JP2015122893A - Manufacturing method of motor core - Google Patents

Manufacturing method of motor core Download PDF

Info

Publication number
JP2015122893A
JP2015122893A JP2013265651A JP2013265651A JP2015122893A JP 2015122893 A JP2015122893 A JP 2015122893A JP 2013265651 A JP2013265651 A JP 2013265651A JP 2013265651 A JP2013265651 A JP 2013265651A JP 2015122893 A JP2015122893 A JP 2015122893A
Authority
JP
Japan
Prior art keywords
less
rolling
helical
motor core
yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013265651A
Other languages
Japanese (ja)
Other versions
JP5979129B2 (en
Inventor
新司 小関
Shinji Koseki
新司 小関
智幸 大久保
Tomoyuki Okubo
智幸 大久保
尾田 善彦
Yoshihiko Oda
善彦 尾田
中西 匡
Tadashi Nakanishi
匡 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013265651A priority Critical patent/JP5979129B2/en
Publication of JP2015122893A publication Critical patent/JP2015122893A/en
Application granted granted Critical
Publication of JP5979129B2 publication Critical patent/JP5979129B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To further make efficiency of a motor core higher by strongly orienting [100], an axis of easy magnetization, in a circumferential direction of a yoke part by using a helical rolling process.SOLUTION: When manufacturing a motor core with a steel plate as a raw material, containing, in mass%, C: equal to or less than 0.01%, Si: equal to or less than 5.0%, Al: less than 0.1%, Mn: 0.03 to 3.0%, and P: equal to or less than 0.2%, and the rest composed of Fe and inevitable impurities, and whose crystal grain size is equal to or less than 100 μm, in a process of manufacturing a stator core of the motor core, a helical rolling process whose rate of expansion is equal to or more than 1% and equal to or less than 30% in a width direction on average is performed along an outer periphery of a yoke part of the stator and distortion removing annealing is applied thereafter.

Description

本発明は、モータコアの製造方法に関するものである。   The present invention relates to a method for manufacturing a motor core.

従来より、自動車の燃費改善、快適性向上の観点から油圧駆動部品を電動化することが行われており、電動パワーステアリング等に代表される新規モータの搭載比率が高まっている。このため、自動車の消費電流はますます増大する傾向にあり、オルタネーターの高効率化が重要となっている。   2. Description of the Related Art Conventionally, hydraulic drive parts have been electrified from the viewpoint of improving fuel efficiency and comfort of automobiles, and the mounting ratio of new motors typified by electric power steering and the like is increasing. For this reason, the current consumption of automobiles tends to increase further, and it is important to improve the efficiency of alternators.

オルタネーターの主流であるランデル型発電機のステーターは、素材コスト低減の観点から、フープ状に加工した鋼片を板面内でヘリカル(らせん)状に曲げることによりステーター形状とすることが行われている。このため、ステーターのヨーク部には塑性歪が導入された状態で使用されている。
以下、本明細書では、このような加工方法をヘリカル加工、またヘリカル加工で製造されるコアをヘリカルコアと呼称する。
From the viewpoint of reducing material costs, the stator of the Landel generator, which is the mainstream of alternators, is made into a stator shape by bending a steel piece processed into a hoop shape into a helical shape within the plate surface. Yes. For this reason, the yoke part of the stator is used in a state where plastic strain is introduced.
Hereinafter, in this specification, such a processing method is called helical processing, and a core manufactured by helical processing is called a helical core.

このような問題に対し、特許文献1には、ヘリカルコアに加工した後、焼鈍を行うことにより鉄損を低減させる手法が開示されている。
また、特許文献2には、ヘリカル加工に用いる鋼板の結晶粒径を低減することで加工後の表面荒れを抑制し、歪取焼鈍による被膜の絶縁性能の劣化を抑制する手法が開示されている。
For such a problem, Patent Document 1 discloses a technique of reducing iron loss by performing annealing after processing into a helical core.
Patent Document 2 discloses a technique for suppressing surface roughness after processing by reducing the crystal grain size of a steel sheet used for helical processing and suppressing deterioration of the insulating performance of the coating due to strain relief annealing. .

特開平7-298570号公報Japanese Patent Laid-Open No. 7-298570 特開2005-187861号公報JP 2005-187861 A

しかしながら、特許文献1に記載の手法では、絶縁被膜の性能が劣化し、層間短絡が生じやすいといった問題があった。
また、特許文献2に記載の手法では、層間短絡の問題は解消されるものの、加工前の鋼板と同等の磁気特性が得られるのみであり、さらなる高効率化の要求を満たすことは困難であった。
However, the technique described in Patent Document 1 has a problem that the performance of the insulating coating is deteriorated and an interlayer short circuit is likely to occur.
In addition, although the technique described in Patent Document 2 solves the problem of interlayer short-circuiting, it can only obtain magnetic characteristics equivalent to those of a steel plate before processing, and it is difficult to satisfy the demand for higher efficiency. It was.

本発明は、上記の現状に鑑み開発されたもので、圧延によるヘリカル加工を活用することによって、得られるモータコアの一層の高効率化を達成したモータコアの製造方法を提案することを目的とする。   The present invention has been developed in view of the above-described situation, and an object thereof is to propose a method for manufacturing a motor core that achieves higher efficiency of the obtained motor core by utilizing helical processing by rolling.

さて、発明者らは、上記の目的を達成すべく鋭意検討を重ねた結果、適切な結晶粒径を有する鋼板を素材として、圧延によるヘリカル加工を適用し、その後歪取焼鈍を施すことにより、モータコア、特にステーターのヨーク部におけるGoss方位強度を高めることができ、これによりモータコアのさらなる高効率化が達成できるとの知見を得た。
なお、本明細書では、圧延によるヘリカル加工を、必要に応じてヘリカル圧延加工と略称するものとする。
Now, as a result of intensive studies to achieve the above object, the inventors applied a steel sheet having an appropriate crystal grain size as a material, applied helical processing by rolling, and then applied strain relief annealing, It was found that the Goss azimuth strength in the motor core, particularly the yoke part of the stator, can be increased, and thereby further improvement in the efficiency of the motor core can be achieved.
In addition, in this specification, the helical process by rolling shall be abbreviated as a helical rolling process as needed.

本願発明は、上記の知見に立脚するもので、その要旨構成は次のとおりである。
1.質量%で、C:0.01%以下、Si:5.0%以下、Al:0.1%未満、Mn:0.03〜3.0%およびP:0.2%以下を含み、残部はFeおよび不可避不純物からなり、かつ結晶粒径が100μm以下の鋼板を用いて、モータコアを製造するに際し、該モータコアのステーターの製造過程において、ステーターのヨーク部の外周に沿って、伸び率が幅方向平均で1%以上30%以下のヘリカル圧延加工を行い、その後歪取焼鈍を施すことを特徴とするモータコアの製造方法。
The present invention is based on the above findings, and the gist of the present invention is as follows.
1. In mass%, C: 0.01% or less, Si: 5.0% or less, Al: less than 0.1%, Mn: 0.03-3.0% and P: 0.2% or less, with the balance being Fe and inevitable impurities, and crystal grain size When manufacturing a motor core using a steel plate having a thickness of 100 μm or less, in the manufacturing process of the stator of the motor core, along the outer circumference of the yoke portion of the stator, helical rolling with an average elongation of 1% or more and 30% or less in the width direction A method for manufacturing a motor core, characterized by performing processing and then performing strain relief annealing.

2.前記1において、前記鋼板が、不純物元素の混入を、質量%で、Ti:0.01%以下、Nb:0.01%以下、V:0.01%以下、S:0.01%以下、N:0.003%以下およびO:0.01%以下に抑制したことを特徴とするモータコアの製造方法。 2. In the above 1, in the steel sheet, mixing of impurity elements in mass%, Ti: 0.01% or less, Nb: 0.01% or less, V: 0.01% or less, S: 0.01% or less, N: 0.003% or less, and O: A manufacturing method of a motor core, characterized by being suppressed to 0.01% or less.

3.前記1または2において、前記ステーターがらせん状の鋼片を積層したものであることを特徴とするモータコアの製造方法。 3. 3. The method of manufacturing a motor core according to 1 or 2, wherein the stator is formed by stacking spiral steel pieces.

本発明によれば、素材鋼板の磁気特性以上に優れた磁気特性を有し、モータコアのさらなる高効率化を達成したモータコアを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it can provide the motor core which has the magnetic characteristic superior to the magnetic characteristic of a raw steel plate, and achieved the further highly efficient motor core.

リング試料から試験片を採取した位置A〜Dを示す図である。It is a figure which shows the position AD which extract | collected the test piece from the ring sample. 鉄損(W15/50)とAl濃度との関係を示す図である。It is a figure which shows the relationship between an iron loss ( W15 / 50 ) and Al concentration. サンプルの弧状Goss方位強度(ランダム強度比)の平均値とAl濃度との関係を示す図である。It is a figure which shows the relationship between the average value of the arc-shaped Goss azimuth | direction intensity | strength (random intensity ratio) of a sample, and Al concentration. 試料幅方向の平均伸び率と鉄損(W15/50)との関係を示す図である。It is a figure which shows the relationship between the average elongation rate of a sample width direction, and iron loss ( W15 / 50 ). リング試料から試験片を採取した位置A1〜D1(ヨーク部)、A2〜D2(ティース部)を示す図である。It is a figure which shows the position A1-D1 (yoke part) and A2-D2 (tooth part) which extract | collected the test piece from the ring sample. 素材鋼板の結晶粒径と鉄損(W15/50)との関係を示す図である。It is a figure which shows the relationship between the crystal grain diameter of a raw steel plate, and iron loss ( W15 / 50 ). Y/Tと鉄損(W15/50)との関係を示す図である。It is a figure which shows the relationship between Y / T and an iron loss ( W15 / 50 ).

以下、本発明を由来するに至った実験結果について説明する。
最初に、ヘリカルコアの特性に及ぼす製造条件の影響を調査するため、以下の実験を行った。
C:0.0018%、Si:2.0%、Al:0.0035%、Mn:0.22%、P:0.11%、Ti:0.007%、Nb:0.008%、V:0.008%、S:0.002%、N:0.002%およびO:0.006%を含み、残部はFeおよび不可避不純物からなるスラブを製造し、熱間圧延後、950℃,1minの熱延板焼鈍を行ったのち、板厚:0.5mmまで冷間圧延し、ついで20%H2−80%N2雰囲気中にて800℃,1minの仕上焼鈍を行ったのち、膜厚:0.5μmの有機−無機混合被膜を塗布・焼付けした。
得られた鋼板のL方向断面の組織を光学顕微鏡で観察し、JISの切断法で結晶粒径を求めたところ、結晶粒径は28.1〜30.3μmであった。
Hereinafter, the experimental results that led to the present invention will be described.
First, the following experiment was conducted to investigate the effect of manufacturing conditions on the characteristics of the helical core.
C: 0.0018%, Si: 2.0%, Al: 0.0035%, Mn: 0.22%, P: 0.11%, Ti: 0.007%, Nb: 0.008%, V: 0.008%, S: 0.002%, N: 0.002% and O: containing 0.006%, the balance is made of slabs made of Fe and inevitable impurities, hot-rolled and then subjected to hot-rolled sheet annealing at 950 ° C. for 1 min, and then cold-rolled to a thickness of 0.5 mm, Next, after finishing annealing at 800 ° C. for 1 min in a 20% H 2 -80% N 2 atmosphere, an organic-inorganic mixed film having a film thickness of 0.5 μm was applied and baked.
The structure of the cross section in the L direction of the obtained steel sheet was observed with an optical microscope, and the crystal grain size was determined by a JIS cutting method. The crystal grain size was 28.1 to 30.3 μm.

次に得られた鋼板から、せん断により圧延方向を長手方向とする幅:10mmの短冊状試料を採取し、ヘリカル加工により外径:300mm、内径:280mmで、ヘリカル巻き数が20ターンのリング試料を作製した。ここで、ヘリカル加工を行う際は、(1)曲げと(2)圧延の2種類の方法で行った。圧延でヘリカル加工を行う場合は、テーパーのついたロールを用いて圧延を行い、リングの外周側と内周側で伸び率に差がつくように調整して材料をらせん状に加工した。本実験の伸び率は、リング最外周部で8.3%、リング最内周部で1.0%であり、リング幅方向の平均は4.6%であった。   Next, from the obtained steel plate, a strip sample with a width of 10 mm and a rolling direction as a longitudinal direction was collected by shearing, and a ring sample having an outer diameter of 300 mm, an inner diameter of 280 mm, and a helical winding number of 20 turns by helical processing. Was made. Here, when performing the helical processing, it was performed by two kinds of methods: (1) bending and (2) rolling. When performing helical processing by rolling, rolling was performed using a tapered roll, and the material was processed into a spiral shape by adjusting the elongation rate to be different between the outer peripheral side and the inner peripheral side of the ring. The elongation in this experiment was 8.3% at the outermost ring part and 1.0% at the innermost ring part, and the average in the ring width direction was 4.6%.

得られたリング試料に対し、N2雰囲気中にて800℃,2hの歪取焼鈍を行い、その後、モータ締結時と同様な196 kPa(2kg/cm2)の応力を板厚方向に付与した状態で、リング試料に一次:200ターン、二次:100ターンの巻き線を行い、磁気特性を測定した。
また、加工前の鋼板から外径:300mm、内径:280mmのリングに打ち抜き、20枚積層して作製したリング試料に対して、上記と同様の条件で歪取焼鈍と磁気測定を行った。さらに、加工前の鋼板に伸び率で4.6%の圧延を施したのち、圧延後の鋼板から外径:300mm、内径:280mmのリングに打ち抜き、同じく20枚積層して作製したリング試料についても、上記と同様の条件で歪取焼鈍と磁気測定を行った。
表1に得られた鉄損(W15/50)と磁束密度(B50)を示す。
The obtained ring sample was subjected to strain relief annealing at 800 ° C. for 2 hours in an N 2 atmosphere, and then a stress of 196 kPa (2 kg / cm 2 ) similar to that at the time of motor fastening was applied in the plate thickness direction. In this state, the ring sample was wound with primary: 200 turns and secondary: 100 turns, and the magnetic properties were measured.
In addition, strain relief annealing and magnetic measurement were performed on a ring sample produced by punching a steel plate before processing into a ring having an outer diameter of 300 mm and an inner diameter of 280 mm and stacking 20 sheets under the same conditions as described above. Furthermore, after rolling the steel sheet before processing to 4.6% elongation, it was punched from the rolled steel sheet into a ring with an outer diameter of 300 mm and an inner diameter of 280 mm, and the ring sample produced by stacking 20 sheets in the same way, Strain relief annealing and magnetic measurements were performed under the same conditions as above.
Table 1 shows the obtained iron loss (W 15/50 ) and magnetic flux density (B 50 ).

Figure 2015122893
Figure 2015122893

表1に示したとおり、曲げでヘリカル加工したリング試料は、打ち抜きで作製したリング試料とほぼ同等の特性であった。
これに対し、圧延でヘリカル加工したリング試料は、曲げでヘリカル加工したリング試料や打ち抜きで作製したリング試料と比べて、優れた磁気特性を示した。
この点、圧延してから打ち抜きで作製したリング試料については、むしろ磁気特性が劣化することが分かった。
As shown in Table 1, the ring sample that was helically processed by bending had almost the same characteristics as the ring sample manufactured by punching.
On the other hand, the ring sample helically processed by rolling showed excellent magnetic properties compared to the ring sample helically processed by bending and the ring sample prepared by punching.
In this respect, it was found that the magnetic properties of the ring sample produced by punching after rolling were rather deteriorated.

次に、各リング試料について、図1にA〜Dで示す位置から試験片を採取し、鋼板中心層の集合組織をX線で測定した。通常、鋼板の集合組織を表現するときは、圧延方向、板幅方向および板厚方向を用いて材料座標系を定義するが、ここでは、それぞれリングの円周に沿う向き(以下、円周方向という)、半径方向および板厚方向を用いて材料座標系を設定した。ODFの計算は、ResMat社のTexToolsを使用した。
なお、本明細書では、リングの円周方向に[100]方位、板面と平行に(011)面を持つ方位を弧状Goss方位と定義する。
各位置での弧状Goss方位強度(ランダム強度比)について調べた結果を、表1に併記する。
Next, about each ring sample, the test piece was extract | collected from the position shown by AD in FIG. 1, and the texture of the steel plate center layer was measured by X-ray. Normally, when expressing the texture of a steel sheet, the material coordinate system is defined using the rolling direction, the sheet width direction, and the sheet thickness direction. Here, the direction along the circumference of the ring (hereinafter, the circumferential direction) The material coordinate system was set using the radial direction and the plate thickness direction. The ODF was calculated using ResMat's TexTools.
In this specification, the [100] orientation in the circumferential direction of the ring and the orientation having the (011) plane parallel to the plate surface are defined as arc-shaped Goss orientations.
Table 1 also shows the results of investigation on the arc-shaped Goss azimuth intensity (random intensity ratio) at each position.

表1から明らかなように、圧延でヘリカル加工したリング試料は、弧状Goss方位が強く発達していることが分かる。すなわち、ヨークの円周方向に磁化容易軸である[100]が強く配向しており、これにより高磁束密度と低鉄損が得られたと考えられる。この弧状Goss方位は、ヘリカル加工の際の圧延により導入された歪によって歪取焼鈍の際に歪誘起粒成長が起き、優先成長したものと推定される。
これに対し、曲げでヘリカル加工したリング試料では、このような弧状Goss方位の発達は認められなかった。
また、圧延してから打ち抜きで作製したリング試料については、記号A,Cの位置ではGoss方位が、一方記号B,Dの位置ではGoss方位から板厚方向を軸に90度回転した方位が発達していることがわかった。すなわち、記号B,Dの位置ではリング試料の円周方向に磁化困難軸[011]が強く配向しており、これにより全体の磁気特性が劣化したものと考えられる。
As can be seen from Table 1, the ring sample helically processed by rolling has a strong arc-shaped Goss orientation. That is, it is considered that [100], which is the easy axis of magnetization, is strongly oriented in the circumferential direction of the yoke, and thus high magnetic flux density and low iron loss are obtained. This arc-shaped Goss orientation is presumed to be preferentially grown due to strain-induced grain growth during strain relief annealing due to strain introduced by rolling during helical machining.
On the other hand, such an arc-shaped Goss orientation development was not observed in the ring sample that was helically machined by bending.
In addition, the ring specimens produced by rolling and punching developed the Goss orientation at the positions of symbols A and C, while the orientation rotated 90 degrees from the Goss orientation to the thickness direction at the positions of symbols B and D. I found out. That is, it is considered that at the positions of symbols B and D, the hard magnetization axis [011] is strongly oriented in the circumferential direction of the ring sample, which deteriorates the overall magnetic characteristics.

次に、Al濃度の影響を調べるための実験を行った。
C:0.0071%、Si:2.0%、Al:0.0001〜3.0%、Mn:0.42%、P:0.15%、Ti:0.005%、Nb:0.003%、V:0.003%、S:0.006%、N:0.002%およびO:0.007%を含み、残部はFeおよび不可避不純物からなるスラブを製造し、熱間圧延後、950℃,1minの熱延板焼鈍を行ったのち、板厚:0.5mmまで冷間圧延し、ついで20%H2−80%N2雰囲気中にて800℃,1minの仕上焼鈍を行ったのち、膜厚:0.5μmの有機−無機混合被膜を塗布・焼付けした。
得られた鋼板のL方向断面の組織を光学顕微鏡で観察し、JISの切断法で結晶粒径を求めたところ、結晶粒径は27.6〜31.8μmであった。
Next, an experiment for examining the influence of the Al concentration was performed.
C: 0.0071%, Si: 2.0%, Al: 0.0001-3.0%, Mn: 0.42%, P: 0.15%, Ti: 0.005%, Nb: 0.003%, V: 0.003%, S: 0.006%, N: 0.002 % And O: 0.007% in the balance, the remainder is made of Fe and inevitable impurities slab, hot rolled, hot-rolled sheet annealed at 950 ℃ for 1 min, then cold rolled to 0.5mm thickness Then, after performing final annealing at 800 ° C. for 1 min in a 20% H 2 -80% N 2 atmosphere, an organic-inorganic mixed film having a film thickness of 0.5 μm was applied and baked.
The structure of the cross section in the L direction of the obtained steel sheet was observed with an optical microscope, and the crystal grain size was determined by a JIS cutting method. The crystal grain size was 27.6 to 31.8 μm.

次に、得られた鋼板から、せん断により圧延方向を長手方向とする幅:5mmの短冊状試料を採取し、圧延によるヘリカル加工により外径:400mm、内径:390mmで、ヘリカル巻き数が20ターンのリング試料を作製した。ここで、圧延でヘリカル加工を行う際は、テーパーのついたロールを用い、ヨークの外周側と内周側で伸び率に差がつくように調整して材料をらせん状に加工した。本実験の伸び率は、リング最外周部で8.0%、リング最内周部で1.2%であり、リング幅方向の平均は4.6%であった。   Next, from the obtained steel plate, a strip-shaped sample having a width of 5 mm as a longitudinal direction was collected by shearing, and the outer diameter was 400 mm, the inner diameter was 390 mm, and the number of helical turns was 20 turns by helical processing by rolling. A ring sample was prepared. Here, when performing the helical processing by rolling, a taper roll was used, and the material was processed into a spiral shape by adjusting the elongation rate to be different between the outer peripheral side and the inner peripheral side of the yoke. The elongation in this experiment was 8.0% at the outermost ring periphery and 1.2% at the innermost ring periphery, and the average in the ring width direction was 4.6%.

得られたリング資料に対し、N2雰囲気中にて800℃,2hの歪取焼鈍を行い、その後、モータ締結時と同様な196 kPa(2kg/cm2)の応力を板厚方向に付与した状態で、リング試料に一次:200ターン、二次:100ターンの巻き線を行い、鉄損(W15/50)を測定した。
得られた鉄損(W15/50)をAl濃度との関係で、図2に示す。
同図に示したとおり、Al濃度が0.10〜3.0%でも鉄損は低下するが、Al濃度が0.10%未満では大幅に鉄損が低下していることが分かる。好ましいAl濃度は0.01%以下である。
The obtained ring material was subjected to stress relief annealing at 800 ° C. for 2 hours in an N 2 atmosphere, and then the same stress of 196 kPa (2 kg / cm 2 ) was applied in the thickness direction as when the motor was fastened. In this state, the ring sample was wound with primary: 200 turns and secondary: 100 turns, and the iron loss (W 15/50 ) was measured.
The obtained iron loss (W 15/50 ) is shown in FIG. 2 in relation to the Al concentration.
As shown in the figure, the iron loss is reduced even when the Al concentration is 0.10 to 3.0%, but it can be seen that the iron loss is greatly reduced when the Al concentration is less than 0.10%. A preferable Al concentration is 0.01% or less.

また、各試料について、図1に示す位置A〜Dから採取したサンプルの弧状Goss方位強度(ランダム強度比)の平均値について調べた結果を、Al濃度との関係で図3に示す。
同図に示したとおり、Al:0.10%未満では、Al:0.10〜3.0%の場合に比べて弧状Goss方位強度が大きく増加している。
ここに、低Al組成の場合の方が弧状Goss方位粒が発達しやすい理由は、再結晶時の粒界易動度が変化するためと推定される。
Moreover, about each sample, the result investigated about the average value of the arc-shaped Goss azimuth | direction intensity | strength (random intensity ratio) of the sample extract | collected from position AD shown in FIG. 1 is shown in FIG. 3 in relation to Al concentration.
As shown in the figure, when the Al content is less than 0.10%, the arc-shaped Goss orientation strength is greatly increased as compared with the Al content of 0.10 to 3.0%.
Here, it is presumed that the reason why arc-shaped Goss orientation grains are more likely to develop in the case of a low Al composition is that the grain boundary mobility during recrystallization changes.

次に、C:0.0021%、Si:0.4%、Al:0.0030%、Mn:0.19%、P:0.07%、Ti:0.001%、Nb:0.001%、V:0.002%、S:0.002%、N:0.002%およびO:0.003%を含み、残部はFeおよび不可避不純物からなるスラブを製造し、熱間圧延後、950℃,1minの熱延板焼鈍を行ったのち、板厚:0.5〜0.7mmまで冷間圧延し、ついで20%H2−80%N2雰囲気中にて800℃,1minの仕上焼鈍を行ったのち、膜厚:0.5μmの有機−無機混合被膜を塗布・焼付けした。
得られた鋼板のL方向断面の組織を光学顕微鏡で観察し、JISの切断法で結晶粒径を求めたところ、結晶粒径は21〜31μmであった。
Next, C: 0.0021%, Si: 0.4%, Al: 0.0030%, Mn: 0.19%, P: 0.07%, Ti: 0.001%, Nb: 0.001%, V: 0.002%, S: 0.002%, N: The slab containing 0.002% and O: 0.003% with the balance being Fe and inevitable impurities is manufactured. After hot rolling, hot-rolled sheet annealing is performed at 950 ° C for 1 min. After cold rolling, followed by finish annealing at 800 ° C. for 1 min in a 20% H 2 -80% N 2 atmosphere, an organic-inorganic mixed film having a thickness of 0.5 μm was applied and baked.
When the structure of the L direction cross section of the obtained steel plate was observed with an optical microscope and the crystal grain size was determined by a JIS cutting method, the crystal grain size was 21 to 31 μm.

次に、得られた鋼板から、せん断により圧延方向を長手方向とする幅:5mmの短冊状試料を採取し、圧延によるヘリカル加工により外径:400mm、内径:390mmで、ヘリカル巻き数が20ターンのリング試料を作製した。圧延でヘリカル加工を行う際は、テーパーのついたロールを用い、ヨークの外周側と内周側で伸び率に差がつくように調整して材料をらせん状に加工した。また、圧延の荷重を調整し、幅方向の平均伸び率を0.5%から40%まで変化させた。ここで、圧延前の板厚を調整して、ヘリカル圧延加工後の板厚は0.5mmの一定となるようにした。   Next, from the obtained steel plate, a strip-shaped sample having a width of 5 mm as a longitudinal direction was collected by shearing, and the outer diameter was 400 mm, the inner diameter was 390 mm, and the number of helical turns was 20 turns by helical processing by rolling. A ring sample was prepared. When performing helical processing by rolling, a taper roll was used, and the material was processed into a spiral shape by adjusting so that the elongation ratio would be different between the outer peripheral side and the inner peripheral side of the yoke. The rolling load was adjusted to change the average elongation in the width direction from 0.5% to 40%. Here, the plate thickness before rolling was adjusted so that the plate thickness after the helical rolling was constant at 0.5 mm.

得られたリング試料に対し、N2雰囲気中にて750℃,2hの歪取焼鈍を行い、その後、モータ締結時と同様な196 kPa(2kg/cm2)の応力を板厚方向に付与した状態で、リング試料に一次:200ターン、二次:100ターンの巻き線を行い、鉄損(W15/50)を測定した。
図4に、ヘリカル圧延加工を行った場合における、試料幅方向の平均伸び率と鉄損(W15/50)との関係について調べた結果を示す。
ヘリカル圧延加工前の素材から打ち抜きで作製したリング試料の鉄損W15/50は3.916W/kgであったが、ヘリカル圧延加工後歪取焼鈍を施して得たリング試料は、図4に示したとおり、伸び率が1〜30%のときに鉄損が大幅に低下することが分かる。
The obtained ring sample was subjected to strain relief annealing at 750 ° C. for 2 hours in an N 2 atmosphere, and then the same stress of 196 kPa (2 kg / cm 2 ) was applied in the thickness direction as when the motor was fastened. In this state, the ring sample was wound with primary: 200 turns and secondary: 100 turns, and the iron loss (W 15/50 ) was measured.
FIG. 4 shows the results of examining the relationship between the average elongation in the sample width direction and the iron loss (W 15/50 ) when helical rolling is performed.
The iron loss W 15/50 of the ring sample made by punching from the material before the helical rolling was 3.916 W / kg. The ring sample obtained by applying strain relief annealing after the helical rolling is shown in Fig. 4. As can be seen, the iron loss is greatly reduced when the elongation is 1 to 30%.

次に、C:0.0017%、Si:1.1%、Al:0.0032%、Mn:0.25%、P:0.06%、Ti:0.0008%、Nb:0.0006%、V:0.0001%、S:0.001%、N:0.0007%およびO:0.002%を含み、残部はFeおよび不可避不純物からなるスラブを製造し、熱間圧延後、950℃,1minの熱延板焼鈍を行ったのち、板厚:0.5mmまで冷間圧延し、ついで20%H2−80%N2雰囲気中にて700〜1100℃,1minの仕上焼鈍を行ったのち、膜厚:0.5μmの有機−無機混合被膜を塗布・焼付けした。
得られた鋼板のL方向断面の組織を光学顕微鏡で観察し、JISの切断法で結晶粒径を求めたところ、結晶粒径は5〜191μmであった。
Next, C: 0.0017%, Si: 1.1%, Al: 0.0032%, Mn: 0.25%, P: 0.06%, Ti: 0.0008%, Nb: 0.0006%, V: 0.0001%, S: 0.001%, N: A slab containing 0.0007% and O: 0.002% with the balance being Fe and inevitable impurities is manufactured. After hot rolling, hot-rolled sheet annealing is performed at 950 ° C for 1 min. After rolling and finishing annealing in a 20% H 2 -80% N 2 atmosphere at 700 to 1100 ° C. for 1 min, an organic-inorganic mixed film having a thickness of 0.5 μm was applied and baked.
The structure of the cross section in the L direction of the obtained steel sheet was observed with an optical microscope, and the crystal grain size was determined by a JIS cutting method. The crystal grain size was 5 to 191 μm.

次に、得られた鋼板から、ティースが幅方向の一端側に等間隔で形成された帯状の試料(幅:10mm)を打ち抜いたのち、ヘリカル圧延加工によりヨーク部外径:300mm、ヨーク部内径:280mmで、ヘリカル巻き数が20ターンの図5に示すヘリカルコア(ステーター)を作製した。ここで、ヘリカル圧延加工を行う際は、テーパーのついたロールを用いてヨーク部のみに圧延を行い、ヨークの外周側と内周側で伸び率に差がつくように調整して材料をらせん状に加工した。本実験の伸び率は、ヨーク最外周部で7.0%、ヨーク最内周部で0%であり、ヨーク幅方向の平均は3.5%であった。   Next, after punching a strip-shaped sample (width: 10 mm) in which teeth are formed at equal intervals on one end side in the width direction from the obtained steel sheet, the outer diameter of the yoke part: 300 mm, the inner diameter of the yoke part by helical rolling : A helical core (stator) shown in FIG. 5 having a helical winding number of 280 mm and 20 helical turns was produced. Here, when performing helical rolling, roll only the yoke part using a taper roll, and adjust the elongation to make a difference between the outer circumference and the inner circumference of the yoke. Processed into a shape. The elongation in this experiment was 7.0% at the outermost periphery of the yoke, 0% at the innermost periphery of the yoke, and the average in the yoke width direction was 3.5%.

得られたステーターに対し、N2雰囲気中にて770℃,90minの歪取焼鈍を行い、その後、モータ締結時と同様な196 kPa(2kg/cm2)の応力を板厚方向に付与した状態で、ヨーク部に一次:200ターン、二次:100ターンの巻き線を行い、鉄損(W15/50)を測定した。
図6に、素材鋼板の結晶粒径と鉄損(W15/50)との関係について調べた結果を示す。
同図に示したとおり、素材鋼板の結晶粒径が100μm以下のときに、優れた鉄損特性が得られることが分かる。
The obtained stator was subjected to strain relief annealing at 770 ° C for 90 min in N 2 atmosphere, and then applied the same stress of 196 kPa (2 kg / cm 2 ) in the plate thickness direction as when the motor was fastened. Then, winding of the primary part: 200 turns and the secondary part: 100 turns was performed on the yoke part, and the iron loss (W 15/50 ) was measured.
FIG. 6 shows the results of examining the relationship between the crystal grain size of the material steel plate and the iron loss (W 15/50 ).
As shown in the figure, it can be seen that excellent iron loss characteristics can be obtained when the grain size of the material steel plate is 100 μm or less.

次に、図5に示す位置A1〜D1(ヨーク部)とA2〜D2(ティース部)から試験片を採取し、鋼板中心層の集合組織をX線で測定した。通常、鋼板の集合組織を表現するときは、圧延方向、板幅方向および板厚方向を用いて材料座標系を定義するが、ここでは、それぞれリングの円周方向、半径方向および板厚方向を用いて材料座標系を設定した。ODFの計算は、ResMat社のTexToolsを使用した。
A1〜D1(ヨーク部)およびA2〜D2(ティース部)における弧状Goss方位強度の平均値を、それぞれランダム強度比でY、Tとしたとき、これらの比(Y/T)と鉄損(W15/50)との関係について調べた結果を、図7に示す。
同図に示したとおり、Y/Tが2.0以上のとき、優れた鉄損特性が得られることが分かる。なお、本実験では、位置A,位置B,位置C,位置Dのそれぞれの位置におけるY/Tの標準偏差は平均値の5%以下であり、位置によるバラツキは小さかった。
Next, test pieces were taken from positions A1 to D1 (yoke portions) and A2 to D2 (tooth portions) shown in FIG. 5, and the texture of the steel sheet center layer was measured by X-ray. Normally, when expressing the texture of a steel plate, the material coordinate system is defined using the rolling direction, the plate width direction, and the plate thickness direction. Here, the circumferential direction, radial direction, and plate thickness direction of the ring are defined respectively. Used to set the material coordinate system. The ODF was calculated using ResMat's TexTools.
When the average values of the arc-shaped Goss azimuth strengths at A1 to D1 (yoke part) and A2 to D2 (tooth part) are Y and T, respectively, at random strength ratios, these ratios (Y / T) and iron loss (W FIG. 7 shows the results of examining the relationship with 15/50 ).
As shown in the figure, it can be seen that when Y / T is 2.0 or more, excellent iron loss characteristics can be obtained. In this experiment, the standard deviation of Y / T at each of position A, position B, position C, and position D was 5% or less of the average value, and the variation due to position was small.

本発明は、以上の知見より得られたものである。
すなわち、Al:0.1%未満で、かつ適切な粒径の鋼板を素材とし、コアのヨーク部に適切な伸び率のヘリカル圧延加工を施したのち、歪取焼鈍を施すことで、ヨーク部に歪誘起粒成長を生じさせて弧状Goss方位を優先成長させ、これにより、ヨーク部の円周方向に磁化容易軸である[100]を強く配向させて、コアの磁気特性を向上させたものである。
The present invention has been obtained from the above findings.
In other words, Al: Less than 0.1% steel sheet with an appropriate grain size is used as the raw material, and the yoke part of the core is subjected to helical rolling with an appropriate elongation, and then subjected to strain relief annealing, so that the yoke part is distorted. Induced grain growth to preferentially grow the arc-shaped Goss orientation, which strongly oriented [100], which is the easy axis of magnetization, in the circumferential direction of the yoke and improved the magnetic properties of the core .

次に、本発明において鋼板の成分組成を前記の範囲に限定した理由について説明する。
C:0.01%以下
C量が0.01%を超えると磁気時効により鉄損が劣化する。このため、上限を0.01%とする。
Next, the reason why the component composition of the steel sheet is limited to the above range in the present invention will be described.
C: 0.01% or less When the C content exceeds 0.01%, the iron loss is deteriorated by magnetic aging. For this reason, the upper limit is made 0.01%.

Si:5.0%以下
Siは、鋼板の固有抵抗を上げるために有効な元素であるが、5.0%を超えると加工が困難になるため、5.0%を上限とする。加工性を確保する観点からは3.5%以下とすることが好ましい。鉄損低減の観点からは1.0%以上添加することが好ましい。
Si: 5.0% or less
Si is an effective element for increasing the specific resistance of the steel sheet, but if it exceeds 5.0%, processing becomes difficult, so 5.0% is made the upper limit. From the viewpoint of ensuring workability, it is preferably 3.5% or less. From the viewpoint of reducing iron loss, 1.0% or more is preferably added.

Al:0.1%未満
図3に示したとおり、Al量が0.1%未満になるとGoss方位粒の成長が促進され、鉄損が大幅に低下するので、Al量は0.1%未満とする。好ましくは0.01%以下である。
Al: less than 0.1% As shown in FIG. 3, when the Al content is less than 0.1%, the growth of Goss orientation grains is promoted and the iron loss is greatly reduced. Therefore, the Al content is less than 0.1%. Preferably it is 0.01% or less.

Mn:0.03〜3.0%
Mnは、Siと同様、鋼板の固有抵抗を上げるために有効な元素であるが、3.0%を超えると加工が困難になるため、3.0%を上限とする。加工性を確保する観点からは2.0%以下とすることが好ましい。一方、熱間脆性を抑制する観点から下限を0.03%とする。したがって、Mn量は0.03〜3.0%とする。
Mn: 0.03-3.0%
Mn, like Si, is an effective element for increasing the specific resistance of the steel sheet. However, if it exceeds 3.0%, processing becomes difficult, so 3.0% is made the upper limit. From the viewpoint of ensuring workability, it is preferably 2.0% or less. On the other hand, the lower limit is set to 0.03% from the viewpoint of suppressing hot brittleness. Therefore, the Mn content is 0.03 to 3.0%.

P:0.2%以下
Pは、低合金鋼の強度調整に用いたり、集合組織の制御に用いられる有用な元素であるが、0.2%を超えると加工が困難になるため、0.2%を上限とする。集合組織制御の観点からは、少なくとも0.01%添加することが好ましい。
P: 0.2% or less P is a useful element used to adjust the strength of low alloy steels or to control the texture. However, if it exceeds 0.2%, it becomes difficult to process, so 0.2% is the upper limit. . From the viewpoint of texture control, it is preferable to add at least 0.01%.

さらに、本発明では、以下の不純物元素の混入を抑制することで、歪誘起粒成長および弧状Goss方位の発達を促進することができる。以下の規制を満たさない場合、弧状Goss方位の優先成長が阻害されて、十分な効果が得られない場合がある。
Ti,Nb,V:0.01%以下
Ti,Nb,V量がそれぞれ0.01%を超えると、TiN,NbN,VNなどの窒化物が多量に析出して歪誘起粒成長および弧状Goss方位の発達が阻害されるおそれがあるため、それぞれの上限を0.01%とすることが好ましい。
Furthermore, in the present invention, by suppressing the inclusion of the following impurity elements, strain-induced grain growth and arc-shaped Goss orientation development can be promoted. If the following regulations are not satisfied, the preferential growth of the arc-shaped Goss orientation may be hindered and a sufficient effect may not be obtained.
Ti, Nb, V: 0.01% or less
If the Ti, Nb, and V contents exceed 0.01%, a large amount of nitrides such as TiN, NbN, and VN may precipitate, which may hinder strain-induced grain growth and arc-shaped Goss orientation development. The upper limit is preferably 0.01%.

S:0.01%以下
S量が0.01%を超えるとMnSなどの硫化物が多量に析出して歪誘起粒成長および弧状Goss方位の発達が阻害されるおそれがあるため、上限を0.01%とすることが好ましい。
S: 0.01% or less If the amount of S exceeds 0.01%, a large amount of sulfides such as MnS may precipitate, which may impede strain-induced grain growth and arc-shaped Goss orientation development, so the upper limit should be 0.01%. Is preferred.

N:0.003%以下
N量が0.003%を超えるとAlNなどの窒化物が多量に析出して歪誘起粒成長および弧状Goss方位の発達が阻害されるおそれがあるため、上限を0.003%とすることが好ましい。
N: 0.003% or less If the amount of N exceeds 0.003%, a large amount of nitride such as AlN may precipitate, which may impede strain-induced grain growth and arc-shaped Goss orientation development, so the upper limit should be 0.003%. Is preferred.

O:0.01%以下
O量が0.01%を超えるとSi−Mn酸化物が多量に生成し、歪誘起粒成長および弧状Goss方位の発達が阻害されるおそれがあるため、上限を0.01%とすることが好ましい。
O: 0.01% or less If the amount of O exceeds 0.01%, a large amount of Si-Mn oxide is generated, which may inhibit strain-induced grain growth and arc-shaped Goss orientation development, so the upper limit should be 0.01%. Is preferred.

なお、以下の元素は必須ではないが、磁気特性改善のために添加してもよい。
Sn,Sb:0.003〜0.5%
Sn,Sbは必須ではないが、弧状Goss方位を発達させるのに有効な元素である。しかしながら、いずれも0.003%より少ないと効果が得られず、一方0.5%より多いと加工が困難になるため、0.003〜0.5%の範囲で添加することが好ましい。
The following elements are not essential, but may be added to improve magnetic properties.
Sn, Sb: 0.003-0.5%
Sn and Sb are not essential, but are effective elements for developing the arc-shaped Goss orientation. However, if the content is less than 0.003%, the effect cannot be obtained. On the other hand, if the content is more than 0.5%, the processing becomes difficult. Therefore, it is preferable to add in the range of 0.003 to 0.5%.

Ca,REM:0.0005〜0.0050%
Ca,REMは必須ではないが、粒成長を促進するのに有効な元素である。すなわち、いずれもSを粗大硫化物として固定するため、微細MnSの析出を抑制して粒成長性を改善する。しかしながら、いずれも0.0005%より少ないと効果が得られず、一方0.0050%より多いと介在物が増加しかえって鉄損が悪化するため、0.0005〜0.0050%の範囲で添加することが好ましい。
Ca, REM: 0.0005 to 0.0050%
Ca and REM are not essential, but are effective elements for promoting grain growth. That is, in both cases, since S is fixed as coarse sulfide, precipitation of fine MnS is suppressed and grain growth is improved. However, if the content is less than 0.0005%, the effect cannot be obtained. On the other hand, if the content is more than 0.0050%, inclusions are increased and the iron loss is deteriorated.

Cr:0.01〜3.0%
Crは、SiやAl,Mnと同じく、鋼板の固有抵抗を上げるために有効な元素である。しかしながら、含有量が0.01%より少ないと効果が得られず、一方3.0%より多いと加工が困難になるため、0.01〜3.0%の範囲で添加することが好ましい。
Cr: 0.01-3.0%
Cr, like Si, Al and Mn, is an effective element for increasing the specific resistance of the steel sheet. However, if the content is less than 0.01%, the effect cannot be obtained. On the other hand, if the content is more than 3.0%, processing becomes difficult. Therefore, it is preferable to add in the range of 0.01 to 3.0%.

本発明においては、素材鋼板の結晶粒径を所定の範囲内とする必要があり、仕上焼鈍条件が重要なポイントとなるが、その他の工程は公知の製造方法を用いることができる。
すなわち、転炉で吹練した溶鋼を脱ガス処理し、引き続き鋳造、熱間圧延を行う。熱間圧延時の仕上げ温度、巻取り温度は特に規定する必要はなく、通常の範囲でかまわない。また、熱延後の熱延板焼鈍は行ってもよいが必須ではない。ついで、1回の冷間圧延または中間焼鈍を挟んだ2回以上の冷間圧延により所定の板厚とした後に、仕上焼鈍を行うことにより素材鋼板を得る。仕上焼鈍の際、所定の結晶粒径になるように焼鈍温度を調整する。絶縁被膜は公知のものを用いることができるが、歪取焼鈍でのスティッキングを防止するため、無機−有機混合被膜か、無機被膜を用いることが望ましい。機械特性改善のために調質圧延を適用してもよいが、歪取焼鈍後に異方性が強くなり磁気特性が劣化するので、適用しないことが望ましい。なお、調質圧延を適用する場合は、伸び率を1%以下とすることが望ましい。
In the present invention, the crystal grain size of the raw steel plate needs to be within a predetermined range, and the finish annealing condition is an important point, but other processes can use known manufacturing methods.
That is, the molten steel blown in the converter is degassed and subsequently cast and hot rolled. The finishing temperature and the coiling temperature at the time of hot rolling need not be specified, and may be in a normal range. Moreover, although hot-rolled sheet annealing after hot rolling may be performed, it is not essential. Next, after a predetermined plate thickness is obtained by two or more cold rollings with one cold rolling or intermediate annealing, a raw steel plate is obtained by performing finish annealing. During the finish annealing, the annealing temperature is adjusted so that a predetermined crystal grain size is obtained. Although a well-known thing can be used for an insulating film, in order to prevent the sticking in strain relief annealing, it is desirable to use an inorganic-organic mixed film or an inorganic film. Although temper rolling may be applied to improve the mechanical properties, it is desirable not to apply temper rolling because the anisotropy becomes stronger after the stress relief annealing and the magnetic properties deteriorate. In addition, when applying temper rolling, it is desirable to make elongation rate 1% or less.

本発明において、素材鋼板の結晶粒径は100μm以下とする必要がある。というのは、結晶粒径が100μmより大きいと粒成長の駆動力が弱く、歪取焼鈍で粒成長が起こりにくくなるため、弧状Goss方位の優先成長が起こりにくくなるからである。好ましい結晶粒径は70μm以下、さらに好ましくは50μm以下である。   In the present invention, the grain size of the material steel plate needs to be 100 μm or less. This is because when the crystal grain size is larger than 100 μm, the driving force for grain growth is weak, and grain growth is difficult to occur by strain relief annealing, so that preferential growth in the arc-shaped Goss orientation is difficult to occur. The preferred crystal grain size is 70 μm or less, more preferably 50 μm or less.

ここに、素材鋼板の結晶粒径を100μm以下とするには、仕上焼鈍における焼鈍条件を、700〜900℃、1sec〜30 minとすることが好ましい。仕上温度や仕上時間が下限に満たないと未再結晶部が増加し、Goss方位の成長が起こりにくくなり、一方仕上温度や仕上時間が上限を超えると結晶粒径が大きくなりすぎ、また生産性が低下する。   Here, in order to set the crystal grain size of the raw steel plate to 100 μm or less, it is preferable that the annealing condition in the finish annealing is 700 to 900 ° C. and 1 sec to 30 min. If the finish temperature and finish time are less than the lower limit, the number of unrecrystallized parts increases, making it difficult for the Goss orientation to grow, while if the finish temperature and finish time exceed the upper limit, the crystal grain size becomes too large and the productivity is increased. Decreases.

また、素材鋼板の組織が未再結晶組織であると歪誘起粒成長が起き難くなるので、素材鋼板の組織は再結晶組織であることが好ましく、再結晶率は80%以上であることが好ましい。なお、素材鋼板の再結晶率が100%未満の場合、素材鋼板の結晶粒径は再結晶が完了している領域で測定した結晶粒径を用いて規定する。   In addition, since the strain-induced grain growth is difficult to occur when the structure of the material steel sheet is an unrecrystallized structure, the structure of the material steel sheet is preferably a recrystallized structure, and the recrystallization rate is preferably 80% or more. . When the recrystallization rate of the raw steel plate is less than 100%, the crystal grain size of the raw steel plate is defined using the crystal grain size measured in the region where recrystallization has been completed.

本発明に従い、ヘリカル圧延加工を行う場合は、ヨーク部に圧延を施す必要がある。この圧延は、例えばテーパーのついたロールを用いて、ヨーク部の外周側と内周側で伸び率に差がつくように調整することで、材料をらせん状に加工することができる。このとき、圧延で歪を導入した場合、歪取焼鈍中に歪誘起粒成長が起こって弧状Goss方位が優先成長するのであるが、Alが0.1%未満であるとその効果が顕著となる。すなわち、ヨークの円周方向に磁化容易軸[100]が強く配向してコアの磁気特性が著しく改善される。この圧延はヨーク部のみに適用することが望ましい。ティース部では半径方向に磁束が流れるため、同様の圧延を行うと半径方向に磁化困難軸[011]が配向することになり、コアの特性を劣化させる。   When performing helical rolling according to the present invention, it is necessary to perform rolling on the yoke portion. In this rolling, for example, by using a tapered roll, the material can be processed into a spiral shape by adjusting so that the elongation percentage is different between the outer peripheral side and the inner peripheral side of the yoke portion. At this time, when strain is introduced by rolling, strain-induced grain growth occurs during strain relief annealing, and the arc-shaped Goss orientation preferentially grows, but the effect becomes significant when Al is less than 0.1%. That is, the easy axis [100] is oriented strongly in the circumferential direction of the yoke, and the magnetic properties of the core are remarkably improved. This rolling is desirably applied only to the yoke portion. Since magnetic flux flows in the tooth portion in the radial direction, if the same rolling is performed, the hard magnetization axis [011] is oriented in the radial direction, which deteriorates the core characteristics.

この圧延の際、荷重を調整することで伸び率を調整することができる。伸び率は、例えば圧延前の材料にケガキ線を入れておき、圧延前後のケガキ線間隔を測定することで決定することができる。また、加工後の材料の断面組織を観察し、結晶粒のアスペクト比から伸び率を推定することもできる。
図4に示したとおり、ヨーク部に対してヘリカル圧延加工を施す場合、ヨーク部の幅方向で平均した伸び率が1〜30%の範囲であるとき、優れた磁気特性を得ることができる。好ましくは2〜15%の範囲、さらに好ましくは3〜10%の範囲である。
In this rolling, the elongation can be adjusted by adjusting the load. The elongation can be determined, for example, by putting a marking line in the material before rolling and measuring the marking line interval before and after rolling. In addition, the elongation ratio can be estimated from the aspect ratio of the crystal grains by observing the cross-sectional structure of the processed material.
As shown in FIG. 4, when performing helical rolling on the yoke portion, excellent magnetic properties can be obtained when the average elongation in the width direction of the yoke portion is in the range of 1 to 30%. Preferably it is 2 to 15% of range, More preferably, it is 3 to 10% of range.

なお、曲げ加工でヘリカル加工を行った場合には、このような[100]軸の配向は起こらない。この理由は明らかでないが、曲げ加工ではヨークの外周部には引張の塑性歪が、内周部には圧縮の塑性歪が導入されることが原因と考えられる。すなわち、圧縮によって導入される塑性歪は弧状Goss方位を優先成長させるには適切ではないと推定される。   It should be noted that such [100] axis orientation does not occur when helical processing is performed by bending. The reason for this is not clear, but it is considered that a bending plastic strain introduces a tensile plastic strain in the outer peripheral portion of the yoke and a compressive plastic strain in the inner peripheral portion. That is, it is presumed that the plastic strain introduced by compression is not appropriate for preferential growth of the arc-shaped Goss orientation.

本発明では、ヘリカル圧延加工によって導入される歪を利用して弧状Goss方位を発達させるので、ヘリカル圧延加工時の材料温度は低いほうがよい。圧延温度が400℃以上になると回復・再結晶が進行して歪が導入されにくくなるため、材料温度は400℃未満とすることが好ましい。   In the present invention, since the arc-shaped Goss orientation is developed using the strain introduced by the helical rolling process, the material temperature during the helical rolling process should be low. When the rolling temperature is 400 ° C. or higher, recovery / recrystallization proceeds and strain is hardly introduced, so the material temperature is preferably less than 400 ° C.

上記したヘリカル圧延加工の後、歪取焼鈍を行う。この歪取焼鈍の温度が600℃より低いと歪誘起粒成長が起きにくく、一方900℃より高いと層間絶縁を保つことが難しくなるので、歪取焼鈍温度は600〜900℃の範囲とすることが好ましい。また、均熱時間については、1minより短いと歪誘起粒成長の時間が確保できず、一方1000minを超えると粒成長が飽和するうえ、焼鈍コストが高くなるので、歪取焼鈍時間は1〜1000minとすることが望ましい。好ましくは、700〜800℃、10〜300minの範囲である。
なお、雰囲気は公知のガスを用いることができるが、鋼板の酸化を防ぐ観点からはN2やArなどの非酸化性雰囲気を用いることが望ましい。
After the above helical rolling process, strain relief annealing is performed. If the temperature of this strain relief annealing is lower than 600 ° C, strain-induced grain growth is difficult to occur, while if it is higher than 900 ° C, it becomes difficult to maintain interlayer insulation, so the strain relief annealing temperature should be in the range of 600-900 ° C. Is preferred. As for the soaking time, if the time is shorter than 1 min, the time for strain-induced grain growth cannot be ensured. On the other hand, if it exceeds 1000 min, the grain growth is saturated and the annealing cost becomes high. Is desirable. Preferably, it is the range of 700-800 degreeC and 10-300min.
Although a known gas can be used as the atmosphere, it is desirable to use a non-oxidizing atmosphere such as N 2 or Ar from the viewpoint of preventing oxidation of the steel sheet.

次に、本発明に従い得られたモーターコア(ステーター)の好適集合組織について説明すると、次のとおりである。なお、鋼板の集合組織を表現するとき、通常は圧延方向、板幅方向および板厚方向を用いて材料座標系を定義するが、本発明では、それぞれヨークの円周方向、半径方向および板厚方向を用いて材料座標系を設定する。
そして、モータコアの円周方向に[100]方位、板面と平行に(011)面を持つ方位を弧状Goss方位と定義し、ステーターのヨーク部とティース部における弧状Goss方位強度をそれぞれランダム強度比でY、Tとするとき、Y/Tを2.0以上とすることで、磁気特性の大幅な向上を図ることができる。Y/Tのさらに好ましい範囲は4.0以上である。
Next, a preferred texture of the motor core (stator) obtained according to the present invention will be described as follows. When expressing the texture of a steel plate, the material coordinate system is usually defined using the rolling direction, the plate width direction, and the plate thickness direction, but in the present invention, the circumferential direction, radial direction, and plate thickness of the yoke, respectively. Set the material coordinate system using the direction.
Then, the direction having the [100] orientation in the circumferential direction of the motor core and the (011) plane parallel to the plate surface is defined as the arc-shaped Goss orientation, and the arc-shaped Goss orientation strength in the yoke and teeth of the stator is determined as the random strength ratio. When Y and T are used, the magnetic characteristics can be greatly improved by setting Y / T to 2.0 or more. A more preferable range of Y / T is 4.0 or more.

弧状Goss方位の強度は、例えば{110}, {200}, {211}, {310}極点図から選んだ複数の極点図(好ましくは3つ以上)を用い、級数展開法やADC法で計算したODFから求めることができる。級数展開法はゴーストの問題があるため、ADC法を用いることが好ましい。弧状Goss方位強度は、得られたODFより、オイラー角でΦ=90°、φ1=90°、φ2=45°の測定値を用いればよい。なお、集合組織の測定方法は上記の方法に限るものではなく、その他公知の方法も用いることができる。
測定位置は、それぞれ図5に示したようにヨーク、ティースの幅中央部とする。板厚方向の位置としては、鋼板の中心層、すなわち1/2層とする。測定位置、回数はいずれも一つで十分であるが、バラツキが多い場合は複数の測定値の平均値を用いてもよい。図5に示したように4箇所で測定を行う場合、位置A,位置B,位置C,位置Dのそれぞれの位置でY/Tが2.0以上となることが好ましい。
The intensity of the arc-shaped Goss orientation is calculated by series expansion method or ADC method using multiple pole figures (preferably 3 or more) selected from {110}, {200}, {211}, {310} pole figures, for example. It can be obtained from the ODF. Since the series expansion method has a ghost problem, it is preferable to use the ADC method. For the arc-shaped Goss azimuth, measured values of Euler angles of Φ = 90 °, φ1 = 90 °, and φ2 = 45 ° may be used from the obtained ODF. The texture measurement method is not limited to the above method, and other known methods can be used.
As shown in FIG. 5, the measurement position is the central portion of the yoke and teeth. The position in the plate thickness direction is the center layer of the steel plate, that is, the 1/2 layer. One is sufficient for both the measurement position and the number of times, but if there are many variations, an average value of a plurality of measurement values may be used. As shown in FIG. 5, when the measurement is performed at four positions, it is preferable that Y / T is 2.0 or more at each of the positions A, B, C, and D.

(実施例1)
転炉吹練後、脱ガス処理により、表2に示す成分組成に調整したのち、鋳造し、得られたスラブを、1120℃で1h加熱したのち、板厚:2.0mmまで熱間圧延した。熱間圧延の仕上温度は800℃とし、巻取り温度は650℃とした。ついで、920℃,1minの熱延板焼鈍後、板厚:0.5mmまで冷間圧延したのち、20%H2−80%N2雰囲気中にて800℃,1minの仕上焼鈍を行った。
得られた鋼板のL方向断面の組織を光学顕微鏡で観察し、JISの切断法で結晶粒径を求めた結果を表2に併記する。
Example 1
After the converter was blown, it was adjusted to the component composition shown in Table 2 by degassing, and then cast. The obtained slab was heated at 1120 ° C. for 1 h, and then hot-rolled to a thickness of 2.0 mm. The finishing temperature of hot rolling was 800 ° C, and the winding temperature was 650 ° C. Then, after 920 ° C., hot rolled sheet annealing of 1min, thickness: After cold rolled to 0.5 mm, 800 ° C. at 20% H 2 -80% N 2 atmosphere, it was finish annealing of 1min.
The structure of the cross section in the L direction of the obtained steel sheet is observed with an optical microscope, and the results of obtaining the crystal grain size by the JIS cutting method are also shown in Table 2.

この材料から、ティースが幅方向の一端側に等間隔で形成された帯状の試料(幅:10mm)を打ち抜き、曲げもしくは圧延でヘリカル加工を行い、ヨーク部外径:300mm、ヨーク部内径:280mmで、ヘリカル巻き数が20ターンの図5に示すヘリカルコア(ステーター)を作製した。ここで、圧延でヘリカル加工を行う際は、テーパーのついたロールを用いてヨーク部のみに圧延を行い、ヨークの外周側と内周側で伸び率に差がつくように調整して材料をらせん状に加工した。本実験の伸び率はヨーク最外周部で7.2%、ヨーク最内周部で0%であり、ヨーク幅方向の平均は3.6%であった。
得られたステーターに対し、N2雰囲気中にて770℃,90minの歪取焼鈍を行い、その後、モータ締結時と同様な196 kPa(2kg/cm2)の応力を板厚方向に付与した状態で、ヨーク部に一次:200ターン、二次:100ターンの巻き線を行い、磁気特性を測定した。
測定結果を表2に併記する。
From this material, a strip-shaped sample (width: 10 mm) with teeth formed at equal intervals on one end in the width direction is punched out and subjected to helical processing by bending or rolling. Yoke part outer diameter: 300 mm, yoke part inner diameter: 280 mm Thus, the helical core (stator) shown in FIG. 5 having 20 helical turns was produced. Here, when performing helical processing by rolling, the material is prepared by rolling only to the yoke portion using a taper roll and adjusting the elongation ratio to be different between the outer peripheral side and the inner peripheral side of the yoke. Processed into a spiral. The elongation in this experiment was 7.2% at the outermost periphery of the yoke, 0% at the innermost periphery of the yoke, and the average in the yoke width direction was 3.6%.
The obtained stator was subjected to strain relief annealing at 770 ° C for 90 min in N 2 atmosphere, and then applied the same stress of 196 kPa (2 kg / cm 2 ) in the plate thickness direction as when the motor was fastened. Then, the primary: 200 turns and the secondary: 100 turns were wound around the yoke, and the magnetic properties were measured.
The measurement results are also shown in Table 2.

上記の磁気特性測定後、図5に示す位置A1〜D1(ヨーク部)とA2〜D2(ティース部)から試験片を採取し、鋼板中心層の集合組織をX線で測定した。A1〜D1(ヨーク部)とA2〜D2(ティース部)における弧状Goss方位強度の平均値を、それぞれランダム強度比で測定してY、Tとし、これらの比(Y/T)を求めた結果を、表2に併せて示す。   After measuring the above magnetic properties, specimens were taken from positions A1 to D1 (yoke portions) and A2 to D2 (tooth portions) shown in FIG. 5, and the texture of the steel sheet center layer was measured by X-ray. The average value of the arc-shaped Goss azimuth strength at A1 to D1 (yoke part) and A2 to D2 (tooth part) was measured as a random intensity ratio, and Y and T were obtained, and the ratio (Y / T) was obtained. Is also shown in Table 2.

Figure 2015122893
Figure 2015122893

表2に示したとおり、本発明に従いヘリカル圧延加工で作製したステーターは、曲げで作製したステーターに比べて、磁気特性に優れることが分かる。ただし、素材鋼板のAl量が0.1%以上の場合は、ヘリカル圧延加工を利用した場合であっても、十分に満足のいく鉄損を得ることはできなかった。   As shown in Table 2, it can be seen that the stator produced by helical rolling according to the present invention is superior in magnetic properties as compared to a stator produced by bending. However, when the Al content of the raw steel plate was 0.1% or more, even when the helical rolling process was used, a sufficiently satisfactory iron loss could not be obtained.

(実施例2)
C:0.0023%、Si:1.7%、Al:0.0041%、Mn:0.34%、P:0.05%、Ti:0.0008%、Nb:0.0006%、V:0.0007%、S:0.0018%、N:0.0019%およびO:0.0021%を含み、残部はFeおよび不可避不純物よりなるスラブを製造し、熱間圧延後、1020℃,1minの熱延板焼鈍を行ったのち、0.35〜0.5mm厚に冷間圧延し、ついで20%H2−80%N2雰囲気中にて700〜1000℃,1minの仕上焼鈍を行ったのち、膜厚:0.5μmの有機−無機混合被膜を塗布・焼付けした。
得られた鋼板のL方向断面の組織を光学顕微鏡で観察し、JISの切断法で結晶粒径を求めた結果を表3に示す。
(Example 2)
C: 0.0023%, Si: 1.7%, Al: 0.0041%, Mn: 0.34%, P: 0.05%, Ti: 0.0008%, Nb: 0.0006%, V: 0.0007%, S: 0.0018%, N: 0.0019% and O: A slab containing 0.0021% and the balance being Fe and inevitable impurities is manufactured, and after hot rolling, hot-rolled sheet annealing is performed at 1020 ° C. for 1 min, and then cold-rolled to a thickness of 0.35-0.5 mm. Next, after finishing annealing at 700 to 1000 ° C. for 1 min in a 20% H 2 -80% N 2 atmosphere, an organic-inorganic mixed film having a film thickness of 0.5 μm was applied and baked.
Table 3 shows the results of observing the L-direction cross-sectional structure of the obtained steel sheet with an optical microscope and obtaining the crystal grain size by the JIS cutting method.

この材料からティースが幅方向の一端側に等間隔で形成された帯状の試料(幅:5mm)を打ち抜き、ヘリカル加工によりヨーク部外径:400mm、ヨーク部内径:390mmで、ヘリカル巻き数が20ターンの図5に示すヘリカルコア(ステーター)を作製した。ここで、ヘリカル加工を行う際は、テーパーのついたロールを用いてヨーク部のみに圧延を行い、ヨークの外周側と内周側で伸び率に差がつくように調整して材料をらせん状に加工した。ここで、圧延後の板厚が0.35mmになるように、圧延前の板厚を調整した。
ヨークの幅方向平均伸び率について調べた結果を、表3に併記する。
A strip-shaped sample (width: 5 mm) in which teeth are formed at equal intervals on one end side in the width direction is punched out of this material, and by helical processing, the outer diameter of the yoke is 400 mm, the inner diameter of the yoke is 390 mm, and the number of helical turns is 20 The helical core (stator) shown in FIG. 5 of the turn was produced. Here, when performing helical processing, roll only the yoke part using a taper roll and adjust the material so that there is a difference in elongation between the outer peripheral side and the inner peripheral side of the yoke. It was processed into. Here, the thickness before rolling was adjusted so that the thickness after rolling was 0.35 mm.
The results of examining the average elongation in the width direction of the yoke are also shown in Table 3.

得られたステーターに対し、N2雰囲気中にて750℃,120minの歪取焼鈍を行い、その後、モータ締結時と同様な196 kPa(2kg/cm2)の応力を板厚方向に付与した状態で、ヨーク部に一次:200ターン、二次:100ターンの巻き線を行い、磁気特性を測定した。
測定結果を表3に併記する。
The obtained stator was subjected to strain relief annealing at 750 ° C for 120 min in N 2 atmosphere, and then applied the same stress of 196 kPa (2 kg / cm 2 ) in the plate thickness direction as when the motor was fastened. Then, the primary: 200 turns and the secondary: 100 turns were wound around the yoke, and the magnetic properties were measured.
The measurement results are also shown in Table 3.

測定後、図5に示す位置A1〜D1(ヨーク部)とA2〜D2(ティース部)から試験片を採取し、鋼板中心層の集合組織をX線で測定した。A1〜D1(ヨーク部)とA2〜D2(ティース部)における弧状Goss方位強度の平均値を、それぞれランダム強度比でY、Tとし、これらの比(Y/T)を求めた結果を、表3に併せて示す。   After the measurement, test pieces were collected from positions A1 to D1 (yoke part) and A2 to D2 (tooth part) shown in FIG. The average values of the arc-shaped Goss azimuth strengths at A1 to D1 (yoke part) and A2 to D2 (tooth part) are Y and T as random intensity ratios, respectively, and the results of calculating these ratios (Y / T) are as follows. Also shown in FIG.

Figure 2015122893
Figure 2015122893

表3に示したとおり、本発明に従い、結晶粒径が100μm以下の素材鋼板を用い、かつ幅方向の平均伸び率が1%以上30%以下の条件で、ヘリカル圧延加工を施して得たステーターはいずれも、優れた磁気特性が得られることが分かる。   As shown in Table 3, according to the present invention, a stator obtained by subjecting a material steel plate having a crystal grain size of 100 μm or less to a helical rolling process under the condition that the average elongation in the width direction is 1% or more and 30% or less. It can be seen that both have excellent magnetic properties.

Claims (3)

質量%で、C:0.01%以下、Si:5.0%以下、Al:0.1%未満、Mn:0.03〜3.0%およびP:0.2%以下を含み、残部はFeおよび不可避不純物からなり、かつ結晶粒径が100μm以下の鋼板を用いて、モータコアを製造するに際し、該モータコアのステーターの製造過程において、ステーターのヨーク部の外周に沿って、伸び率が幅方向平均で1%以上30%以下のヘリカル圧延加工を行い、その後歪取焼鈍を施すことを特徴とするモータコアの製造方法。   In mass%, C: 0.01% or less, Si: 5.0% or less, Al: less than 0.1%, Mn: 0.03-3.0% and P: 0.2% or less, with the balance being Fe and inevitable impurities, and crystal grain size When manufacturing a motor core using a steel plate having a thickness of 100 μm or less, in the manufacturing process of the stator of the motor core, along the outer periphery of the yoke portion of the stator, helical rolling with an average elongation of 1% or more and 30% or less in the width direction A method for manufacturing a motor core, characterized by performing processing and then performing strain relief annealing. 請求項1において、前記鋼板が、不純物元素の混入を、質量%で、Ti:0.01%以下、Nb:0.01%以下、V:0.01%以下、S:0.01%以下、N:0.003%以下およびO:0.01%以下に抑制したことを特徴とするモータコアの製造方法。   2. The steel sheet according to claim 1, wherein the steel sheet is mixed with impurity elements in terms of mass%, Ti: 0.01% or less, Nb: 0.01% or less, V: 0.01% or less, S: 0.01% or less, N: 0.003% or less, and O : A method for manufacturing a motor core, characterized by being suppressed to 0.01% or less. 請求項1または2において、前記ステーターがらせん状の鋼片を積層したものであることを特徴とするモータコアの製造方法。   3. The method of manufacturing a motor core according to claim 1, wherein the stator is a laminate of spiral steel pieces.
JP2013265651A 2013-12-24 2013-12-24 Manufacturing method of motor core Active JP5979129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013265651A JP5979129B2 (en) 2013-12-24 2013-12-24 Manufacturing method of motor core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013265651A JP5979129B2 (en) 2013-12-24 2013-12-24 Manufacturing method of motor core

Publications (2)

Publication Number Publication Date
JP2015122893A true JP2015122893A (en) 2015-07-02
JP5979129B2 JP5979129B2 (en) 2016-08-24

Family

ID=53534047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013265651A Active JP5979129B2 (en) 2013-12-24 2013-12-24 Manufacturing method of motor core

Country Status (1)

Country Link
JP (1) JP5979129B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016475A1 (en) * 2016-07-21 2018-01-25 株式会社デンソー Method for manufacturing core plate
JP2018023271A (en) * 2016-07-21 2018-02-08 株式会社デンソー Method for manufacturing core plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186829A (en) * 1991-07-29 1993-07-27 Kenichi Arai Production of grain-oriented silicon steel sheet having crystal orientation integrated in goss orientation
JP2000087139A (en) * 1998-07-16 2000-03-28 Sumitomo Metal Ind Ltd Silicon steel sheet and its production
JP2005094951A (en) * 2003-09-18 2005-04-07 Hitachi Ltd Core, its manufacturing process and apparatus
JP2011006731A (en) * 2009-06-24 2011-01-13 Jfe Steel Corp Core material for divided motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186829A (en) * 1991-07-29 1993-07-27 Kenichi Arai Production of grain-oriented silicon steel sheet having crystal orientation integrated in goss orientation
JP2000087139A (en) * 1998-07-16 2000-03-28 Sumitomo Metal Ind Ltd Silicon steel sheet and its production
JP2005094951A (en) * 2003-09-18 2005-04-07 Hitachi Ltd Core, its manufacturing process and apparatus
JP2011006731A (en) * 2009-06-24 2011-01-13 Jfe Steel Corp Core material for divided motor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016475A1 (en) * 2016-07-21 2018-01-25 株式会社デンソー Method for manufacturing core plate
JP2018023271A (en) * 2016-07-21 2018-02-08 株式会社デンソー Method for manufacturing core plate
TWI650424B (en) * 2016-07-21 2019-02-11 日商電裝股份有限公司 Iron core board manufacturing method
KR20190020111A (en) * 2016-07-21 2019-02-27 가부시키가이샤 덴소 Manufacturing method of core plate
CN109478834A (en) * 2016-07-21 2019-03-15 株式会社电装 The manufacturing method of core plate
US10749416B2 (en) 2016-07-21 2020-08-18 Denso Corporation Method for manufacturing core plate
CN109478834B (en) * 2016-07-21 2020-10-27 株式会社电装 Method for manufacturing core board
KR102243007B1 (en) * 2016-07-21 2021-04-21 가부시키가이샤 덴소 Core plate manufacturing method

Also Published As

Publication number Publication date
JP5979129B2 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
US10526673B2 (en) Non-oriented electrical steel sheet and method for producing the same, and motor core and method of producing the same
KR101508082B1 (en) Method of producing non-oriented electrical steel sheet
RU2771133C1 (en) Sheet of non-textured electrical steel and the method for its production
KR102239708B1 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP5273235B2 (en) Method for producing non-oriented electrical steel sheet
JP4613748B2 (en) Manufacturing method of electrical steel sheet
KR20130032913A (en) Method for producing non-oriented magnetic steel sheet
JP2016211016A (en) Hot rolled sheet for nonoriented magnetic steel sheet and production method therefor, and nonoriented magnetic steel sheet excellent in magnetic property and production method therefor
JP5573147B2 (en) Method for producing non-oriented electrical steel sheet
JP6855894B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP5644154B2 (en) Method for producing grain-oriented electrical steel sheet
JP5979129B2 (en) Manufacturing method of motor core
JP5369454B2 (en) Method for producing non-oriented electrical steel sheet
US20220186336A1 (en) Electrical steel sheet and method for manufacturing same
JP5979128B2 (en) Motor core and manufacturing method thereof
JP4810777B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP7445656B2 (en) Non-oriented electrical steel sheet and its manufacturing method
KR102561512B1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2008045151A (en) Method for manufacturing non-oriented silicon steel sheet excellent in whole circumferential characteristic and workability
JP6192291B2 (en) Non-oriented electrical steel sheet for spiral core and manufacturing method thereof
JP6844127B2 (en) Iron core, re-cold-rolled steel sheet, steel core laminate, re-cold-rolled steel sheet manufacturing method, iron core laminate manufacturing method, and iron core manufacturing method
JP5560923B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties in rolling direction
JP4827368B2 (en) Manufacturing method of stator core for rotating machine with excellent magnetic properties
JP7211532B2 (en) Method for manufacturing non-oriented electrical steel sheet
CN114286871B (en) Method for producing non-oriented electromagnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160711

R150 Certificate of patent or registration of utility model

Ref document number: 5979129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250