JP6192291B2 - Non-oriented electrical steel sheet for spiral core and manufacturing method thereof - Google Patents

Non-oriented electrical steel sheet for spiral core and manufacturing method thereof Download PDF

Info

Publication number
JP6192291B2
JP6192291B2 JP2012279995A JP2012279995A JP6192291B2 JP 6192291 B2 JP6192291 B2 JP 6192291B2 JP 2012279995 A JP2012279995 A JP 2012279995A JP 2012279995 A JP2012279995 A JP 2012279995A JP 6192291 B2 JP6192291 B2 JP 6192291B2
Authority
JP
Japan
Prior art keywords
steel sheet
electrical steel
oriented electrical
less
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012279995A
Other languages
Japanese (ja)
Other versions
JP2014122405A (en
Inventor
藤倉 昌浩
昌浩 藤倉
義行 牛神
義行 牛神
大神 正浩
正浩 大神
健 曽根
健 曽根
隆司 蝋山
隆司 蝋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Sawafuji Electric Co Ltd
Original Assignee
Nippon Steel Corp
Sawafuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51403136&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6192291(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp, Sawafuji Electric Co Ltd filed Critical Nippon Steel Corp
Priority to JP2012279995A priority Critical patent/JP6192291B2/en
Publication of JP2014122405A publication Critical patent/JP2014122405A/en
Application granted granted Critical
Publication of JP6192291B2 publication Critical patent/JP6192291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

自動車用交流発電機(オルタネータ)などのステータには、鋼板をヘリカル加工により平面曲げし、とぐろ状に巻き積層する「らせんコア」が使われることが多い。本発明は、らせんコアに適した無方向性電磁鋼板に関するものである。   A stator such as an alternator for automobiles is often used with a “spiral core” in which a steel plate is bent in a plane by helical processing and wound in a round shape. The present invention relates to a non-oriented electrical steel sheet suitable for a helical core.

らせんコア用無方向性電磁鋼板に関し、従来次のような技術が提案されている。
特許文献1には、らせんコアの鉄損を向上させるため、素材として従来使われてきた冷延鋼板に変えて無方向性電磁鋼板を使うことが提案されている。しかし、スキンパス圧延を施した状態で使用するため、鉄損は通常の無方向性電磁鋼板に比べて劣位である。
これに対して特許文献2には、スキンパス圧延の伸び率を低く限定し、鉄損と加工性を改善する提案がなされている。しかしスキンパス圧延による鉄損劣化は依然として課題となっている。
The following technologies have been proposed for non-oriented electrical steel sheets for spiral cores.
Patent Document 1 proposes to use a non-oriented electrical steel sheet instead of the cold-rolled steel sheet that has been conventionally used as a material in order to improve the iron loss of the spiral core. However, the iron loss is inferior to that of a normal non-oriented electrical steel sheet because it is used in a state where skin pass rolling is applied.
On the other hand, Patent Document 2 proposes that the elongation rate of skin pass rolling is limited to be low and iron loss and workability are improved. However, deterioration of iron loss due to skin pass rolling remains a problem.

特開平9−256119号公報JP-A-9-256119 特開2004−162081号公報JP 2004-162081 A

本発明は、上記従来技術に鑑み、ヘリカル加工性が良好で、かつ低い鉄損をもつ無方向性電磁鋼板を提供することを目的とする。   In view of the above prior art, an object of the present invention is to provide a non-oriented electrical steel sheet having good helical workability and low iron loss.

本発明は、鋼板の成分組成と組織制御により、降伏応力YP、引張強さTS、降伏比YR(YP/TS)、伸びELの機械的特性をヘリカル加工に適した特性範囲とし、同時に低い鉄損を満足したものである。
その要旨は下記の通りである。
According to the present invention, the mechanical properties of the yield stress YP, tensile strength TS, yield ratio YR (YP / TS) , and elongation EL are set in the characteristic range suitable for the helical processing, and at the same time, low iron The loss is satisfied.
The summary is as follows.

(1)質量%で、C:0〜0.01%、Si:0.5〜1.1%、Al:0〜0.7%、Si+Al:0.6〜1.1%、Mn:0.05〜0.6%を含有し、残部Feおよび不可避不純物からなり、金属組織がフェライト単相組織であり、前記フェライト相の平均結晶粒径が10〜60μmであり、降伏応力YP:320MPa以下、引張強さTS:400MPa以下、降伏比YR(YP/TS):0.82以下、伸びEL:30〜40%であることを特徴とするらせんコア用無方向性電磁鋼板。
(2)前記(1)に記載の成分組成を有する熱延板を冷延後、再結晶焼鈍する電磁鋼板の製造方法において、再結晶焼鈍を700〜900℃の温度範囲で、かつ、次式で決められるLMPを17000〜21000の範囲で行うことを特徴とする前記(1)に記載の無方向性電磁鋼板の製造方法。
LMP=T×(20+Log(t))
ここで、T:焼鈍温度(K)、t:焼鈍時間(時間)である。
(1) By mass%, C: 0 to 0.01%, Si: 0.5 to 1.1%, Al: 0 to 0.7%, Si + Al: 0.6 to 1.1%, Mn: 0 0.05 to 0.6%, the balance being Fe and unavoidable impurities, the metal structure being a ferrite single phase structure, the average crystal grain size of the ferrite phase being 10 to 60 μm, and the yield stress YP: 320 MPa or less A non-oriented electrical steel sheet for a spiral core, characterized by tensile strength TS: 400 MPa or less, yield ratio YR (YP / TS): 0.82 or less , and elongation EL: 30 to 40% .
(2) In the manufacturing method of the electrical steel sheet which carries out recrystallization annealing after cold-rolling the hot-rolled sheet which has a component composition as described in said (1), recrystallization annealing is 700-900 degreeC, and following Formula The method for producing a non-oriented electrical steel sheet according to the above (1) , wherein the LMP determined by 1 is performed in the range of 17000 to 21000.
LMP = T × (20 + Log (t))
Here, T: annealing temperature (K), t: annealing time (hour).

本発明によれば、ヘリカル加工性が良好で、かつ低い鉄損をもつ無方向性電磁鋼板を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the non-oriented electrical steel sheet which has favorable helical workability and has a low iron loss can be provided.

結晶粒径を20μmに揃えた時の、Si+Al含有量と降伏点YPの関係を示す図である。It is a figure which shows the relationship between Si + Al content and the yield point YP when a crystal grain diameter is arranged at 20 micrometers. 結晶粒径を20μmに揃えた時の、Si+Al含有量と引張強さTSの関係を示す図である。It is a figure which shows the relationship between Si + Al content and tensile strength TS when a crystal grain diameter is arranged at 20 micrometers. 結晶粒径を20μmに揃えた時の、Si+Al含有量と降伏比YR(YP/TS)の関係を示す図である。It is a figure which shows the relationship between Si + Al content and yield ratio YR (YP / TS) when a crystal grain diameter is arranged at 20 micrometers. 鋼板をヘリカル加工した場合のしわの数と降伏点YPとの関係を示す図である。It is a figure which shows the relationship between the number of wrinkles at the time of carrying out the helical process of the steel plate, and the yield point YP. 鋼板をヘリカル加工した場合のしわの数と引張強さTSとの関係を示す図である。It is a figure which shows the relationship between the number of wrinkles at the time of carrying out the helical process of the steel plate, and tensile strength TS. 結晶粒径を変化させた鋼板における、ヘリカル加工した場合のしわの数と降伏比YR(YS/TS)との関係を示す図である。It is a figure which shows the relationship between the number of wrinkles at the time of carrying out the helical process, and the yield ratio YR (YS / TS) in the steel plate which changed the crystal grain diameter.

以下、本発明を構成する要件について順次説明する。
<成分組成>
本発明の無方向性電磁鋼板の成分組成の限定理由について説明する。以下で含有量の%は、質量%を意味する。
(C:0〜0.01%)
Cは鉄損を劣化させ、磁気時効の原因にもなる有害な元素なので、上限を0.01%とし、下限を0%とする。好ましくは0〜0.005%以下である。
(Si:0.1〜2.0%)
Siは脱酸剤として有効であり、鋼の固有抵抗を増加させ鉄損を低下させるため、0.1%以上が必要である。一方、多すぎると磁束密度が低下するため、上限を2.0%とする。最適な範囲は0.1〜2.0%であり、好ましくは0.5〜1.0%である。なお、特許請求の範囲では、Siの下限を好ましい値の0.5%とし、上限をSi+Al量の上限から求められる1.1%とした。
Hereinafter, requirements constituting the present invention will be sequentially described.
<Ingredient composition>
The reason for limiting the component composition of the non-oriented electrical steel sheet of the present invention will be described. Below,% of content means the mass%.
(C: 0 to 0.01%)
C is a harmful element that deteriorates iron loss and causes magnetic aging, so the upper limit is made 0.01% and the lower limit is made 0%. Preferably it is 0 to 0.005% or less.
(Si: 0.1-2.0%)
Since Si is effective as a deoxidizer and increases the specific resistance of steel and lowers iron loss, 0.1% or more is necessary. On the other hand, if the amount is too large, the magnetic flux density decreases, so the upper limit is made 2.0%. The optimum range is 0.1 to 2.0%, preferably 0.5 to 1.0%. In the claims, the lower limit of Si is set to 0.5% of a preferable value, and the upper limit is set to 1.1% obtained from the upper limit of the amount of Si + Al.

(Al:0〜0.7%)
Alも脱酸剤として有効であり、固有抵抗を増加させるので、添加してもよい。しかし磁束密度の低下にはSiよりも影響が大きい。また理由は不明であるが、Al量が増えると降伏比が大きくなる傾向がある。従ってAlの範囲を0〜0.7%とする。好ましくは0〜0.3%である。
(Al: 0 to 0.7%)
Al is also effective as a deoxidizing agent and increases the specific resistance, so it may be added. However, the effect of lowering the magnetic flux density is greater than that of Si. The reason is unknown, but the yield ratio tends to increase as the Al content increases. Therefore, the range of Al is made 0 to 0.7%. Preferably it is 0 to 0.3%.

(Si+Al:0.3〜2.5%)
SiとAlは上記の作用の他に、降伏応力YPや引張強さTSなどの機械的強度を高め、降伏比YR(YP/TS)にも影響を与える。図1〜3に、フェライト粒の平均結晶粒径が20μmである場合の、SiとAlの合計添加量(Si+Al)とYP、TS、YRとの関係を示す。
後述するが、良好なヘリカル加工性を持つには、YP、TS、YRがそれぞれ320MPa以下、400MPa以下、0.82以下を満足することが必要である。これらの条件を満足させるSi+Al量は、図1〜3の場合、YPでは1.8%以下、TSでは1.1%以下、YRでは0.6%以上である。
このように、良好なヘリカル加工性を得るにはSi+Al量には適正な範囲があることが確認されたので、フェライト粒の平均結晶粒径が他の場合についても、さらに検討した結果、Si+Alを0.3〜2.5%の範囲にするとよいことが確認された。より好ましいSi+Alの範囲は0.5〜1.5%であり、更に好ましくは0.5〜1.0%である。なお、特許請求の範囲では、上記TS、YRについての記載に基づき0.6〜1.1%とした。
(Si + Al: 0.3-2.5%)
In addition to the above-described effects, Si and Al increase mechanical strength such as yield stress YP and tensile strength TS, and affect the yield ratio YR (YP / TS). 1 to 3 show the relationship between the total addition amount of Si and Al (Si + Al) and YP, TS, and YR when the average grain size of ferrite grains is 20 μm.
As will be described later, in order to have good helical workability, it is necessary that YP, TS, and YR satisfy 320 MPa or less, 400 MPa or less, and 0.82 or less, respectively. In the case of FIGS. 1 to 3, the amount of Si + Al that satisfies these conditions is 1.8% or less for YP, 1.1% or less for TS, and 0.6% or more for YR.
As described above, since it was confirmed that there is an appropriate range for the amount of Si + Al in order to obtain good helical workability, further investigation was conducted even when the average crystal grain size of the ferrite grains was other than that. It was confirmed that the content should be in the range of 0.3 to 2.5%. A more preferable range of Si + Al is 0.5 to 1.5%, still more preferably 0.5 to 1.0%. In the claims, the content is set to 0.6 to 1.1% based on the description of the TS and YR.

(Mn:0.05〜0.6%)
Mnは熱間加工性の改善や硫化物の粗大化にも効果があるため下限を0.05%とし、過剰な添加はコスト増になるため、Mnの範囲を0.05〜0.6%とする。好ましくは0.1〜0.3%である。
(Mn: 0.05-0.6%)
Since Mn is effective in improving hot workability and coarsening of sulfides, the lower limit is set to 0.05%, and excessive addition increases costs, so the Mn range is 0.05 to 0.6%. And Preferably it is 0.1 to 0.3%.

(その他の成分)
前記以外のその他の元素は特に規定しないが、下記の様に制御することが有効であることを確認している。
Pは打ち抜きのかえりの防止に効果があるが、凝固偏析によって鉄損が劣化しやすいため0.1%以下が好ましい。
S、N、OおよびTi、Nb、V、Zr、Mgなどは析出物を形成して鉄損を劣化させるので、すべて0.01%以下が好ましい。
またSを無害化させるべく、Ca、REMなどの添加(約0.0005〜0.005%)により、粗大なオキシサルファイドを鋳造での冷却段階で析出させる公知の技術を採用することも有効である。
さらに磁気特性を改善するためにCu、Sn、Sb、Ni、Cr、Bなどを添加しても良いが、添加コストの面から0.5%以下が好ましい。
(Other ingredients)
Other elements other than the above are not particularly defined, but it has been confirmed that the following control is effective.
P is effective in preventing punching burr, but is preferably 0.1% or less because iron loss is likely to deteriorate due to solidification segregation.
Since S, N, O and Ti, Nb, V, Zr, Mg, etc. form precipitates and deteriorate iron loss, all are preferably 0.01% or less.
In order to render S harmless, it is also effective to adopt a known technique in which coarse oxysulfide is precipitated at the cooling stage in casting by adding Ca, REM, etc. (about 0.0005 to 0.005%). is there.
Further, Cu, Sn, Sb, Ni, Cr, B or the like may be added to improve the magnetic characteristics, but 0.5% or less is preferable from the viewpoint of the addition cost.

<鋼板組織>
本発明の鋼板の組織は、未再結晶組織を含まないフェライト単相組織とし、その平均粒径を10μm〜60μmとする。未再結晶組織を含んだり、平均粒径が10μm未満だったりすると、鉄損が劣化し、YP、TS、YRも上昇する。60μmより大きくなると、ヘリカル加工性が劣化する。更に打ち抜きの際、端面のダレも大きくなる。好ましくは10〜30μmである。
<Steel structure>
The structure of the steel sheet of the present invention is a ferrite single-phase structure that does not include an unrecrystallized structure, and the average particle size is 10 μm to 60 μm. If an unrecrystallized structure is included or the average particle size is less than 10 μm, the iron loss deteriorates and YP, TS, and YR also increase. If it exceeds 60 μm, the helical processability deteriorates. Further, when punching, the sagging of the end surface increases. Preferably it is 10-30 micrometers.

<機械的特性>
機械的特性とヘリカル加工性との関係を次のような試験を行って評価して、ヘリカル加工性を確保するために必要な機械的特性の要件を得た。
まず、機械特性の異なる無方向性電磁鋼板のヘリカル加工性を評価するために、鋼板から幅10mm、長さ1000mmの試料を切り出し、直径300mmの丸鋼に1ターンをヘリカル巻きつけし、外周または内周に発生したしわの個数をカウントした。
<Mechanical properties>
The relationship between mechanical properties and helical workability was evaluated by conducting the following tests to obtain the requirements for mechanical properties necessary to ensure helical workability.
First, in order to evaluate the helical workability of non-oriented electrical steel sheets having different mechanical properties, a sample having a width of 10 mm and a length of 1000 mm is cut out from the steel sheet, and one turn is helically wound around a round steel having a diameter of 300 mm. The number of wrinkles that occurred on the inner circumference was counted.

含有成分とフェライト結晶粒径を調整して機械特性変化させた場合の、YP、TSとしわの数の関係を図4、5に示す。YP、TSが小さくなるほどしわの数は少なく、ヘリカル加工性が良好になることが分かる。これらの図から、良好なヘリカル加工性を得るために、鋼板の降伏点YPを320MPa以下、引張強さTS400MPa以下とする。ただし加工時の座屈防止の観点からYPは250MPa以上、TSは350MPa以上が好ましい。また、伸びELは、大きい方がヘリカル加工性は良くなるので30%以上とする。大きすぎると打ち抜き時のダレが大きくなるので、40%以下とする
FIGS. 4 and 5 show the relationship between YP, TS, and the number of wrinkles when the mechanical properties are changed by adjusting the contained component and the ferrite crystal grain size. It can be seen that the smaller YP and TS, the smaller the number of wrinkles and the better the helical processability. From these figures, in order to obtain good helical workability, the yield point YP of the steel sheet is set to 320 MPa or less and the tensile strength TS is 400 MPa or less. However, from the viewpoint of preventing buckling during processing, YP is preferably 250 MPa or more, and TS is preferably 350 MPa or more. Further, the elongation EL is 30% or more because the larger helical workability is improved. Since too large sag during punching increases to 40% or less.

次に、0.003%C、0.7%Si、0.2%Mn、Al-trの成分組成を持つ鋼を用いて結晶粒径を変化させ降伏比の異なる鋼板を用意しヘリカル加工性を評価した。YPは290〜320MPa、TSは350〜400MPaの範囲で降伏比YRを変化させることができた。YRとしわの数の変化を図6に示す。降伏比YRは0.82以下とすることで、しわの数は顕著に減少し、加工性が良好となるので、本発明においては、降伏比を0.82以下とする。一方小さすぎると、打ち抜き時のダレが大きくなるので0.65以上が好ましい。   Next, using steel with a composition of 0.003% C, 0.7% Si, 0.2% Mn, and Al-tr, steel sheets with different yield ratios are prepared by changing the grain size, and helical workability Evaluated. Yield ratio YR could be changed in the range of 290 to 320 MPa for YP and 350 to 400 MPa for TS. The change in the number of YRs and wrinkles is shown in FIG. By setting the yield ratio YR to 0.82 or less, the number of wrinkles is remarkably reduced and the workability is improved. Therefore, in the present invention, the yield ratio is 0.82 or less. On the other hand, if it is too small, sagging at the time of punching becomes large, so 0.65 or more is preferable.

<製造方法>
本発明の無方向電磁鋼板の製造方法は下記の通りである。
先に示した鋼組成を有するスラブに対して熱間圧延を施し、酸洗、冷間圧延を施し、その後再結晶のための仕上げ焼鈍を施す。仕上げ焼鈍以外は一般的な無方向性電磁鋼板の製造方法で製造できる。仕上げ焼鈍は結晶粒径の均一化のために連続焼鈍で行うことが好ましく、鋼板組織を粒径10〜60μmのフェライト単相とするため、温度は700〜900℃とする。ただしバッチ焼鈍も可能であり、その場合、次式で決められるLMPを17000〜21000の範囲に制御することで、最適な結晶粒径を得ることができる。
LMP=T×(20+Log(t))
ここで、T:焼鈍温度(K)、t:焼鈍時間(時間)である。
その後、通常の絶縁皮膜を塗布乾燥してもよいし、コスト面から省略することも可能である。
<Manufacturing method>
The manufacturing method of the non-oriented electrical steel sheet of the present invention is as follows.
The slab having the steel composition shown above is hot-rolled, pickled and cold-rolled, and then subjected to finish annealing for recrystallization. Except for finish annealing, it can be manufactured by a general method for manufacturing non-oriented electrical steel sheets. The finish annealing is preferably performed by continuous annealing to make the crystal grain size uniform, and the temperature is set to 700 to 900 ° C. in order to make the steel sheet structure a ferrite single phase having a grain size of 10 to 60 μm. However, batch annealing is also possible, and in that case, an optimal crystal grain size can be obtained by controlling the LMP determined by the following formula within a range of 17000 to 21000.
LMP = T × (20 + Log (t))
Here, T: annealing temperature (K), t: annealing time (hour).
Thereafter, a normal insulating film may be applied and dried, or may be omitted from the viewpoint of cost.

以下、実施例により本発明の実施可能性及び効果についてさらに示す。
<実施例1>
表1に示す各種成分を含有する鋼塊を供試材として、加熱温度を1150℃として熱延を行い、2.5mm厚の熱延板を得た。この熱延板を酸洗し、冷延して0.5mmとした。脱脂してから、850℃で30秒均熱の連続焼鈍を施し、電磁鋼板を得た。
得られた電磁鋼板の粒径はJIS G 0552に基づき測定した。磁気測定は、L、C方向に55mm×55mmの単板試料を切り出し、JIS C 2556に基づき行った。引張試験は、L、C方向にJIS5号試験片を切り出し、JIS Z 2241に基づき行った。またヘリカル加工性を評価するために、鋼板から幅10mm、長さ1000mmの試料を切り出し、直径300mmの丸鋼に1ターンをヘリカル巻きつけし、外周または内周に発生したしわの個数をカウントした。結果を表1に示す。機械特性、磁気特性はLCの平均値である。
本発明例においては、良好なヘリカル加工性と低い鉄損が同時に得られる。
The following examples further illustrate the feasibility and effects of the present invention.
<Example 1>
Using a steel ingot containing various components shown in Table 1 as a test material, hot rolling was performed at a heating temperature of 1150 ° C. to obtain a 2.5 mm thick hot rolled sheet. This hot-rolled sheet was pickled and cold-rolled to 0.5 mm. After degreasing, continuous annealing was performed at 850 ° C. for 30 seconds to obtain a magnetic steel sheet.
The particle size of the obtained electrical steel sheet was measured based on JIS G 0552. Magnetic measurement was performed based on JIS C 2556 by cutting out a single plate sample of 55 mm × 55 mm in the L and C directions. The tensile test was performed based on JIS Z 2241 by cutting out JIS No. 5 test pieces in the L and C directions. In addition, in order to evaluate the helical workability, a sample having a width of 10 mm and a length of 1000 mm was cut out from a steel plate, wound one turn on a round steel having a diameter of 300 mm, and the number of wrinkles generated on the outer periphery or the inner periphery was counted. . The results are shown in Table 1. Mechanical properties and magnetic properties are average values of LC.
In the example of the present invention, good helical workability and low iron loss can be obtained at the same time.

Figure 0006192291
Figure 0006192291

<実施例2>
質量%で、C:0.003%、Si:0.7%、Mn:0.18%、P:0.073%、Al:0.001%の成分組成の鋼塊を供試材として、加熱温度1150℃の熱延を行い、2.5mm厚の熱延板を得た。この熱延板を酸洗し、冷延して0.5mmとした。脱脂してから、表2に示す条件で仕上げ焼鈍を行った。実施例1と同様に粒径、磁気特性、機械的特性、ヘリカル加工性を評価した。結果を表2に示す。
本発明例においては、良好なヘリカル加工性と低い鉄損が同時に得られる。
<Example 2>
A steel ingot having a component composition of C: 0.003%, Si: 0.7%, Mn: 0.18%, P: 0.073%, Al: 0.001% in mass% was used as a test material. Hot rolling was performed at a heating temperature of 1150 ° C. to obtain a 2.5 mm thick hot rolled sheet. This hot-rolled sheet was pickled and cold-rolled to 0.5 mm. After degreasing, finish annealing was performed under the conditions shown in Table 2. Similar to Example 1, the particle size, magnetic properties, mechanical properties, and helical processability were evaluated. The results are shown in Table 2.
In the example of the present invention, good helical workability and low iron loss can be obtained at the same time.

Figure 0006192291
Figure 0006192291

Claims (2)

質量%で、
C:0〜0.01%、
Si:0.5〜1.1%、
Al:0〜0.7%、
Si+Al:0.6〜1.1%、
Mn:0.05〜0.6%
を含有し、残部Feおよび不可避不純物からなり、金属組織がフェライト単相組織であり、前記フェライト相の平均結晶粒径が10〜60μmであり、降伏応力YP:320MPa以下、引張強さTS:400MPa以下、降伏比YR(YP/TS):0.82以下、伸びEL:30〜40%であることを特徴とするらせんコア用無方向性電磁鋼板。
% By mass
C: 0 to 0.01%
Si: 0.5 to 1.1%
Al: 0 to 0.7%,
Si + Al: 0.6 to 1.1%
Mn: 0.05 to 0.6%
The balance is composed of Fe and unavoidable impurities, the metal structure is a ferrite single phase structure, the average crystal grain size of the ferrite phase is 10 to 60 μm, the yield stress YP: 320 MPa or less, the tensile strength TS: 400 MPa A non-oriented electrical steel sheet for a spiral core, characterized in that the yield ratio YR (YP / TS) is 0.82 or less and the elongation EL is 30 to 40% .
前記請求項1に記載の成分組成を有する熱延板を冷延後、再結晶焼鈍する電磁鋼板の製造方法において、再結晶焼鈍を700〜900℃の温度範囲で、かつ、次式で決められるLMPを17000〜21000の範囲で行うことを特徴とする請求項1に記載の無方向性電磁鋼板の製造方法。
LMP=T×(20+Log(t))
ここで、T:焼鈍温度(K)、t:焼鈍時間(時間)である。
In the manufacturing method of the electrical steel sheet which carries out recrystallization annealing after cold-rolling the hot-rolled sheet which has the component composition of the said Claim 1, recrystallization annealing is determined in the temperature range of 700-900 degreeC, and following Formula. LMP is performed in the range of 17000-21000, The manufacturing method of the non-oriented electrical steel sheet according to claim 1 characterized by things.
LMP = T × (20 + Log (t))
Here, T: annealing temperature (K), t: annealing time (hour).
JP2012279995A 2012-12-21 2012-12-21 Non-oriented electrical steel sheet for spiral core and manufacturing method thereof Active JP6192291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012279995A JP6192291B2 (en) 2012-12-21 2012-12-21 Non-oriented electrical steel sheet for spiral core and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012279995A JP6192291B2 (en) 2012-12-21 2012-12-21 Non-oriented electrical steel sheet for spiral core and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014122405A JP2014122405A (en) 2014-07-03
JP6192291B2 true JP6192291B2 (en) 2017-09-06

Family

ID=51403136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012279995A Active JP6192291B2 (en) 2012-12-21 2012-12-21 Non-oriented electrical steel sheet for spiral core and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6192291B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6624393B2 (en) * 2016-12-28 2019-12-25 Jfeスチール株式会社 Non-oriented electrical steel sheet with excellent recyclability
CN114058953B (en) * 2021-10-25 2022-10-14 马鞍山钢铁股份有限公司 Low-iron-loss non-oriented silicon steel suitable for winding processing and production method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3737558B2 (en) * 1996-03-21 2006-01-18 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
JP3915308B2 (en) * 1999-03-31 2007-05-16 Jfeスチール株式会社 Steel sheet for laminated core
JP2000282190A (en) * 1999-03-31 2000-10-10 Nkk Corp Steel sheet for alternator core excellent in magnetic property
JP2001316778A (en) * 2000-04-28 2001-11-16 Nkk Corp Nonoriented silicon steel sheet excellent in workability and its production method
JP4157364B2 (en) * 2002-11-08 2008-10-01 新日本製鐵株式会社 Method for producing non-oriented electrical steel sheet for spiral core
JP4259177B2 (en) * 2003-05-13 2009-04-30 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
JP4827368B2 (en) * 2003-06-26 2011-11-30 Jfeスチール株式会社 Manufacturing method of stator core for rotating machine with excellent magnetic properties
JP4604467B2 (en) * 2003-07-23 2011-01-05 Jfeスチール株式会社 Iron core manufacturing method
JP4810788B2 (en) * 2003-07-29 2011-11-09 Jfeスチール株式会社 Helical machining core material and helical machining core with excellent iron loss characteristics

Also Published As

Publication number Publication date
JP2014122405A (en) 2014-07-03

Similar Documents

Publication Publication Date Title
JP5892327B2 (en) Method for producing non-oriented electrical steel sheet
JP5533958B2 (en) Non-oriented electrical steel sheet with low iron loss degradation by punching
JP5605518B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4681450B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties in the rolling direction and manufacturing method thereof
JP6008157B2 (en) Method for producing semi-processed non-oriented electrical steel sheet with excellent magnetic properties
KR101737871B1 (en) Method for producing grain-oriented electrical steel sheet
JP6665794B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5273235B2 (en) Method for producing non-oriented electrical steel sheet
JP6480446B2 (en) Non-oriented electrical steel slab or electrical steel sheet, parts manufactured therefrom, and method for producing non-directional electrical steel slab or electrical steel sheet
KR20130047735A (en) Process for producing non-oriented electromagnetic steel sheet
JPWO2018079059A1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2020509184A (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6763148B2 (en) Non-oriented electrical steel sheet
JP5573147B2 (en) Method for producing non-oriented electrical steel sheet
JP5139021B2 (en) Soft magnetic steel material, soft magnetic steel component and manufacturing method thereof
JP5644154B2 (en) Method for producing grain-oriented electrical steel sheet
JP6192291B2 (en) Non-oriented electrical steel sheet for spiral core and manufacturing method thereof
JP2018111865A (en) Nonoriented electromagnetic steel sheet
JP6515323B2 (en) Non-oriented electrical steel sheet
JP4740400B2 (en) Non-oriented electrical steel sheet
JP5560923B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties in rolling direction
JP4646872B2 (en) Soft magnetic steel material, soft magnetic component and method for manufacturing the same
JP7465354B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP5979128B2 (en) Motor core and manufacturing method thereof
JP4852804B2 (en) Non-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170808

R150 Certificate of patent or registration of utility model

Ref document number: 6192291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250