JP2015129226A - Film type adhesive, dicing tape with film type adhesive, method for manufacturing semiconductor device, and semiconductor device - Google Patents

Film type adhesive, dicing tape with film type adhesive, method for manufacturing semiconductor device, and semiconductor device Download PDF

Info

Publication number
JP2015129226A
JP2015129226A JP2014001535A JP2014001535A JP2015129226A JP 2015129226 A JP2015129226 A JP 2015129226A JP 2014001535 A JP2014001535 A JP 2014001535A JP 2014001535 A JP2014001535 A JP 2014001535A JP 2015129226 A JP2015129226 A JP 2015129226A
Authority
JP
Japan
Prior art keywords
film adhesive
weight
adhesive
resin
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014001535A
Other languages
Japanese (ja)
Inventor
悠樹 菅生
Yuki Sugao
悠樹 菅生
謙司 大西
Kenji Onishi
謙司 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2014001535A priority Critical patent/JP2015129226A/en
Priority to CN201480072328.2A priority patent/CN105899630A/en
Priority to PCT/JP2014/084564 priority patent/WO2015105028A1/en
Priority to KR1020167020463A priority patent/KR20160107210A/en
Priority to TW104100422A priority patent/TW201531550A/en
Publication of JP2015129226A publication Critical patent/JP2015129226A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67712Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrate being handled substantially vertically
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/314Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive layer and/or the carrier being conductive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2461/00Presence of condensation polymers of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68377Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support with parts of the auxiliary support remaining in the finished device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85203Thermocompression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

PROBLEM TO BE SOLVED: To provide a film type adhesive capable of reducing a stress caused by a difference in linear thermal expansion, a dicing tape with a film type adhesive, and a method for manufacturing a semiconductor device.SOLUTION: A thermosetting film type adhesive 3 comprises an acrylic resin, an epoxy resin, and conductive particles. The conductive particles include plate type particles having an aspect ratio of 5 or more; and the content of the plate type conductive particles is 5 wt.% to 100 wt.% in 100 wt.% of the conductive particles. The adhesive after being thermally cured shows a storage modulus of 5 MPa to 100 MPa at 150°C.

Description

本発明は、フィルム状接着剤、フィルム状接着剤付きダイシングテープ、半導体装置の製造方法、及び半導体装置に関する。 The present invention relates to a film adhesive, a dicing tape with a film adhesive, a method for manufacturing a semiconductor device, and a semiconductor device.

半導体装置の製造において半導体素子を金属リードフレームなどに接着する方法(いわゆるダイボンディング法)は、従来の金−シリコン共晶に始まり、半田、樹脂ペーストによる方法に推移してきた。現在では、導電性の樹脂ペーストを使用する方法が用いられている。 In the manufacture of semiconductor devices, a method of bonding a semiconductor element to a metal lead frame or the like (so-called die bonding method) has been changed from a conventional gold-silicon eutectic method to a solder or resin paste method. At present, a method using a conductive resin paste is used.

しかしながら、樹脂ペーストを用いる方法では、ボイドにより導電性が低下したり、樹脂ペーストの厚さが不均一であったり、樹脂ペーストのはみ出しによりパッドが汚染されるという問題があった。これらの問題を解決するために、樹脂ペーストに代えて、ポリイミド樹脂を含有するフィルム状の接着剤を用いる場合がある(例えば、特許文献1参照)。 However, the method using a resin paste has a problem that the conductivity is reduced by voids, the thickness of the resin paste is non-uniform, and the pad is contaminated by the protrusion of the resin paste. In order to solve these problems, a film-like adhesive containing a polyimide resin may be used instead of the resin paste (see, for example, Patent Document 1).

特開平6−145639号公報Japanese Patent Application Laid-Open No. 6-145639

ところで、半導体装置では、信頼性が重視される。信頼性を評価する試験として、例えば、温度サイクル試験、プレッシャークッカー試験、吸湿リフロー試験などがある。 By the way, in a semiconductor device, reliability is important. Examples of the test for evaluating reliability include a temperature cycle test, a pressure cooker test, and a moisture absorption reflow test.

近年、スマートフォンやラップトップパソコンには、性能向上と機器の薄型化を両立するために薄型の半導体装置が多く搭載されている。しかしながら、半導体装置が薄型になるほど、温度サイクル試験においてシリコンチップと金属リードフレームの線膨張の差より発生する応力の影響が大きくなり、シリコンチップと金属リードフレームを接合する接着剤の不良が増加する。 In recent years, many thin semiconductor devices are mounted on smartphones and laptop computers in order to achieve both performance improvement and thinning of devices. However, the thinner the semiconductor device, the greater the influence of stress generated by the difference in linear expansion between the silicon chip and the metal lead frame in the temperature cycle test, and the failure of the adhesive joining the silicon chip and the metal lead frame increases. .

本発明は前記課題を解決し、線膨張の差に起因する応力を緩和することが可能なフィルム状接着剤、フィルム状接着剤付きダイシングテープ、半導体装置の製造方法を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems and to provide a film adhesive, a dicing tape with a film adhesive, and a method for manufacturing a semiconductor device that can relieve stress caused by a difference in linear expansion. .

本発明は、アクリル樹脂、エポキシ樹脂及び導電性粒子を含み、導電性粒子は、アスペクト比が5以上のプレート状粒子を含み、導電性粒子100重量%中のプレート状粒子の含有量が5重量%〜100重量%であり、熱硬化後の150℃における貯蔵弾性率が5MPa〜100MPaである熱硬化型のフィルム状接着剤に関する。 The present invention includes an acrylic resin, an epoxy resin, and conductive particles. The conductive particles include plate-like particles having an aspect ratio of 5 or more, and the content of the plate-like particles in 100% by weight of the conductive particles is 5%. It relates to a thermosetting film-like adhesive having a storage elastic modulus at 150 ° C. of 5 to 100 MPa after thermosetting.

本発明のフィルム状接着剤は、熱硬化後の150℃における貯蔵弾性率が100MPa以下であるので、線膨張差に起因する応力を緩和することが可能で、温度サイクル試験での不良を低減できる。また、アスペクト比が5以上のプレート状粒子を含むので、プレート状粒子同士の面接触により導電パスを形成することが可能である。このため、点接触により導電パスが形成される球状粒子のみを含む接着剤に比べて、本発明のフィルム状接着剤では優れた導電性が得られる。 Since the film-like adhesive of the present invention has a storage elastic modulus at 150 ° C. after thermosetting of 100 MPa or less, it is possible to relieve the stress caused by the difference in linear expansion and reduce defects in the temperature cycle test. . Further, since the plate-like particles having an aspect ratio of 5 or more are included, it is possible to form a conductive path by surface contact between the plate-like particles. For this reason, compared with the adhesive agent which contains only the spherical particle in which a conductive path is formed by point contact, the electroconductivity excellent in the film adhesive of this invention is acquired.

エポキシ基同士の距離が遠く、熱硬化後の貯蔵弾性率を低下させることができるという理由から、ビスフェノール型骨格を有するエポキシ樹脂が好ましい。エポキシ樹脂のエポキシ当量が180g/eq.〜3500g/eq.であることが好ましい。 An epoxy resin having a bisphenol type skeleton is preferable because the distance between the epoxy groups is long and the storage elastic modulus after thermosetting can be reduced. The epoxy equivalent of the epoxy resin is 180 g / eq. ~ 3500 g / eq. It is preferable that

本発明のフィルム状接着剤は、フェノール樹脂をさらに含み、フェノール樹脂の水酸基当量が200g/eq.以上であることが好ましい。これにより、熱硬化後の貯蔵弾性率を容易に低下させることができる。 The film adhesive of the present invention further contains a phenol resin, and the hydroxyl equivalent of the phenol resin is 200 g / eq. The above is preferable. Thereby, the storage elastic modulus after thermosetting can be reduced easily.

本発明のフィルム状接着剤は、重量平均分子量が20万〜100万の高分子量アクリル樹脂を含むことが好ましい。これにより、熱硬化後の貯蔵弾性率を低下させることができる。 The film adhesive of the present invention preferably contains a high molecular weight acrylic resin having a weight average molecular weight of 200,000 to 1,000,000. Thereby, the storage elastic modulus after thermosetting can be reduced.

本発明のフィルム状接着剤は、エポキシ基と反応する官能基を含む低分子量アクリル樹脂を含むことが好ましい。低分子量アクリル樹脂の重量平均分子量が500〜10万であることが好ましい。低分子量アクリル樹脂を硬化させることが可能で、熱硬化後の貯蔵弾性率を低下させることができるためである。 It is preferable that the film adhesive of this invention contains the low molecular weight acrylic resin containing the functional group which reacts with an epoxy group. The low molecular weight acrylic resin preferably has a weight average molecular weight of 500 to 100,000. This is because the low molecular weight acrylic resin can be cured and the storage elastic modulus after thermosetting can be reduced.

本発明のフィルム状接着剤は、リン系触媒をさらに含むことが好ましい。イミダゾール系触媒は、架橋構造に取り込まれるため、熱硬化後の貯蔵弾性率の増加を引き起こすことがあるが、リン系触媒は架橋構造に取り込まれないため、熱硬化後の貯蔵弾性率の増加を抑制できるためである。 The film adhesive of the present invention preferably further contains a phosphorus catalyst. Since imidazole catalysts are incorporated into the cross-linked structure, they may cause an increase in storage modulus after thermosetting, but phosphorus catalysts are not incorporated into the cross-linked structure, so increase the storage elastic modulus after thermosetting. This is because it can be suppressed.

本発明はまた、フィルム状接着剤を介して、半導体チップを被着体上にダイボンドする工程と、半導体チップを被着体上にダイボンドする工程の後に、フィルム状接着剤を熱硬化させる工程とを含む半導体装置の製造方法に関する。 The present invention also includes a step of die-bonding the semiconductor chip on the adherend via the film-like adhesive, and a step of thermosetting the film-like adhesive after the step of die-bonding the semiconductor chip on the adherend. The present invention relates to a method for manufacturing a semiconductor device including:

本発明はまた、ダイシングテープ、及びダイシングテープ上に配置された熱硬化型のフィルム状接着剤を備えるフィルム状接着剤付きダイシングテープに関する。 The present invention also relates to a dicing tape and a dicing tape with a film adhesive provided with a thermosetting film adhesive disposed on the dicing tape.

本発明はまた、フィルム状接着剤付きダイシングテープのフィルム状接着剤上に半導体ウエハを配置する工程と、フィルム状接着剤上に配置された半導体ウエハをダイシングして半導体チップを形成する工程と、半導体チップをフィルム状接着剤とともにピックアップする工程と、フィルム状接着剤を介して、半導体チップを被着体上にダイボンドする工程と、半導体チップを被着体上にダイボンドする工程の後に、フィルム状接着剤を熱硬化させる工程とを含む半導体装置の製造方法に関する。 The present invention also includes a step of disposing a semiconductor wafer on the film adhesive of the dicing tape with a film adhesive, a step of dicing the semiconductor wafer disposed on the film adhesive to form a semiconductor chip, After the step of picking up the semiconductor chip together with the film-like adhesive, the step of die-bonding the semiconductor chip on the adherend through the film-like adhesive, and the step of die-bonding the semiconductor chip on the adherend, the film-like The present invention relates to a method for manufacturing a semiconductor device including a step of thermally curing an adhesive.

本発明はまた、半導体装置に関する。 The present invention also relates to a semiconductor device.

本発明によれば、線膨張の差に起因する応力を緩和することが可能な導電性フィルム状接着剤、フィルム状接着剤付きダイシングテープ、半導体装置の製造方法を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the electroconductive film adhesive which can relieve the stress resulting from the difference of linear expansion, the dicing tape with a film adhesive, and a semiconductor device can be provided.

フィルム状接着剤の概略断面図である。It is a schematic sectional drawing of a film adhesive. フィルム状接着剤付きダイシングテープの概略断面図である。It is a schematic sectional drawing of a dicing tape with a film adhesive. 変形例に係るフィルム状接着剤付きダイシングテープの概略断面図である。It is a schematic sectional drawing of the dicing tape with a film adhesive which concerns on a modification. フィルム状接着剤付きダイシングテープ上に半導体ウエハを配置した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the semiconductor wafer has been arrange | positioned on the dicing tape with a film adhesive. 半導体ウエハを個片化した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the semiconductor wafer was separated into pieces. 半導体チップ付き被着体の概略断面図である。It is a schematic sectional drawing of a to-be-adhered body with a semiconductor chip. 半導体装置の概略断面図である。It is a schematic sectional drawing of a semiconductor device.

以下に実施形態を掲げ、本発明を詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。 The present invention will be described in detail below with reference to embodiments, but the present invention is not limited only to these embodiments.

[実施形態1]
(フィルム状接着剤)
図1に示すように、実施形態1のフィルム状接着剤3の形態は、フィルム状である。フィルム状接着剤3は熱硬化性を備える。
[Embodiment 1]
(Film adhesive)
As shown in FIG. 1, the form of the film adhesive 3 of Embodiment 1 is a film form. The film adhesive 3 has thermosetting properties.

樹脂成分について、フィルム状接着剤3は、エポキシ樹脂、フェノール樹脂、高分子量アクリル樹脂を含む。実施形態1では、フェノール樹脂がエポキシ樹脂の硬化剤として機能することが可能である。 About the resin component, the film adhesive 3 contains an epoxy resin, a phenol resin, and a high molecular weight acrylic resin. In the first embodiment, the phenol resin can function as a curing agent for the epoxy resin.

フィルム状接着剤3を熱硬化させた後の150℃における貯蔵弾性率は、5MPa以上であり、好ましくは20MPa以上である。5MPa以上であるので、ワイヤーボンド性を担保できる。一方、熱硬化後の150℃における貯蔵弾性率が100MPa以下である。100MPa以下であるので、線膨張差に起因する応力を緩和することが可能で、温度サイクル試験での不良を低減できる。
熱硬化後の150℃における貯蔵弾性率とは、140℃で1時間加熱し、次いで200℃で1時間加熱することにより、熱硬化させた後の150℃における貯蔵弾性率をいう。具体的には、実施例に記載の方法で測定できる。
The storage elastic modulus at 150 ° C. after thermally curing the film adhesive 3 is 5 MPa or more, preferably 20 MPa or more. Since it is 5 MPa or more, wire bondability can be secured. On the other hand, the storage elastic modulus at 150 ° C. after thermosetting is 100 MPa or less. Since it is 100 MPa or less, it is possible to relieve the stress caused by the difference in linear expansion, and it is possible to reduce defects in the temperature cycle test.
The storage elastic modulus at 150 ° C. after thermosetting refers to the storage elastic modulus at 150 ° C. after thermosetting by heating at 140 ° C. for 1 hour and then at 200 ° C. for 1 hour. Specifically, it can be measured by the method described in the examples.

熱硬化後の150℃における貯蔵弾性率は、エポキシ樹脂のエポキシ当量、フェノール樹脂の水酸基当量、高分子量アクリル樹脂の酸価、低分子量アクリル樹脂の酸価、導電性粒子の粒径などによりコントロールできる。例えば、エポキシ当量が大きいエポキシ樹脂を配合すること、水酸基当量の大きいフェノール樹脂を配合すること、酸価が低い高分子量アクリル樹脂を配合すること、酸価が低い低分子量アクリル樹脂を配合すること、粒径の大きい導電性粒子を配合することなどにより、熱硬化後の150℃における貯蔵弾性率を低下させることができる。 The storage elastic modulus at 150 ° C. after thermosetting can be controlled by the epoxy equivalent of epoxy resin, the hydroxyl equivalent of phenol resin, the acid value of high molecular weight acrylic resin, the acid value of low molecular weight acrylic resin, the particle size of conductive particles, etc. . For example, blending an epoxy resin having a large epoxy equivalent, blending a phenol resin having a large hydroxyl equivalent, blending a high molecular weight acrylic resin having a low acid value, blending a low molecular weight acrylic resin having a low acid value, By blending conductive particles having a large particle diameter, the storage elastic modulus at 150 ° C. after thermosetting can be lowered.

エポキシ樹脂としては特に限定されず、例えば、ビスフェノール型骨格を有するエポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂などが挙げられる。なかでも、エポキシ基同士の距離が遠く、熱硬化後の貯蔵弾性率を低下させることができるという理由から、ビスフェノール型骨格を有するエポキシ樹脂が好ましい。ビスフェノール型骨格を有するエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂などが挙げられる。 The epoxy resin is not particularly limited, and examples thereof include an epoxy resin having a bisphenol type skeleton, a cresol novolac type epoxy resin, a phenol novolac type epoxy resin, and a naphthalene type epoxy resin. Among these, an epoxy resin having a bisphenol type skeleton is preferable because the distance between the epoxy groups is long and the storage elastic modulus after thermosetting can be reduced. Examples of the epoxy resin having a bisphenol type skeleton include bisphenol A type epoxy resin, bisphenol F type epoxy resin, and bisphenol S type epoxy resin.

エポキシ樹脂のエポキシ当量は、好ましくは180g/eq.以上、より好ましくは300g/eq.以上、さらに好ましくは400g/eq.以上である。一方、エポキシ樹脂のエポキシ当量は、好ましくは3500g/eq.以下、より好ましくは1500g/eq.以下、さらに好ましくは1000g/eq.以下、特に好ましくは700g/eq.以下である。
なお、エポキシ樹脂のエポキシ当量は、JIS K 7236−2009に規定された方法で測定できる。
The epoxy equivalent of the epoxy resin is preferably 180 g / eq. Or more, more preferably 300 g / eq. Or more, more preferably 400 g / eq. That's it. On the other hand, the epoxy equivalent of the epoxy resin is preferably 3500 g / eq. Or less, more preferably 1500 g / eq. Hereinafter, more preferably 1000 g / eq. Hereinafter, 700 g / eq. It is as follows.
In addition, the epoxy equivalent of an epoxy resin can be measured by the method prescribed | regulated to JISK7236-2009.

フェノール樹脂は、エポキシ樹脂の硬化剤として作用するものであり、例えば、フェノールノボラック樹脂、フェノールアラルキル樹脂、クレゾールノボラック樹脂、tert−ブチルフェノールノボラック樹脂、ノニルフェノールノボラック樹脂などのノボラック型フェノール樹脂、レゾール型フェノール樹脂、ポリパラオキシスチレンなどのポリオキシスチレンなどが挙げられる。 The phenol resin acts as a curing agent for the epoxy resin. For example, a novolak type phenol resin such as a phenol novolak resin, a phenol aralkyl resin, a cresol novolak resin, a tert-butylphenol novolak resin, a nonylphenol novolak resin, or a resol type phenol resin. And polyoxystyrene such as polyparaoxystyrene.

フェノール樹脂の水酸基当量は、好ましくは200g/eq.以上である。200g/eq.以上であると、熱硬化後の貯蔵弾性率を容易に低下させることができる。一方、フェノール樹脂の水酸基当量は、好ましくは3500g/eq.以下、より好ましくは1500g/eq.以下、さらに好ましくは1000g/eq.以下、よりさらに好ましくは700g/eq.以下、特に好ましくは300g/eq.以下である。 The hydroxyl equivalent of the phenol resin is preferably 200 g / eq. That's it. 200 g / eq. When it is above, the storage elastic modulus after thermosetting can be easily reduced. On the other hand, the hydroxyl group equivalent of the phenol resin is preferably 3500 g / eq. Or less, more preferably 1500 g / eq. Hereinafter, more preferably 1000 g / eq. Or less, more preferably 700 g / eq. In the following, particularly preferably 300 g / eq. It is as follows.

エポキシ樹脂とフェノール樹脂との配合割合は、例えば、エポキシ樹脂成分中のエポキシ基1当量当たりフェノール樹脂中の水酸基が0.5〜2.0当量になるように配合することが好適である。より好適なのは、0.8〜1.2当量である。即ち、両者の配合割合が前記範囲を外れると、十分な硬化反応が進まず、硬化物の特性が劣化し易くなるからである。 The blending ratio of the epoxy resin and the phenol resin is preferably blended so that the hydroxyl group in the phenol resin is 0.5 to 2.0 equivalents per equivalent of epoxy group in the epoxy resin component. More preferred is 0.8 to 1.2 equivalents. That is, if the blending ratio of both is out of the above range, sufficient curing reaction does not proceed and the properties of the cured product are likely to deteriorate.

フィルム状接着剤3中のエポキシ樹脂及びフェノール樹脂の合計含有量は、好ましくは5重量%以上、より好ましくは8重量%以上、さらに好ましくは10重量%以上である。5重量%以上であると、硬化後のフィルム状接着剤3について好適な硬さが得られる。また、エポキシ樹脂及びフェノール樹脂の合計含有量は、好ましくは30重量%以下、より好ましくは20重量%以下、さらに好ましくは15重量%以下である。30重量%以下であると、好適な導電性が得られる。 The total content of the epoxy resin and the phenol resin in the film adhesive 3 is preferably 5% by weight or more, more preferably 8% by weight or more, and further preferably 10% by weight or more. Hardness suitable about the film adhesive 3 after hardening as it is 5 weight% or more is obtained. The total content of the epoxy resin and the phenol resin is preferably 30% by weight or less, more preferably 20% by weight or less, and still more preferably 15% by weight or less. Suitable electroconductivity is acquired as it is 30 weight% or less.

高分子量アクリル樹脂の重量平均分子量は、好ましくは20万以上、より好ましくは30万以上、さらに好ましくは50万以上である。20万以上であると、硬化後のフィルム状接着剤3について好適な靱性が得られる。一方、高分子量アクリル樹脂の重量平均分子量は、好ましくは100万以下、より好ましくは95万以下である。100万以下であると、有機溶剤への溶解性及び溶解したポリマー溶液の作業性に優れる。
なお、重量平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー)により測定し、ポリスチレン換算により算出された値である。
The weight average molecular weight of the high molecular weight acrylic resin is preferably 200,000 or more, more preferably 300,000 or more, and further preferably 500,000 or more. The toughness suitable about the film adhesive 3 after hardening as it is 200,000 or more is obtained. On the other hand, the weight average molecular weight of the high molecular weight acrylic resin is preferably 1,000,000 or less, more preferably 950,000 or less. When it is 1,000,000 or less, the solubility in an organic solvent and the workability of the dissolved polymer solution are excellent.
The weight average molecular weight is a value measured by GPC (gel permeation chromatography) and calculated in terms of polystyrene.

高分子量アクリル樹脂としては、特に限定されるものではなく、炭素数30以下、特に炭素数4〜18の直鎖若しくは分岐のアルキル基を有するアクリル酸又はメタクリル酸のエステルの1種又は2種以上を成分とする重合体(アクリル共重合体)などが挙げられる。前記アルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、t−ブチル基、イソブチル基、アミル基、イソアミル基、ヘキシル基、へプチル基、シクロヘキシル基、2−エチルヘキシル基、オクチル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基、ラウリル基、トリデシル基、テトラデシル基、ステアリル基、オクタデシル基、又はドデシル基などが挙げられる。 The high molecular weight acrylic resin is not particularly limited, and one or more esters of acrylic acid or methacrylic acid having a linear or branched alkyl group having 30 or less carbon atoms, particularly 4 to 18 carbon atoms. The polymer (acrylic copolymer) etc. which contain as a component is mentioned. Examples of the alkyl group include a methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, t-butyl group, isobutyl group, amyl group, isoamyl group, hexyl group, heptyl group, cyclohexyl group, 2- Examples include ethylhexyl group, octyl group, isooctyl group, nonyl group, isononyl group, decyl group, isodecyl group, undecyl group, lauryl group, tridecyl group, tetradecyl group, stearyl group, octadecyl group, and dodecyl group.

また、重合体(アクリル共重合体)を形成する他のモノマーとしては、特に限定されるものではなく、例えばアクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマール酸若しくはクロトン酸などの様なカルボキシル基含有モノマー、無水マレイン酸若しくは無水イタコン酸などの様な酸無水物モノマー、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸4−ヒドロキシブチル、(メタ)アクリル酸6−ヒドロキシヘキシル、(メタ)アクリル酸8−ヒドロキシオクチル、(メタ)アクリル酸10−ヒドロキシデシル、(メタ)アクリル酸12−ヒドロキシラウリル若しくは(4−ヒドロキシメチルシクロヘキシル)−メチルアクリレートなどの様なヒドロキシル基含有モノマー、スチレンスルホン酸、アリルスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート若しくは(メタ)アクリロイルオキシナフタレンスルホン酸などの様なスルホン酸基含有モノマー、又は2−ヒドロキシエチルアクリロイルホスフェートなどの様な燐酸基含有モノマーが挙げられる。 In addition, the other monomer forming the polymer (acrylic copolymer) is not particularly limited, and for example, acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid Or a carboxyl group-containing monomer such as crotonic acid, an acid anhydride monomer such as maleic anhydride or itaconic anhydride, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, (meth ) 4-hydroxybutyl acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate or (4 -Hydroxymethylcyclo Hydroxyl group-containing monomers such as (xyl) -methyl acrylate, styrene sulfonic acid, allyl sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, (meth) acrylamide propane sulfonic acid, sulfopropyl (meth) acrylate Alternatively, a sulfonic acid group-containing monomer such as (meth) acryloyloxynaphthalene sulfonic acid or the like, or a phosphoric acid group-containing monomer such as 2-hydroxyethylacryloyl phosphate may be used.

高分子量アクリル樹脂は、エポキシ基と反応可能な官能基を含むことが好ましい。これにより、高分子量アクリル樹脂をエポキシ樹脂と架橋させることができる。 The high molecular weight acrylic resin preferably contains a functional group capable of reacting with an epoxy group. Thereby, a high molecular weight acrylic resin can be bridge | crosslinked with an epoxy resin.

高分子量アクリル樹脂において、エポキシ基と反応可能な官能基としては、例えば、カルボキシル基、ヒドロキシル基などが挙げられる。なかでも、エポキシ基との反応性が高いという理由から、カルボキシル基が好ましい。 In the high molecular weight acrylic resin, examples of the functional group capable of reacting with the epoxy group include a carboxyl group and a hydroxyl group. Of these, a carboxyl group is preferred because of its high reactivity with an epoxy group.

高分子量アクリル樹脂の酸価は、好ましくは1mgKOH/g以上、より好ましくは3mgKOH/g以上、さらに好ましくは4mgKOH/g以上である。1mgKOH/g以上であると、高分子量アクリル樹脂とエポキシ樹脂との架橋が好適となり、フィルム状接着剤3について良好な凝集力が得られる。一方、高分子量アクリル樹脂の酸価は、好ましくは100mgKOH/g以下、より好ましくは50mgKOH/g以下、さらに好ましくは30mgKOH/g以下である。100mgKOH/g以下であると、導電性粒子の腐食を防止することが可能で、導電性の低下を防止できる。
なお、酸価は、JIS K 0070−1992に規定される中和滴定法で測定できる。
The acid value of the high molecular weight acrylic resin is preferably 1 mgKOH / g or more, more preferably 3 mgKOH / g or more, and further preferably 4 mgKOH / g or more. When it is 1 mgKOH / g or more, crosslinking between the high molecular weight acrylic resin and the epoxy resin is suitable, and a good cohesive force can be obtained for the film adhesive 3. On the other hand, the acid value of the high molecular weight acrylic resin is preferably 100 mgKOH / g or less, more preferably 50 mgKOH / g or less, and further preferably 30 mgKOH / g or less. When it is 100 mgKOH / g or less, it is possible to prevent the conductive particles from being corroded and to prevent a decrease in conductivity.
In addition, an acid value can be measured by the neutralization titration method prescribed | regulated to JISK0070-1992.

高分子量アクリル樹脂の酸当量は、好ましくは560g/eq.以上、より好ましくは1120g/eq.以上、さらに好ましくは1870g/eq.以上である。560g/eq.以上であると、導電性粒子の腐食を防止することができる。一方、高分子量アクリル樹脂の酸当量は、好ましくは56110g/eq.以下、より好ましくは18700g/eq.以下、さらに好ましくは14030g/eq.以下である。56110g/eq.以下であると、良好な凝集力が得られる。
なお、酸当量は、酸価から求めることができる。
The acid equivalent of the high molecular weight acrylic resin is preferably 560 g / eq. Or more, more preferably 1120 g / eq. Or more, more preferably 1870 g / eq. That's it. 560 g / eq. When it is above, corrosion of the conductive particles can be prevented. On the other hand, the acid equivalent of the high molecular weight acrylic resin is preferably 56110 g / eq. Or less, More preferably, 18700 g / eq. Hereinafter, more preferably 14030 g / eq. It is as follows. 56110 g / eq. When it is below, good cohesive force can be obtained.
In addition, an acid equivalent can be calculated | required from an acid value.

フィルム状接着剤3は、高分子量アクリル樹脂以外に、低分子量アクリル樹脂を含むことが好ましい。これにより、低分子量アクリル樹脂をエポキシ樹脂と架橋させることができる。 The film adhesive 3 preferably contains a low molecular weight acrylic resin in addition to the high molecular weight acrylic resin. Thereby, a low molecular weight acrylic resin can be bridge | crosslinked with an epoxy resin.

低分子量アクリル樹脂において、エポキシ基と反応可能な官能基としては、例えば、カルボキシル基、ヒドロキシル基などが挙げられる。なかでも、エポキシ基との反応性が高いという理由から、カルボキシル基が好ましい。 In the low molecular weight acrylic resin, examples of the functional group capable of reacting with an epoxy group include a carboxyl group and a hydroxyl group. Of these, a carboxyl group is preferred because of its high reactivity with an epoxy group.

低分子量アクリル樹脂の酸価は、好ましくは10mgKOH/g以上、より好ましくは30mgKOH/g以上、さらに好ましくは50mgKOH/g以上である。10mgKOH/g以上であると、熱硬化後の貯蔵弾性率を容易に好適範囲に調整できる。一方、低分子量アクリル樹脂の酸価は、好ましくは1000mgKOH/g以下、より好ましくは500mgKOH/g以下、さらに好ましくは300mgKOH/g以下である。1000mgKOH/g以下であると、導電性粒子の腐食を防止することが可能で、導電性の低下を防止できる。 The acid value of the low molecular weight acrylic resin is preferably 10 mgKOH / g or more, more preferably 30 mgKOH / g or more, and further preferably 50 mgKOH / g or more. The storage elastic modulus after thermosetting can be easily adjusted to a suitable range as it is 10 mgKOH / g or more. On the other hand, the acid value of the low molecular weight acrylic resin is preferably 1000 mgKOH / g or less, more preferably 500 mgKOH / g or less, and still more preferably 300 mgKOH / g or less. When it is 1000 mgKOH / g or less, it is possible to prevent the conductive particles from being corroded and to prevent a decrease in conductivity.

低分子量アクリル樹脂の酸当量は、好ましくは56g/eq.以上、より好ましくは187g/eq.以上である。56g/eq.以上であると、導電性粒子の腐食を防止することが可能で、導電性の低下を防止できる。一方、低分子量アクリル樹脂の酸当量は、好ましくは5610g/eq.以下、より好ましくは1120g/eq.以下である。5610g/eq.以下であると、熱硬化後の貯蔵弾性率を容易に好適範囲に調整できる。 The acid equivalent of the low molecular weight acrylic resin is preferably 56 g / eq. Or more, more preferably 187 g / eq. That's it. 56 g / eq. When it is as described above, it is possible to prevent the conductive particles from being corroded and to prevent a decrease in conductivity. On the other hand, the acid equivalent of the low molecular weight acrylic resin is preferably 5610 g / eq. Or less, more preferably 1120 g / eq. It is as follows. 5610 g / eq. The storage elastic modulus after thermosetting can be easily adjusted to a suitable range as it is below.

低分子量アクリル樹脂の重量平均分子量は、好ましくは500以上、より好ましくは1000以上、さらに好ましくは1500以上である。500以上であると、フィルム状接着剤3の硬化前の凝集性を高められる。一方、低分子量アクリル樹脂の重量平均分子量は、好ましくは10万以下、より好ましくは5万以下、さらに好ましくは3万以下である。10万以下であると、フィルム状接着剤3の硬化前の貯蔵弾性率の上昇を抑制することが可能で、良好なダイアタッチ性が得られる。 The weight average molecular weight of the low molecular weight acrylic resin is preferably 500 or more, more preferably 1000 or more, and further preferably 1500 or more. When it is 500 or more, the cohesiveness before curing of the film adhesive 3 can be enhanced. On the other hand, the weight average molecular weight of the low molecular weight acrylic resin is preferably 100,000 or less, more preferably 50,000 or less, and even more preferably 30,000 or less. When it is 100,000 or less, it is possible to suppress an increase in storage elastic modulus of the film adhesive 3 before curing, and good die attachability is obtained.

低分子量アクリル樹脂としては、カルボキシル基を含むモノマー由来の構成単位を含むものなどが挙げられる。カルボキシル基を含むモノマーとしては、例えば、アクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸などが挙げられる。なかでも、ポリマー合成でのポリマー中への導入の容易さという理由からアクリル酸が好ましい。 Examples of the low molecular weight acrylic resin include those containing a structural unit derived from a monomer containing a carboxyl group. Examples of the monomer containing a carboxyl group include acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid and the like. Of these, acrylic acid is preferable because it is easily introduced into the polymer during polymer synthesis.

低分子量アクリル樹脂は、カルボキシル基を含むモノマー由来の構成単位以外の他の構成単位を含んでいてもよい。他の構成単位としては、例えば、スチレン由来の構成単位などが挙げられる。スチレン由来の構成単位を含むことにより、他の配合成分との分散性が良好となる。 The low molecular weight acrylic resin may contain other structural units other than the structural unit derived from the monomer containing a carboxyl group. Examples of other structural units include structural units derived from styrene. By including the structural unit derived from styrene, the dispersibility with other compounding components becomes good.

フィルム状接着剤3中のアクリル樹脂の含有量は、好ましくは1重量%以上、より好ましくは2重量%以上、さらに好ましくは4重量%以上である。1重量%以上であると、良好なフィルム形成性が得られる。一方、アクリル樹脂の含有量は、好ましくは20重量%以下、より好ましくは10重量%以下、さらに好ましくは7重量%以下である。20重量%以下であると、好適な導電性が得られる。 The content of the acrylic resin in the film adhesive 3 is preferably 1% by weight or more, more preferably 2% by weight or more, and further preferably 4% by weight or more. When it is 1% by weight or more, good film formability can be obtained. On the other hand, the content of the acrylic resin is preferably 20% by weight or less, more preferably 10% by weight or less, and still more preferably 7% by weight or less. Suitable electroconductivity is acquired as it is 20 weight% or less.

フィルム状接着剤3が高分子量アクリル樹脂及び低分子量アクリル樹脂を含む場合、アクリル樹脂100重量%中の高分子量アクリル樹脂の含有量は、好ましくは70重量%以上、より好ましくは80重量%以上、さらに好ましくは85重量%以上である。70重量%以上であると、良好なフィルム形成性が得られる。一方、アクリル樹脂100重量%中の高分子量アクリル樹脂の含有量は、好ましくは97重量%以下、より好ましくは95重量%以下、さらに好ましくは93重量%以下である。97重量%以下であると、ダイアタッチ温度において好適な溶融粘度に調整することが可能で、良好なダイアタッチ性が得られる。 When the film adhesive 3 contains a high molecular weight acrylic resin and a low molecular weight acrylic resin, the content of the high molecular weight acrylic resin in 100% by weight of the acrylic resin is preferably 70% by weight or more, more preferably 80% by weight or more, More preferably, it is 85 weight% or more. When it is 70% by weight or more, good film formability can be obtained. On the other hand, the content of the high molecular weight acrylic resin in 100% by weight of the acrylic resin is preferably 97% by weight or less, more preferably 95% by weight or less, and still more preferably 93% by weight or less. If it is 97% by weight or less, it can be adjusted to a suitable melt viscosity at the die attach temperature, and good die attachability can be obtained.

フィルム状接着剤3は、硬化触媒を含むことが好ましい。これにより、熱硬化を促進できる。硬化触媒としては特に限定されず、例えば、リン系触媒、イミダゾール系触媒などが挙げられる。なかでも、リン系触媒が好ましい。イミダゾール系触媒は、架橋構造に取り込まれるため、熱硬化後の貯蔵弾性率の増加を引き起こすことがあるが、リン系触媒は架橋構造に取り込まれないため、熱硬化後の貯蔵弾性率の増加を抑制できるためである。 The film adhesive 3 preferably contains a curing catalyst. Thereby, thermosetting can be accelerated | stimulated. It does not specifically limit as a curing catalyst, For example, a phosphorus catalyst, an imidazole catalyst, etc. are mentioned. Of these, phosphorus-based catalysts are preferred. Since imidazole catalysts are incorporated into the cross-linked structure, they may cause an increase in storage modulus after thermosetting, but phosphorus catalysts are not incorporated into the cross-linked structure, so increase the storage elastic modulus after thermosetting. This is because it can be suppressed.

リン系触媒としては特に限定されないが、保存性という理由から、テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラ−p−トリルボレートが好ましい。 The phosphorus catalyst is not particularly limited, but tetraphenylphosphonium tetraphenylborate and tetraphenylphosphonium tetra-p-tolylborate are preferred for reasons of storage stability.

硬化触媒の含有量は、エポキシ樹脂100重量部に対して、好ましくは0.1重量部以上、より好ましくは0.5重量部以上、さらに好ましくは1重量部以上である。一方、硬化触媒の含有量は、エポキシ樹脂100重量部に対して、好ましくは10重量部以下、より好ましくは5重量部以下である。10重量部以下であると、好適な保存性を得られる。 The content of the curing catalyst is preferably 0.1 parts by weight or more, more preferably 0.5 parts by weight or more, and further preferably 1 part by weight or more with respect to 100 parts by weight of the epoxy resin. On the other hand, the content of the curing catalyst is preferably 10 parts by weight or less, more preferably 5 parts by weight or less with respect to 100 parts by weight of the epoxy resin. When it is 10 parts by weight or less, suitable storage stability can be obtained.

フィルム状接着剤3は、導電性粒子を含む。これにより、導電性を付与できる。導電性粒子としては、金粒子、銀粒子、銅粒子、被覆粒子などが挙げられる。 The film adhesive 3 includes conductive particles. Thereby, electroconductivity can be provided. Examples of the conductive particles include gold particles, silver particles, copper particles, and coated particles.

被覆粒子は、コア粒子及びコア粒子を被覆する被覆膜を備える。コア粒子は、導電性、非導電性のいずれでもよく、例えば、ガラス粒子などを使用できる。被覆膜としては、金を含む膜、銀を含む膜、銅を含む膜などが挙げられる。 The coated particle includes a core particle and a coating film that coats the core particle. The core particles may be either conductive or non-conductive, and for example, glass particles can be used. Examples of the coating film include a film containing gold, a film containing silver, and a film containing copper.

導電性粒子の平均粒径は特に限定されないが、フィルム状接着剤3の厚みに対して、0.001倍以上(フィルム状接着剤3の厚み×0.001以上)が好ましく、0.1倍以上がより好ましい。0.001倍未満であると、導電パスの形成が難しく、導電性が安定しない傾向がある。また、導電性粒子の平均粒径はフィルム状接着剤3の厚みに対して、1倍以下(フィルム状接着剤3の厚み以下)が好ましく、0.8倍以下がより好ましい。1倍を超えると、チップ割れを起こす危険性がある。
なお、導電性粒子の平均粒径は、光度式の粒度分布計(HORIBA製、装置名;LA−910)により求めた値である。
The average particle diameter of the conductive particles is not particularly limited, but is preferably 0.001 times or more (thickness of the film adhesive 3 × 0.001 or more) with respect to the thickness of the film-like adhesive 3, and 0.1 times The above is more preferable. If it is less than 0.001, it is difficult to form a conductive path and the conductivity tends to be unstable. Further, the average particle diameter of the conductive particles is preferably 1 times or less (the thickness of the film adhesive 3 or less), more preferably 0.8 times or less with respect to the thickness of the film adhesive 3. If it exceeds 1 time, there is a risk of cracking the chip.
In addition, the average particle diameter of electroconductive particle is the value calculated | required with the photometric type particle size distribution meter (The product made from HORIBA, apparatus name; LA-910).

導電性粒子の比重は0.7以上が好ましく、1以上がより好ましい。0.7未満であると、接着剤組成物溶液(ワニス)の作製時に導電性粒子が浮いてしまい、導電性粒子の分散が不均一になるおそれがある。また、導電性粒子の比重は22以下が好ましく、21以下がより好ましい。22を超えると、導電性粒子が沈みやすく、導電性粒子の分散が不均一になるおそれがある。 The specific gravity of the conductive particles is preferably 0.7 or more, and more preferably 1 or more. If it is less than 0.7, the conductive particles float when the adhesive composition solution (varnish) is produced, and the dispersion of the conductive particles may be uneven. The specific gravity of the conductive particles is preferably 22 or less, and more preferably 21 or less. If it exceeds 22, the conductive particles are likely to sink, and the dispersion of the conductive particles may be uneven.

導電性粒子は、プレート状粒子を含む。 The conductive particles include plate-like particles.

プレート状粒子としては、例えば、アスペクト比が5以上のプレート状の粒子が挙げられる。5以上であると、プレート状粒子同士が面接触し易く、導電パスが容易に形成される。
アスペクト比は、好ましくは8以上、より好ましくは10以上である。一方、アスペクト比は、好ましくは10000以下、より好ましくは100以下、さらに好ましくは70以下、特に好ましくは50以下である。
Examples of the plate-like particles include plate-like particles having an aspect ratio of 5 or more. When it is 5 or more, the plate-like particles are easily brought into surface contact with each other, and a conductive path is easily formed.
The aspect ratio is preferably 8 or more, more preferably 10 or more. On the other hand, the aspect ratio is preferably 10,000 or less, more preferably 100 or less, still more preferably 70 or less, and particularly preferably 50 or less.

プレート状粒子のアスペクト比は、平均長径の平均厚みに対する比(平均長径/平均厚み)である。
本明細書において、プレート状粒子の平均長径は、フィルム状接着剤3の断面を走査型電子顕微鏡(SEM)により観察し、ランダムに選んだ100個のプレート状粒子の長径を測定することで得られる平均値である。
また、プレート状粒子の平均厚みは、フィルム状接着剤3の断面を走査型電子顕微鏡(SEM)により観察し、ランダムに選んだ100個のプレート状粒子の厚みを測定することで得られる平均値である。
The aspect ratio of the plate-like particles is the ratio of the average major axis to the average thickness (average major axis / average thickness).
In this specification, the average major axis of the plate-like particles is obtained by observing the cross section of the film-like adhesive 3 with a scanning electron microscope (SEM) and measuring the major axis of 100 randomly selected plate-like particles. Is the average value.
The average thickness of the plate-like particles is an average value obtained by observing the cross section of the film adhesive 3 with a scanning electron microscope (SEM) and measuring the thickness of 100 randomly selected plate-like particles. It is.

プレート状粒子の平均長径は、好ましくは0.5μm以上、より好ましくは1.0μm以上である。0.5μm以上であると、プレート状粒子の接触確率が高くなり導通が取りやすくなる。
一方、プレート状粒子の平均長径は、好ましくは50μm以下、より好ましくは30μm以下である。50μm以下であると、塗布ワニス段階での粒子の沈降が生じ難く、安定な塗布ワニスを作製できる。
The average major axis of the plate-like particles is preferably 0.5 μm or more, more preferably 1.0 μm or more. When the thickness is 0.5 μm or more, the contact probability of the plate-like particles is increased, and conduction is easily obtained.
On the other hand, the average major axis of the plate-like particles is preferably 50 μm or less, more preferably 30 μm or less. When the thickness is 50 μm or less, particles are hardly precipitated at the coating varnish stage, and a stable coating varnish can be produced.

導電性粒子100重量%中のプレート状粒子の含有量は、5重量%以上であり、好ましくは40重量%以上、より好ましくは60重量%以上、さらに好ましくは70重量%以上である。導電性粒子100重量%中のプレート状粒子の含有量は、100重量%であってもよいが、好ましくは90重量%以下、より好ましくは85重量%以下である。 The content of the plate-like particles in 100% by weight of the conductive particles is 5% by weight or more, preferably 40% by weight or more, more preferably 60% by weight or more, and further preferably 70% by weight or more. The content of the plate-like particles in 100% by weight of the conductive particles may be 100% by weight, but is preferably 90% by weight or less, more preferably 85% by weight or less.

導電性粒子は、球状の球状粒子を含むことが好ましい。 The conductive particles preferably include spherical spherical particles.

導電性粒子100重量%中の球状粒子の含有量は、好ましくは10重量%以上、より好ましくは15重量%以上である。導電性粒子100重量%中の球状粒子の含有量は、好ましくは95重量%以下、より好ましくは60重量%以下、さらに好ましくは40重量%以下、特に好ましくは30重量%以下である。 The content of spherical particles in 100% by weight of the conductive particles is preferably 10% by weight or more, more preferably 15% by weight or more. The content of spherical particles in 100% by weight of the conductive particles is preferably 95% by weight or less, more preferably 60% by weight or less, still more preferably 40% by weight or less, and particularly preferably 30% by weight or less.

導電性粒子は、針状粒子、フィラメント状粒子などを含んでもよい。 The conductive particles may include acicular particles, filament particles, and the like.

フィルム状接着剤3中の導電性粒子の含有量は、好ましくは30重量%以上、より好ましくは60重量%以上、さらに好ましくは70重量%以上、よりさらに好ましくは75重量%以上、特に好ましくは80重量%以上である。30重量%未満であると、導電パスの形成が難しい傾向がある。また、導電性粒子の含有量は、好ましくは95重量%以下、より好ましくは90重量%以下、さらに好ましくは88重量%以下である。95重量%を超えると、フィルム化が難しい傾向がある。 The content of the conductive particles in the film adhesive 3 is preferably 30% by weight or more, more preferably 60% by weight or more, still more preferably 70% by weight or more, still more preferably 75% by weight or more, particularly preferably. 80% by weight or more. If it is less than 30% by weight, it tends to be difficult to form a conductive path. The content of the conductive particles is preferably 95% by weight or less, more preferably 90% by weight or less, and still more preferably 88% by weight or less. If it exceeds 95% by weight, film formation tends to be difficult.

フィルム状接着剤3は、前記成分以外にも、フィルム製造に一般に使用される配合剤、例えば、架橋剤などを適宜含有してよい。 In addition to the above components, the film adhesive 3 may appropriately contain a compounding agent generally used for film production, for example, a crosslinking agent.

フィルム状接着剤3は、通常の方法で製造できる。例えば、前記各成分を含有する接着剤組成物溶液を作製し、接着剤組成物溶液を基材セパレータ上に所定厚みとなる様に塗布して塗布膜を形成した後、該塗布膜を乾燥させることで、フィルム状接着剤3を製造できる。 The film adhesive 3 can be manufactured by a normal method. For example, an adhesive composition solution containing each of the above components is prepared, and the adhesive composition solution is applied on a base separator so as to have a predetermined thickness to form a coating film, and then the coating film is dried. Thereby, the film adhesive 3 can be manufactured.

接着剤組成物溶液に用いる溶媒としては特に限定されないが、前記各成分を均一に溶解、混練又は分散できる有機溶媒が好ましい。例えば、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン系溶媒、トルエン、キシレンなどが挙げられる。塗布方法は特に限定されない。溶剤塗工の方法としては、例えば、ダイコーター、グラビアコーター、ロールコーター、リバースコーター、コンマコーター、パイプドクターコーター、スクリーン印刷などが挙げられる。なかでも、塗布厚みの均一性が高いという点から、ダイコーターが好ましい。 Although it does not specifically limit as a solvent used for adhesive composition solution, The organic solvent which can melt | dissolve, knead | mix or disperse | distribute each said component uniformly is preferable. Examples thereof include ketone solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, acetone, methyl ethyl ketone, and cyclohexanone, toluene, xylene, and the like. The application method is not particularly limited. Examples of the solvent coating method include a die coater, a gravure coater, a roll coater, a reverse coater, a comma coater, a pipe doctor coater, and screen printing. Of these, a die coater is preferable in terms of high uniformity of coating thickness.

基材セパレータとしては、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンや、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤などの剥離剤により表面コートされたプラスチックフィルムや紙などが使用可能である。接着剤組成物溶液の塗布方法としては、例えば、ロール塗工、スクリーン塗工、グラビア塗工などが挙げられる。また、塗布膜の乾燥条件は特に限定されず、例えば、乾燥温度70〜160℃、乾燥時間1〜5分間で行うことができる。 As the base material separator, polyethylene terephthalate (PET), polyethylene, polypropylene, a plastic film or paper whose surface is coated with a release agent such as a fluorine-type release agent or a long-chain alkyl acrylate release agent can be used. Examples of the method for applying the adhesive composition solution include roll coating, screen coating, and gravure coating. Moreover, the drying conditions of a coating film are not specifically limited, For example, it can carry out in drying temperature 70-160 degreeC and drying time 1-5 minutes.

フィルム状接着剤3の製造方法としては、例えば、前記各成分をミキサーにて混合し、得られた混合物をプレス成形してフィルム状接着剤3を製造する方法なども好適である。ミキサーとしてはプラネタリーミキサーなどが挙げられる。 As a method for producing the film adhesive 3, for example, a method of producing the film adhesive 3 by mixing the respective components with a mixer and press-molding the obtained mixture is also suitable. A planetary mixer etc. are mentioned as a mixer.

フィルム状接着剤3の厚みは特に限定されないが、5μm以上が好ましく、15μm以上がより好ましい。5μm未満であると、反りが生じた半導体ウエハや半導体チップと接着しない箇所が発生し、接着面積が不安定となる場合がある。また、フィルム状接着剤3の厚みは100μm以下が好ましく、50μm以下がより好ましい。100μmを超えると、ダイアタッチの荷重によってフィルム状接着剤3が過度にはみ出し、パッドを汚染する場合がある。 Although the thickness of the film adhesive 3 is not specifically limited, 5 micrometers or more are preferable and 15 micrometers or more are more preferable. When the thickness is less than 5 μm, a portion where the warped semiconductor wafer or the semiconductor chip does not adhere may occur, and the adhesion area may become unstable. The thickness of the film adhesive 3 is preferably 100 μm or less, and more preferably 50 μm or less. If it exceeds 100 μm, the film adhesive 3 may protrude excessively due to the load of die attachment, and the pad may be contaminated.

フィルム状接着剤3の表面粗さ(Ra)は、0.1〜5000nmが好ましい。0.1nm未満は、配合上難しい。一方、5000nmを超えると、ダイアタッチ時の被着体への張りつき性が低下するおそれがある。 The surface roughness (Ra) of the film adhesive 3 is preferably 0.1 to 5000 nm. If it is less than 0.1 nm, it is difficult to blend. On the other hand, if it exceeds 5000 nm, the adherence to the adherend during die attachment may be reduced.

フィルム状接着剤3の電気抵抗率は低いほど好ましく、例えば、9×10−2Ω・m以下である。9×10−2Ω・m以下であると、導電性がよく、小型・高密度実装に対応できる。一方、電気抵抗率は、好ましくは1×10−6Ω・m以上である。 The electrical resistivity of the film adhesive 3 is preferably as low as possible, for example, 9 × 10 −2 Ω · m or less. When it is 9 × 10 −2 Ω · m or less, the electroconductivity is good and it is possible to cope with small size and high density mounting. On the other hand, the electrical resistivity is preferably 1 × 10 −6 Ω · m or more.

フィルム状接着剤3の熱伝導率は高いほど好ましく、例えば、0.5W/m・K以上である。0.5W/m・K以上であると、放熱性がよく、小型・高密度実装に対応できる。一方、0.5W/m・K未満であると、放熱性が悪く、熱がたまり、導電性を悪化させるおそれがある。 The higher the thermal conductivity of the film adhesive 3 is, the more preferable, for example, 0.5 W / m · K or more. When it is 0.5 W / m · K or more, the heat dissipation is good, and it is possible to cope with small and high-density mounting. On the other hand, if it is less than 0.5 W / m · K, heat dissipation is poor, heat is accumulated, and the conductivity may be deteriorated.

フィルム状接着剤3の120℃の引張貯蔵弾性率は、好ましくは10MPa以下、より好ましくは5MPa以下である。10MPa以下であると、熱硬化温度付近におけるフィルム状接着剤3の流動性が高く、圧力下での加熱によりボイドを消滅させることが容易である。120℃の引張貯蔵弾性率は、好ましくは0.01MPa以上、より好ましくは0.05MPa以上である。0.01MPa以上であると、フィルム状接着剤3がはみ出し難い。
120℃の引張貯蔵弾性率は、以下の方法で測定できる。
The tensile storage elastic modulus at 120 ° C. of the film adhesive 3 is preferably 10 MPa or less, more preferably 5 MPa or less. When it is 10 MPa or less, the fluidity of the film adhesive 3 in the vicinity of the thermosetting temperature is high, and it is easy to eliminate voids by heating under pressure. The tensile storage modulus at 120 ° C. is preferably 0.01 MPa or more, more preferably 0.05 MPa or more. When it is 0.01 MPa or more, the film adhesive 3 is difficult to protrude.
The tensile storage elastic modulus at 120 ° C. can be measured by the following method.

120℃の引張貯蔵弾性率の測定
フィルム状接着剤3から、縦30mm、幅10mm、厚さ400μmの短冊状の測定片を切り出す。測定片について、固定粘弾性測定装置(RSA−II、レオメトリックサイエンティフィック社製)を用いてチャック幅22.6mm、0℃〜200℃での引張貯蔵弾性率を周波数1Hz、昇温速度10℃/分の条件下にて測定する。
Measurement of tensile storage modulus at 120 ° C. A strip-shaped measurement piece having a length of 30 mm, a width of 10 mm, and a thickness of 400 μm is cut out from the film-like adhesive 3. About the measurement piece, using a fixed viscoelasticity measuring device (RSA-II, manufactured by Rheometric Scientific), the chuck storage width is 22.6 mm, the tensile storage elastic modulus at 0 ° C. to 200 ° C. is a frequency of 1 Hz, and the heating rate is 10 Measure under conditions of ° C / min.

120℃の引張貯蔵弾性率は、熱可塑性樹脂のガラス転移温度、導電性粒子の配合量などによりコントロールできる。例えば、ガラス転移温度が低い熱可塑性樹脂を配合することで、120℃の引張貯蔵弾性率を低下させることができる。 The tensile storage modulus at 120 ° C. can be controlled by the glass transition temperature of the thermoplastic resin, the blending amount of conductive particles, and the like. For example, by blending a thermoplastic resin having a low glass transition temperature, the tensile storage elastic modulus at 120 ° C. can be lowered.

フィルム状接着剤3は、半導体装置の製造に使用される。なかでも、パワー半導体装置の製造に特に好適に使用できる。具体的には、リードフレームなどの被着体と半導体チップとを接着する(ダイアタッチする)ダイアタッチフィルムとして使用される。被着体としては、リードフレーム、インターポーザ、半導体チップなどが挙げられる。なかでも、リードフレームが好ましい。 The film adhesive 3 is used for manufacturing a semiconductor device. Especially, it can be used especially suitably for manufacture of a power semiconductor device. Specifically, it is used as a die attach film that adheres (die attaches) an adherend such as a lead frame and a semiconductor chip. Examples of the adherend include a lead frame, an interposer, and a semiconductor chip. Of these, a lead frame is preferable.

フィルム状接着剤3は、フィルム状接着剤付きダイシングテープの形態で使用することが好ましい。この形態で使用すると、フィルム状接着剤付きダイシングテープに貼り付けられた状態の半導体ウエハをハンドリングできるので、半導体ウエハ単体でハンドリングする機会を減らすことができ、ハンドリング性が良好である。したがって、近年の薄型の半導体ウエハであっても良好にハンドリングできる。 The film adhesive 3 is preferably used in the form of a dicing tape with a film adhesive. When used in this form, the semiconductor wafer in a state of being attached to the dicing tape with a film adhesive can be handled, so that the opportunity to handle the semiconductor wafer alone can be reduced and the handling property is good. Therefore, even a recent thin semiconductor wafer can be handled well.

[フィルム状接着剤付きダイシングテープ]
フィルム状接着剤付きダイシングテープについて説明する。
[Dicing tape with film adhesive]
The dicing tape with a film adhesive will be described.

図2に示すように、フィルム状接着剤付きダイシングテープ10は、ダイシングテープ1、及びダイシングテープ1上に配置されたフィルム状接着剤3を備える。ダイシングテープ1は、基材11及び基材11上に配置された粘着剤層12を備える。フィルム状接着剤3は粘着剤層12上に配置されている。 As shown in FIG. 2, the dicing tape 10 with a film adhesive includes a dicing tape 1 and a film adhesive 3 disposed on the dicing tape 1. The dicing tape 1 includes a base material 11 and an adhesive layer 12 arranged on the base material 11. The film adhesive 3 is disposed on the pressure-sensitive adhesive layer 12.

図3に示すように、フィルム状接着剤付きダイシングテープ10は、ワーク(半導体ウエハ4など)貼り付け部分にのみフィルム状接着剤3を形成した構成であってもよい。 As shown in FIG. 3, the dicing tape 10 with a film adhesive may have a configuration in which the film adhesive 3 is formed only on a work (semiconductor wafer 4 or the like) affixed portion.

基材11は、フィルム状接着剤付きダイシングテープ10の強度母体となるものであり、紫外線透過性を有するものが好ましい。基材11としては、例えば、低密度ポリエチレン、直鎖状ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超低密度ポリエチレン、ランダム共重合ポリプロピレン、ブロック共重合ポリプロピレン、ホモポリプロレン、ポリブテン、ポリメチルペンテンなどのポリオレフィン、エチレン−酢酸ビニル共重合体、アイオノマー樹脂、エチレン−(メタ)アクリル酸共重合体、エチレン−(メタ)アクリル酸エステル(ランダム、交互)共重合体、エチレン−ブテン共重合体、エチレン−ヘキセン共重合体、ポリウレタン、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル、ポリカーボネート、ポリイミド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、ポリアミド、全芳香族ポリアミド、ポリフェニルスルフイド、アラミド(紙)、ガラス、ガラスクロス、フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、セルロース系樹脂、シリコーン樹脂、金属(箔)、紙などが挙げられる。 The base material 11 serves as a strength matrix of the dicing tape 10 with a film adhesive, and preferably has ultraviolet transparency. Examples of the base material 11 include low density polyethylene, linear polyethylene, medium density polyethylene, high density polyethylene, ultra low density polyethylene, random copolymer polypropylene, block copolymer polypropylene, homopolyprolene, polybutene, and polymethylpentene. Polyolefin, ethylene-vinyl acetate copolymer, ionomer resin, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester (random, alternating) copolymer, ethylene-butene copolymer, ethylene -Hexene copolymers, polyesters such as polyurethane, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyetheretherketone, polyimide, polyetherimide, polyamide, wholly aromatic polyamid , Polyphenyl sulphates id, aramid (paper), glass, glass cloth, fluorine resin, polyvinyl chloride, polyvinylidene chloride, cellulose resin, silicone resin, metal (foil), and paper.

基材11の表面は、隣接する層との密着性、保持性などを高める為、慣用の表面処理、例えば、クロム酸処理、オゾン暴露、火炎暴露、高圧電撃暴露、イオン化放射線処理などの化学的又は物理的処理、下塗剤(例えば、後述する粘着物質)によるコーティング処理を施すことができる。 The surface of the base material 11 is chemically treated by conventional surface treatments such as chromic acid treatment, ozone exposure, flame exposure, high piezoelectric impact exposure, ionizing radiation treatment, etc. in order to improve adhesion and retention with adjacent layers. Alternatively, a physical treatment or a coating treatment with a primer (for example, an adhesive substance described later) can be performed.

基材11の厚さは、特に制限されず適宜に決定できるが、一般的には5〜200μm程度である。 The thickness of the substrate 11 is not particularly limited and can be determined as appropriate, but is generally about 5 to 200 μm.

粘着剤層12の形成に用いる粘着剤としては特に制限されず、例えば、アクリル系粘着剤、ゴム系粘着剤などの一般的な感圧性接着剤を用いることができる。感圧性接着剤としては、半導体ウエハやガラスなどの汚染をきらう電子部品の超純水やアルコールなどの有機溶剤による清浄洗浄性などの点から、アクリル系ポリマーをベースポリマーとするアクリル系粘着剤が好ましい。 It does not restrict | limit especially as an adhesive used for formation of the adhesive layer 12, For example, common pressure sensitive adhesives, such as an acrylic adhesive and a rubber adhesive, can be used. As pressure-sensitive adhesives, acrylic adhesives based on acrylic polymers are used as the base polymer from the standpoint of cleanability of electronic components that are difficult to contaminate such as semiconductor wafers and glass with organic solvents such as ultrapure water and alcohol. preferable.

アクリル系ポリマーとしては、例えば、(メタ)アクリル酸アルキルエステル(例えば、メチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、s−ブチルエステル、t−ブチルエステル、ペンチルエステル、イソペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、2−エチルヘキシルエステル、イソオクチルエステル、ノニルエステル、デシルエステル、イソデシルエステル、ウンデシルエステル、ドデシルエステル、トリデシルエステル、テトラデシルエステル、ヘキサデシルエステル、オクタデシルエステル、エイコシルエステルなどのアルキル基の炭素数1〜30、特に炭素数4〜18の直鎖状又は分岐鎖状のアルキルエステルなど)及び(メタ)アクリル酸シクロアルキルエステル(例えば、シクロペンチルエステル、シクロヘキシルエステルなど)の1種又は2種以上を単量体成分として用いたアクリル系ポリマーなどが挙げられる。なお、(メタ)アクリル酸エステルとはアクリル酸エステル及び/又はメタクリル酸エステルをいい、本発明の(メタ)とは全て同様の意味である。 Examples of the acrylic polymer include (meth) acrylic acid alkyl esters (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, s-butyl ester, t-butyl ester, pentyl ester, isopropyl ester). Pentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, hexadecyl ester, C1-C30, especially C4-C18 linear or branched alkyl esters of alkyl groups such as octadecyl ester and eicosyl ester) and Meth) acrylic acid cycloalkyl esters (e.g., cyclopentyl ester, etc. One or acrylic polymer using two or more of the monomer component cyclohexyl ester etc.). In addition, (meth) acrylic acid ester means acrylic acid ester and / or methacrylic acid ester, and (meth) of the present invention has the same meaning.

アクリル系ポリマーは、凝集力、耐熱性などの改質を目的として、必要に応じ、前記(メタ)アクリル酸アルキルエステル又はシクロアルキルエステルと共重合可能な他のモノマー成分に対応する単位を含んでいてもよい。この様なモノマー成分として、例えば、アクリル酸、メタクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸などのカルボキシル基含有モノマー;無水マレイン酸、無水イタコン酸などの酸無水物モノマー;(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸4−ヒドロキシブチル、(メタ)アクリル酸6−ヒドロキシヘキシル、(メタ)アクリル酸8−ヒドロキシオクチル、(メタ)アクリル酸10−ヒドロキシデシル、(メタ)アクリル酸12−ヒドロキシラウリル、(4−ヒドロキシメチルシクロヘキシル)メチル(メタ)アクリレートなどのヒドロキシル基含有モノマー;スチレンスルホン酸、アリルスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、(メタ)アクリロイルオキシナフタレンスルホン酸などのスルホン酸基含有モノマー;2−ヒドロキシエチルアクリロイルホスフェートなどのリン酸基含有モノマー;アクリルアミド、アクリロニトリルなどが挙げられる。これら共重合可能なモノマー成分は、1種又は2種以上使用できる。これら共重合可能なモノマーの使用量は、全モノマー成分の40重量%以下が好ましい。 The acrylic polymer contains units corresponding to other monomer components copolymerizable with the (meth) acrylic acid alkyl ester or cycloalkyl ester, if necessary, for the purpose of modifying cohesive force, heat resistance and the like. May be. Examples of such monomer components include, for example, carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid; maleic anhydride Acid anhydride monomers such as itaconic anhydride; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate Hydroxyl group-containing monomers such as 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl (meth) acrylate; Sti Contains sulfonic acid groups such as sulfonic acid, allyl sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, (meth) acrylamide propane sulfonic acid, sulfopropyl (meth) acrylate, (meth) acryloyloxynaphthalene sulfonic acid Monomers; Phosphoric acid group-containing monomers such as 2-hydroxyethylacryloyl phosphate; acrylamide, acrylonitrile and the like. One or more of these copolymerizable monomer components can be used. The amount of these copolymerizable monomers used is preferably 40% by weight or less based on the total monomer components.

更に、アクリル系ポリマーは、架橋させる為、多官能性モノマーなども、必要に応じて共重合用モノマー成分として含むことができる。この様な多官能性モノマーとして、例えば、ヘキサンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレートなどが挙げられる。これらの多官能性モノマーも1種又は2種以上用いることができる。多官能性モノマーの使用量は、粘着特性などの点から、全モノマー成分の30重量%以下が好ましい。 Furthermore, since the acrylic polymer is cross-linked, a polyfunctional monomer or the like can be included as a monomer component for copolymerization as necessary. Examples of such polyfunctional monomers include hexanediol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, Pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) An acrylate etc. are mentioned. These polyfunctional monomers can also be used alone or in combination of two or more. The amount of the polyfunctional monomer used is preferably 30% by weight or less of the total monomer components from the viewpoint of adhesive properties and the like.

アクリル系ポリマーは、単一モノマー又は2種以上のモノマー混合物を重合に付すことにより得られる。重合は、溶液重合、乳化重合、塊状重合、懸濁重合などの何れの方式で行うこともできる。清浄な被着体への汚染防止などの点から、低分子量物質の含有量が小さいのが好ましい。この点から、アクリル系ポリマーの数平均分子量は、好ましくは30万以上、更に好ましくは40万〜300万程度である。 The acrylic polymer can be obtained by subjecting a single monomer or a mixture of two or more monomers to polymerization. The polymerization can be carried out by any method such as solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization and the like. From the viewpoint of preventing contamination of a clean adherend, it is preferable that the content of the low molecular weight substance is small. From this point, the number average molecular weight of the acrylic polymer is preferably 300,000 or more, more preferably about 400,000 to 3,000,000.

また、前記粘着剤には、ベースポリマーであるアクリル系ポリマーなどの数平均分子量を高める為、外部架橋剤を適宜に採用することもできる。外部架橋方法の具体的手段としては、ポリイソシアネート化合物、エポキシ化合物、アジリジン化合物、メラミン系架橋剤などのいわゆる架橋剤を添加し反応させる方法が挙げられる。外部架橋剤を使用する場合、その使用量は、架橋すべきベースポリマーとのバランスにより、更には、粘着剤としての使用用途によって適宜決定される。一般的には、前記ベースポリマー100重量部に対して、5重量部程度以下、更には0.1〜5重量部配合するのが好ましい。更に、粘着剤には、必要により、前記成分のほかに、従来公知の各種の粘着付与剤、老化防止剤などの添加剤を用いてもよい。 In addition, an external cross-linking agent can be appropriately employed for the pressure-sensitive adhesive in order to increase the number average molecular weight of an acrylic polymer as a base polymer. Specific examples of the external crosslinking method include a method of adding a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, or a melamine crosslinking agent and reacting them. When using an external cross-linking agent, the amount used is appropriately determined depending on the balance with the base polymer to be cross-linked and further depending on the intended use as an adhesive. Generally, it is preferable to add about 5 parts by weight or less, and further 0.1 to 5 parts by weight with respect to 100 parts by weight of the base polymer. Furthermore, additives such as various conventionally known tackifiers and anti-aging agents may be used for the pressure-sensitive adhesive, if necessary, in addition to the above components.

粘着剤層12は放射線硬化型粘着剤により形成することができる。放射線硬化型粘着剤は、紫外線などの放射線の照射により架橋度を増大させてその粘着力を容易に低下させることができる。 The pressure-sensitive adhesive layer 12 can be formed of a radiation curable pressure-sensitive adhesive. The radiation curable pressure-sensitive adhesive can easily reduce its adhesive strength by increasing the degree of crosslinking by irradiation with radiation such as ultraviolet rays.

図2に示す粘着剤層12のワーク貼り付け部分に対応する部分12aのみを放射線照射することにより他の部分12bとの粘着力の差を設けることができる。この場合、未硬化の放射線硬化型粘着剤により形成されている前記部分12bはフィルム状接着剤3と粘着し、ダイシングする際の保持力を確保できる。 By irradiating only the part 12a corresponding to the work pasting part of the pressure-sensitive adhesive layer 12 shown in FIG. 2, a difference in adhesive strength with the other part 12b can be provided. In this case, the portion 12b formed of the uncured radiation curable pressure-sensitive adhesive sticks to the film adhesive 3 and can secure a holding force when dicing.

また、図3に示すフィルム状接着剤3に合わせて放射線硬化型の粘着剤層12を硬化させることにより、粘着力が著しく低下した前記部分12aを形成できる。この場合、未硬化の放射線硬化型粘着剤により形成されている前記部分12bにウエハリングを固定できる。 Moreover, the said part 12a in which adhesive force fell remarkably can be formed by hardening the radiation-curing-type adhesive layer 12 according to the film adhesive 3 shown in FIG. In this case, the wafer ring can be fixed to the portion 12b formed of an uncured radiation curable adhesive.

つまり、粘着剤層12を放射線硬化型粘着剤により形成する場合には、粘着剤層12における前記部分12aの粘着力<その他の部分12bの粘着力、となるように前記部分12aを放射線照射することが好ましい。 That is, when the pressure-sensitive adhesive layer 12 is formed of a radiation curable pressure-sensitive adhesive, the portion 12a is irradiated with radiation so that the pressure-sensitive adhesive force of the portion 12a in the pressure-sensitive adhesive layer 12 <the pressure-sensitive adhesive strength of the other portion 12b. It is preferable.

放射線硬化型粘着剤は、炭素−炭素二重結合などの放射線硬化性の官能基を有し、かつ粘着性を示すものを特に制限なく使用することができる。放射線硬化型粘着剤としては、例えば、前記アクリル系粘着剤、ゴム系粘着剤などの一般的な感圧性粘着剤に、放射線硬化性のモノマー成分やオリゴマー成分を配合した添加型の放射線硬化型粘着剤を例示できる。 As the radiation curable pressure-sensitive adhesive, those having a radiation curable functional group such as a carbon-carbon double bond and exhibiting adhesiveness can be used without particular limitation. Examples of the radiation curable pressure-sensitive adhesive include an addition-type radiation curable pressure-sensitive adhesive in which a radiation-curable monomer component or oligomer component is blended with a general pressure-sensitive pressure-sensitive adhesive such as the acrylic pressure-sensitive adhesive or rubber-based pressure-sensitive adhesive. An agent can be illustrated.

配合する放射線硬化性のモノマー成分としては、例えば、ウレタンオリゴマー、ウレタン(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリストールテトラ(メタ)アクリレート、ジペンタエリストールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレートなどが挙げられる。また放射線硬化性のオリゴマー成分はウレタン系、ポリエーテル系、ポリエステル系、ポリカーボネート系、ポリブタジエン系など種々のオリゴマーがあげられ、その分子量が100〜30000程度の範囲のものが適当である。放射線硬化性のモノマー成分やオリゴマー成分の配合量は、前記粘着剤層の種類に応じて、粘着剤層の粘着力を低下できる量を、適宜に決定することができる。一般的には、粘着剤を構成するアクリル系ポリマーなどのベースポリマー100重量部に対して、例えば5〜500重量部、好ましくは40〜150重量部程度である。 Examples of the radiation curable monomer component to be blended include urethane oligomer, urethane (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol. Examples include stall tetra (meth) acrylate, dipentaerystol monohydroxypenta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butanediol di (meth) acrylate, and the like. Examples of the radiation curable oligomer component include various oligomers such as urethane, polyether, polyester, polycarbonate, and polybutadiene, and those having a molecular weight in the range of about 100 to 30000 are suitable. The compounding amount of the radiation-curable monomer component or oligomer component can be appropriately determined in accordance with the type of the pressure-sensitive adhesive layer, and the amount capable of reducing the adhesive strength of the pressure-sensitive adhesive layer. Generally, the amount is, for example, about 5 to 500 parts by weight, preferably about 40 to 150 parts by weight with respect to 100 parts by weight of a base polymer such as an acrylic polymer constituting the pressure-sensitive adhesive.

また、放射線硬化型粘着剤としては、前記説明した添加型の放射線硬化型粘着剤のほかに、ベースポリマーとして、炭素−炭素二重結合をポリマー側鎖又は主鎖中もしくは主鎖末端に有するものを用いた内在型の放射線硬化型粘着剤が挙げられる。内在型の放射線硬化型粘着剤は、低分子成分であるオリゴマー成分などを含有する必要がなく、又は多くは含まない為、経時的にオリゴマー成分などが粘着剤在中を移動することなく、安定した層構造の粘着剤層を形成することができる為好ましい。 In addition to the additive-type radiation curable adhesive described above, the radiation curable pressure-sensitive adhesive has a carbon-carbon double bond in the polymer side chain or main chain or at the main chain terminal as a base polymer. Intrinsic radiation curable pressure sensitive adhesives using Intrinsic radiation curable adhesives do not need to contain oligomer components, which are low molecular components, or do not contain many, so the oligomer components do not move through the adhesive over time and are stable. It is preferable because an adhesive layer having a layered structure can be formed.

前記炭素−炭素二重結合を有するベースポリマーは、炭素−炭素二重結合を有し、かつ粘着性を有するものを特に制限なく使用できる。この様なベースポリマーとしては、アクリル系ポリマーを基本骨格とするものが好ましい。アクリル系ポリマーの基本骨格としては、前記例示したアクリル系ポリマーが挙げられる。 As the base polymer having a carbon-carbon double bond, those having a carbon-carbon double bond and having adhesiveness can be used without particular limitation. As such a base polymer, those having an acrylic polymer as a basic skeleton are preferable. Examples of the basic skeleton of the acrylic polymer include the acrylic polymers exemplified above.

前記アクリル系ポリマーへの炭素−炭素二重結合の導入法は特に制限されず、様々な方法を採用できるが、炭素−炭素二重結合はポリマー側鎖に導入するのが分子設計が容易である。例えば、予め、アクリル系ポリマーに官能基を有するモノマーを共重合した後、この官能基と反応しうる官能基及び炭素−炭素二重結合を有する化合物を、炭素−炭素二重結合の放射線硬化性を維持したまま縮合又は付加反応させる方法が挙げられる。 The method for introducing the carbon-carbon double bond into the acrylic polymer is not particularly limited, and various methods can be adopted. However, the carbon-carbon double bond can be easily introduced into the polymer side chain for easy molecular design. . For example, after a monomer having a functional group is previously copolymerized with an acrylic polymer, a compound having a functional group capable of reacting with the functional group and a carbon-carbon double bond is converted into a radiation curable carbon-carbon double bond. A method of performing condensation or addition reaction while maintaining the above.

これら官能基の組合せの例としては、カルボン酸基とエポキシ基、カルボン酸基とアジリジル基、ヒドロキシル基とイソシアネート基などが挙げられる。これら官能基の組合せのなかでも反応追跡の容易さから、ヒドロキシル基とイソシアネート基との組合せが好適である。また、これら官能基の組み合わせにより、前記炭素−炭素二重結合を有するアクリル系ポリマーを生成するような組合せであれば、官能基はアクリル系ポリマーと前記化合物のいずれの側にあってもよいが、前記の好ましい組み合わせでは、アクリル系ポリマーがヒドロキシル基を有し、前記化合物がイソシアネート基を有する場合が好適である。この場合、炭素−炭素二重結合を有するイソシアネート化合物としては、例えば、メタクリロイルイソシアネート、2−メタクリロイルオキシエチルイソシアネート、m−イソプロペニル−α,α−ジメチルベンジルイソシアネートなどが挙げられる。また、アクリル系ポリマーとしては、前記例示のヒドロキシ基含有モノマーや2−ヒドロキシエチルビニルエーテル、4−ヒドロキシブチルビニルエーテル、ジエチレングルコールモノビニルエーテルのエーテル系化合物などを共重合したものが用いられる。 Examples of combinations of these functional groups include carboxylic acid groups and epoxy groups, carboxylic acid groups and aziridyl groups, hydroxyl groups and isocyanate groups. Among these combinations of functional groups, a combination of a hydroxyl group and an isocyanate group is preferable because of easy tracking of the reaction. Moreover, the functional group may be on either side of the acrylic polymer and the compound as long as the acrylic polymer having the carbon-carbon double bond is generated by a combination of these functional groups. In the preferable combination, it is preferable that the acrylic polymer has a hydroxyl group and the compound has an isocyanate group. In this case, examples of the isocyanate compound having a carbon-carbon double bond include methacryloyl isocyanate, 2-methacryloyloxyethyl isocyanate, m-isopropenyl-α, α-dimethylbenzyl isocyanate, and the like. Further, as the acrylic polymer, those obtained by copolymerizing the above-exemplified hydroxy group-containing monomers, ether compounds of 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, or the like are used.

前記内在型の放射線硬化型粘着剤は、前記炭素−炭素二重結合を有するベースポリマー(特にアクリル系ポリマー)を単独で使用することができるが、特性を悪化させない程度に前記放射線硬化性のモノマー成分やオリゴマー成分を配合することもできる。放射線硬化性のオリゴマー成分などは、通常ベースポリマー100重量部に対して30重量部の範囲内であり、好ましくは0〜10重量部の範囲である。 As the intrinsic radiation curable pressure-sensitive adhesive, the base polymer (particularly acrylic polymer) having the carbon-carbon double bond can be used alone, but the radiation curable monomer does not deteriorate the characteristics. Components and oligomer components can also be blended. The radiation-curable oligomer component or the like is usually in the range of 30 parts by weight, preferably in the range of 0 to 10 parts by weight with respect to 100 parts by weight of the base polymer.

前記放射線硬化型粘着剤には、紫外線などにより硬化させる場合には光重合開始剤を含有させる。光重合開始剤としては、例えば、4−(2−ヒドロキシエトキシ)フェニル(2−ヒドロキシ−2−プロピル)ケトン、α−ヒドロキシ−α,α’−ジメチルアセトフェノン、2−メチル−2−ヒドロキシプロピオフェノン、1−ヒドロキシシクロヘキシルフェニルケトンなどのα−ケトール系化合物;メトキシアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフエノン、2,2−ジエトキシアセトフェノン、2−メチル−1−[4−(メチルチオ)−フェニル]−2−モルホリノプロパン−1などのアセトフェノン系化合物;ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、アニソインメチルエーテルなどのベンゾインエーテル系化合物;ベンジルジメチルケタールなどのケタール系化合物;2−ナフタレンスルホニルクロリドなどの芳香族スルホニルクロリド系化合物;1−フェノン−1,1―プロパンジオン−2−(o−エトキシカルボニル)オキシムなどの光活性オキシム系化合物;ベンゾフェノン、ベンゾイル安息香酸、3,3’−ジメチル−4−メトキシベンゾフェノンなどのベンゾフェノン系化合物;チオキサンソン、2−クロロチオキサンソン、2−メチルチオキサンソン、2,4−ジメチルチオキサンソン、イソプロピルチオキサンソン、2,4−ジクロロチオキサンソン、2,4−ジエチルチオキサンソン、2,4−ジイソプロピルチオキサンソンなどのチオキサンソン系化合物;カンファーキノン;ハロゲン化ケトン;アシルホスフィノキシド;アシルホスフォナートなどが挙げられる。光重合開始剤の配合量は、粘着剤を構成するアクリル系ポリマーなどのベースポリマー100重量部に対して、例えば0.05〜20重量部程度である。 The radiation curable pressure-sensitive adhesive contains a photopolymerization initiator when cured by ultraviolet rays or the like. Examples of the photopolymerization initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, α-hydroxy-α, α′-dimethylacetophenone, 2-methyl-2-hydroxypropio Α-ketol compounds such as phenone and 1-hydroxycyclohexyl phenyl ketone; methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1- [4- ( Acetophenone compounds such as methylthio) -phenyl] -2-morpholinopropane-1; benzoin ether compounds such as benzoin ethyl ether, benzoin isopropyl ether and anisoin methyl ether; ketal compounds such as benzyldimethyl ketal; 2-naphthalenesulfo Aromatic sulfonyl chloride compounds such as luchloride; Photoactive oxime compounds such as 1-phenone-1,1-propanedione-2- (o-ethoxycarbonyl) oxime; benzophenone, benzoylbenzoic acid, 3,3′-dimethyl Benzophenone compounds such as -4-methoxybenzophenone; thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2 Thioxanthone compounds such as 1,4-diethylthioxanthone and 2,4-diisopropylthioxanthone; camphorquinone; halogenated ketone; acyl phosphinoxide; acyl phosphonate. The compounding quantity of a photoinitiator is about 0.05-20 weight part with respect to 100 weight part of base polymers, such as an acryl-type polymer which comprises an adhesive.

また放射線硬化型粘着剤としては、例えば、特開昭60−196956号公報に開示されている、不飽和結合を2個以上有する付加重合性化合物、エポキシ基を有するアルコキシシランなどの光重合性化合物と、カルボニル化合物、有機硫黄化合物、過酸化物、アミン、オニウム塩系化合物などの光重合開始剤とを含有するゴム系粘着剤やアクリル系粘着剤などが挙げられる。 Examples of the radiation curable pressure-sensitive adhesive include photopolymerizable compounds such as an addition polymerizable compound having two or more unsaturated bonds and an alkoxysilane having an epoxy group disclosed in JP-A-60-196956. And rubber-based pressure-sensitive adhesives and acrylic pressure-sensitive adhesives containing photopolymerization initiators such as carbonyl compounds, organic sulfur compounds, peroxides, amines, and onium salt-based compounds.

前記放射線硬化型の粘着剤層12中には、必要に応じて、放射線照射により着色する化合物を含有させることもできる。放射線照射により、着色する化合物を粘着剤層12に含ませることによって、放射線照射された部分のみを着色することができる。放射線照射により着色する化合物は、放射線照射前には無色又は淡色であるが、放射線照射により有色となる化合物であり、例えば、ロイコ染料などが挙げられる。放射線照射により着色する化合物の使用割合は、適宜設定できる。 The radiation curable pressure-sensitive adhesive layer 12 may contain a compound that is colored by radiation irradiation, if necessary. By including a compound to be colored in the pressure-sensitive adhesive layer 12 by irradiation with radiation, only the irradiated portion can be colored. The compound that is colored by irradiation with radiation is a colorless or light color compound before irradiation with radiation, but becomes a color by irradiation with radiation, and examples thereof include leuco dyes. The use ratio of the compound colored by radiation irradiation can be set as appropriate.

粘着剤層12の厚さは、特に限定されないが、チップ切断面の欠け防止やフィルム状接着剤3の固定保持の両立性などの点よりは、1〜50μm程度であるのが好ましい。好ましくは2〜30μm、更には5〜25μmが好ましい。 The thickness of the pressure-sensitive adhesive layer 12 is not particularly limited, but is preferably about 1 to 50 μm from the viewpoint of preventing chipping of the chip cut surface and compatibility of fixing and holding the film adhesive 3. Preferably it is 2-30 micrometers, Furthermore, 5-25 micrometers is preferable.

フィルム状接着剤付きダイシングテープ10のフィルム状接着剤3は、セパレータにより保護されていることが好ましい(図示せず)。セパレータは、実用に供するまでフィルム状接着剤3を保護する保護材としての機能を有している。セパレータはフィルム状接着剤3上にワークを貼着する際に剥がされる。セパレータとしては、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンや、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤などの剥離剤により表面コートされたプラスチックフィルムや紙なども使用可能である。 The film adhesive 3 of the dicing tape 10 with a film adhesive is preferably protected by a separator (not shown). The separator has a function as a protective material for protecting the film adhesive 3 until it is put into practical use. The separator is peeled off when the workpiece is stuck on the film adhesive 3. As the separator, it is also possible to use polyethylene terephthalate (PET), polyethylene, polypropylene, a plastic film or paper whose surface is coated with a release agent such as a fluorine release agent or a long-chain alkyl acrylate release agent.

フィルム状接着剤付きダイシングテープ10は、通常の方法で製造できる。例えば、ダイシングテープ1の粘着剤層12とフィルム状接着剤3とを貼り合わせることで、フィルム状接着剤付きダイシングテープ10を製造できる。 The dicing tape 10 with a film adhesive can be manufactured by a normal method. For example, the dicing tape 10 with a film adhesive can be manufactured by bonding the adhesive layer 12 of the dicing tape 1 and the film adhesive 3 together.

剥離温度25℃、剥離速度300mm/minの条件下で、フィルム状接着剤3をダイシングテープ1から引き剥がしたときの剥離力が0.01〜3.00N/20mmであることが好ましい。0.01N/20mm未満であると、ダイシング時にチップ飛びが発生するおそれがある。一方、3.00N/20mmを超えると、ピックアップが困難になる傾向がある。 It is preferable that the peeling force when the film-like adhesive 3 is peeled off from the dicing tape 1 is 0.01 to 3.00 N / 20 mm under the conditions of a peeling temperature of 25 ° C. and a peeling speed of 300 mm / min. If it is less than 0.01 N / 20 mm, there is a risk of chip jumping during dicing. On the other hand, if it exceeds 3.00 N / 20 mm, the pickup tends to be difficult.

[半導体装置の製造方法]
半導体装置の製造方法について説明する。
[Method for Manufacturing Semiconductor Device]
A method for manufacturing a semiconductor device will be described.

図4に示すように、半導体ウエハ4にフィルム状接着剤付きダイシングテープ10を圧着する。半導体ウエハ4としては、シリコンウエハ、シリコンカーバイドウエハ、化合物半導体ウエハなどが挙げられる。化合物半導体ウエハとしては、窒化ガリウムウエハなどが挙げられる。 As shown in FIG. 4, a dicing tape 10 with a film adhesive is pressure-bonded to the semiconductor wafer 4. Examples of the semiconductor wafer 4 include a silicon wafer, a silicon carbide wafer, and a compound semiconductor wafer. Examples of compound semiconductor wafers include gallium nitride wafers.

圧着方法としては、例えば、圧着ロールなどの押圧手段により押圧する方法などが挙げられる。 Examples of the crimping method include a method of pressing with a pressing means such as a crimping roll.

圧着温度(貼り付け温度)は、35℃以上が好ましく、50℃以上がより好ましい。圧着温度の上限は低い方が好ましく、好ましくは80℃以下、より好ましくは50℃以下、さらに好ましくは45℃以下である。低温で圧着することにより、半導体ウエハ4への熱影響を防止することが可能で、半導体ウエハ4の反りを抑制できる。 The pressing temperature (sticking temperature) is preferably 35 ° C. or higher, and more preferably 50 ° C. or higher. The upper limit of the pressure bonding temperature is preferably lower, preferably 80 ° C. or lower, more preferably 50 ° C. or lower, and further preferably 45 ° C. or lower. By crimping at a low temperature, it is possible to prevent the thermal effect on the semiconductor wafer 4 and to suppress warping of the semiconductor wafer 4.

また、圧力は、1×10Pa〜1×10Paであることが好ましく、2×10Pa〜8×10Paであることがより好ましい。 Moreover, it is preferable that it is 1 * 10 < 5 > Pa-1 * 10 < 7 > Pa, and it is more preferable that a pressure is 2 * 10 < 5 > Pa-8 * 10 < 6 > Pa.

次に、図5に示すように、半導体ウエハ4のダイシングを行う。つまり、半導体ウエハ4を所定のサイズに切断して個片化し、半導体チップ5を切り出す。ダイシングは、常法に従い行われる。また、本工程では、例えばフィルム状接着剤付きダイシングテープ10まで切込みを行なうフルカットと呼ばれる切断方式などを採用できる。本工程で用いるダイシング装置としては特に限定されず、従来公知のものを用いることができる。また、半導体ウエハ4は、フィルム状接着剤付きダイシングテープ10により接着固定されているので、チップ欠けやチップ飛びを抑制できると共に、半導体ウエハ4の破損も抑制できる。 Next, as shown in FIG. 5, the semiconductor wafer 4 is diced. That is, the semiconductor wafer 4 is cut into a predetermined size and separated into pieces, and the semiconductor chip 5 is cut out. Dicing is performed according to a conventional method. Further, in this step, for example, a cutting method called full cut in which cutting is performed up to the dicing tape 10 with a film adhesive can be employed. It does not specifically limit as a dicing apparatus used at this process, A conventionally well-known thing can be used. Moreover, since the semiconductor wafer 4 is bonded and fixed by the dicing tape 10 with a film adhesive, chip chipping and chip jump can be suppressed, and damage to the semiconductor wafer 4 can also be suppressed.

フィルム状接着剤付きダイシングテープ10に接着固定された半導体チップ5を剥離する為に、半導体チップ5のピックアップを行う。ピックアップの方法としては特に限定されず、従来公知の種々の方法を採用できる。例えば、個々の半導体チップ5をフィルム状接着剤付きダイシングテープ10側からニードルによって突き上げ、突き上げられた半導体チップ5をピックアップ装置によってピックアップする方法などが挙げられる。 The semiconductor chip 5 is picked up in order to peel off the semiconductor chip 5 bonded and fixed to the dicing tape with film adhesive 10. The pickup method is not particularly limited, and various conventionally known methods can be employed. For example, there is a method in which each semiconductor chip 5 is pushed up by a needle from the dicing tape 10 with film adhesive, and the pushed-up semiconductor chip 5 is picked up by a pickup device.

ここでピックアップは、粘着剤層12が紫外線硬化型である場合、該粘着剤層12に紫外線を照射した後に行う。これにより、粘着剤層12のフィルム状接着剤3に対する粘着力が低下し、半導体チップ5の剥離が容易になる。その結果、半導体チップ5を損傷させることなくピックアップが可能となる。紫外線照射の際の照射強度、照射時間などの条件は特に限定されず、適宜必要に応じて設定すればよい。 Here, when the pressure-sensitive adhesive layer 12 is an ultraviolet curable type, the pickup is performed after the pressure-sensitive adhesive layer 12 is irradiated with ultraviolet rays. Thereby, the adhesive force with respect to the film adhesive 3 of the adhesive layer 12 falls, and peeling of the semiconductor chip 5 becomes easy. As a result, the pickup can be performed without damaging the semiconductor chip 5. Conditions such as irradiation intensity and irradiation time at the time of ultraviolet irradiation are not particularly limited, and may be set as necessary.

図6に示すように、ピックアップした半導体チップ5を、フィルム状接着剤3を介して被着体6に接着固定して、半導体チップ付き被着体61を得る。半導体チップ付き被着体61は、被着体6、被着体6上に配置されたフィルム状接着剤3、及びフィルム状接着剤3上に配置された半導体チップ5を備える。 As shown in FIG. 6, the picked-up semiconductor chip 5 is bonded and fixed to the adherend 6 via the film adhesive 3 to obtain an adherend 61 with a semiconductor chip. The adherend 61 with a semiconductor chip includes an adherend 6, a film adhesive 3 disposed on the adherend 6, and a semiconductor chip 5 disposed on the film adhesive 3.

ダイアタッチ温度は、好ましくは80℃以上、より好ましくは100℃以上、さらに好ましくは130℃以上である。また、ダイアタッチ温度は、好ましくは170℃以下、より好ましくは160℃以下である。170℃以下とすることにより、ダイアタッチ後の反りの発生を防止できる。 The die attach temperature is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and further preferably 130 ° C. or higher. The die attach temperature is preferably 170 ° C. or lower, more preferably 160 ° C. or lower. By setting the temperature to 170 ° C. or lower, it is possible to prevent warping after die attachment.

続いて、半導体チップ付き被着体61を加熱することによりフィルム状接着剤3を熱硬化させて、半導体チップ5と被着体6とを固着させる。半導体チップ付き被着体61を加圧下で加熱することによりフィルム状接着剤3を熱硬化させることが好ましい。加圧下でフィルム状接着剤3を熱硬化させることにより、フィルム状接着剤3と被着体6との間に存在するボイドを消滅させることが可能で、フィルム状接着剤3が被着体6と接触する面積を確保できる。 Subsequently, by heating the adherend 61 with a semiconductor chip, the film adhesive 3 is thermally cured, and the semiconductor chip 5 and the adherend 6 are fixed. It is preferable to thermally cure the film adhesive 3 by heating the adherend 61 with a semiconductor chip under pressure. By thermally curing the film adhesive 3 under pressure, voids existing between the film adhesive 3 and the adherend 6 can be eliminated, and the film adhesive 3 is adhered to the adherend 6. The area in contact with can be secured.

加圧下で加熱する方法としては、例えば、不活性ガスが充填されたチャンバー内に配置された半導体チップ付き被着体61を加熱する方法などが挙げられる。
加圧雰囲気の圧力は、好ましくは0.5kg/cm(4.9×10−2MPa)以上、より好ましくは1kg/cm(9.8×10−2MPa)以上、さらに好ましくは5kg/cm(4.9×10−1MPa)以上である。0.5kg/cm以上であると、フィルム状接着剤3と被着体6との間に存在するボイドを容易に消滅させることができる。加圧雰囲気の圧力は、好ましくは20kg/cm(1.96MPa)以下、より好ましくは18kg/cm(1.77MPa)以下、さらに好ましくは15kg/cm(1.47MPa)以下である。20kg/cm以下であると、過度な加圧によるフィルム状接着剤3のはみ出しを抑制できる。
Examples of a method of heating under pressure include a method of heating the adherend 61 with a semiconductor chip disposed in a chamber filled with an inert gas.
The pressure of the pressurized atmosphere is preferably 0.5 kg / cm 2 (4.9 × 10 −2 MPa) or more, more preferably 1 kg / cm 2 (9.8 × 10 −2 MPa) or more, and further preferably 5 kg. / Cm 2 (4.9 × 10 −1 MPa) or more. If it is 0.5 kg / cm 2 or more, voids existing between the film adhesive 3 and the adherend 6 can be easily eliminated. The pressure of the pressurized atmosphere is preferably 20kg / cm 2 (1.96MPa), more preferably 18kg / cm 2 (1.77MPa) or less, more preferably not more than 15kg / cm 2 (1.47MPa). The protrusion of the film adhesive 3 due to excessive pressurization can be suppressed as it is 20 kg / cm 2 or less.

加圧下で加熱する際の加熱温度は、好ましくは80℃以上、より好ましくは100℃以上、さらに好ましくは120℃以上、特に好ましくは170℃以上である。80℃以上であると、フィルム状接着剤3を適度な硬さとすることが可能で、加圧キュアによりボイドを効果的に消失させることができる。
加熱温度は、好ましくは260℃以下、より好ましくは200℃以下、より好ましくは180℃以下である。260℃以下であると、硬化前のフィルム状接着剤3の分解を防ぐことができる。
The heating temperature when heating under pressure is preferably 80 ° C or higher, more preferably 100 ° C or higher, still more preferably 120 ° C or higher, and particularly preferably 170 ° C or higher. When the temperature is 80 ° C. or higher, the film-like adhesive 3 can have an appropriate hardness, and voids can be effectively eliminated by pressure curing.
The heating temperature is preferably 260 ° C. or lower, more preferably 200 ° C. or lower, more preferably 180 ° C. or lower. It can prevent decomposition | disassembly of the film adhesive 3 before hardening as it is 260 degrees C or less.

加熱時間は、好ましくは0.1時間以上、より好ましくは0.2時間以上、さらに好ましくは0.5時間以上である。0.1時間以上であると、加圧の効果を充分に得ることができる。加熱時間は、好ましくは24時間以下、より好ましくは3時間以下、さらに好ましくは1時間以下である。 The heating time is preferably 0.1 hour or longer, more preferably 0.2 hour or longer, and further preferably 0.5 hour or longer. When it is 0.1 hour or longer, the effect of pressurization can be sufficiently obtained. The heating time is preferably 24 hours or less, more preferably 3 hours or less, and even more preferably 1 hour or less.

次に、被着体6の端子部(インナーリード)の先端と半導体チップ5上の電極パッド(図示しない)とをボンディングワイヤー7で電気的に接続するワイヤーボンディング工程を行う。ボンディングワイヤー7としては、例えば金線、アルミニウム線又は銅線などが用いられる。ワイヤーボンディングを行う際の温度は、好ましくは80℃以上、より好ましくは120℃以上であり、該温度は、好ましくは250℃以下、より好ましくは175℃以下である。また、その加熱時間は数秒〜数分間(例えば、1秒〜1分間)行われる。結線は、前記温度範囲内となる様に加熱された状態で、超音波による振動エネルギーと印加加圧による圧着エネルギーの併用により行われる。 Next, a wire bonding step of electrically connecting the tip of the terminal portion (inner lead) of the adherend 6 and an electrode pad (not shown) on the semiconductor chip 5 with the bonding wire 7 is performed. As the bonding wire 7, for example, a gold wire, an aluminum wire or a copper wire is used. The temperature during wire bonding is preferably 80 ° C. or higher, more preferably 120 ° C. or higher, and the temperature is preferably 250 ° C. or lower, more preferably 175 ° C. or lower. The heating time is several seconds to several minutes (for example, 1 second to 1 minute). The connection is performed by a combination of vibration energy by ultrasonic waves and pressure energy by pressurization while being heated so as to be within the temperature range.

続いて、封止樹脂8により半導体チップ5を封止する封止工程を行う。本工程は、被着体6に搭載された半導体チップ5やボンディングワイヤー7を保護する為に行われる。本工程は、封止用の樹脂を金型で成型することにより行う。封止樹脂8としては、例えばエポキシ系の樹脂を使用する。樹脂封止の際の加熱温度は、好ましくは165℃以上、より好ましくは170℃以上であり、該加熱温度は、好ましくは185℃以下、より好ましくは180℃以下である。 Subsequently, a sealing step for sealing the semiconductor chip 5 with the sealing resin 8 is performed. This step is performed to protect the semiconductor chip 5 and the bonding wire 7 mounted on the adherend 6. This step is performed by molding a sealing resin with a mold. As the sealing resin 8, for example, an epoxy resin is used. The heating temperature at the time of resin sealing is preferably 165 ° C. or higher, more preferably 170 ° C. or higher, and the heating temperature is preferably 185 ° C. or lower, more preferably 180 ° C. or lower.

必要に応じて、封止物を更に加熱をしてもよい(後硬化工程)。これにより、封止工程で硬化不足の封止樹脂8を完全に硬化できる。加熱温度は適宜設定できる。 If necessary, the sealed material may be further heated (post-curing step). Thereby, the sealing resin 8 which is insufficiently cured in the sealing process can be completely cured. The heating temperature can be set as appropriate.

以上のとおり、実施形態1では、フィルム状接着剤3を介して、半導体チップ5を被着体6上にダイボンドする工程と、半導体チップ5を被着体6上にダイボンドする工程の後に、フィルム状接着剤3を熱硬化させる工程とを含む方法により、半導体装置を製造する。 As described above, in the first embodiment, the film is formed after the step of die-bonding the semiconductor chip 5 on the adherend 6 and the step of die-bonding the semiconductor chip 5 on the adherend 6 via the film adhesive 3. A semiconductor device is manufactured by a method including a step of thermally curing the adhesive 3.

より具体的には、実施形態1の方法は、フィルム状接着剤付きダイシングテープ10のフィルム状接着剤3上に半導体ウエハ4を配置する工程と、フィルム状接着剤3上に配置された半導体ウエハ4をダイシングして半導体チップ5を形成する工程と、半導体チップ5をフィルム状接着剤3とともにピックアップする工程と、フィルム状接着剤3を介して、半導体チップ5を被着体6上にダイボンドする工程と、半導体チップ5を被着体6上にダイボンドする工程の後に、フィルム状接着剤3を熱硬化させる工程とを含む。 More specifically, the method of Embodiment 1 includes the steps of placing the semiconductor wafer 4 on the film adhesive 3 of the dicing tape 10 with film adhesive, and the semiconductor wafer disposed on the film adhesive 3. The semiconductor chip 5 is die-bonded onto the adherend 6 via the step of dicing 4 to form the semiconductor chip 5, the step of picking up the semiconductor chip 5 together with the film adhesive 3, and the film adhesive 3. After the step and the step of die-bonding the semiconductor chip 5 on the adherend 6, the step of thermally curing the film adhesive 3 is included.

以上、実施形態1について説明した。 The first embodiment has been described above.

[実施形態2]
(フィルム状接着剤)
実施形態2は、フィルム状接着剤3の組成において実施形態1と異なる。
[Embodiment 2]
(Film adhesive)
The second embodiment is different from the first embodiment in the composition of the film adhesive 3.

樹脂成分について、実施形態2のフィルム状接着剤3は、エポキシ樹脂、高分子量アクリル樹脂、及びエポキシ基と反応可能な官能基を含む低分子量アクリル樹脂を含む。実施形態2では、低分子量アクリル樹脂がエポキシ樹脂の硬化剤として機能することが可能である。したがって、実施形態2では、フェノール樹脂を配合しなくともよい。 Regarding the resin component, the film adhesive 3 of Embodiment 2 includes an epoxy resin, a high molecular weight acrylic resin, and a low molecular weight acrylic resin containing a functional group capable of reacting with an epoxy group. In Embodiment 2, the low molecular weight acrylic resin can function as a curing agent for the epoxy resin. Therefore, in Embodiment 2, it is not necessary to add a phenol resin.

好適なエポキシ樹脂は、実施形態1と同様である。 A suitable epoxy resin is the same as in the first embodiment.

フィルム状接着剤3中のエポキシ樹脂の含有量は、好ましくは1重量%以上、より好ましくは2重量%以上、さらに好ましくは3重量%以上である。1重量%以上であると、好適な硬化物を得られる。また、エポキシ樹脂の含有量は、好ましくは15重量%以下、より好ましくは10重量%以下、さらに好ましくは7重量%以下である。15重量%以下であると、好適な導電性が得られる。 The content of the epoxy resin in the film adhesive 3 is preferably 1% by weight or more, more preferably 2% by weight or more, and further preferably 3% by weight or more. A suitable hardened | cured material can be obtained as it is 1 weight% or more. The content of the epoxy resin is preferably 15% by weight or less, more preferably 10% by weight or less, and still more preferably 7% by weight or less. Suitable electroconductivity is acquired as it is 15 weight% or less.

好適な高分子量アクリル樹脂は、実施形態1と同様である。 A suitable high molecular weight acrylic resin is the same as in the first embodiment.

低分子量アクリル樹脂は、エポキシ基と反応可能な官能基を含む。エポキシ基と反応可能な官能基としては、例えば、カルボキシル基、ヒドロキシル基などが挙げられる。なかでも、エポキシ基との反応性が高いという理由から、カルボキシル基が好ましい。 The low molecular weight acrylic resin contains a functional group capable of reacting with an epoxy group. Examples of the functional group capable of reacting with the epoxy group include a carboxyl group and a hydroxyl group. Of these, a carboxyl group is preferred because of its high reactivity with an epoxy group.

低分子量アクリル樹脂の好適な酸価、酸当量、重量平均分子量などは、実施形態1と同様である。 The suitable acid value, acid equivalent, weight average molecular weight, etc. of the low molecular weight acrylic resin are the same as those in the first embodiment.

フィルム状接着剤3中のアクリル樹脂の含有量は、好ましくは1重量%以上、より好ましくは5重量%以上、さらに好ましくは10重量%以上、特に好ましくは12重量%以上である。1重量%以上であると、良好なフィルム形成性を得られる。一方、アクリル樹脂の含有量は、好ましくは20重量%以下、より好ましくは17重量%以下、さらに好ましくは15重量%以下である。20重量%以下であると、好適な導電性が得られる。 The content of the acrylic resin in the film adhesive 3 is preferably 1% by weight or more, more preferably 5% by weight or more, still more preferably 10% by weight or more, and particularly preferably 12% by weight or more. When it is 1% by weight or more, good film formability can be obtained. On the other hand, the content of the acrylic resin is preferably 20% by weight or less, more preferably 17% by weight or less, and still more preferably 15% by weight or less. Suitable electroconductivity is acquired as it is 20 weight% or less.

アクリル樹脂100重量%中の高分子量アクリル樹脂の含有量は、好ましくは20重量%以上、より好ましくは30重量%以上、さらに好ましくは40重量%以上である。20重量%以上であると、ダイアタッチ時の温度でフィルム状接着剤3が過度に溶融することを防ぐことが可能で、フィルム状接着剤3のはみ出しを抑制できる。一方、アクリル樹脂100重量%中の高分子量アクリル樹脂の含有量は、好ましくは98重量%以下、より好ましくは80重量%以下、さらに好ましくは60重量%以下である。98重量%以下であると、好適な導電性が得られる。 The content of the high molecular weight acrylic resin in 100% by weight of the acrylic resin is preferably 20% by weight or more, more preferably 30% by weight or more, and further preferably 40% by weight or more. When it is 20% by weight or more, it is possible to prevent the film adhesive 3 from being excessively melted at the temperature at the time of die attachment, and the protrusion of the film adhesive 3 can be suppressed. On the other hand, the content of the high molecular weight acrylic resin in 100% by weight of the acrylic resin is preferably 98% by weight or less, more preferably 80% by weight or less, and still more preferably 60% by weight or less. Suitable electroconductivity is acquired as it is 98 weight% or less.

フィルム状接着剤3は、硬化触媒を含むことが好ましい。好適な硬化触媒は実施形態1と同様である。硬化触媒の好適な含有量は実施形態1と同様である。 The film adhesive 3 preferably contains a curing catalyst. A suitable curing catalyst is the same as in the first embodiment. The preferred content of the curing catalyst is the same as in the first embodiment.

フィルム状接着剤3は、導電性粒子を含むことが好ましい。好適な導電性粒子は実施形態1と同様である。導電性粒子の好適な含有量は実施形態1と同様である。 The film adhesive 3 preferably contains conductive particles. Suitable conductive particles are the same as those in the first embodiment. The preferred content of the conductive particles is the same as in the first embodiment.

以上、実施形態2について説明した。 The second embodiment has been described above.

以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, this invention is not limited to a following example, unless the summary is exceeded.

実施例で使用した成分について説明する。
テイサンレジン SG−70L:ナガセケムテックス(株)製のテイサンレジン SG−70L(カルボキシル基及びヒドロキシル基を含むアクリル共重合体、Mw:90万、酸価:5mgKOH/g、酸当量:11222g/eq.)
パラクロン W−248E:根上工業(株)製のパラクロン W−248E(ヒドロキシル基を含むアクリル樹脂、Mw:45万、酸価:8.5mgKOH/g、酸当量:6601g/eq.)
アルフォン UC−3510:東亜合成(株)製のアルフォン UC−3510(カルボキシル基を含むアクリル樹脂、Mw:2000、酸価:70mgKOH/g、酸当量:802g/eq.)
アルフォン UC−3080:東亜合成(株)製のアルフォン UC−3080(カルボキシル基を含むアクリル樹脂、Mw:14000、酸価:230mgKOH/g、酸当量:244g/eq.)
JER828:三菱化学(株)製のJER828(ビスフェノール型骨格を持つエポキシ樹脂、エポキン当量184g/eq.〜194g/eq.)
EXA−4850−150:DIC(株)製のEPICLON EXA−4850−150(ビスフェノール型骨格を持つエポキシ樹脂、エポキシ当量450g/eq.)
JER1001:三菱化学(株)製のJER1001(ビスフェノール型骨格を持つエポキシ樹脂、エポキシ当量450g/eq.〜500g/eq.)
JER1004:三菱化学(株)製のJER1004(ビスフェノール型骨格を持つエポキシ樹脂、エポキシ当量875g/eq.〜975g/eq.)
HP−4032D:DIC(株)製のEPICLON HP−4032D(ナフタレン型骨格を持つエポキシ樹脂、エポキシ当量136g/eq.〜148g/eq.)
EPPN−501HY:日本化薬(株)のEPPN−501HY(多官能型骨格を持つエポキシ樹脂、エポキシ当量163g/eq.〜175g/eq.)
MEH−7851SS:明和化成(株)製のMEH−7851SS(フェノール樹脂、水酸基当量201g/eq.〜205g/eq.)
MEH−7851−4H:明和化成(株)製のMEH−7851−4H(フェノール樹脂、水酸基当量235g/eq.〜245g/eq.)
MEH−8000H:明和化成(株)製のMEH−8000H(フェノール樹脂、水酸基当量139g/eq.〜143g/eq.)
TPP−K:北興化学(株)製のTPP−K(テトラフェニルホスホニウムテトラフェニルボレート)
1200YP:三井金属鉱業(株)製の1200YP(フレーク状銅粉、平均粒径3.5μm、アスペクト比:10、比重8.9)
EHD:三井金属鉱業(株)製のEHD(銀粉、球状、平均粒径0.7μm、比重10.5)
The components used in the examples will be described.
Teisan Resin SG-70L: Teisan Resin SG-70L manufactured by Nagase ChemteX Corporation (acrylic copolymer containing carboxyl group and hydroxyl group, Mw: 900,000, acid value: 5 mg KOH / g, acid equivalent: 11222 g / eq .)
Pararaclon W-248E: Paraclone W-248E manufactured by Negami Kogyo Co., Ltd. (acrylic resin containing hydroxyl group, Mw: 450,000, acid value: 8.5 mgKOH / g, acid equivalent: 6601 g / eq.)
Alfon UC-3510: Alfon UC-3510 manufactured by Toa Gosei Co., Ltd. (acrylic resin containing carboxyl group, Mw: 2000, acid value: 70 mg KOH / g, acid equivalent: 802 g / eq.)
Alfon UC-3080: Alfon UC-3080 manufactured by Toa Gosei Co., Ltd. (acrylic resin containing carboxyl group, Mw: 14000, acid value: 230 mgKOH / g, acid equivalent: 244 g / eq.)
JER828: JER828 manufactured by Mitsubishi Chemical Corporation (epoxy resin having a bisphenol type skeleton, Epokin equivalent 184 g / eq. To 194 g / eq.)
EXA-4850-150: EPICLON EXA-4850-150 (epoxy resin having a bisphenol type skeleton, epoxy equivalent 450 g / eq.) Manufactured by DIC Corporation
JER1001: JER1001 manufactured by Mitsubishi Chemical Corporation (epoxy resin having a bisphenol-type skeleton, epoxy equivalent of 450 g / eq. To 500 g / eq.)
JER1004: JER1004 manufactured by Mitsubishi Chemical Corporation (epoxy resin having a bisphenol-type skeleton, epoxy equivalent of 875 g / eq. To 975 g / eq.)
HP-4032D: EPICLON HP-4032D manufactured by DIC Corporation (epoxy resin having a naphthalene-type skeleton, epoxy equivalent: 136 g / eq. To 148 g / eq.)
EPPN-501HY: Nippon Kayaku Co., Ltd. EPPN-501HY (an epoxy resin having a polyfunctional skeleton, epoxy equivalent of 163 g / eq. To 175 g / eq.)
MEH-7851SS: MEH-7851SS (phenol resin, hydroxyl group equivalent 201 g / eq. To 205 g / eq.) Manufactured by Meiwa Kasei Co., Ltd.
MEH-7851-4H: MEH-7851-4H (phenol resin, hydroxyl group equivalent: 235 g / eq. To 245 g / eq.) Manufactured by Meiwa Kasei Co., Ltd.
MEH-8000H: MEH-8000H manufactured by Meiwa Kasei Co., Ltd. (phenol resin, hydroxyl group equivalent of 139 g / eq. To 143 g / eq.)
TPP-K: TPP-K (tetraphenylphosphonium tetraphenylborate) manufactured by Hokuko Chemical Co., Ltd.
1200YP: 1200YP manufactured by Mitsui Mining & Smelting Co., Ltd. (flaked copper powder, average particle size 3.5 μm, aspect ratio: 10, specific gravity 8.9)
EHD: EHD manufactured by Mitsui Mining & Smelting Co., Ltd. (silver powder, spherical, average particle size 0.7 μm, specific gravity 10.5)

[フィルム状接着剤及びフィルム状接着剤付きダイシングテープの作製]
(実施例1〜7及び比較例1)
表1に記載の配合比に従い、表1に記載の各成分及び溶媒(メチルエチルケトン)を、ハイブリッドミキサー(キーエンス製 HM−500)の攪拌釜に入れ、攪拌モード、3分で攪拌・混合した。得られたワニスを、離型処理フィルム(三菱樹脂(株)製のMRA50)にダイコーターにて塗布した後、乾燥させて、厚み30μmのフィルム状接着剤を作製した。
[Production of film adhesive and dicing tape with film adhesive]
(Examples 1-7 and Comparative Example 1)
According to the mixing ratio shown in Table 1, each component and solvent (methyl ethyl ketone) shown in Table 1 were placed in a stirring vessel of a hybrid mixer (HM-500 manufactured by Keyence), and stirred and mixed in a stirring mode for 3 minutes. The obtained varnish was applied to a release treatment film (MRA50 manufactured by Mitsubishi Resin Co., Ltd.) with a die coater and then dried to produce a film adhesive having a thickness of 30 μm.

得られたフィルム状接着剤を直径230mmの円形に切り出し、ダイシングテープ(日東電工(株)製のP2130G)の粘着剤層上に25℃で貼り付けて、フィルム状接着剤付きダイシングテープを作製した。 The obtained film adhesive was cut into a circle having a diameter of 230 mm and pasted on a pressure-sensitive adhesive layer of a dicing tape (P2130G manufactured by Nitto Denko Corporation) at 25 ° C. to prepare a dicing tape with a film adhesive. .

[ミラーシリコンウエハの作製]
バックグラインダー((株)DISCO製のDFG−8560)を用いて、シリコンウエハ(信越化学工業(株)製、厚み0.6mm)の厚みが0.1mmとなるように研削し、ミラーシリコンウエハを作製した。
[Production of mirror silicon wafer]
Using a back grinder (DFG-8560 manufactured by DISCO Corporation), the silicon wafer (manufactured by Shin-Etsu Chemical Co., Ltd., thickness 0.6 mm) is ground so that the thickness becomes 0.1 mm. Produced.

[評価]
得られたフィルム状接着剤、フィルム状接着剤付きダイシングテープについて、以下の評価を行った。結果を表1に示す。
[Evaluation]
The following evaluation was performed about the obtained film adhesive and the dicing tape with a film adhesive. The results are shown in Table 1.

(熱硬化後の150℃での貯蔵弾性率)
フィルム状接着剤を厚みが500μmになるまでフィルム状接着剤を重ね合わせた。その後、140℃で1時間加熱し、さらに、200℃で1時間加熱して熱硬化させた。次に、長さ22.5mm(測定長さ)、幅10mmの短冊状にカッターナイフで切り出し、固体粘弾性測定装置(RSAII、レオメトリックサイエンティフィック(株)製)を用いて、−50℃〜300℃における貯蔵弾性率を測定した。測定条件は、周波数1Hz、昇温速度10℃/minとした。その際の150℃での値を熱硬化後の150℃での貯蔵弾性率の測定値とした。
(Storage modulus at 150 ° C after thermosetting)
The film adhesive was laminated until the thickness became 500 μm. Then, it heated at 140 degreeC for 1 hour, and also heat-cured by heating at 200 degreeC for 1 hour. Next, it is cut into a strip shape having a length of 22.5 mm (measurement length) and a width of 10 mm with a cutter knife, and using a solid viscoelasticity measuring device (RSAII, manufactured by Rheometric Scientific Co., Ltd.), -50 ° C The storage modulus at ˜300 ° C. was measured. The measurement conditions were a frequency of 1 Hz and a heating rate of 10 ° C./min. The value at 150 ° C. at that time was taken as the measured value of the storage elastic modulus at 150 ° C. after thermosetting.

(温度サイクル評価)
フィルム状接着剤付きダイシングテープのフィルム状接着剤面に、ミラーシリコンウエハを貼り合わせた。貼り合わせは、ウエハマウンター(日東精機製)MA−3000IIIを用い、貼り付け速度10mm/min、貼り付け温度70℃にて行なった。次に、ダイシングマシンでダイシングを行い、5mm×5mmのフィルム状接着剤付きチップを得た。その後、ダイボンダーで、フィルム状接着剤付きチップを銅製のリードフレーム(大日本印刷社製、製品名:QFN32,64)にダイアタッチした。ダイアタッチ条件は、温度:150℃、保持時間:0.5秒間、圧力:0.5MPaとした。その後、140℃で1時間保持した後、200℃で1時間加熱してフィルム状接着剤を熱硬化させて温度サイクル評価用のパッケージを得た。パッケージ10個を温度:−55℃〜150℃にて1000サイクルの熱サイクル試験を行なった。試験は、JEDEC規格 22−A104C 条件Hに準拠して行なった。
熱サイクル試験後に10個のパッケージを超音波顕微鏡にて観察し、チップの剥離が1個でも確認された場合を×と判定し、10個のパッケージ全てで剥離が確認されなかった場合を○と判定した。
(Temperature cycle evaluation)
A mirror silicon wafer was bonded to the film adhesive surface of the dicing tape with film adhesive. The bonding was performed using a wafer mounter (manufactured by Nitto Seiki) MA-3000III at a bonding speed of 10 mm / min and a bonding temperature of 70 ° C. Next, dicing was performed with a dicing machine to obtain a 5 mm × 5 mm chip with film adhesive. Thereafter, the chip with film adhesive was die-attached to a copper lead frame (Dai Nippon Printing Co., Ltd., product name: QFN32, 64) with a die bonder. The die attach conditions were as follows: temperature: 150 ° C., holding time: 0.5 seconds, pressure: 0.5 MPa. Then, after hold | maintaining at 140 degreeC for 1 hour, it heated at 200 degreeC for 1 hour, the film adhesive was thermosetted, and the package for temperature cycle evaluation was obtained. Ten packages were subjected to a heat cycle test of 1000 cycles at a temperature of −55 ° C. to 150 ° C. The test was conducted in accordance with JEDEC Standard 22-A104C Condition H.
After the thermal cycle test, 10 packages were observed with an ultrasonic microscope. When even one chip peeling was confirmed, it was judged as x, and when no peeling was confirmed in all 10 packages, Judged.

[総合判定]
以下の全ての条件を満たす場合を○と判定し、いずれかひとつでも満たさない場合を×と判定した。
条件(1):熱硬化後の150℃の貯蔵弾性率が、5MPa〜100MPaである。
条件(2):温度サイクル評価の判定結果が○である。
[Comprehensive judgment]
The case where all the following conditions were satisfied was determined as “good”, and the case where any one of the following conditions was not satisfied was determined as “poor”.
Condition (1): The storage elastic modulus at 150 ° C. after thermosetting is 5 MPa to 100 MPa.
Condition (2): The determination result of the temperature cycle evaluation is ◯.

Figure 2015129226
Figure 2015129226

10 フィルム状接着剤付きダイシングテープ
1 ダイシングテープ
11 基材
12 粘着剤層
3 フィルム状接着剤
4 半導体ウエハ
5 半導体チップ
6 被着体
61 半導体チップ付き被着体
7 ボンディングワイヤー
8 封止樹脂
DESCRIPTION OF SYMBOLS 10 Dicing tape 1 with a film adhesive Dicing tape 11 Base material 12 Adhesive layer 3 Film adhesive 4 Semiconductor wafer 5 Semiconductor chip 6 Adhering body 61 Adhering body with a semiconductor chip 7 Bonding wire 8 Sealing resin

Claims (12)

アクリル樹脂、エポキシ樹脂及び導電性粒子を含み、
前記導電性粒子は、アスペクト比が5以上のプレート状粒子を含み、
前記導電性粒子100重量%中の前記プレート状粒子の含有量が5重量%〜100重量%であり、
熱硬化後の150℃における貯蔵弾性率が5MPa〜100MPaである熱硬化型のフィルム状接着剤。
Including acrylic resin, epoxy resin and conductive particles,
The conductive particles include plate-like particles having an aspect ratio of 5 or more,
The content of the plate-like particles in 100% by weight of the conductive particles is 5% by weight to 100% by weight,
A thermosetting film adhesive having a storage elastic modulus at 150 ° C. of 5 to 100 MPa after thermosetting.
前記エポキシ樹脂がビスフェノール型骨格を有する請求項1に記載のフィルム状接着剤。 The film adhesive according to claim 1, wherein the epoxy resin has a bisphenol type skeleton. 前記エポキシ樹脂のエポキシ当量が180g/eq.〜3500g/eq.である請求項1又は2に記載のフィルム状接着剤。 The epoxy equivalent of the epoxy resin is 180 g / eq. ~ 3500 g / eq. The film adhesive according to claim 1 or 2. フェノール樹脂をさらに含み、
前記フェノール樹脂の水酸基当量が200g/eq.以上である請求項1〜3のいずれかに記載のフィルム状接着剤。
Further comprising a phenolic resin,
The phenol resin has a hydroxyl group equivalent of 200 g / eq. It is the above, The film adhesive in any one of Claims 1-3.
前記アクリル樹脂が、重量平均分子量が20万〜100万の高分子量アクリル樹脂を含む請求項1〜4のいずれかに記載のフィルム状接着剤。 The film adhesive according to any one of claims 1 to 4, wherein the acrylic resin contains a high molecular weight acrylic resin having a weight average molecular weight of 200,000 to 1,000,000. 前記アクリル樹脂が、重量平均分子量が500〜10万の低分子量アクリル樹脂を含み、
前記低分子量アクリル樹脂がエポキシ基と反応する官能基を含む請求項1〜5のいずれかに記載のフィルム状接着剤。
The acrylic resin includes a low molecular weight acrylic resin having a weight average molecular weight of 500 to 100,000,
The film adhesive in any one of Claims 1-5 in which the said low molecular weight acrylic resin contains the functional group which reacts with an epoxy group.
リン系触媒をさらに含む請求項1〜6のいずれかに記載のフィルム状接着剤。 The film adhesive according to any one of claims 1 to 6, further comprising a phosphorus catalyst. 請求項1〜7のいずれかに記載のフィルム状接着剤を介して、半導体チップを被着体上にダイボンドする工程と、
前記半導体チップを被着体上にダイボンドする工程の後に、前記フィルム状接着剤を熱硬化させる工程とを含む半導体装置の製造方法。
A step of die-bonding a semiconductor chip on an adherend through the film adhesive according to any one of claims 1 to 7,
And a step of thermosetting the film adhesive after the step of die-bonding the semiconductor chip onto an adherend.
請求項8に記載の製造方法により得られる半導体装置。 A semiconductor device obtained by the manufacturing method according to claim 8. ダイシングテープ、及び前記ダイシングテープ上に配置された熱硬化型のフィルム状接着剤を備え、
前記フィルム状接着剤は、アクリル樹脂、エポキシ樹脂及び導電性粒子を含み、
前記導電性粒子は、アスペクト比が5以上のプレート状粒子を含み、
前記導電性粒子100重量%中の前記プレート状粒子の含有量が5重量%〜100重量%であり、
前記フィルム状接着剤は、熱硬化後の150℃における貯蔵弾性率が5MPa〜100MPaであるフィルム状接着剤付きダイシングテープ。
A dicing tape, and a thermosetting film adhesive disposed on the dicing tape,
The film adhesive includes an acrylic resin, an epoxy resin and conductive particles,
The conductive particles include plate-like particles having an aspect ratio of 5 or more,
The content of the plate-like particles in 100% by weight of the conductive particles is 5% by weight to 100% by weight,
The said film adhesive is a dicing tape with a film adhesive whose storage elastic modulus in 150 degreeC after thermosetting is 5 MPa-100 MPa.
請求項10に記載のフィルム状接着剤付きダイシングテープの前記フィルム状接着剤上に半導体ウエハを配置する工程と、
前記フィルム状接着剤上に配置された前記半導体ウエハをダイシングして半導体チップを形成する工程と、
前記半導体チップを前記フィルム状接着剤とともにピックアップする工程と、
前記フィルム状接着剤を介して、前記半導体チップを被着体上にダイボンドする工程と、
前記半導体チップを被着体上にダイボンドする工程の後に、前記フィルム状接着剤を熱硬化させる工程とを含む半導体装置の製造方法。
Disposing a semiconductor wafer on the film adhesive of the dicing tape with a film adhesive according to claim 10;
Forming a semiconductor chip by dicing the semiconductor wafer disposed on the film adhesive;
Picking up the semiconductor chip together with the film adhesive;
A step of die-bonding the semiconductor chip on an adherend via the film adhesive;
And a step of thermosetting the film adhesive after the step of die-bonding the semiconductor chip onto an adherend.
請求項11に記載の製造方法により得られる半導体装置。 A semiconductor device obtained by the manufacturing method according to claim 11.
JP2014001535A 2014-01-08 2014-01-08 Film type adhesive, dicing tape with film type adhesive, method for manufacturing semiconductor device, and semiconductor device Pending JP2015129226A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014001535A JP2015129226A (en) 2014-01-08 2014-01-08 Film type adhesive, dicing tape with film type adhesive, method for manufacturing semiconductor device, and semiconductor device
CN201480072328.2A CN105899630A (en) 2014-01-08 2014-12-26 Film-like adhesive, dicing tape with film-like adhesive, method for manufacturing semiconductor device, and semiconductor device
PCT/JP2014/084564 WO2015105028A1 (en) 2014-01-08 2014-12-26 Film-like adhesive, dicing tape with film-like adhesive, method for manufacturing semiconductor device, and semiconductor device
KR1020167020463A KR20160107210A (en) 2014-01-08 2014-12-26 Film-like adhesive, dicing tape with film-like adhesive, method for manufacturing semiconductor device, and semiconductor device
TW104100422A TW201531550A (en) 2014-01-08 2015-01-07 Film-like adhesive, dicing tape with film-like adhesive, method for manufacturing semiconductor device, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014001535A JP2015129226A (en) 2014-01-08 2014-01-08 Film type adhesive, dicing tape with film type adhesive, method for manufacturing semiconductor device, and semiconductor device

Publications (1)

Publication Number Publication Date
JP2015129226A true JP2015129226A (en) 2015-07-16

Family

ID=53523861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014001535A Pending JP2015129226A (en) 2014-01-08 2014-01-08 Film type adhesive, dicing tape with film type adhesive, method for manufacturing semiconductor device, and semiconductor device

Country Status (5)

Country Link
JP (1) JP2015129226A (en)
KR (1) KR20160107210A (en)
CN (1) CN105899630A (en)
TW (1) TW201531550A (en)
WO (1) WO2015105028A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038920A1 (en) * 2015-09-01 2017-03-09 リンテック株式会社 Adhesive sheet
JP2017095642A (en) * 2015-11-27 2017-06-01 日東電工株式会社 Adhesive sheet, dicing tape-integrated adhesive sheet, and method for producing semiconductor device
JP2017110183A (en) * 2015-12-11 2017-06-22 Dic株式会社 Conductive resin composition, conductive adhesive sheet and laminate
JP2017155160A (en) * 2016-03-03 2017-09-07 ナミックス株式会社 Film-shaped resin composition
JP2018046193A (en) * 2016-09-15 2018-03-22 デュポンエレクトロニクスマテリアル株式会社 Conductive paste for joining
JP2018197298A (en) * 2017-05-24 2018-12-13 ナミックス株式会社 Resin composition, back grind film, and cured materials thereof
WO2021079968A1 (en) * 2019-10-25 2021-04-29 昭和電工マテリアルズ株式会社 Adhesive agent composition, film-like adhesive agent, dicing/die-bonding all-in-one film, and semiconductor and method for producing same
DE102017008633B4 (en) 2016-09-15 2021-12-23 E.I. Du Pont De Nemours And Company Conductive paste for bonding and method using them

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6505571B2 (en) * 2015-09-30 2019-04-24 日東電工株式会社 Thermal bonding sheet and thermal bonding sheet with dicing tape
JP6870943B2 (en) * 2015-09-30 2021-05-12 日東電工株式会社 Heat-bonding sheet and heat-bonding sheet with dicing tape
JP6858520B2 (en) 2015-09-30 2021-04-14 日東電工株式会社 Sheet for heat bonding and sheet for heat bonding with dicing tape
KR102069314B1 (en) 2016-10-05 2020-01-22 주식회사 엘지화학 Adhesive resin composition for semiconductor device, adhesive film for semiconductor device, and dicing die bonding film
KR102019468B1 (en) 2016-11-29 2019-09-06 주식회사 엘지화학 Adhesive film for semiconductor device and semiconductor device
DE102017113432A1 (en) * 2017-06-19 2018-12-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. Film adhesive and process for its preparation
CN107459943A (en) * 2017-08-12 2017-12-12 山东金鼎电子材料有限公司 A kind of high-performance low resistance high performance-price ratio conducting resinl and preparation method thereof
KR102524818B1 (en) 2019-08-22 2023-04-25 후루카와 덴키 고교 가부시키가이샤 Adhesive composition, film adhesive and manufacturing method thereof, semiconductor package using film adhesive and manufacturing method thereof
JP6905579B1 (en) * 2019-12-27 2021-07-21 株式会社有沢製作所 Adhesive tape
TW202234982A (en) * 2021-02-24 2022-09-01 日商拓自達電線股份有限公司 Electromagnetic wave shield film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3288146B2 (en) 1992-09-16 2002-06-04 日立化成工業株式会社 Conductive adhesive film, bonding method, support member with conductive adhesive film, and semiconductor device
JPH07286148A (en) * 1994-04-18 1995-10-31 Sumitomo Metal Mining Co Ltd Electrically-conductive adhesive for electronic material
JP4635412B2 (en) * 2003-07-22 2011-02-23 住友ベークライト株式会社 Conductive adhesive film and semiconductor device using the same
JP2005247953A (en) * 2004-03-03 2005-09-15 Toray Ind Inc Adhesive composition for semiconductor and adhesive sheet for semiconductor using the same
JP4961761B2 (en) * 2005-02-09 2012-06-27 東レ株式会社 Adhesive composition for semiconductor device, adhesive sheet for semiconductor device using the same, substrate for semiconductor connection, and semiconductor device
JP4976532B2 (en) * 2010-09-06 2012-07-18 日東電工株式会社 Film for semiconductor devices
JP5580701B2 (en) * 2010-09-13 2014-08-27 日東電工株式会社 Dicing die bond film
JP6033734B2 (en) * 2013-04-30 2016-11-30 日東電工株式会社 Film adhesive, dicing tape integrated film adhesive, and method for manufacturing semiconductor device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038920A1 (en) * 2015-09-01 2017-03-09 リンテック株式会社 Adhesive sheet
JP2017095642A (en) * 2015-11-27 2017-06-01 日東電工株式会社 Adhesive sheet, dicing tape-integrated adhesive sheet, and method for producing semiconductor device
KR20170062386A (en) * 2015-11-27 2017-06-07 닛토덴코 가부시키가이샤 Adhesive sheet, dicing-tape-integrated adhesive sheet, and process for producing semiconductor device
KR102565488B1 (en) * 2015-11-27 2023-08-09 닛토덴코 가부시키가이샤 Adhesive sheet, dicing-tape-integrated adhesive sheet, and process for producing semiconductor device
JP2017110183A (en) * 2015-12-11 2017-06-22 Dic株式会社 Conductive resin composition, conductive adhesive sheet and laminate
JP7361447B2 (en) 2015-12-11 2023-10-16 Dic株式会社 Conductive resin composition, conductive adhesive sheet and laminate
JP2017155160A (en) * 2016-03-03 2017-09-07 ナミックス株式会社 Film-shaped resin composition
JP2018046193A (en) * 2016-09-15 2018-03-22 デュポンエレクトロニクスマテリアル株式会社 Conductive paste for joining
DE102017008633B4 (en) 2016-09-15 2021-12-23 E.I. Du Pont De Nemours And Company Conductive paste for bonding and method using them
JP2018197298A (en) * 2017-05-24 2018-12-13 ナミックス株式会社 Resin composition, back grind film, and cured materials thereof
WO2021079968A1 (en) * 2019-10-25 2021-04-29 昭和電工マテリアルズ株式会社 Adhesive agent composition, film-like adhesive agent, dicing/die-bonding all-in-one film, and semiconductor and method for producing same

Also Published As

Publication number Publication date
KR20160107210A (en) 2016-09-13
WO2015105028A1 (en) 2015-07-16
CN105899630A (en) 2016-08-24
TW201531550A (en) 2015-08-16

Similar Documents

Publication Publication Date Title
JP6396189B2 (en) Conductive film adhesive, dicing tape with film adhesive, and method for manufacturing semiconductor device
WO2015105028A1 (en) Film-like adhesive, dicing tape with film-like adhesive, method for manufacturing semiconductor device, and semiconductor device
JP6033734B2 (en) Film adhesive, dicing tape integrated film adhesive, and method for manufacturing semiconductor device
JP6542504B2 (en) Film adhesive, dicing tape with film adhesive, method of manufacturing semiconductor device, and semiconductor device
JP6374199B2 (en) Die bond film, dicing die bond film and laminated film
JP4976481B2 (en) Thermosetting die bond film, dicing die bond film, and semiconductor device
JP6366228B2 (en) Adhesive sheet and dicing die bonding film
JP6289104B2 (en) Film adhesive, dicing tape with film adhesive, semiconductor device manufacturing method, and semiconductor device
JP2011023607A (en) Exoergic die-bonding film
JP6356458B2 (en) Die bond film, die bond film with dicing sheet, semiconductor device, and method for manufacturing semiconductor device
JP6356582B2 (en) Adhesive sheet, adhesive sheet with dicing sheet, and method for manufacturing semiconductor device
KR20150113853A (en) Die-bonding film with dicing sheet, semiconductor device, and method of manufacturing the semiconductor device
JP2012186361A (en) Dicing/die-bonding film and semiconductor element
JP5749314B2 (en) Heat dissipation die bond film
WO2015104988A1 (en) Conductive film-like adhesive and dicing tape with film-like adhesive
JP2015130420A (en) Conductive film adhesive, method for manufacturing semiconductor device, and semiconductor device
JP2017092365A (en) Dicing tape integrated adhesive sheet, and manufacturing method of semiconductor device
JP2015129225A (en) Film type adhesive, dicing tape with film type adhesive, method for manufacturing semiconductor device, and semiconductor device
JP6259665B2 (en) Film adhesive and dicing tape with film adhesive
WO2015104987A1 (en) Film-like conductive adhesive, semiconductor device manufacturing method, and semiconductor device
JP2012186360A (en) Dicing/die-bonding film and semiconductor element
JP2017098316A (en) Dicing tape integrated adhesive sheet
WO2015104986A1 (en) Film-like adhesive, dicing tape with film-like adhesive, method for manufacturing semiconductor device, and semiconductor device
JP2015130418A (en) Electrically conductive film adhesive, dicing tape with film adhesive, method for manufacturing semiconductor device, and semiconductor device
JP2015103582A (en) Method for manufacturing semiconductor device