換式発電装置。   The plurality of high-temperature side electrodes and the plurality of low-temperature side electrodes are arranged in a grid pattern that forms a column parallel to the flow direction of the heating fluid and a row orthogonal to the column, respectively. The thermoelectric power generation device according to claim 1, wherein a part of the thermoelectric conversion generator is arranged such that a longitudinal direction thereof is orthogonal to a flow direction of the heating fluid. 前記複数の高温側電極の前記横列が、4列以上、かつ100列以下であることを特徴とする請求項2に記載の熱電変換式発電装置。   The thermoelectric power generation apparatus according to claim 2, wherein the rows of the plurality of high temperature side electrodes are 4 rows or more and 100 rows or less. 前記高温側電極の縦横比が、1:2〜2.5であることを特徴とする請求項1〜3のいずれかに記載の熱電変換式発電装置。   The thermoelectric power generator according to any one of claims 1 to 3, wherein an aspect ratio of the high temperature side electrode is 1: 2 to 2.5. 前記高温側電極の長手方向の長さが最大で10mmであることを特徴とする請求項4に記載の熱電変換式発電装置。   5. The thermoelectric conversion power generator according to claim 4, wherein the high-temperature side electrode has a maximum length of 10 mm in the longitudinal direction.
JP2013086543A 2013-04-17 2013-04-17 Thermoelectric conversion type power generator Pending JP2014212167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013086543A JP2014212167A (en) 2013-04-17 2013-04-17 Thermoelectric conversion type power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013086543A JP2014212167A (en) 2013-04-17 2013-04-17 Thermoelectric conversion type power generator

Publications (1)

Publication Number Publication Date
JP2014212167A true JP2014212167A (en) 2014-11-13

Family

ID=51931716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013086543A Pending JP2014212167A (en) 2013-04-17 2013-04-17 Thermoelectric conversion type power generator

Country Status (1)

Country Link
JP (1) JP2014212167A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252528A (en) * 1999-02-26 2000-09-14 Nhk Spring Co Ltd Thermoelectric generating thermoelectric conversion module block

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252528A (en) * 1999-02-26 2000-09-14 Nhk Spring Co Ltd Thermoelectric generating thermoelectric conversion module block

Similar Documents

Publication Publication Date Title
JP6078412B2 (en) Thermoelectric power generator
JP6081583B2 (en) Thermoelectric module, heat exchanger, exhaust system and internal combustion engine
JP5787755B2 (en) Heat exchange tube bundle provided with device for generating electric energy, and heat exchanger provided with this tube bundle
JP2015117884A (en) Water heater
JP2016025271A (en) Thermoelectric conversion device
JP2017220492A (en) Thermoelectric generator
JP6039348B2 (en) Thermoelectric power generator
JP2015140713A (en) Thermoelectric generation device
JP2010219255A (en) Thermoelectric power generation device
JP2006211780A (en) Thermoelectric generator
JP2004088057A (en) Thermoelectric module
JP2010275872A (en) Thermoelectric unit
JP6350297B2 (en) Thermoelectric generator
JP6002623B2 (en) Thermoelectric conversion module
JP2014212167A (en) Thermoelectric conversion type power generator
JP2015138793A (en) Thermoelectric conversion power generator
JP6358209B2 (en) Thermoelectric generator
JP2015138790A (en) Thermoelectric conversion power generator
JP2014075541A (en) Thermoelectric generator
JP6376511B2 (en) Thermoelectric converter
JP5988827B2 (en) Thermoelectric conversion module
JP2017063091A (en) Thermoelectric conversion system
JP2015138792A (en) Thermoelectric conversion power generator
JP2014075555A (en) Thermoelectric conversion power generator
JP2018010907A (en) Thermoelectric conversion device and thermoelectric conversion method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170207