JP2015119076A - Internal processing layer formation single crystal member and manufacturing method therefor - Google Patents

Internal processing layer formation single crystal member and manufacturing method therefor Download PDF

Info

Publication number
JP2015119076A
JP2015119076A JP2013262306A JP2013262306A JP2015119076A JP 2015119076 A JP2015119076 A JP 2015119076A JP 2013262306 A JP2013262306 A JP 2013262306A JP 2013262306 A JP2013262306 A JP 2013262306A JP 2015119076 A JP2015119076 A JP 2015119076A
Authority
JP
Japan
Prior art keywords
single crystal
crystal member
processed layer
laser
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013262306A
Other languages
Japanese (ja)
Inventor
利香 松尾
Rika Matsuo
利香 松尾
信裕 篠塚
Nobuhiro Shinozuka
信裕 篠塚
鈴木 秀樹
Hideki Suzuki
秀樹 鈴木
順一 池野
Junichi Ikeno
順一 池野
章 高澤
Akira Takazawa
章 高澤
直樹 三木
Naoki Miki
直樹 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Saitama University NUC
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd, Saitama University NUC filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2013262306A priority Critical patent/JP2015119076A/en
Publication of JP2015119076A publication Critical patent/JP2015119076A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Laser Beam Processing (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an internal processing layer formation single crystal member which allows for shortening of the processing time while ensuring flatness of the peeling surface, and to provide a manufacturing method therefor.SOLUTION: By moving a single crystal member 10 and laser condensing means relatively, while irradiating the irradiated surface 20t of the silicon single crystal member 10 with laser light B of continuous wave via the laser condensing means for condensing laser light, an internal processing layer formation single crystal member 10 has a processed layer 21 formed in the single crystal member 10, and a non-processed layer 22 adjacent to both sides of the processed layer 21. In the processed layer 21, affected zones formed in the scanning direction of the laser light B are arranged so that the distance of adjacent affected zones has a predetermined value or less.

Description

本発明は、単結晶部材の被照射側の表面から単結晶部材内部にレーザ光を集光することで、単結晶部材内部に加工層を形成した内部加工層形成単結晶部材およびその製造方法に関する。   The present invention relates to an internally processed layer-forming single crystal member in which a processed layer is formed inside a single crystal member by condensing laser light from the irradiated side surface of the single crystal member into the single crystal member, and a method for manufacturing the same. .

従来、単結晶のシリコン(Si)ウエハに代表される半導体ウエハを製造する場合には、石英るつぼ内に溶融されたシリコン融液から凝固した円柱形のインゴットを適切な長さのブロックに切断して、その周縁部を目標の直径になるよう研削し、その後、ブロック化されたインゴットをワイヤソーによりウエハ形にスライスして半導体ウエハを製造するようにしている。   Conventionally, when manufacturing a semiconductor wafer typified by a single crystal silicon (Si) wafer, a cylindrical ingot solidified from a silicon melt melted in a quartz crucible is cut into blocks of an appropriate length. Then, the peripheral edge is ground to a target diameter, and then the block-shaped ingot is sliced into a wafer shape with a wire saw to manufacture a semiconductor wafer.

このようにして製造された半導体ウエハは、前工程で回路パターンの形成等、各種の処理が順次施されて後工程に供され、この後工程で裏面がバックグラインド処理されて薄片化が図られることにより、厚さが約750μmから100μm以下、例えば75μmや50μm程度に調整される。   The semiconductor wafer thus manufactured is subjected to various processes such as formation of a circuit pattern in the previous process in order and used for the subsequent process, and the back surface is back-ground processed in the subsequent process to achieve thinning. Accordingly, the thickness is adjusted to about 750 μm to 100 μm or less, for example, about 75 μm or 50 μm.

従来における半導体ウエハは、以上のように製造され、インゴットがワイヤソーにより切断され、しかも、切断の際にワイヤソーの太さ以上の切り代が必要となるので、厚さ0.1mm以下の薄い半導体ウエハを製造することが非常に困難であり、製品率も向上しないという問題がある。   A conventional semiconductor wafer is manufactured as described above, and an ingot is cut by a wire saw, and a cutting allowance larger than the thickness of the wire saw is required for cutting, so a thin semiconductor wafer having a thickness of 0.1 mm or less It is very difficult to manufacture the product, and the product rate is not improved.

また近年、次世代の半導体として、硬度が大きく、熱伝導率も高いシリコンカーバイド(SiC)が注目されているが、SiCの場合には、Siよりも硬度が大きい関係上、インゴットをワイヤソーにより容易にスライスすることができず、また、バックグラインドによる基板の薄層化も容易ではない。   In recent years, silicon carbide (SiC), which has high hardness and high thermal conductivity, has attracted attention as a next-generation semiconductor. In the case of SiC, ingots can be easily formed with a wire saw because of its higher hardness than Si. In addition, it is not easy to slice the substrate, and it is not easy to thin the substrate by back grinding.

一方、集光レンズでレーザ光の集光点をインゴット(ウエハ)の内部に合わせ、そのレーザ光でインゴットを相対的に走査することにより、インゴットの内部に多光子吸収による面状の改質層(加工層)を形成し、この改質層を剥離面としてインゴットの一部を基板として剥離することが開示されている(例えば、特許文献1参照)。   On the other hand, the focusing point of the laser beam is adjusted to the inside of the ingot (wafer) with the condenser lens, and the ingot is relatively scanned with the laser beam, so that a planar modified layer by multiphoton absorption is inside the ingot. It is disclosed that a (processed layer) is formed, and a part of the ingot is peeled off using the modified layer as a peeling surface (see, for example, Patent Document 1).

なお、この明細書中においては、別記する場合を除いてウエハのことを適宜に基板と称する。   In this specification, a wafer is appropriately referred to as a substrate unless otherwise specified.

特開2011−167718号公報JP2011-167718A

しかし、単結晶部材内部に改質層を形成する場合、1つのレーザパルスで1点(1つ)の加工痕を形成している。このため、その加工間隔である加工ピッチは、加工進行方向へのステージ移動速度とパルス周波数で決まる。また、この加工ピッチと、オフセット方向(加工進行方向に直交する方向)の間隔である加工オフセットと、によって、単結晶部材内部に形成される加工痕の数(加工数)が決まる。   However, when the modified layer is formed inside the single crystal member, one laser pulse forms one (one) processing mark. Therefore, the processing pitch, which is the processing interval, is determined by the stage moving speed and the pulse frequency in the processing progress direction. Further, the number of processing marks (the number of processing) formed inside the single crystal member is determined by the processing pitch and the processing offset that is an interval in the offset direction (direction orthogonal to the processing progress direction).

仮に、加工ピッチを1μm、加工オフセットを2μmとすると、100mm角(一辺が100mmの正方形)の領域を加工するには50億パルスのレーザ光を照射する必要がある。この場合、パルス周波数を100kHzとするとステージ移動速度は100mm/sとなり、50000秒、すなわち14時間という長大な加工時間が必要となる。   Assuming that the processing pitch is 1 μm and the processing offset is 2 μm, it is necessary to irradiate 5 billion pulses of laser light to process a 100 mm square (100 mm square). In this case, if the pulse frequency is 100 kHz, the stage moving speed is 100 mm / s, and a long processing time of 50000 seconds, that is, 14 hours is required.

また、仮に、加工ピッチと加工オフセットとを広げて剥離可能な条件を見い出したとしても、隣り合う加工痕の間の領域ではレーザ光による加工(改質)がなされていない。このため、例えば単結晶部材の厚み方向の位置によって剥離する高さ位置が異なり、剥離面の平坦性が悪化することが考えられる。   Even if the processing pitch and the processing offset are widened and a condition capable of peeling is found, processing (modification) by laser light is not performed in the region between adjacent processing marks. For this reason, for example, the height position at which the single crystal member is peeled is different depending on the position in the thickness direction, and the flatness of the peeled surface may deteriorate.

本発明は、上記課題に鑑み、単結晶部材に形成した加工層から剥離させることで比較的大きくて薄い単結晶基板を形成するにあたり、剥離面の平坦性を確保しつつ加工時間の短縮化を図ることができる内部加工層形成単結晶部材およびその製造方法を提供することを課題とする。   In view of the above problems, the present invention reduces the processing time while ensuring the flatness of the release surface when forming a relatively large and thin single crystal substrate by peeling from the processed layer formed on the single crystal member. It is an object of the present invention to provide an internally processed layer-forming single crystal member that can be achieved and a method for manufacturing the same.

上記課題を解決するための本発明の一態様によれば、レーザ光を集光するレーザ集光手段を介して連続波のレーザ光をシリコンの単結晶部材の被照射面から照射しつつ、前記単結晶部材と前記レーザ集光手段とを相対的に移動させることで、前記単結晶部材内部に形成された加工層と、前記加工層の両面側にそれぞれ隣接する非加工部と、を備え、前記加工層には、レーザ光の走査方向に沿って形成された変質部が、隣り合う変質部同士の距離が所定値以下となるように配列されていることを特徴とする内部加工層形成単結晶が提供される。   According to one aspect of the present invention for solving the above-described problem, while irradiating a continuous wave laser beam from an irradiated surface of a silicon single crystal member via a laser focusing unit that focuses the laser beam, By relatively moving the single crystal member and the laser condensing means, provided with a processed layer formed inside the single crystal member, and non-processed portions adjacent to both sides of the processed layer, In the processed layer, an altered portion formed along the laser beam scanning direction is arranged so that the distance between adjacent altered portions is a predetermined value or less. Crystals are provided.

本発明の別の態様によれば、レーザ光を集光するレーザ集光手段を介してレーザ光をシリコンの単結晶部材の被照射面から照射しつつ、前記単結晶部材と前記レーザ集光手段とを相対的に移動させることで、前記単結晶部材内部に加工層を形成して前記単結晶部材を内部加工層形成単結晶部材とする内部加工層形成単結晶部材の製造方法であって、レーザ光として連続波のレーザ光を用い、レーザ光の走査方向に沿った変質部を所定範囲のオフセット間隔で形成していくことで前記加工層とすることを特徴とする内部加工層形成単結晶部材の製造方法が提供される。   According to another aspect of the present invention, the single crystal member and the laser condensing means are irradiated while irradiating the laser light from the irradiated surface of the single crystal member of silicon through the laser condensing means for condensing the laser light. And the relative movement of the single crystal member, forming a processed layer inside the single crystal member, and using the single crystal member as an internal processed layer forming single crystal member, An internal processed layer forming single crystal characterized in that a continuous wave laser beam is used as the laser beam, and the modified layer is formed along the scanning direction of the laser beam at an offset interval within a predetermined range to form the processed layer. A method of manufacturing a member is provided.

本発明によれば、単結晶部材に形成した加工層から剥離させることで比較的大きくて薄い単結晶基板を形成するにあたり、剥離面の平坦性を確保しつつ加工時間の短縮化を図ることができる内部加工層形成単結晶部材およびその製造方法を提供することができる。   According to the present invention, when a relatively large and thin single crystal substrate is formed by peeling from a processed layer formed on a single crystal member, the processing time can be shortened while ensuring the flatness of the peeled surface. An internally processed layer-forming single crystal member and a method for producing the same can be provided.

本発明の一実施形態で内部加工層形成単結晶部材を製造することを説明する模式的な鳥瞰図である。It is a typical bird's-eye view explaining manufacturing an internal processing layer formation single crystal member by one embodiment of the present invention. 本発明の一実施形態で内部加工層形成単結晶部材を製造することを説明する模式的な側面断面図である。It is a typical side sectional view explaining manufacture of an internal processing layer formation single crystal member by one embodiment of the present invention. 本発明の一実施形態の内部加工層形成単結晶部材の模式的な側面断面図である。It is typical side surface sectional drawing of the internal-working layer formation single crystal member of one Embodiment of this invention. 本発明の一実施形態で、内部加工層形成単結晶部材を製造することを説明する側面図である。It is a side view explaining manufacturing an internal processing layer formation single crystal member in one embodiment of the present invention. 本発明の一実施形態で、加工層から剥離させるためにシリコンウエハの両面に金属板を貼り付けたことを説明する側面図である。In one Embodiment of this invention, it is a side view explaining having stuck the metal plate on both surfaces of the silicon wafer in order to make it peel from a process layer. 実験例で、内部加工層形成単結晶部材の一例を説明する模式的な側面断面図である。It is an experiment example, and is a typical side surface sectional view explaining an example of an internal processing layer formation single crystal member. 図7(a)および(b)は、それぞれ、比較例で、集光器から出射したレーザ光によって単結晶部材に加工層を形成することを説明する模式的な平面断面図および模式的な側面断面図である。FIGS. 7A and 7B are a schematic cross-sectional view and a schematic side view for explaining that a processed layer is formed on a single crystal member by laser light emitted from a condenser, respectively, in a comparative example. It is sectional drawing.

以下、添付図面を参照して、本発明の実施の形態について説明する。以下の説明では、すでに説明したものと同一または類似の構成要素には同一または類似の符号を付し、その詳細な説明を適宜省略している。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In the following description, the same or similar components as those already described are denoted by the same or similar reference numerals, and detailed description thereof is omitted as appropriate.

また、図面は模式的なものであり、寸法比などは現実のものとは異なることに留意すべきである。従って、具体的な寸法比などは以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。   In addition, it should be noted that the drawings are schematic and the dimensional ratios and the like are different from actual ones. Therefore, specific dimensional ratios and the like should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

また、以下に示す実施の形態は、この発明の技術的思想を具体化するための例示であって、この発明の実施の形態は、構成部品の材質、形状、構造、配置等を下記のものに特定するものではない。この発明の実施の形態は、要旨を逸脱しない範囲内で種々変更して実施できる。   The following embodiments are exemplifications for embodying the technical idea of the present invention, and the embodiments of the present invention are described below in terms of the material, shape, structure, arrangement, etc. of the components. It is not something specific. The embodiments of the present invention can be implemented with various modifications without departing from the scope of the invention.

図1は、本発明の一実施形態(以下、本実施形態という)で、レーザ集光手段により単結晶部材10の被照射面(被照射側の表面)からレーザ光を集光して内部に加工層21を形成していくことを説明する模式的な鳥瞰図である。図2は、レーザ光の照射により単結晶部材10の内部に加工層21を形成して内部加工層形成単結晶部材を形成することを説明する模式的な断面図である。図3は、本実施形態で製造された内部加工層形成単結晶部材20の断面構造を説明する模式的な側面断面図である。図4は、本実施形態で、内部加工層形成単結晶部材を製造することを説明する側面図であり、本実施形態におけるレーザ加工装置の一例の全体図も示している。図5は、本実施形態で、加工層から剥離させるためにシリコンウエハの両面に金属板を貼り付けたことを説明する側面図である。図6は、実験例で、内部加工層形成単結晶部材の一例を説明する模式的な側面断面図である。   FIG. 1 shows an embodiment of the present invention (hereinafter referred to as the present embodiment), in which laser light is condensed from an irradiated surface (surface on the irradiated side) of a single crystal member 10 by laser focusing means. It is a typical bird's-eye view explaining explaining that the processing layer 21 is formed. FIG. 2 is a schematic cross-sectional view for explaining that the processed layer 21 is formed inside the single crystal member 10 by irradiation with laser light to form the internal processed layer forming single crystal member. FIG. 3 is a schematic side cross-sectional view for explaining the cross-sectional structure of the internally processed layer-forming single crystal member 20 manufactured in the present embodiment. FIG. 4 is a side view for explaining the production of the internally processed layer-forming single crystal member in the present embodiment, and also shows an overall view of an example of the laser processing apparatus in the present embodiment. FIG. 5 is a side view for explaining that metal plates are attached to both sides of a silicon wafer in order to peel off the processed layer in the present embodiment. FIG. 6 is a schematic side cross-sectional view for explaining an example of the internally processed layer-forming single crystal member as an experimental example.

(概要説明)
本実施形態で製造する内部加工層形成単結晶部材20は、連続波(CW)のレーザ光Bをシリコンの単結晶部材10の被照射面20tから集光することで、この被照射面20tと離間しかつこの被照射面20tと平行に延在する加工層21と、その加工層21の両面側にそれぞれ隣接する非加工層22とを有する。
(Overview)
The internally processed layer forming single crystal member 20 manufactured in the present embodiment collects the continuous wave (CW) laser beam B from the irradiated surface 20 t of the silicon single crystal member 10, thereby irradiating the irradiated surface 20 t with the irradiated surface 20 t. The processing layer 21 is spaced apart and extends in parallel with the irradiated surface 20 t, and the non-processing layer 22 adjacent to each of both surface sides of the processing layer 21.

図3に示すように、加工層21には、レーザ光Bの走査方向Sに沿って形成された変質部21cが、隣り合う変質部21c同士の距離dが所定値以下となるように配列されている。ここで、所定値とは、加工層21と非加工層22とを剥離させる際に適正な平坦性を確保できる距離の上限値のことである。   As shown in FIG. 3, in the processed layer 21, the altered portions 21c formed along the scanning direction S of the laser beam B are arranged so that the distance d between the adjacent altered portions 21c is a predetermined value or less. ing. Here, the predetermined value is an upper limit value of a distance that can ensure proper flatness when the processed layer 21 and the non-processed layer 22 are peeled off.

内部加工層形成単結晶部材20を製造して単結晶基板を得るには、レーザ集光手段として例えば集光器(組レンズ)78により、調整した連続波のレーザ光Bを単結晶部材10の被照射面20tに照射して単結晶部材10内部にレーザ光Bを集光することで集光部分の単結晶部材を変質(改質)させつつ、集光器78と単結晶部材10とを相対的に移動させることで、単結晶部材10内部に、被照射面20tと平行に延在する加工層21を形成した内部加工層形成単結晶部材20を製造する。   In order to obtain the single crystal substrate by manufacturing the inner processed layer forming single crystal member 20, the laser beam B of the continuous wave adjusted by the condenser (assembled lens) 78 is used as the laser condensing means. The condensing unit 78 and the single crystal member 10 are changed while the single crystal member in the condensing part is altered (modified) by irradiating the irradiated surface 20t and condensing the laser beam B inside the single crystal member 10. By moving relatively, the internally processed layer forming single crystal member 20 in which the processed layer 21 extending in parallel with the irradiated surface 20t is formed inside the single crystal member 10 is manufactured.

単結晶部材10としては、レーザ光Bを照射する被照射面20t(第1面)と、被照射面20tに平行であって被照射面20tに照射したレーザ光Bが通過する光出射面20s(第2面)と、を有する部材を用いる。   The single crystal member 10 includes an irradiated surface 20t (first surface) that irradiates laser light B, and a light emitting surface 20s that is parallel to the irradiated surface 20t and through which the laser light B irradiated to the irradiated surface 20t passes. (Second surface) is used.

加工層21を形成することで内部加工層形成単結晶部材10を製造した後、加工層21から劈開させて剥離面(劈開面)を露出させる。そして、この剥離面(加工層露出面)をラッピング加工およびポリシング加工により研磨加工する。研磨加工は例えばラッピング・ポリシング装置を利用して行うことができる。   After manufacturing the inner processing layer forming single crystal member 10 by forming the processing layer 21, the processing layer 21 is cleaved to expose the release surface (cleavage surface). Then, this peeled surface (processed layer exposed surface) is polished by lapping and polishing. The polishing process can be performed using, for example, a lapping / polishing apparatus.

(詳細説明)
以下、本実施形態をより詳細に説明する。本実施形態では、図4に示すように、レーザ加工装置は、レーザ発振器71、ズームエキスパンダ72、アパーチャー73、集光器78を順次備え、また、XYステージ80を備えている。
(Detailed explanation)
Hereinafter, this embodiment will be described in more detail. In the present embodiment, as shown in FIG. 4, the laser processing apparatus sequentially includes a laser oscillator 71, a zoom expander 72, an aperture 73, and a condenser 78, and also includes an XY stage 80.

レーザ発振器71は、連続波のレーザ光Bを発生するレーザ装置であり、例えば、半導体レーザ励起YAGレーザである。また、集光器78は複数のレンズが組み合わされた組レンズとなっており、集光性能が高くされている。   The laser oscillator 71 is a laser device that generates continuous-wave laser light B, and is, for example, a semiconductor laser pumped YAG laser. Further, the condenser 78 is a combined lens in which a plurality of lenses are combined, and the light collecting performance is enhanced.

本実施形態では、レーザ発振器71からのレーザ光Bは、ビームエキスパンダ72で所定の径にまで拡大させる。その後、反射ミラー(図示せず)により光路調整を行い、さらにアパーチャ76を通過させることによってレーザ光周辺の不均一パワー部分の光を除去して均一パワーのレーザ光とし、集光器78に入射させても良い。なお、アパーチャ76の開口径は、アパーチャ76通過後のレーザ光が回折光とならないように調整しておく。開口径がレーザ光Bのビーム径よりも大きすぎるとレーザ光Bの不均一パワー部分の光を除去することができず、逆に、開口径が小さ過ぎるとレーザ光Bが回折ビームとなってしまい均一パワーとならない。   In the present embodiment, the laser beam B from the laser oscillator 71 is expanded to a predetermined diameter by the beam expander 72. Thereafter, the optical path is adjusted by a reflection mirror (not shown), and further, the light of the non-uniform power portion around the laser light is removed by passing through the aperture 76 to obtain a uniform power laser light, which is incident on the condenser 78. You may let them. The aperture diameter of the aperture 76 is adjusted so that the laser light after passing through the aperture 76 does not become diffracted light. If the aperture diameter is too larger than the beam diameter of the laser beam B, the light of the nonuniform power portion of the laser beam B cannot be removed. Conversely, if the aperture diameter is too small, the laser beam B becomes a diffracted beam. It will not be uniform power.

レーザ光を照射する単結晶部材10のサイズは、例えばφ300mmの厚いシリコンウエハEからなり、レーザ光Bが照射される被照射面Etが予め平坦化されていることが好ましい。   The size of the single crystal member 10 to be irradiated with the laser light is preferably made of, for example, a thick silicon wafer E having a diameter of 300 mm, and the irradiated surface Et irradiated with the laser light B is preferably planarized in advance.

レーザ光Bは、単結晶部材10の周面ではなく、上記の被照射面20tに集光器78を介して照射される。このレーザ光Bは、900nm以上の波長、好ましくは1000nm以上の波長が選択され、YAGレーザ等が好適に使用される。   The laser beam B is applied to the irradiated surface 20t, not the peripheral surface of the single crystal member 10, via the condenser 78. The laser beam B has a wavelength of 900 nm or more, preferably 1000 nm or more, and a YAG laser or the like is preferably used.

(作用、効果)
以下、本実施形態で内部加工層形成単結晶部材10を製造することについて説明する。本実施形態では、単結晶部材10をXYステージ80上に載置し、真空チャック、静電チャックなどでこの単結晶部材10を保持する。そして、XYステージで単結晶部材10をX方向やY方向に移動させることで、レーザ集光手段(ズームエキスパンダ72、アパーチャ73、および、集光器78)と単結晶部材10とを、単結晶部材10の被照射面20tに平行に相対的に移動させながら、レーザ発振器71で発生したレーザ光Bを照射する。この結果、単結晶部材10の内部に集光したレーザ光Bによって、レーザ光Bの走査方向Sに沿って連続した1本の変質部21cが形成される。
(Function, effect)
Hereinafter, manufacturing the internally processed layer-forming single crystal member 10 in this embodiment will be described. In the present embodiment, the single crystal member 10 is placed on the XY stage 80, and the single crystal member 10 is held by a vacuum chuck, an electrostatic chuck, or the like. Then, by moving the single crystal member 10 in the X direction or the Y direction on the XY stage, the laser condensing means (the zoom expander 72, the aperture 73, and the concentrator 78) and the single crystal member 10 are moved to the single crystal member 10. While moving relatively parallel to the irradiated surface 20t of the crystal member 10, the laser beam B generated by the laser oscillator 71 is irradiated. As a result, a single altered portion 21 c that is continuous along the scanning direction S of the laser beam B is formed by the laser beam B condensed inside the single crystal member 10.

その後、XYステージ80の移動により単結晶部材10をオフセット方向Fへ所定範囲の加工オフセットw(図1参照)で移動させ、同様に、1本の連続した変質部21cを走査方向Sに沿って形成する。これを順次繰り返すことで加工層21を形成する。ここで、所定範囲の上限値は、加工層21と非加工層22とを剥離させる際に剥離面の適正な平坦性を確保できる値の上限値であり、所定範囲の下限値は、変質部21cに隣接する変質部21cを形成する際に、既に形成された変質部21cにレーザ光Bが照射されることを回避できる下限値である。   After that, the single crystal member 10 is moved in the offset direction F with a processing offset w within a predetermined range (see FIG. 1) by the movement of the XY stage 80. Similarly, one continuous altered portion 21c is moved along the scanning direction S. Form. The processing layer 21 is formed by sequentially repeating this. Here, the upper limit of the predetermined range is an upper limit of a value that can ensure proper flatness of the peeled surface when the processed layer 21 and the non-processed layer 22 are peeled, and the lower limit of the predetermined range is the altered portion. This is the lower limit value that can prevent the laser beam B from being irradiated to the already formed altered portion 21c when forming the altered portion 21c adjacent to 21c.

本実施形態では、この変質部21cを形成する際、加工オフセットw(オフセット間隔)を5〜20μmの範囲とすることが加工時間および加工層での剥離において好ましい範囲である。加工時間の点では加工オフセットwは10〜20μmの範囲がより好ましい範囲である。なお、レーザ光Bの走査速度を遅くすることや、レーザ光Bのパワーを上げることで、変質部21cの幅(オフセット方向Fの幅)が大きくなる。従って、加工オフセットwを、レーザ光Bの走査速度およびレーザ光Bの強度に基づいて設定することが好ましいが、改質層以外の非加工部の単結晶材品質に影響を与えないように設定することが必要である。   In the present embodiment, when forming the altered portion 21c, it is preferable that the processing offset w (offset interval) be in the range of 5 to 20 μm in the processing time and the peeling at the processing layer. In terms of processing time, the processing offset w is more preferably in the range of 10 to 20 μm. Note that the width of the altered portion 21c (width in the offset direction F) is increased by reducing the scanning speed of the laser light B or increasing the power of the laser light B. Accordingly, the processing offset w is preferably set based on the scanning speed of the laser beam B and the intensity of the laser beam B, but is set so as not to affect the quality of the single crystal material in the non-processed portion other than the modified layer. It is necessary to.

本実施形態では、加工層21を形成していく際、連続波(CW)のレーザ光を照射することで走査方向Sは連続する変質部21をオフセット方向Fにも拡がった状態で形成でき、またオフセット方向Fにwの間隔で形成した隣接する加工層21隣り合う加工層21と連なった状態を形成できる。これは連続波(CW)により熱加工の効果が高いことが要因と考えられる。よって、レーザ光のオフセット方向Fに隣り合う加工層21の加工オフセットwを従来に比べて大幅に広くすることができるので、加工層21の加工密度、すなわち加工層21の形成数を大幅に低減させることができる。従って、加工層21の加工時間が更に大幅に短縮され、内部加工層形成単結晶部材20の製造効率が大きく向上する。また、剥離に必要な力も低減させることができる。加工層21が形成された結果、加工層21を挟んでレーザ光Bの照射方向とその反対側にそれぞれ非加工層22が加工層21に隣接して存在する。形成する加工層21の寸法、などは、剥離し易くする観点で設定することが好ましい。   In this embodiment, when the processed layer 21 is formed, the continuous alteration (21) can be formed in the offset direction F in the scanning direction S by irradiating continuous wave (CW) laser light, Further, it is possible to form a state in which the adjacent processing layers 21 formed at intervals of w in the offset direction F are connected to the adjacent processing layers 21. This is thought to be due to the fact that the effect of thermal processing is high due to continuous wave (CW). Accordingly, the processing offset w of the processing layer 21 adjacent in the laser beam offset direction F can be greatly increased as compared with the conventional case, so that the processing density of the processing layer 21, that is, the number of processing layers 21 formed is significantly reduced. Can be made. Therefore, the processing time of the processing layer 21 is further greatly shortened, and the manufacturing efficiency of the internal processing layer forming single crystal member 20 is greatly improved. Moreover, the force required for peeling can also be reduced. As a result of forming the processed layer 21, the non-processed layer 22 exists adjacent to the processed layer 21 on the opposite side to the irradiation direction of the laser beam B across the processed layer 21. The dimensions of the processed layer 21 to be formed are preferably set from the viewpoint of facilitating peeling.

このように加工層21を形成した内部加工層形成単結晶部材20は、加工層21から分断させた新たな単結晶部材を創成することができる。これは、加工層21と非加工層22との剥離により行う。本実施形態では、先ず、内部加工層形成単結晶部材20の側面に加工層21を露出させる。露出させるには、例えば、非加工層22の所定の結晶面に沿ってへき開する。加工層21が既に露出している場合や、加工層21の周縁と内部加工層形成単結晶部材20の側壁との距離が十分に短い場合には、この露出をさせる作業を省略することが可能である。   Thus, the internal processing layer formation single crystal member 20 which formed the processing layer 21 can create the new single crystal member divided from the processing layer 21. This is performed by peeling between the processed layer 21 and the non-processed layer 22. In the present embodiment, first, the processed layer 21 is exposed on the side surface of the internal processed layer forming single crystal member 20. In order to expose, for example, cleavage is performed along a predetermined crystal plane of the non-processed layer 22. When the processed layer 21 is already exposed, or when the distance between the peripheral edge of the processed layer 21 and the side wall of the internal processed layer forming single crystal member 20 is sufficiently short, the exposure work can be omitted. It is.

その後、図5に示すように、内部加工層形成単結晶部材20の非加工層22の表面である被照射面20tに、金属製基板61a、61bを接着剤63a、63bで内部加工層形成単結晶部材20を挟持するように接着固定する。金属製基板61a、61bとしては、例えば、SUS製の板を用いる。接着剤63a、63bとしては、例えば、アクリル系2液モノマー成分からなる接着剤を用いる。   Thereafter, as shown in FIG. 5, the metal substrates 61a and 61b are bonded to the irradiated surface 20t, which is the surface of the non-processed layer 22 of the internal processed layer forming single crystal member 20, with the adhesives 63a and 63b. The crystal member 20 is bonded and fixed so as to sandwich it. As the metal substrates 61a and 61b, for example, SUS plates are used. As the adhesives 63a and 63b, for example, an adhesive made of an acrylic two-component monomer component is used.

金属製基板61a、61bの接着後、金属製基板61aと金属製基板61bとに互いに離れる方向の力をそれぞれ加えると加工層21と非加工層22で分断、剥離される。   After the metal substrates 61a and 61b are bonded, when a force in a direction away from each other is applied to the metal substrate 61a and the metal substrate 61b, the processed layer 21 and the non-processed layer 22 are separated and separated.

加工層21で剥離させるために金属製基板61a、61bに力を加える手法は、特に限定しない。例えば、内部加工層形成単結晶部材20の側壁をエッチングして加工層21に溝を形成し、この溝に楔状圧入材(例えばカッター刃)を圧入することで力を発生させてもよい。また、内部加工層形成単結晶部材20に角方向から力を加えて、上方向の力成分と下方向の力成分とを発生させてもよい。さらには、金属製基板61a、61bをチャックにより挟持して、上下方向に適当な速度で引張ることにより剥離させることも可能である。   A method for applying a force to the metal substrates 61a and 61b in order to peel the processed layer 21 is not particularly limited. For example, the side wall of the inner processed layer forming single crystal member 20 may be etched to form a groove in the processed layer 21, and a wedge-shaped press-fitting material (for example, a cutter blade) may be pressed into the groove to generate a force. Alternatively, an upward force component and a downward force component may be generated by applying a force from the angular direction to the inner processed layer forming single crystal member 20. Further, the metal substrates 61a and 61b can be held by a chuck and can be peeled by pulling them up and down at an appropriate speed.

剥離後、この剥離面(加工層露出面)をラッピング加工およびポリシング加工により研磨加工する。研磨加工は例えばラッピング・ポリシング装置を利用して行うことができる。ラッピングでは研磨剤として粒径が1μmから数10μmの遊離砥粒を潤滑剤に混ぜたスラリーをラップ定盤と上記の加工層露出面との間に入れ加工する。このときの遊離砥粒としてはコロイダルシリカ、アルミナ、微粒ダイヤモンド、酸化セリウムなどが利用できる。ポリシング加工では粒径1μm以下の微細な研磨剤が使用され、研磨パッドを定盤に貼りつけて加工層露出面を研磨加工する。   After peeling, the peeled surface (processed layer exposed surface) is polished by lapping and polishing. The polishing process can be performed using, for example, a lapping / polishing apparatus. In lapping, a slurry obtained by mixing free abrasive grains having a particle size of 1 μm to several tens of μm as a polishing agent with a lubricant is placed between a lapping plate and the exposed surface of the processed layer. As the free abrasive grains at this time, colloidal silica, alumina, fine diamond, cerium oxide, or the like can be used. In the polishing process, a fine abrasive having a particle size of 1 μm or less is used, and the exposed surface of the processed layer is polished by attaching a polishing pad to a surface plate.

以上説明したように、本実施形態では、レーザ光Bとして、パルス状のレーザ光(パルスレーザ光)ではなく連続波(CW)のレーザ光Bを用い、単結晶部材10内部にレーザ光Bを集光して変質部21cを形成しつつ、単結晶部材10に対してレーザ光Bを走査している。従って、変質部21cがレーザ光Bの走査方向Sに沿って連続しており、加工ピッチという概念が不要となる上、加工層21と非加工層22との境界の面積が大幅に増える。   As described above, in the present embodiment, the laser beam B is not a pulsed laser beam (pulse laser beam) but a continuous wave (CW) laser beam B, and the laser beam B is used inside the single crystal member 10. The single crystal member 10 is scanned with the laser beam B while being condensed to form the altered portion 21c. Therefore, the altered portion 21c is continuous along the scanning direction S of the laser beam B, and the concept of the processing pitch is not necessary, and the area of the boundary between the processing layer 21 and the non-processing layer 22 is greatly increased.

よって、パルスレーザ光で加工する場合に比べ、レーザ光の走査速度、すなわち、XYステージ80の移動速度を大幅に上げることができる。例えば、従来では100mm/secあったXYステージ80の移動速度を、その10倍の1000mm/secにすることができる。よって、加工層21の形成にかかる時間を大幅に低減させることができ、内部加工層形成単結晶部材20の製造効率が大きく向上する。また、剥離に必要な力も低減させることができる。   Therefore, the scanning speed of the laser beam, that is, the moving speed of the XY stage 80 can be significantly increased as compared with the case of processing with the pulse laser beam. For example, the movement speed of the XY stage 80, which was conventionally 100 mm / sec, can be 10 times 1000 mm / sec. Therefore, the time required for forming the processed layer 21 can be significantly reduced, and the manufacturing efficiency of the internally processed layer-forming single crystal member 20 is greatly improved. Moreover, the force required for peeling can also be reduced.

また、連続波のレーザ光Bを照射しているので、パルスレーザ光を照射する場合に比べて加工層21の厚みを大幅に低減させることができる。従って、剥離面の研磨加工にかかる時間を短縮できるとともに、単結晶部材10の削除量を小さくすることで単結晶部材10を有効に利用することができる。また、非加工層22を加工層21から剥離させる際、加工層21の最上部と最下部との間のすべての部分で剥離する可能性があるので、本実施形態により、剥離する厚さの管理が容易になる上、剥離面のうねりや段差を抑えることができる。   In addition, since the continuous wave laser beam B is irradiated, the thickness of the processed layer 21 can be significantly reduced as compared with the case where the pulse laser beam is irradiated. Therefore, it is possible to shorten the time required for polishing the peeled surface, and to effectively use the single crystal member 10 by reducing the amount of deletion of the single crystal member 10. Further, when the non-processed layer 22 is peeled from the processed layer 21, there is a possibility of peeling at all portions between the uppermost part and the lowermost part of the processed layer 21. In addition to ease of management, it is possible to suppress undulations and steps on the peeled surface.

また、レーザ光Bの走査速度を遅くする(例えばパルスレーザ光を照射する場合と同等にまで遅くする)ことにより、変質部21cの幅が広がる、すなわち、変質部21cがオフセット方向Fに広がる。従って、加工オフセットwを増大させることができ、加工層21の形成にかかる時間を大幅に低減させることが可能になる。   Further, by reducing the scanning speed of the laser beam B (for example, by reducing the scanning speed to the same level as in the case of irradiating the pulse laser beam), the width of the altered portion 21c is expanded, that is, the altered portion 21c is expanded in the offset direction F. Therefore, the processing offset w can be increased, and the time required for forming the processing layer 21 can be greatly reduced.

なお、レーザ光Bの走査速度を遅くすることで隣り合う変質部21c同士を連続させて(つまり隣り合う変質部21c同士の距離dを0にして)、加工層21を全て変質部21cで構成させることが可能である(後述の図6参照)。このように加工層21を全て変質部21cで構成させることによって、剥離面の安定化、剥離に必要な力の低減化などの種々の効果を奏することができる。   In addition, by slowing down the scanning speed of the laser beam B, the adjacent altered portions 21c are made continuous (that is, the distance d between the adjacent altered portions 21c is set to 0), and all the processed layers 21 are configured by the altered portions 21c. (See FIG. 6 described later). As described above, by forming the processed layer 21 entirely with the altered portion 21c, various effects such as stabilization of the separation surface and reduction of the force required for separation can be achieved.

また、本実施形態では、単結晶部材10としてシリコンウエハEを例に挙げて説明したが、単結晶部材10がインゴット状であって、加工層21を形成して被照射面20t側の非加工層を剥がすことを順次繰り返してもよく、単結晶部材10の寸法は特に限定しない
<実験例>
本発明者は、実施例として、加工装置を用いて単結晶部材10内部に加工層21を形成した。なお、集光器78のレンズは、レーザ光Bの通過で損傷が生じないように、レーザ光Bの出力に応じて選定した。照射条件を以下に示す。
In the present embodiment, the silicon wafer E is described as an example of the single crystal member 10. However, the single crystal member 10 has an ingot shape, and the processed layer 21 is formed so that the non-processed side of the irradiated surface 20 t is not processed. The peeling of the layers may be repeated sequentially, and the dimensions of the single crystal member 10 are not particularly limited. <Experimental example>
As an example, the inventor formed a processed layer 21 inside the single crystal member 10 using a processing apparatus. The lens of the condenser 78 was selected according to the output of the laser beam B so that the laser beam B would not be damaged. Irradiation conditions are shown below.

光源(レーザ発振器) :ファイバーレーザ
波長 :1064nm
集光器のレンズのNA :0.8
発振形態 :CW(連続波)
そして、この加工装置でレーザ出力とオフセット方向Fの間隔を変化させ、隣り合う変質部21c同士が連続し、かつ剥離状態との関係を求めた。結果を表1に示す。

Figure 2015119076
Light source (laser oscillator): Fiber laser Wavelength: 1064nm
NA of condenser lens: 0.8
Oscillation form: CW (continuous wave)
And with this processing apparatus, the interval between the laser output and the offset direction F was changed, the adjacent altered portions 21c were continuous, and the relationship with the peeled state was obtained. The results are shown in Table 1.
Figure 2015119076

また、本発明者は、比較例として、従来の加工装置を用い、図7に示すように、パルスレーザ光を照射して単結晶部材10としてシリコンウエハ(直径:150mm、厚さ:625μm、結晶方位(100)、表面:両鏡面)の内部に加工層を形成することを行った。この加工層は、パルスレーザ光の集光による変質部121cが、パルスレーザ光の走査方向Sおよびオフセット方向Fに配列されてなるものである。   Further, as a comparative example, the present inventor used a conventional processing apparatus and irradiated a pulse laser beam as shown in FIG. 7 to form a silicon wafer (diameter: 150 mm, thickness: 625 μm, crystal) as a single crystal member 10. A processed layer was formed inside the orientation (100), surface: both mirror surfaces). This processed layer is formed by arranging altered portions 121c by condensing pulsed laser light in the scanning direction S and offset direction F of the pulsed laser light.

照射条件は以下である。なお、加工ピッチpは1μm、加工オフセットwは2μmとした。   Irradiation conditions are as follows. The processing pitch p was 1 μm and the processing offset w was 2 μm.

光源(レーザ発振器) :ファイバーレーザ
波長 :1064nm
集光器のレンズのNA :0.8
発振形態 :パルス発振
繰り返し周波数 :100kHz
パルス幅 :30ns
そして、この加工装置でオフセット方向Fの間隔を変化させ、隣り合う加工層21同士が連続し、かつ剥離状態との関係を求めた。結果を表2に示す。

Figure 2015119076
Light source (laser oscillator): Fiber laser Wavelength: 1064nm
NA of condenser lens: 0.8
Oscillation form: Pulse oscillation Repeat frequency: 100kHz
Pulse width: 30 ns
And the space | interval of the offset direction F was changed with this processing apparatus, adjacent process layers 21 were continuous, and the relationship with a peeling state was calculated | required. The results are shown in Table 2.
Figure 2015119076

加工層21の連なり状態は、シリコンウエハの透過波長で顕微鏡観察することで確認することができる。また、単結晶部材をダイシングなどにより加工層21のオフセット方向断面を露出させ、露出面をエッチング液でエッチングすることによっても確認可能である。   The continuous state of the processed layers 21 can be confirmed by microscopic observation at the transmission wavelength of the silicon wafer. It can also be confirmed by exposing the cross section in the offset direction of the processed layer 21 by dicing or the like in the single crystal member and etching the exposed surface with an etching solution.

また、剥離面の表面粗さは光学顕微鏡(OLS−4000:オリンパス製)により測定した。   Further, the surface roughness of the peeled surface was measured with an optical microscope (OLS-4000: manufactured by Olympus).

本発明により薄い単結晶基板を効率良く形成することができることから、薄く切り出された単結晶基板は、Si基板(シリコン基板)であれば、太陽電池に応用可能であり、また、SiCなどであれば、SiC系パワーデバイスなどに応用可能であり、透明エレクトロニクス分野、照明分野、ハイブリッド/電気自動車分野など幅広い分野において適用可能である。   Since a thin single crystal substrate can be efficiently formed according to the present invention, the thinly cut single crystal substrate can be applied to a solar cell as long as it is a Si substrate (silicon substrate). For example, the present invention can be applied to SiC power devices and the like, and can be applied in a wide range of fields such as transparent electronics field, lighting field, and hybrid / electric vehicle field.

10 単結晶部材
20 内部加工層形成単結晶部材
20t 被照射面
21 加工層
21c 変質部
22 非加工層(非加工部)
72 ズームエキスパンダ(レーザ集光手段)
73 アパーチャ(レーザ集光手段)
78 集光器(レーザ集光手段)
B レーザ光
d 距離
F オフセット方向
S 走査方向
w 加工オフセット(オフセット間隔)
10 Single crystal member 20 Internally processed layer forming single crystal member 20t Irradiated surface 21 Processed layer 21c Altered part 22 Non-processed layer (non-processed part)
72 Zoom Expander (Laser focusing means)
73 Aperture (Laser focusing means)
78 Condenser (laser condensing means)
B Laser beam d Distance F Offset direction S Scanning direction w Processing offset (offset interval)

Claims (4)

レーザ光を集光するレーザ集光手段を介して連続波のレーザ光をシリコンの単結晶部材の被照射面から照射しつつ、前記単結晶部材と前記レーザ集光手段とを相対的に移動させることで、前記単結晶部材内部に形成された加工層と、
前記加工層の両面側にそれぞれ隣接する非加工部と、
を備え、
前記加工層には、レーザ光の走査方向に沿って形成された変質部が、隣り合う変質部同士の距離が所定値以下となるように配列されていることを特徴とする内部加工層形成単結晶部材。
The single crystal member and the laser condensing means are relatively moved while irradiating the surface of the silicon single crystal member with the continuous wave laser light via the laser condensing means for condensing the laser light. Thus, a processed layer formed inside the single crystal member,
A non-processed part adjacent to each side of the processed layer;
With
In the processed layer, an altered portion formed along the laser beam scanning direction is arranged so that the distance between adjacent altered portions is a predetermined value or less. Crystal member.
隣り合う前記変質部同士が前記変質部の幅方向に連続していることを特徴とする請求項1記載の内部加工層形成単結晶部材。   2. The internally processed layer-forming single crystal member according to claim 1, wherein the adjacent altered portions are continuous in the width direction of the altered portion. レーザ光を集光するレーザ集光手段を介してレーザ光をシリコンの単結晶部材の被照射面から照射しつつ、前記単結晶部材と前記レーザ集光手段とを相対的に移動させることで、前記単結晶部材内部に加工層を形成して前記単結晶部材を内部加工層形成単結晶部材とする内部加工層形成単結晶部材の製造方法であって、
レーザ光として連続波のレーザ光を用い、レーザ光の走査方向に沿った変質部を所定範囲のオフセット間隔で形成していくことで前記加工層とすることを特徴とする内部加工層形成単結晶部材の製造方法。
By relatively moving the single crystal member and the laser condensing means while irradiating the laser light from the irradiated surface of the single crystal member of silicon through the laser condensing means for condensing the laser light, A method for producing an internally processed layer forming single crystal member, wherein a processed layer is formed inside the single crystal member and the single crystal member is used as an internally processed layer forming single crystal member,
An internal processed layer forming single crystal characterized in that a continuous wave laser beam is used as the laser beam, and the modified layer is formed along the scanning direction of the laser beam at an offset interval within a predetermined range to form the processed layer. Manufacturing method of member.
前記オフセット間隔を、レーザ光の走査速度およびレーザ光の強度に基づいて設定することを特徴とする請求項3記載の内部加工層形成単結晶部材の製造方法。   4. The method for manufacturing an internally processed layer forming single crystal member according to claim 3, wherein the offset interval is set based on a scanning speed of laser light and an intensity of laser light.
JP2013262306A 2013-12-19 2013-12-19 Internal processing layer formation single crystal member and manufacturing method therefor Pending JP2015119076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013262306A JP2015119076A (en) 2013-12-19 2013-12-19 Internal processing layer formation single crystal member and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013262306A JP2015119076A (en) 2013-12-19 2013-12-19 Internal processing layer formation single crystal member and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2015119076A true JP2015119076A (en) 2015-06-25

Family

ID=53531549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013262306A Pending JP2015119076A (en) 2013-12-19 2013-12-19 Internal processing layer formation single crystal member and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2015119076A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017024039A (en) * 2015-07-21 2017-02-02 株式会社ディスコ Wafer thinning method
KR20170012026A (en) * 2015-07-21 2017-02-02 가부시기가이샤 디스코 Method of reducing wafer thickness
WO2017126098A1 (en) * 2016-01-22 2017-07-27 リンテック株式会社 Dividing device for plate shaped member and dividing method for plate shaped member
WO2018093732A1 (en) * 2016-11-15 2018-05-24 Coherent, Inc. Laser apparatus for cutting brittle material with aspheric focusing means and a beam expander
CN109382921A (en) * 2017-08-04 2019-02-26 株式会社迪思科 The generation method of silicon wafer
WO2019044530A1 (en) * 2017-09-04 2019-03-07 リンテック株式会社 Thinned plate member production method and production device
JP2019046862A (en) * 2017-08-30 2019-03-22 日亜化学工業株式会社 Method for manufacturing light-emitting element
EP3467159A1 (en) * 2017-10-06 2019-04-10 Shin-Etsu Polymer Co., Ltd. Substrate manufacturing method
JP2019134155A (en) * 2018-02-01 2019-08-08 パナソニック株式会社 Slicing method and slicing apparatus
US10727129B2 (en) 2017-04-26 2020-07-28 Shin-Etsu Polymer Co., Ltd. Method of making a peeled substrate using laser irradiation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004001076A (en) * 2002-03-12 2004-01-08 Hamamatsu Photonics Kk The laser beam machining method
JP2006248885A (en) * 2005-02-08 2006-09-21 Takeji Arai Cutting method of quartz by ultrashort pulse laser
JP2013158779A (en) * 2012-02-01 2013-08-19 Shin Etsu Polymer Co Ltd Processed monocrystal member and method for manufacturing the same
JP2013158778A (en) * 2012-02-01 2013-08-19 Shin Etsu Polymer Co Ltd Method for producing monocrystalline substrate, monocrystalline substrate, and method for producing monocrystalline member with modified layer formed therein

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004001076A (en) * 2002-03-12 2004-01-08 Hamamatsu Photonics Kk The laser beam machining method
JP2006248885A (en) * 2005-02-08 2006-09-21 Takeji Arai Cutting method of quartz by ultrashort pulse laser
JP2013158779A (en) * 2012-02-01 2013-08-19 Shin Etsu Polymer Co Ltd Processed monocrystal member and method for manufacturing the same
JP2013158778A (en) * 2012-02-01 2013-08-19 Shin Etsu Polymer Co Ltd Method for producing monocrystalline substrate, monocrystalline substrate, and method for producing monocrystalline member with modified layer formed therein

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI696539B (en) * 2015-07-21 2020-06-21 日商迪思科股份有限公司 Wafer thinning method
KR20170012026A (en) * 2015-07-21 2017-02-02 가부시기가이샤 디스코 Method of reducing wafer thickness
KR20170012025A (en) * 2015-07-21 2017-02-02 가부시기가이샤 디스코 Method of reducing wafer thickness
KR102419485B1 (en) 2015-07-21 2022-07-08 가부시기가이샤 디스코 Method of reducing wafer thickness
KR102384101B1 (en) 2015-07-21 2022-04-06 가부시기가이샤 디스코 Method of reducing wafer thickness
JP2017024039A (en) * 2015-07-21 2017-02-02 株式会社ディスコ Wafer thinning method
WO2017126098A1 (en) * 2016-01-22 2017-07-27 リンテック株式会社 Dividing device for plate shaped member and dividing method for plate shaped member
JP7045372B2 (en) 2016-11-15 2022-03-31 コヒレント, インコーポレイテッド Laser device for cutting brittle materials using aspherical focusing means and beam magnifier
CN109963683B (en) * 2016-11-15 2022-04-12 相干公司 Laser device for cutting brittle material by using aspheric focusing device and beam expander
US11548093B2 (en) 2016-11-15 2023-01-10 Coherent, Inc. Laser apparatus for cutting brittle material
KR102420833B1 (en) * 2016-11-15 2022-07-15 코히어런트, 인크. Laser device for cutting brittle material with aspherical focusing means and beam expander
WO2018093732A1 (en) * 2016-11-15 2018-05-24 Coherent, Inc. Laser apparatus for cutting brittle material with aspheric focusing means and a beam expander
US10668561B2 (en) 2016-11-15 2020-06-02 Coherent, Inc. Laser apparatus for cutting brittle material
CN109963683A (en) * 2016-11-15 2019-07-02 相干公司 Utilize the laser equipment of aspherical focus set and beam expander cutting brittle material
KR20190086703A (en) * 2016-11-15 2019-07-23 코히어런트, 인크. Laser device for cutting brittle material with aspheric focus means and beam expander
JP2020500810A (en) * 2016-11-15 2020-01-16 コヒレント, インコーポレイテッド Laser device for cutting brittle material using aspherical focusing means and beam expander
US10727129B2 (en) 2017-04-26 2020-07-28 Shin-Etsu Polymer Co., Ltd. Method of making a peeled substrate using laser irradiation
CN109382921A (en) * 2017-08-04 2019-02-26 株式会社迪思科 The generation method of silicon wafer
JP2019033134A (en) * 2017-08-04 2019-02-28 株式会社ディスコ Wafer generation method
JP2019046862A (en) * 2017-08-30 2019-03-22 日亜化学工業株式会社 Method for manufacturing light-emitting element
WO2019044530A1 (en) * 2017-09-04 2019-03-07 リンテック株式会社 Thinned plate member production method and production device
JPWO2019044530A1 (en) * 2017-09-04 2020-10-22 リンテック株式会社 Manufacturing method and manufacturing equipment for thin plate-shaped members
CN111052316A (en) * 2017-09-04 2020-04-21 琳得科株式会社 Method and apparatus for manufacturing thin plate-like member
JP7231548B2 (en) 2017-09-04 2023-03-01 リンテック株式会社 METHOD AND APPARATUS FOR MANUFACTURING THIN PLATE-LIKE MEMBER
KR102128501B1 (en) * 2017-10-06 2020-06-30 신에츠 폴리머 가부시키가이샤 Substrate manufacturing method
JP2019069870A (en) * 2017-10-06 2019-05-09 国立大学法人埼玉大学 Substrate manufacturing method
TWI687559B (en) * 2017-10-06 2020-03-11 日商信越聚合物股份有限公司 Substrate manufacturing method
CN109659225A (en) * 2017-10-06 2019-04-19 信越聚合物株式会社 Manufacture of substrates
KR20190039860A (en) * 2017-10-06 2019-04-16 신에츠 폴리머 가부시키가이샤 Substrate manufacturing method
EP3467159A1 (en) * 2017-10-06 2019-04-10 Shin-Etsu Polymer Co., Ltd. Substrate manufacturing method
CN109659225B (en) * 2017-10-06 2023-11-17 信越聚合物株式会社 Method for manufacturing substrate
JP2019134155A (en) * 2018-02-01 2019-08-08 パナソニック株式会社 Slicing method and slicing apparatus
JP7283886B2 (en) 2018-02-01 2023-05-30 パナソニックホールディングス株式会社 Slicing method and slicing apparatus

Similar Documents

Publication Publication Date Title
JP2015119076A (en) Internal processing layer formation single crystal member and manufacturing method therefor
JP6004338B2 (en) Single crystal substrate manufacturing method and internal modified layer forming single crystal member
JP6899653B2 (en) Composite wafer manufacturing method using laser processing and temperature-induced stress
JP5843393B2 (en) Single crystal substrate manufacturing method, single crystal substrate, and internal modified layer forming single crystal member manufacturing method
JP5875121B2 (en) Method for producing single crystal substrate and method for producing internal modified layer-forming single crystal member
JP5875122B2 (en) Single crystal substrate manufacturing method and internal modified layer forming single crystal member
JP5537081B2 (en) Processing object cutting method
JP5476063B2 (en) Processing object cutting method
JP6032789B2 (en) Method for manufacturing single crystal processed member and method for manufacturing single crystal substrate
JP2014019120A (en) Method of manufacturing single crystal member for forming internal processing layer
JP6531885B2 (en) Internally processed layer forming single crystal member and method of manufacturing the same
JP5509448B2 (en) Substrate slicing method
JP6004339B2 (en) Internal stress layer forming single crystal member and single crystal substrate manufacturing method
JP5946112B2 (en) Substrate processing method
JP2010188385A (en) Method of manufacturing semiconductor wafer
JP5561666B2 (en) Substrate slicing method
JP2015074002A (en) Internal processing layer-forming single crystal member, and manufacturing method for the same
JP2015123466A (en) Substrate processing device and substrate processing method
JP5950269B2 (en) Substrate processing method and substrate
JP2015074003A (en) Internal processing layer-forming single crystal member, and manufacturing method for the same
JP6202695B2 (en) Single crystal substrate manufacturing method
JP6202696B2 (en) Single crystal substrate manufacturing method
JP6712747B2 (en) Method for manufacturing single crystal member with internal processing layer formed
JP6712746B2 (en) Internal processing layer forming single crystal member and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180821