JP2015120613A - Carbon composite sheet - Google Patents

Carbon composite sheet Download PDF

Info

Publication number
JP2015120613A
JP2015120613A JP2013264901A JP2013264901A JP2015120613A JP 2015120613 A JP2015120613 A JP 2015120613A JP 2013264901 A JP2013264901 A JP 2013264901A JP 2013264901 A JP2013264901 A JP 2013264901A JP 2015120613 A JP2015120613 A JP 2015120613A
Authority
JP
Japan
Prior art keywords
carbon
fiber
composite sheet
long
carbon composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013264901A
Other languages
Japanese (ja)
Other versions
JP6364764B2 (en
Inventor
俊造 末松
Shunzo Suematsu
俊造 末松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2013264901A priority Critical patent/JP6364764B2/en
Publication of JP2015120613A publication Critical patent/JP2015120613A/en
Application granted granted Critical
Publication of JP6364764B2 publication Critical patent/JP6364764B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a carbon composite sheet that has a high conductivity and that has an excellent flexibility.SOLUTION: The carbon composite sheet is obtained by paper-making molding a mixture of long carbon nanotube and carbon fiber into a sheet. Preferably, the mixture is produced by subjecting the long carbon nanotube to dispersion treatment in a solution, followed by adding the carbon fiber into the dispersion liquid and subjecting the same to mixing treatment. The long carbon nanotube has a fiber diameter of less than 50 nm, a fiber length of 1 μm or more, and an aspect ratio of 100 or more.

Description

本発明は、熱電素子のモジュール用基板や燃料電池のガス拡散層等に用いられる炭素複合シートに関する。   The present invention relates to a carbon composite sheet used for a module substrate of a thermoelectric element, a gas diffusion layer of a fuel cell, or the like.

繊維強化成型品は自動車、航空機、電気機器、電子機器、玩具、家電製品などの幅広い分野で使用される。近年はカーボンナノチューブを抄紙成型することで導電性を付与し、燃料電池の多孔質支持層(ガス拡散層)や熱電素子のモジュール用基板の用途としても注目を集めている(例えば、特許文献1参照)。   Fiber reinforced molded products are used in a wide range of fields such as automobiles, aircraft, electrical equipment, electronic equipment, toys, and home appliances. In recent years, carbon nanotubes are made by papermaking to provide conductivity, and are attracting attention as uses for porous support layers (gas diffusion layers) of fuel cells and module substrates for thermoelectric elements (for example, Patent Document 1). reference).

この特許文献1の技術は、カーボンナノチューブをイソプロピルアルコール中に混ぜ、撹拌することにより分散溶液を得た後、その分散溶液を超高圧処理により高分散させ、濾過及び乾燥によりシート化し、プレス圧力をかけることで、カーボンナノチューブの集合体シートを得る。抄紙成型において接着剤や分散剤を含有させず、高伝導性が図られている。   In the technique of Patent Document 1, a carbon nanotube is mixed in isopropyl alcohol, and a dispersion solution is obtained by stirring. Then, the dispersion solution is highly dispersed by ultra-high pressure treatment, and formed into a sheet by filtration and drying. By applying, an aggregate sheet of carbon nanotubes is obtained. High conductivity is achieved without including an adhesive or a dispersing agent in papermaking.

特開2010−105909号公報JP 2010-105909 A

燃料電池や熱電素子の多孔質支持層やモジュール用基板には、導電性の他に、軽量性や高強度性が要求される。高強度性のうち特に重要なのは、衝撃による曲がりや撓みに対して破断しにくい柔軟性である。   In addition to conductivity, the porous support layer and module substrate for fuel cells and thermoelectric elements are required to have light weight and high strength. Particularly important among the high strength properties is the flexibility that does not easily break against bending or bending due to impact.

しかしながら、本発明者らの鋭意研究の結果、カーボンナノチューブのみで抄紙成型されたシートは、曲がりや撓みに対して十分な柔軟性を有しているとは言えないことがわかった。すなわち、カーボンナノチューブのみで抄紙成型した場合、接着剤やバインダー等を含有させなければ、折曲げに対して非常に弱く、破断が生じやすかった。一方で、接着剤やバインダーは低抵抗性において不純物に作用し、これらを含有させたシートは高抵抗となってしまう。   However, as a result of diligent research by the present inventors, it has been found that a sheet made of paper only from carbon nanotubes cannot be said to have sufficient flexibility against bending or bending. In other words, when paper making was made using only carbon nanotubes, it was very weak against bending and easy to break unless an adhesive or binder was included. On the other hand, adhesives and binders act on impurities with low resistance, and a sheet containing these has high resistance.

すなわち、従来のカーボンナノチューブの集合体シートは、導電性と柔軟性を高度に両立することができなかった。そこで、本発明の目的は、導電性が高く、かつ柔軟性に優れた炭素複合シートを提供することにある。   That is, the conventional carbon nanotube aggregate sheet cannot achieve both high conductivity and flexibility. Accordingly, an object of the present invention is to provide a carbon composite sheet having high conductivity and excellent flexibility.

前記の目的を達成するため、本発明に係る炭素複合シートは、長尺カーボンナノチューブと炭素繊維との混合物をシート状に成型してなることを特徴とする。   In order to achieve the above object, the carbon composite sheet according to the present invention is formed by molding a mixture of long carbon nanotubes and carbon fibers into a sheet shape.

前記混合物は、長尺カーボンナノチューブを溶液中に分散処理した後に前記炭素繊維を添加して混合処理されて生成されるのがよい。前記分散処理はジェットミキシング処理であり、前記混合処理はホモジナイズ処理としてもよい。   The mixture may be generated by dispersing the long carbon nanotubes in a solution and then adding the carbon fiber to the mixture. The dispersion process may be a jet mixing process, and the mixing process may be a homogenization process.

前記炭素繊維の添加比率は、長尺カーボンナノチューブと炭素繊維との合計に対して10重量%以上40重量%以下とするのがよい。   The addition ratio of the carbon fiber is preferably 10% by weight to 40% by weight with respect to the total of the long carbon nanotubes and the carbon fiber.

前記炭素繊維のアスペクト比は径に対する長さの比が250以下とするのがよい。   The aspect ratio of the carbon fiber is preferably such that the ratio of length to diameter is 250 or less.

前記長尺カーボンナノチューブは、繊維径が50nm未満、繊維長が1μm以上、及びアスペクト比が100以上である。また、前記炭素繊維は、繊維径が50nm以上、繊維長が50mm未満である。   The long carbon nanotube has a fiber diameter of less than 50 nm, a fiber length of 1 μm or more, and an aspect ratio of 100 or more. The carbon fiber has a fiber diameter of 50 nm or more and a fiber length of less than 50 mm.

本発明による炭素複合シートは、良好な導電性と柔軟性を有する。   The carbon composite sheet according to the present invention has good conductivity and flexibility.

長尺カーボンナノチューブと炭素繊維とを混合して抄紙成型した炭素複合シートと、長尺カーボンナノチューブのみで炭素繊維を無添加の上、抄紙成型したシートとをそれぞれ撮影した画像である。It is the image which each image | photographed the carbon composite sheet which made papermaking molding by mixing a long carbon nanotube and carbon fiber, and the sheet | seat which carried out papermaking addition without adding carbon fiber only with a long carbon nanotube. 長尺カーボンナノチューブと炭素繊維とを混合して抄紙成型した炭素複合シートと、長尺カーボンナノチューブのみで炭素繊維を無添加の上、抄紙成型したシートの折曲げ回数と表面抵抗との関係を示したグラフである。Shows the relationship between the surface resistance and the carbon composite sheet formed by mixing paper with long carbon nanotubes and carbon fiber, and the number of folding of the paper sheet after adding carbon fiber with long carbon nanotubes alone. It is a graph. 高分散処理後の長尺カーボンナノチューブに対して炭素繊維を混合して抄紙成型した炭素複合シートと、長尺カーボンナノチューブと炭素繊維を共に高分散処理して混合して抄紙成型した炭素複合シートの破断までの折曲げ回数を示した表である。A carbon composite sheet made by papermaking by mixing carbon fibers with long carbon nanotubes after high dispersion treatment, and a carbon composite sheet made by papermaking molding by mixing both long carbon nanotubes and carbon fibers after high dispersion treatment It is the table | surface which showed the frequency | count of bending until a fracture | rupture. 長尺カーボンナノチューブと炭素繊維とを混合して抄紙成型した炭素複合シートに関し、炭素繊維の添加比率に応じた破断までの折曲げ回数と導電率を示したグラフである。It is the graph which showed the frequency | count of bending until the fracture | rupture according to the addition ratio of carbon fiber, and the electrical conductivity regarding the carbon composite sheet which paper-molded by mixing a long carbon nanotube and carbon fiber. 長尺カーボンナノチューブと炭素繊維とを混合して抄紙成型した炭素複合シートに関し、炭素繊維のアスペクト比に応じた破断までの折曲げ回数を示したグラフである。It is the graph which showed the frequency | count of bending until the fracture | rupture according to the aspect-ratio of carbon fiber regarding the carbon composite sheet which made paper-molding by mixing a long carbon nanotube and carbon fiber.

以下、本発明に係る炭素複合シートの実施形態について詳細に説明する。本発明に係る炭素複合シートは、長尺カーボンナノチューブに炭素繊維を添加した混合物をシート状に成型してなる。具体的には、長尺カーボンナノチューブを高分散させた分散液に炭素繊維を添加して混合し、混合液を濾過により抄紙成型する。この炭素複合シートは、繊維強化成型品として自動車、航空機、電気機器、電子機器、玩具、家電製品などの幅広い分野で使用されるが、高い導電性及び高い柔軟性を有しており、特に燃料電池のガス拡散層や熱電素子のモジュール用基板として好適である。   Hereinafter, embodiments of the carbon composite sheet according to the present invention will be described in detail. The carbon composite sheet according to the present invention is formed by molding a mixture in which carbon fibers are added to long carbon nanotubes into a sheet shape. Specifically, carbon fibers are added to a dispersion in which long carbon nanotubes are highly dispersed and mixed, and the mixture is formed into a paper by filtration. This carbon composite sheet is used as a fiber-reinforced molded product in a wide range of fields such as automobiles, aircraft, electrical equipment, electronic equipment, toys, and home appliances. However, it has high conductivity and high flexibility. It is suitable as a gas diffusion layer for batteries and a module substrate for thermoelectric elements.

長尺カーボンナノチューブは、繊維径が50nm未満で繊維長が1μm以上であり、アスペクト比が100以上の長尺のカーボンナノチューブをいう。長尺カーボンナノチューブは、単層カーボンナノチューブでも多層カーボンナノチューブでも、それらの混合でもよい。単層カーボンナノチューブは、グラフェンシートが1層であり、多層カーボンナノチューブは、2層以上のグラフェンシートが同軸状に丸まり、チューブ壁が多層をなす。この長尺カーボンナノチューブは、アーク放電法、レーザー蒸発法、化学気相成長(CVD)法等により得られる。   The long carbon nanotube refers to a long carbon nanotube having a fiber diameter of less than 50 nm, a fiber length of 1 μm or more, and an aspect ratio of 100 or more. The long carbon nanotube may be a single-walled carbon nanotube, a multi-walled carbon nanotube, or a mixture thereof. Single-walled carbon nanotubes have a single graphene sheet, and multi-walled carbon nanotubes have two or more graphene sheets rounded coaxially, and the tube wall forms a multilayer. This long carbon nanotube is obtained by an arc discharge method, a laser evaporation method, a chemical vapor deposition (CVD) method, or the like.

添加する炭素繊維は、繊維径が50nm以上で繊維長が50mm未満である。炭素繊維のアスペクト比に特に限定はないが、アスペクト比250以下が望ましい。このアスペクト比の炭素繊維を長尺カーボンナノチューブに添加すると、炭素複合シートの導電性と柔軟性に非常に良好なバランスが生まれるためである。炭素繊維としては、例えば、ピッチ系炭素繊維、ポリアクリロニトル系炭素繊維、フェノール樹脂炭素繊維、セルロース系炭素繊維、ベンゼン、ナフタレン、クレオトール油等の低沸点有機化合物を原料とする炭素繊維を挙げることができる。   The carbon fiber to be added has a fiber diameter of 50 nm or more and a fiber length of less than 50 mm. The aspect ratio of the carbon fiber is not particularly limited, but an aspect ratio of 250 or less is desirable. This is because when a carbon fiber having this aspect ratio is added to a long carbon nanotube, a very good balance is produced between the conductivity and flexibility of the carbon composite sheet. Examples of the carbon fibers include carbon fibers made from low-boiling organic compounds such as pitch-based carbon fibers, polyacrylonitrile-based carbon fibers, phenolic resin carbon fibers, cellulose-based carbon fibers, benzene, naphthalene, and creitol oil. be able to.

長尺カーボンナノチューブと炭素繊維の混合比は、望ましくは、長尺カーボンナノチューブと炭素繊維の合計重量に対して炭素繊維が10重量%以上40重量%以下とするとよい。この混合比により得られる炭素複合シートには、高い導電率が維持されつつも、特異的に高い柔軟性向上効果が付与されるためである。特に、炭素繊維の長尺カーボンナノチューブに対する添加比率が30重量%前後に柔軟性向上効果の非常に鋭いピークが表れる。   The mixing ratio of the long carbon nanotube and the carbon fiber is desirably 10% by weight or more and 40% by weight or less with respect to the total weight of the long carbon nanotube and the carbon fiber. This is because the carbon composite sheet obtained by this mixing ratio has a particularly high flexibility improvement effect while maintaining high electrical conductivity. In particular, a sharp peak of the effect of improving flexibility appears when the addition ratio of carbon fibers to long carbon nanotubes is around 30% by weight.

長尺カーボンナノチューブと炭素繊維の混合物は、最初に長尺カーボンナノチューブを高分散処理して分散液を得た後に、その分散液に炭素繊維を添加して混合処理することで得る。長尺カーボンナノチューブと炭素繊維の双方を高圧分散処理すると、炭素繊維に裁断が生じて柔軟性向上効果に悪影響を与えるためである。   A mixture of long carbon nanotubes and carbon fibers is obtained by first performing a high dispersion treatment on the long carbon nanotubes to obtain a dispersion, and then adding carbon fibers to the dispersion to perform a mixing treatment. This is because if both the long carbon nanotube and the carbon fiber are subjected to a high pressure dispersion treatment, the carbon fiber is cut and adversely affects the flexibility improvement effect.

分散処理では、長尺カーボンナノチューブのバンドルを解して分散液中に散在させる。分散液の溶媒は、メタノール、エタノールや2−プロパノール(IPA)などのアルコール、炭化水素系溶媒、芳香族系溶媒、N−メチル−2−ピロリドン(NMP)やN,N−ジメチルホルムアミド(DMF)などのアミド系溶媒、水などが挙げられる。長尺カーボンナノチューブに対する分散処理としては、例えばジェットミキシング処理、超遠心処理、又はこれらと同程度の物理的な力を付与ができる手法が望ましい。   In the dispersion treatment, the bundle of long carbon nanotubes is broken and dispersed in the dispersion. Solvents for the dispersion are alcohols such as methanol, ethanol and 2-propanol (IPA), hydrocarbon solvents, aromatic solvents, N-methyl-2-pyrrolidone (NMP) and N, N-dimethylformamide (DMF). And amide solvents, water and the like. As the dispersion process for the long carbon nanotubes, for example, a jet mixing process, an ultracentrifugation process, or a technique capable of applying a physical force equivalent to these is desirable.

ジェットミキシング処理では、筒状のチャンバの内壁の互いに対向する位置に一対のノズルを設ける。長尺カーボンナノチューブを含む溶液を高圧ポンプにより加圧し、一対のノズルより噴射してチャンバ内で正面衝突させる。これにより、長尺カーボンナノチューブのバンドルが粉砕され、分散及び均質化する。超遠心処理では、旋回する容器内で溶液中の長尺カーボンナノチューブにずり応力と遠心力を加える。   In the jet mixing process, a pair of nozzles are provided at positions facing each other on the inner wall of the cylindrical chamber. A solution containing long carbon nanotubes is pressurized by a high-pressure pump and sprayed from a pair of nozzles to cause a frontal collision in the chamber. Thereby, the bundle of long carbon nanotubes is pulverized, dispersed and homogenized. In the ultracentrifugation process, shear stress and centrifugal force are applied to the long carbon nanotubes in the solution in a rotating container.

混合処理では、長尺カーボンナノチューブと炭素繊維とを混合液中に均質に散在させる。この混合処理では、ボールミル、ホモジナイザー、ホモミキサーなどにより、物理的な力を加える。この混合処理では、炭素繊維の凝集物が細分化及び均一化しつつ、混合液中の長尺カーボンナノチューブと炭素繊維を撹拌する。   In the mixing process, long carbon nanotubes and carbon fibers are uniformly dispersed in the mixed solution. In this mixing process, physical force is applied by a ball mill, a homogenizer, a homomixer, or the like. In this mixing treatment, the long carbon nanotubes and the carbon fibers in the mixed solution are stirred while the aggregates of the carbon fibers are subdivided and homogenized.

抄紙成型では、長尺カーボンナノチューブと炭素繊維が混合した混合液を減圧濾過して、濾紙上の堆積物を乾燥させる。濾紙は、ガラス繊維の不織布、有機系不織布(ポリテトラフルオロエチレンやポリエチレンなど)、または、金属製繊維の不織布などを使用する。抄紙成型では、熱可塑性樹脂から成るバインダー繊維等の接着材やノニオン系界面活性剤等の分散剤を含有させないことが望ましい。接着剤や分散剤は、低抵抗化の面では不純物として作用し、導電性を低下させるためである。乾燥後は堆積物を濾紙から剥離する。この堆積物はシート状に成型されており炭素複合シートとなる。   In papermaking molding, the mixed liquid of long carbon nanotubes and carbon fibers is filtered under reduced pressure, and the deposit on the filter paper is dried. As the filter paper, a glass fiber nonwoven fabric, an organic nonwoven fabric (such as polytetrafluoroethylene or polyethylene), or a metal fiber nonwoven fabric is used. In the papermaking molding, it is desirable not to include an adhesive such as a binder fiber made of a thermoplastic resin or a dispersant such as a nonionic surfactant. This is because the adhesive and the dispersant act as impurities in terms of resistance reduction and lower the conductivity. After drying, the deposit is peeled off from the filter paper. This deposit is formed into a sheet and becomes a carbon composite sheet.

この実施形態に係る炭素複合シートの導電性及び柔軟性について確認する。各実施例及び比較例では、以下の条件により炭素複合シートを作成した。尚、本発明は以下の実施例に限定されるものではない。   The conductivity and flexibility of the carbon composite sheet according to this embodiment will be confirmed. In each example and comparative example, a carbon composite sheet was created under the following conditions. In addition, this invention is not limited to a following example.

(炭素繊維の添加に対する評価)
以下の実施例1と比較例1の条件によりシートを作成し、炭素繊維が添加されることによる導電性及び柔軟性について確認した。
(Evaluation for addition of carbon fiber)
Sheets were prepared under the conditions of Example 1 and Comparative Example 1 below, and the conductivity and flexibility due to the addition of carbon fiber were confirmed.

(実施例1)
実施例1の長尺カーボンナノチューブ(ナノシル社、品番NC7000)は、平均繊維径が9.5nm、平均繊維長が1.5μmであり、アスペクト比が157である。まず、この長尺カーボンナノチューブを高圧ジェットミキシング処理によってイソプロピルアルコールに高分散させた。高圧ジェットミキシング処理では、長尺カーボンナノチューブ1.5gに対して1リットルの割合のイソプロピルアルコールを、150MPaのノズル圧で噴出して、長尺カーボンナノチューブをイソプロピルアルコールに高分散させた。この噴出は計3回行った。
Example 1
The long carbon nanotubes of Example 1 (Nanosil Corporation, product number NC7000) have an average fiber diameter of 9.5 nm, an average fiber length of 1.5 μm, and an aspect ratio of 157. First, the long carbon nanotubes were highly dispersed in isopropyl alcohol by high-pressure jet mixing. In the high-pressure jet mixing treatment, 1 liter of isopropyl alcohol was jetted at a nozzle pressure of 150 MPa with respect to 1.5 g of long carbon nanotubes, and the long carbon nanotubes were highly dispersed in isopropyl alcohol. This eruption was performed three times in total.

次に、長尺カーボンナノチューブを高分散させた分散液に、炭素繊維を添加してホモジナイザーによってミキシング処理することで、長尺カーボンナノチューブと炭素繊維の混合液を得た。実施例1の炭素繊維(大阪ガスケミカル株式会社、商品名ドナカーボ、品番S231)は、ピッチ系炭素繊維であり、繊維径が13μm、平均繊維長が3.3mmであり、アスペクト比が250である。この炭素繊維は、長尺カーボンナノチューブと炭素繊維の合計重量に対して40重量%となるように添加した。   Next, a carbon fiber was added to the dispersion liquid in which long carbon nanotubes were highly dispersed, and the mixture was mixed with a homogenizer to obtain a mixed liquid of long carbon nanotubes and carbon fibers. The carbon fiber of Example 1 (Osaka Gas Chemical Co., Ltd., trade name Donna Carbo, product number S231) is a pitch-based carbon fiber, the fiber diameter is 13 μm, the average fiber length is 3.3 mm, and the aspect ratio is 250. . This carbon fiber was added so that it might become 40 weight% with respect to the total weight of a long carbon nanotube and carbon fiber.

次に、この混合液を接着剤や分散剤を無添加の上で減圧濾過し、濾紙上の堆積物を10分間真空乾燥させた後、この堆積物を実施例1に係る炭素複合シートとして濾紙から剥離した。濾紙はPTFE濾紙(直径:200mm、粒子保持能:11μm)を用いた。   Next, this mixed solution was filtered under reduced pressure without adding an adhesive or a dispersant, and the deposit on the filter paper was vacuum-dried for 10 minutes, and then the deposit was used as a carbon composite sheet according to Example 1 as filter paper. Peeled off. As the filter paper, PTFE filter paper (diameter: 200 mm, particle retention ability: 11 μm) was used.

(比較例1)
使用した長尺カーボンナノチューブは実施例1と同じであるが、比較例1では、炭素繊維を無添加とした。その他は実施例1と同じである。すなわち、長尺カーボンナノチューブをジェットミキシング処理により水に高分散させた後、その分散液を減圧濾過し、乾燥後に堆積物を濾紙から剥離することで、比較例1の炭素シートを得た。
(Comparative Example 1)
The long carbon nanotubes used were the same as in Example 1, but in Comparative Example 1, no carbon fiber was added. Others are the same as in the first embodiment. That is, after long carbon nanotubes were highly dispersed in water by a jet mixing treatment, the dispersion was filtered under reduced pressure, and the deposit was peeled off from the filter paper after drying to obtain a carbon sheet of Comparative Example 1.

(結果)
実施例1の炭素複合シートと比較例1の炭素シートを濾紙上で乾燥させた後、カメラでシートの形成状態を撮影した。その結果を図1に示す。図1に示すように、比較例1の炭素シートは割れが生じてしまい、1枚の完全なシートを得ることができなかった。すなわち、炭素繊維、接着剤、及びバインダーを無添加とすると、長尺カーボンナノチューブのみでシートを形成できなかった。一方、実施例1のように、炭素繊維を添加すると、接着剤やバインダーが無添加であっても、割れが生じることなく、1枚の完全な炭素複合シートを得ることができた。
(result)
The carbon composite sheet of Example 1 and the carbon sheet of Comparative Example 1 were dried on a filter paper, and the sheet formation state was photographed with a camera. The result is shown in FIG. As shown in FIG. 1, the carbon sheet of Comparative Example 1 was cracked, and one complete sheet could not be obtained. That is, when carbon fibers, an adhesive, and a binder were not added, a sheet could not be formed with only long carbon nanotubes. On the other hand, when carbon fiber was added as in Example 1, even if no adhesive or binder was added, one complete carbon composite sheet could be obtained without causing cracks.

実施例1と比較例1の耐折強さと折曲げ回数ごとの表面抵抗を計測した。その結果を図2に示す。図2に示すように、比較例1の炭素シートは、2回目の折曲げによって破断してしまった。一方、実施例1の炭素複合シートは、40回目の折曲げを経ても破断しなかった。長尺カーボンナノチューブと炭素繊維とを混合した炭素複合シートの高い柔軟性が示されている。   The bending resistance of Example 1 and Comparative Example 1 and the surface resistance for each number of bendings were measured. The result is shown in FIG. As shown in FIG. 2, the carbon sheet of Comparative Example 1 was broken by the second bending. On the other hand, the carbon composite sheet of Example 1 did not break even after being bent for the 40th time. The high flexibility of the carbon composite sheet in which long carbon nanotubes and carbon fibers are mixed is shown.

また、図2に示すように、実施例1の炭素複合シートは、その表面抵抗に関し30回目の折曲げを経ても表面抵抗が35〜40Ω程度を維持していた。以上より、長尺カーボンナノチューブと炭素繊維とを混合した炭素複合シートは、高い導電性を有し、且つ高い導電性と高い柔軟性とが両立されていることが示されている。   Further, as shown in FIG. 2, the carbon composite sheet of Example 1 maintained a surface resistance of about 35 to 40Ω even after the 30th bending with respect to the surface resistance. From the above, it has been shown that a carbon composite sheet in which long carbon nanotubes and carbon fibers are mixed has high conductivity and is compatible with high conductivity and high flexibility.

(製造方法に対する評価)
実施例1の炭素複合シートと以下の比較例2の製造条件により作成した炭素複合シートを作成し、製造方法の相違による導電性及び柔軟性の変化について確認した。
(Evaluation for manufacturing method)
A carbon composite sheet prepared according to the carbon composite sheet of Example 1 and the manufacturing conditions of Comparative Example 2 below was prepared, and changes in conductivity and flexibility due to differences in manufacturing methods were confirmed.

(比較例2)
比較例2では、長尺カーボンナノチューブと炭素繊維との混合に対して高圧ジェットミキシング処理を行うことで、長尺カーボンナノチューブと炭素繊維を共に高分散処理した。その他は実施例1と同じである。
(Comparative Example 2)
In Comparative Example 2, both the long carbon nanotubes and the carbon fibers were subjected to a high dispersion treatment by performing a high-pressure jet mixing process on the mixture of the long carbon nanotubes and the carbon fibers. Others are the same as in the first embodiment.

(結果)
実施例1と比較例2の炭素複合シートが破断するまでシートの折曲げを繰り返し、両者の耐折強さを比較した。その結果を図3の表に示す。図3に示すように、比較例2の炭素複合シートは2回目の折曲げで破断してしまった。長尺カーボンナノチューブと炭素繊維とを共に高分散処理すると、炭素繊維が裁断されてしまい、その結果として柔軟性が低下してしまったものと考えられる。
(result)
The sheets were repeatedly bent until the carbon composite sheets of Example 1 and Comparative Example 2 were broken, and the folding resistances of the two were compared. The results are shown in the table of FIG. As shown in FIG. 3, the carbon composite sheet of Comparative Example 2 was broken by the second bending. When the long carbon nanotube and the carbon fiber are both subjected to a high dispersion treatment, the carbon fiber is cut, and as a result, the flexibility is considered to be lowered.

一方、実施例1の炭素複合シートは49回目の折曲げまでは破断を生じなかった。以上により、長尺カーボンナノチューブを高分散処理した後に炭素繊維を添加する炭素複合シートに高い柔軟性が確認された。   On the other hand, the carbon composite sheet of Example 1 did not break until the 49th folding. As described above, high flexibility was confirmed in the carbon composite sheet in which the carbon fibers were added after the long carbon nanotubes were highly dispersed.

(炭素繊維の添加量に対する評価)
(実施例2)
炭素繊維の添加比率を変化させて、添加比率ごとの導電率及びシートが破断するまでの折曲げ回数を確認した。炭素繊維の添加比率を除き、使用する長尺カーボンナノチューブ及び炭素繊維の種類と炭素複合シートの製造方法は、実施例1と同じである。
(Evaluation for added amount of carbon fiber)
(Example 2)
The addition ratio of the carbon fiber was changed, and the conductivity for each addition ratio and the number of folding until the sheet broke were confirmed. Except for the addition ratio of carbon fibers, the types of long carbon nanotubes and carbon fibers used and the method for producing the carbon composite sheet are the same as in Example 1.

(結果)
炭素繊維の添加比率に応じた破断までの折曲げ回数と導電率を図4に示す。図4の各グラフは横軸が炭素繊維の添加比率であり、上図の縦軸が破断までの折曲げ回数、下図の縦軸が導電率である。
(result)
FIG. 4 shows the number of bendings and electrical conductivity until breakage according to the addition ratio of carbon fiber. In each graph of FIG. 4, the horizontal axis represents the addition ratio of the carbon fiber, the vertical axis in the upper diagram represents the number of bendings until breakage, and the vertical axis in the lower diagram represents the conductivity.

図4の上図に示すように、炭素繊維の添加比率がゼロの場合は、製造過程で割れが生じてシートとして形成できなかったのに対し、炭素繊維の添加比率を炭素材の合計重量に対して1重量%とした場合は、シートとして形成でき、2回目の折曲げで破断した。すなわち、炭素繊維を少量でも添加すると、無添加の場合と比べて柔軟性の向上が確認された。   As shown in the upper diagram of FIG. 4, when the carbon fiber addition ratio was zero, cracking occurred during the manufacturing process and the sheet could not be formed, whereas the carbon fiber addition ratio was set to the total weight of the carbon material. On the other hand, when the content was 1% by weight, it could be formed as a sheet and was broken by the second bending. That is, when even a small amount of carbon fiber was added, an improvement in flexibility was confirmed as compared with the case of no addition.

また、炭素繊維の添加比率が10重量%以上となると、添加比率に対して飛躍的に破断までの折曲げ回数が増加し始めることが確認された。添加比率が30重量%であると、破断までの折曲げ回数の増加は鋭いピークを描いて210回超に達した。そして、このピークを境に破断までの折曲げ回数は急減し始め、炭素繊維の添加比率が40重量%のところで変曲点を迎え、添加比率をそれ以上増加させても、破断までの折曲げ回数の変化は乏しくなった。これにより、炭素繊維の添加比率が10重量%以上40重量%の範囲では、炭素複合シートの柔軟性が特異的に向上することが確認された。   Further, it was confirmed that when the addition ratio of the carbon fiber was 10% by weight or more, the number of bendings until breakage began to increase dramatically with respect to the addition ratio. When the addition ratio was 30% by weight, the increase in the number of bending until breakage reached a value exceeding 210 with a sharp peak. Then, the number of folds until breakage begins to decrease sharply from this peak, the inflection point is reached when the addition ratio of the carbon fiber is 40% by weight, and even if the addition ratio is further increased, the fold until the breakage The change in the number of times became scarce. Thus, it was confirmed that the flexibility of the carbon composite sheet was specifically improved when the carbon fiber addition ratio was in the range of 10 wt% to 40 wt%.

導電性については、図4の下図に示すように、炭素繊維の添加比率の増加に比例して導電率は減少していくことが確認された。炭素繊維の増加に従って、導電性の良好な長尺カーボンナノチューブの影響が薄れていったものと考えられる。但し、添加比率を80重量%としても導電率は9S/cmと良好を保っている。   As for the conductivity, as shown in the lower diagram of FIG. 4, it was confirmed that the conductivity decreased in proportion to the increase in the carbon fiber addition ratio. It is considered that the influence of long carbon nanotubes with good conductivity has faded with the increase in carbon fibers. However, even when the addition ratio is 80% by weight, the conductivity is as good as 9 S / cm.

(炭素繊維のアスペクト比に対する評価)
(実施例3)
炭素繊維のアスペクト比を変化させて、アスペクト比ごとの導電率及びシートが破断するまでの折曲げ回数を確認した。添加する炭素繊維のアスペクト比を変化させ、また炭素繊維の添加比率が30重量%であるのを除き、使用する長尺カーボンナノチューブ及び炭素繊維の種類と炭素複合シートの製造方法は、実施例1と同じである。
(Evaluation of the aspect ratio of carbon fiber)
(Example 3)
The aspect ratio of the carbon fiber was changed, and the electrical conductivity for each aspect ratio and the number of folding until the sheet broke were confirmed. Except that the aspect ratio of the carbon fiber to be added is changed and the addition ratio of the carbon fiber is 30% by weight, the types of long carbon nanotubes and carbon fibers to be used and the method for producing the carbon composite sheet are shown in Example 1. Is the same.

(結果)
図5は、炭素繊維のアスペクト比と破断までの折曲げ回数との関係を示すグラフである。図5に示すように、炭素繊維が添加されていれば、柔軟性の向上が確認できる。この柔軟性は、アスペクト比が250以内である場合は飛躍的に向上していき、アスペクト比が250を超えると減少に転じることが確認された。また、アスペクト比が250までの柔軟性の向上に対して、アスペクト比が250を超えた場合の柔軟性の減少は相対的に緩やかであることが確認された。
(result)
FIG. 5 is a graph showing the relationship between the aspect ratio of carbon fiber and the number of bendings until breakage. As shown in FIG. 5, if carbon fiber is added, the improvement in flexibility can be confirmed. It has been confirmed that this flexibility is drastically improved when the aspect ratio is within 250, and decreases when the aspect ratio exceeds 250. Further, it was confirmed that the decrease in flexibility when the aspect ratio exceeds 250 is relatively gradual while the flexibility is improved up to an aspect ratio of 250.

(効果)
以上のように、長尺カーボンナノチューブと炭素繊維の混合物をシート状に抄紙成型すると、それにより得られる炭素複合シートに良好な導電性と柔軟性を付与することができる。特に、炭素繊維の添加比率が10重量%以上40重量%以内であると、炭素複合シートの柔軟性は特異的に向上する。また、炭素繊維のアスペクト比を250以内に抑えると、導電性の低下に比して柔軟性向上が著しくなり、良好な導電性を維持しつつ、高い柔軟性を有する炭素複合シートを得ることができる。
(effect)
As described above, when a mixture of long carbon nanotubes and carbon fibers is formed into a sheet, good conductivity and flexibility can be imparted to the resulting carbon composite sheet. In particular, the flexibility of the carbon composite sheet is specifically improved when the carbon fiber addition ratio is 10 wt% or more and 40 wt% or less. Further, when the aspect ratio of the carbon fiber is suppressed to 250 or less, the flexibility is significantly improved as compared with the decrease in conductivity, and a carbon composite sheet having high flexibility can be obtained while maintaining good conductivity. it can.

また、炭素複合シートは、長尺カーボンナノチューブを溶液中に分散処理した後に炭素繊維を添加して混合処理されて生成されるようにすれば、炭素繊維が裁断される虞を排除でき、良好な炭素複合シートの生産性を向上させることができる。   In addition, if the carbon composite sheet is produced by dispersing the long carbon nanotubes in the solution and then adding the carbon fiber and mixing it, the possibility of cutting the carbon fiber can be eliminated. Productivity of the carbon composite sheet can be improved.

Claims (7)

長尺カーボンナノチューブと炭素繊維との混合物をシート状に成型してなることを特徴とする炭素複合シート。   A carbon composite sheet obtained by molding a mixture of long carbon nanotubes and carbon fibers into a sheet shape. 前記混合物は、前記長尺カーボンナノチューブを溶液中に分散処理した後に前記炭素繊維を添加して混合処理されて生成されること、
を特徴とする請求項1に記載の炭素複合シート。
The mixture is produced by dispersing the long carbon nanotubes in a solution and then adding the carbon fiber to perform a mixing process.
The carbon composite sheet according to claim 1.
前記炭素繊維の添加比率は、長尺カーボンナノチューブと炭素繊維との合計に対して10重量%以上40重量%以下であること、
を特徴とする請求項1又は2記載の炭素複合シート。
The addition ratio of the carbon fiber is 10 wt% or more and 40 wt% or less with respect to the total of the long carbon nanotube and the carbon fiber,
The carbon composite sheet according to claim 1, wherein:
前記炭素繊維のアスペクト比は径に対する長さの比が250以下であること、
を特徴とする請求項1乃至3の何れかに記載の炭素複合シート。
The aspect ratio of the carbon fiber is that the ratio of length to diameter is 250 or less,
The carbon composite sheet according to any one of claims 1 to 3.
前記長尺カーボンナノチューブは、繊維径が50nm未満、繊維長が1μm以上、及びアスペクト比が100以上であること、
を特徴とする請求項1乃至4の何れかに記載の炭素複合シート。
The long carbon nanotube has a fiber diameter of less than 50 nm, a fiber length of 1 μm or more, and an aspect ratio of 100 or more.
The carbon composite sheet according to any one of claims 1 to 4, wherein:
前記炭素繊維は、繊維径が50nm以上、繊維長が50mm未満であること、
を特徴とする請求項1乃至5の何れかに記載の炭素複合シート。
The carbon fiber has a fiber diameter of 50 nm or more and a fiber length of less than 50 mm.
The carbon composite sheet according to any one of claims 1 to 5, wherein:
前記分散処理はジェットミキシング処理であり、
前記混合処理はホモジナイズ処理であること、
を特徴とする請求項2記載の炭素複合シート。
The dispersion process is a jet mixing process,
The mixing process is a homogenizing process;
The carbon composite sheet according to claim 2.
JP2013264901A 2013-12-24 2013-12-24 Production method of carbon composite sheet Active JP6364764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013264901A JP6364764B2 (en) 2013-12-24 2013-12-24 Production method of carbon composite sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013264901A JP6364764B2 (en) 2013-12-24 2013-12-24 Production method of carbon composite sheet

Publications (2)

Publication Number Publication Date
JP2015120613A true JP2015120613A (en) 2015-07-02
JP6364764B2 JP6364764B2 (en) 2018-08-01

Family

ID=53532626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013264901A Active JP6364764B2 (en) 2013-12-24 2013-12-24 Production method of carbon composite sheet

Country Status (1)

Country Link
JP (1) JP6364764B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017174789A (en) * 2016-03-16 2017-09-28 ニッタ株式会社 Electrode for battery, biofuel cell and manufacturing method of electrode for battery
JP2021088804A (en) * 2015-06-19 2021-06-10 日本ゼオン株式会社 Electrically conductive nonwoven fabric and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103403A (en) * 2002-09-10 2004-04-02 Noritake Co Ltd Porous carbon sheet material and its manufacturing method
JP2010105909A (en) * 2008-09-30 2010-05-13 Nippon Chemicon Corp High-density carbon nanotube assembly and method for producing the same
WO2013051707A1 (en) * 2011-10-05 2013-04-11 独立行政法人産業技術総合研究所 Carbon nanotube composite material and heat conductor
JP2013098265A (en) * 2011-10-29 2013-05-20 Nippon Chemicon Corp Sheet-like composite body, manufacturing method thereof, electrode using the sheet-like composite body and electrochemical element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103403A (en) * 2002-09-10 2004-04-02 Noritake Co Ltd Porous carbon sheet material and its manufacturing method
JP2010105909A (en) * 2008-09-30 2010-05-13 Nippon Chemicon Corp High-density carbon nanotube assembly and method for producing the same
WO2013051707A1 (en) * 2011-10-05 2013-04-11 独立行政法人産業技術総合研究所 Carbon nanotube composite material and heat conductor
JP2013098265A (en) * 2011-10-29 2013-05-20 Nippon Chemicon Corp Sheet-like composite body, manufacturing method thereof, electrode using the sheet-like composite body and electrochemical element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021088804A (en) * 2015-06-19 2021-06-10 日本ゼオン株式会社 Electrically conductive nonwoven fabric and manufacturing method thereof
JP7218770B2 (en) 2015-06-19 2023-02-07 日本ゼオン株式会社 Conductive nonwoven fabric and manufacturing method thereof
JP2017174789A (en) * 2016-03-16 2017-09-28 ニッタ株式会社 Electrode for battery, biofuel cell and manufacturing method of electrode for battery

Also Published As

Publication number Publication date
JP6364764B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
US9183966B2 (en) Composite resinous particles, method of producing composite resinous particles, composite resin molded body, and method of producing same
WO2015182058A1 (en) Method for producing carbon nanotube dispersion and carbon nanotube dispersion, method for producing composition for composite material and method for producing composite material, and composite material and composite material molded article
WO2017110096A1 (en) Electromagnetic wave absorption material and electromagnetic wave absorber
WO2015015758A1 (en) Method for producing carbon nanotube dispersion, method for producing composite material composition, method for producing composite material, composite material, and composite-material molded product
JP6115372B2 (en) Carbon nanotube aggregate, method for synthesizing carbon nanotube aggregate, resin composition, conductive elastomer composition, and dispersion liquid
TW202033446A (en) Carbon nanotube dispersion liquid and method for producing same
JP7218770B2 (en) Conductive nonwoven fabric and manufacturing method thereof
KR101997054B1 (en) Carbon nanotube dispersed solution and method for preparing the same
KR20170131391A (en) Composite material manufacturing method and composite material
JP2010105909A (en) High-density carbon nanotube assembly and method for producing the same
KR20090037755A (en) Carbon nanotube conductive layer using spray coating and preparing method thereof
WO2018010575A1 (en) Graphene composite polyvinyl alcohol masterbatch and graphene composite polyvinyl alcohol fiber, preparation method for masterbatch, and applications thereof
KR101400406B1 (en) Method of cnt composite
JP6364764B2 (en) Production method of carbon composite sheet
US11839069B2 (en) Electromagnetic wave absorbing sheet and method of manufacturing the same
JP2016191014A (en) Carbon nanotube-containing functional porous body
CN117125695A (en) Method for producing carbon sheet
CN108538627B (en) Carbon fiber film
JP2011213500A (en) Method for producing carbon nanotube dispersion
KR20170041739A (en) Highly dispersed and viscosity controllable transparent electrode ink with carbon nanotubes
JP6648423B2 (en) Nonwoven fabric and method for producing the same
JP2015120837A (en) Fine carbon fiber-containing aqueous polyurethane resin solution and conductive film using the same
KR20080064571A (en) Dispersion agent for carbon nanotube, carbon nano composite, carbon nanotube film and method for manufacturing the carbon nano tube film
KR101540170B1 (en) Carbone Nanotube-Reinforced Polymer Nanomembranes and Fabrication Method Of The Same
TW201634385A (en) Carbon nanotube dispersion, functional film, and composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180618

R150 Certificate of patent or registration of utility model

Ref document number: 6364764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150