JP2015114601A - Method for manufacturing optical lens and optical lens - Google Patents

Method for manufacturing optical lens and optical lens Download PDF

Info

Publication number
JP2015114601A
JP2015114601A JP2013258143A JP2013258143A JP2015114601A JP 2015114601 A JP2015114601 A JP 2015114601A JP 2013258143 A JP2013258143 A JP 2013258143A JP 2013258143 A JP2013258143 A JP 2013258143A JP 2015114601 A JP2015114601 A JP 2015114601A
Authority
JP
Japan
Prior art keywords
light
optical lens
film
shielding film
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013258143A
Other languages
Japanese (ja)
Inventor
慶子 阿部
Keiko Abe
慶子 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013258143A priority Critical patent/JP2015114601A/en
Publication of JP2015114601A publication Critical patent/JP2015114601A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To solve such problems that upon applying a light-shielding film on an optical lens having a large open angle, an end portion of the light-shielding film is thinner on a chamfered part compared to an inner part, which gives an appearance of a circumferential white void so-called as a white line defect.SOLUTION: After a transparent film 1 containing infrared absorbing fine particles as a light-transmitting film is applied on a chamfered part 32 where a boundary between an optical face 33 of an optical lens 3 and a non-optical surface 31 of the optical lens is chamfered, the light-transmitting film 1 is heated by irradiating through a back side of the optical lens 3 with infrared rays. Then a light-shielding film material is applied as a second layer on the non-optical surface 31 and the chamfered part 32 including the heated light-transmitting film to form a light-shielding film 2.

Description

本発明は、光学特性の調整に用いられる遮光膜を非光学面に有する光学レンズの製造方法および光学レンズに関する。   The present invention relates to a method of manufacturing an optical lens having a light-shielding film used for adjusting optical characteristics on a non-optical surface, and an optical lens.

従来、カメラや放送機器等の光学機器に使用されるレンズやプリズム等の光学レンズにおいては、光学レンズへの入射光が内面反射等を起こすことでフレアやゴーストが発生する場合がある。そこで、一般に内面反射等を低減することを目的として、光学レンズの非光学面に黒色の遮光塗料を塗布した後に乾燥して、遮光膜を形成することが知られている。   Conventionally, in an optical lens such as a lens or a prism used in an optical device such as a camera or a broadcasting device, flare or ghost may occur due to internal reflection of incident light to the optical lens. Therefore, it is generally known that a black light-shielding paint is applied to the non-optical surface of the optical lens and then dried to form a light-shielding film for the purpose of reducing internal reflection and the like.

光学レンズの非光学面に遮光塗料を塗布すると、塗膜の端部は表面張力の作用を受けるため、塗膜厚さが全面で均一にならず塗膜の端部が薄くなる傾向を示す。塗膜の端部は、塗膜の内部領域と比較して外気との接触が多いので、塗膜の内部領域と比べて乾燥の進行が早い。塗膜の乾燥の過程で、乾燥が進行していない内部領域の方が流動しやすいため、時間の経過と共に塗膜の端部領域が内部領域方向に収縮した状態で乾燥固化する現象が起こりやすい。この結果、遮光膜の端部は、内部に比べて膜厚が薄くなる傾向がある。   When a light-shielding paint is applied to the non-optical surface of the optical lens, the end of the coating film is subjected to the action of surface tension. Since the edge part of a coating film has much contact with external air compared with the internal area | region of a coating film, progress of drying is quick compared with the internal area | region of a coating film. In the process of drying the coating, the inner region where drying has not progressed is more likely to flow, so that the phenomenon of drying and solidifying tends to occur with the end region of the coating contracting toward the inner region over time. . As a result, the end portion of the light shielding film tends to be thinner than the inside.

特許文献1には、非黒色無機微粒子を用いて屈折率を向上させ、染料で光を吸収することにより、内面反射光を低減する光学レンズ用の遮光塗料および遮光膜がっ記載されている。   Patent Document 1 describes a light-shielding coating material and a light-shielding film for an optical lens that improve the refractive index using non-black inorganic fine particles and absorb light with a dye to reduce the internal reflection light.

また、特許文献2には、回転しているレンズの塗布面に塗布具を当接させて遮光塗料を塗布する方法が記載されている。   Patent Document 2 describes a method of applying a light-shielding paint by bringing an applicator into contact with an application surface of a rotating lens.

近年、光学機器に使用されるレンズは、高性能とコンパクト化を両立させるために、異常分散ガラスや非球面レンズ、またはレンズ中心軸からの開角が大きいレンズなどを用いることがある。開角の大きなレンズは、開角の小さなレンズに比べ、光学面と非光学面の境界面がリング状に光って見える「白線欠陥」と呼ばれる外観が発生しやすい。   In recent years, lenses used in optical instruments may use anomalous dispersion glass, aspherical lenses, or lenses having a large opening angle from the lens central axis in order to achieve both high performance and compactness. A lens with a large opening angle is more likely to have an appearance called “white line defect” in which the boundary surface between the optical surface and the non-optical surface shines in a ring shape, compared to a lens with a small opening angle.

このため、開角の大きなレンズに遮光膜を形成する際には、遮光膜をレンズの非光学面へ塗布する際に、光学面と非光学面の間に面取り加工がされた面取り部へも遮光膜の端部が適切に塗布する必要がある。   For this reason, when a light shielding film is formed on a lens having a large opening angle, when the light shielding film is applied to the non-optical surface of the lens, the chamfered portion between the optical surface and the non-optical surface is also chamfered. It is necessary to apply the end of the light shielding film appropriately.

特開2011−164494号公報JP 2011-164494 A 特開平6−233961号公報Japanese Patent Laid-Open No. 6-233961

しかしながら、特許文献1および2に記載されている塗布方法で開角の大きなレンズに遮光塗料を塗布すると、塗膜乾燥時の収縮が大きく面取り部への塗り込みが不足するため、膜厚が薄くなる。開角の大きなレンズは、面取り部の塗り込み不足による白線欠陥が目立ちやすい。   However, when a light-shielding paint is applied to a lens having a large opening angle by the application method described in Patent Documents 1 and 2, the film thickness is thin because the shrinkage during drying of the coating film is large and the application to the chamfered portion is insufficient. Become. A lens with a large opening angle is prone to white line defects due to insufficient painting of the chamfered portion.

本発明は上記課題を考慮してなされたものであり、開角の大きなレンズに白線欠陥の発生を抑制している光学レンズの製造方法及び光学レンズを提供するものである。   The present invention has been made in view of the above problems, and provides an optical lens manufacturing method and an optical lens that suppress the occurrence of white line defects in a lens having a large opening angle.

本発明は、光学面、非光学面及び前記光学面と前記非光学面との間に面取り部を有する光学レンズと、前記光学レンズの前記非光学面及び前記面取り部に形成されている遮光膜と、を有する光学レンズの製造方法であって、
前記面取り部に、赤外線を吸収する微粒子を含む光透過膜を形成する工程と、
前記光透過膜を形成した後に、前記面取り部の前記光透過膜に、光学レンズ側から赤外線を照射して前記光透過膜を加熱する工程と、
加熱された前記面取り部及び前記非光学面に遮光膜を形成する工程と、を有することを特徴とする光学レンズの製造方法。
The present invention provides an optical surface, a non-optical surface, an optical lens having a chamfered portion between the optical surface and the non-optical surface, and a light shielding film formed on the non-optical surface and the chamfered portion of the optical lens. An optical lens manufacturing method comprising:
Forming a light-transmitting film containing fine particles that absorb infrared rays in the chamfered portion;
After forming the light transmissive film, heating the light transmissive film by irradiating the light transmissive film of the chamfered portion with infrared rays from the optical lens side;
And a step of forming a light-shielding film on the heated chamfered portion and the non-optical surface.

また、本発明は、光学面、非光学面及び前記光学面と前記非光学面との間に面取り部を有し、前記非光学面及び前記面取り部に形成されている遮光膜を有する光学レンズであって、前記面取り部の表面と前記遮光膜との間に、赤外線を吸収する微粒子を含む光透過膜が形成されていることを特徴とする光学レンズに関する。   The present invention also provides an optical lens having an optical surface, a non-optical surface, and a chamfered portion between the optical surface and the non-optical surface, and having a light shielding film formed on the non-optical surface and the chamfered portion. The invention relates to an optical lens, wherein a light transmission film containing fine particles that absorb infrared rays is formed between a surface of the chamfered portion and the light shielding film.

本発明の光学レンズの製造方法によれば、赤外線を照射して光透過膜が加熱される。そして、光学レンズの面取り部では、光透過膜の上に遮光膜を形成するので、遮光膜の端部における収縮を抑制することが可能である。これにより、光学レンズの白線欠陥の発生を抑制することが可能である。   According to the method for manufacturing an optical lens of the present invention, the light transmission film is heated by irradiation with infrared rays. In the chamfered portion of the optical lens, since the light shielding film is formed on the light transmission film, it is possible to suppress contraction at the end of the light shielding film. Thereby, it is possible to suppress the occurrence of white line defects in the optical lens.

本発明の光学レンズの面取り部付近を示す概略図である。It is the schematic which shows the chamfering part vicinity of the optical lens of this invention. 本発明の光学レンズにおける半開角θを示す図である。It is a figure which shows the half opening angle (theta) in the optical lens of this invention. 本発明の光透過膜1を光学レンズ3の面取り部32に設ける方法を示す概略図である。3 is a schematic view showing a method of providing the light transmission film 1 of the present invention on the chamfered portion 32 of the optical lens 3. FIG. 光学レンズの裏面側から赤外線を照射して光透過膜1を加熱する概略図である。It is the schematic which irradiates infrared rays from the back surface side of an optical lens, and heats the light transmissive film | membrane 1. 光透過膜が設けられた面取り部32及び非光学面31に、遮光塗料を塗布して遮光膜2を形成する方法を示す概略図である。It is the schematic which shows the method of apply | coating a light shielding coating material to the chamfering part 32 and the non-optical surface 31 in which the light permeable film was provided, and forming the light shielding film 2. FIG.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(光学レンズ)
本発明の光学レンズは、図1に示すように、光学面33、非光学面31及び光学面33と非光学面31との間に面取り部32を有し、非光学面31及び面取り部32に形成されている遮光膜2を有する光学レンズである。ここで面取り部とは、光学面と非光学面の境界面が鋭利な場合に、境界面の角を取り除き平坦化する面取り加工が行われた部分をさす。面取り部の幅は一般的には100μm以上300μm以下であることが好ましい。
面取り部32の表面と遮光膜2との間に、赤外線を吸収する微粒子を含む光透過膜1が形成されていることを特徴とする。
(Optical lens)
As shown in FIG. 1, the optical lens of the present invention has an optical surface 33, a non-optical surface 31, and a chamfered portion 32 between the optical surface 33 and the non-optical surface 31, and the non-optical surface 31 and the chamfered portion 32. This is an optical lens having the light shielding film 2 formed on the surface. Here, the chamfered portion refers to a portion that has been chamfered to remove and flatten the corners of the boundary surface when the boundary surface between the optical surface and the non-optical surface is sharp. In general, the width of the chamfered portion is preferably 100 μm or more and 300 μm or less.
A light transmission film 1 containing fine particles that absorb infrared rays is formed between the surface of the chamfered portion 32 and the light shielding film 2.

本発明の光学レンズは、光学レンズと遮光膜2の間の光透過膜1が透明性を有するので、遮光膜2が光学レンズの内面反射を抑制することが可能である。また、本発明の光学レンズは、白線欠陥が生じ難く良好な外観を呈する。   In the optical lens of the present invention, since the light transmission film 1 between the optical lens and the light shielding film 2 has transparency, the light shielding film 2 can suppress internal reflection of the optical lens. In addition, the optical lens of the present invention hardly exhibits white line defects and exhibits a good appearance.

本発明の光学レンズは、最大半開角は30度以上のものに用いることができ、また、凹レンズに用いることができる。図2は、本発明の光学レンズにおける半開角θの大きさを示す図である。図2では、光学レンズ3には、光学レンズの非光学面31、レンズの面取り部32、光学面33、光学レンズの光軸41、レンズの面取り部の面法線42を記載している。光学レンズの半開角θは、光学レンズの光軸41と光学レンズの面法線42のなす角度である。ただし、面法線42は光学レンズの面取り部32の場所により異なるため、半開角θは面取り部32の場所によって異なる。本発明では、光学レンズの面取り部32のうち最大の半開角θが30度以上である場合により効果を発揮することが可能である。   The optical lens of the present invention can be used for a lens having a maximum half opening angle of 30 degrees or more, and can be used for a concave lens. FIG. 2 is a diagram showing the magnitude of the half-opening angle θ in the optical lens of the present invention. In FIG. 2, the optical lens 3 includes a non-optical surface 31 of the optical lens, a chamfered portion 32 of the lens, an optical surface 33, an optical axis 41 of the optical lens, and a surface normal 42 of the chamfered portion of the lens. The half-opening angle θ of the optical lens is an angle formed by the optical axis 41 of the optical lens and the surface normal line 42 of the optical lens. However, since the surface normal line 42 differs depending on the location of the chamfered portion 32 of the optical lens, the half-open angle θ varies depending on the location of the chamfered portion 32. In the present invention, the effect can be exhibited more when the maximum half-opening angle θ of the chamfered portion 32 of the optical lens is 30 degrees or more.

最大半開角が30度以上あるレンズの場合、光学レンズの非光学面31と光学面33の交わる角度が尖鋭なため、面取り部32の膜厚が薄い場合の白線欠陥が目立ちやすい。本発明では光学レンズの面取り部32の膜厚を十分確保することが可能であるため、白線欠陥の発生を抑制することが可能である。さらに最大半開角は40度以上、さらには45度以上になると、白線欠陥の発生をより抑制することが可能である。   In the case of a lens having a maximum half-opening angle of 30 degrees or more, since the angle at which the non-optical surface 31 and the optical surface 33 of the optical lens intersect is sharp, white line defects are easily noticeable when the film thickness of the chamfered portion 32 is thin. In the present invention, it is possible to sufficiently secure the film thickness of the chamfered portion 32 of the optical lens, and therefore it is possible to suppress the occurrence of white line defects. Furthermore, when the maximum half opening angle is 40 degrees or more, and further 45 degrees or more, it is possible to further suppress the occurrence of white line defects.

本発明の光透過膜1は、赤外線を吸収する微粒子および分散剤が溶媒中に分散された分散液を塗布した後に乾燥して得られる。本発明の光透過膜1は、赤外線を吸収する粒子を主成分として含有する。光透過膜1は、赤外線を吸収する微粒子を含有するため赤外線を有効に吸収することが可能であり、赤外線が照射されることにより急速に加熱される。また、光透過膜1の上に遮光膜2を設ける場合に、加熱された光透過膜から熱が伝わって、遮光膜の端部も加熱される。   The light-transmitting film 1 of the present invention is obtained by applying a dispersion liquid in which fine particles that absorb infrared rays and a dispersant are dispersed in a solvent and then drying. The light transmission film 1 of the present invention contains particles that absorb infrared rays as a main component. Since the light transmission film 1 contains fine particles that absorb infrared rays, it can effectively absorb infrared rays and is rapidly heated when irradiated with infrared rays. Further, when the light shielding film 2 is provided on the light transmission film 1, heat is transmitted from the heated light transmission film, and the end portion of the light shielding film is also heated.

光透過膜1は、分散液中の赤外線を吸収する微粒子の含有量にかかわらず、分散液を塗布して乾燥した後に、膜厚が12.0μm以下であることが好ましく、3.0μm以上10.0μm以下であることがより好ましく、7.0μm以上10.5μm以下であることが更に好ましい。光透過膜1の膜厚が12.0μmを超えると、光透過膜1の厚みが物理的な壁となり遮光膜2の塗布の際に面取り部32への適切な塗り込みが難しくなる場合がある。効率的に光透過膜1を加熱するため、膜厚が3.μm以上10.0μm以下であることがより好ましい。   The light-transmitting film 1 preferably has a film thickness of 12.0 μm or less after applying the dispersion and drying, regardless of the content of the fine particles that absorb infrared rays in the dispersion, and is 3.0 μm or more and 10 It is more preferably 0.0 μm or less, and even more preferably 7.0 μm or more and 10.5 μm or less. When the thickness of the light transmission film 1 exceeds 12.0 μm, the thickness of the light transmission film 1 becomes a physical wall, and it may be difficult to appropriately apply the chamfered portion 32 when the light shielding film 2 is applied. . In order to efficiently heat the light transmission film 1, the film thickness is 3. More preferably, it is not less than μm and not more than 10.0 μm.

また、光透過膜1の可視光域における平均透過率が75%以上であることが好ましい。光透過膜1は光学レンズと遮光膜2の間にはさまれるため、透過率が低いと遮光膜2の反射防止性能が適切に発揮され難くなる。   Moreover, it is preferable that the average transmittance | permeability in the visible light region of the light transmissive film | membrane 1 is 75% or more. Since the light transmission film 1 is sandwiched between the optical lens and the light shielding film 2, if the transmittance is low, the antireflection performance of the light shielding film 2 is difficult to be exhibited properly.

赤外線を吸収する微粒子としは、酸化亜鉛(ZnO)、酸化インジウム、酸化錫、酸化アンチモン、インジウム錫酸化物(ITO)、アンチモンドーピング酸化錫(ATO)、亜鉛ドーピング酸化インジウム(IZO)、アルミニウムドーピング酸化亜鉛(AZO)、及び、フッ素ドーピング酸化錫(FTO)の微粒子を用いることが可能である。これらのなかで、インジウム錫酸化物(ITO)、アンチモンドーピング酸化錫(ATO)、フッ素ドーピング酸化錫(FTO)の微粒子を用いることが好ましい。   The fine particles that absorb infrared rays include zinc oxide (ZnO), indium oxide, tin oxide, antimony oxide, indium tin oxide (ITO), antimony doped tin oxide (ATO), zinc doped indium oxide (IZO), and aluminum doping oxide. Fine particles of zinc (AZO) and fluorine-doped tin oxide (FTO) can be used. Among these, it is preferable to use fine particles of indium tin oxide (ITO), antimony-doped tin oxide (ATO), and fluorine-doped tin oxide (FTO).

赤外線を吸収する微粒子の個数平均粒径は、20.0nm以上100.0nm以下であることが好ましい。   The number average particle diameter of the fine particles that absorb infrared rays is preferably 20.0 nm or more and 100.0 nm or less.

光透過膜1に用いる溶媒としは、例えばトルエン、ベンゼン、キシレン等の芳香族炭化水素、エタノール、イソプロパノール等のアルコール類、シクロヘキサン等の脂環式炭化水素、酢酸エチル、酢酸ブチル等の酢酸エステル類、アセトン、メチルエチルケトン等のケトン類、DMF、DMAc、NMP等のアミド系、ヘキサン、オクタン等の脂肪族炭化水素、ジエチルエーテル、ブチルカルビトール等のエーテル類、ジクロロメタン、四塩化炭素等のハロゲン化炭化水素等を用いることが可能であるが、これらに限定されるものではない。用いる赤外線を吸収する微粒子の親和性、表面処理剤、分散剤の親和性に合わせて、溶媒を選択することができる。また、溶媒は1種類のみで使用することも可能であり、分散性を損なわない範囲において2種類以上を併用して使用することも可能である。   Examples of the solvent used for the light transmission film 1 include aromatic hydrocarbons such as toluene, benzene, and xylene, alcohols such as ethanol and isopropanol, alicyclic hydrocarbons such as cyclohexane, and acetates such as ethyl acetate and butyl acetate. , Ketones such as acetone and methyl ethyl ketone, amides such as DMF, DMAc and NMP, aliphatic hydrocarbons such as hexane and octane, ethers such as diethyl ether and butyl carbitol, halogenated carbonization such as dichloromethane and carbon tetrachloride Although hydrogen etc. can be used, it is not limited to these. The solvent can be selected according to the affinity of the fine particles that absorb infrared rays to be used, the affinity of the surface treatment agent, and the dispersant. Moreover, it is also possible to use only 1 type of solvent, and it is also possible to use it in combination of 2 or more types in the range which does not impair dispersibility.

発明の遮光膜2は、熱硬化性樹脂、染料及び無機微粒子を含有している。   The light shielding film 2 of the invention contains a thermosetting resin, a dye and inorganic fine particles.

遮光膜2に用いる熱硬化性樹脂は、光学レンズの塗工面とのバインダーとなる樹脂である。   The thermosetting resin used for the light shielding film 2 is a resin that serves as a binder with the coated surface of the optical lens.

熱硬化性樹脂としは、具体的にはエポキシ樹脂、アクリル樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂から選ばれる樹脂を用いることが可能である。これらの樹脂は、一種類を単独で使用してもよいし、二種類以上を混合して使用してもよい。   Specifically, as the thermosetting resin, a resin selected from an epoxy resin, an acrylic resin, a phenol resin, a urea resin, a melamine resin, an unsaturated polyester resin, and a polyurethane resin can be used. These resins may be used alone or in combination of two or more.

遮光膜2中の熱硬化性樹脂の含有量は、30.0質量%以上65.0質量%以下が好ましく、35質量%以上55質量%以下がより好ましい。   The content of the thermosetting resin in the light shielding film 2 is preferably 30.0 mass% or more and 65.0 mass% or less, and more preferably 35 mass% or more and 55 mass% or less.

本発明の遮光膜2に含有される着色剤としては、有機染料が用いられる。   An organic dye is used as the colorant contained in the light-shielding film 2 of the present invention.

有機染料としては、波長400nmから700nmの可視光を吸収し、溶媒に溶解可能な材料が好ましい。波長400nmから700nmにおける最大吸収率と最小吸収率の比を0.7以上にするために、染料は1種類であっても良いし、黒色、赤色、黄色、青色など数種類の染料を混合して吸収波長を調整しても構わない。   As the organic dye, a material that absorbs visible light having a wavelength of 400 nm to 700 nm and is soluble in a solvent is preferable. In order to make the ratio of the maximum absorption rate and the minimum absorption rate at wavelengths from 400 nm to 700 nm 0.7 or more, one type of dye may be used, or several types of dyes such as black, red, yellow, and blue may be mixed. The absorption wavelength may be adjusted.

染料の種類としては、色の種類が豊富なアゾ染料が好ましいが、アントラキノン染料、フタロシアニン染料、スチルベンゼン染料、ピラゾロン染料、チアゾール染料、カルボニウム染料、アジン染料であってもよい。また、耐光性、耐水性、耐熱性などの堅牢性が増すので、クロムなどの金属原子を有する染料が好ましい。   As the type of dye, an azo dye rich in color types is preferable, but anthraquinone dye, phthalocyanine dye, stilbenzene dye, pyrazolone dye, thiazole dye, carbonium dye, and azine dye may be used. Moreover, since fastness, such as light resistance, water resistance, and heat resistance, increases, the dye which has metal atoms, such as chromium, is preferable.

染料の遮光膜2中の含有量は、13質量%以上50質量%以下が好ましく、13質量%以上40質量%以下がより好ましい。   13 mass% or more and 50 mass% or less are preferable, and, as for content in the light shielding film 2 of dye, 13 mass% or more and 40 mass% or less are more preferable.

本発明の遮光膜2に含有される無機微粒子は、屈折率が2.1以上2.71以下であることが好ましい。屈折率が2.1以上2.71以下とすることで、遮光膜の屈折率が向上することが可能である。   The inorganic fine particles contained in the light shielding film 2 of the present invention preferably have a refractive index of 2.1 or more and 2.71 or less. By setting the refractive index to 2.1 or more and 2.71 or less, the refractive index of the light shielding film can be improved.

レンズ等の光学レンズにおいて、内面反射は、光学レンズの界面(遮光膜2が設けられている場合は、当該光学レンズと遮光膜2との界面)における屈折率差によって発生する。このため光学レンズの表面に遮光膜2が設けられているので、光学レンズと遮光膜2との屈折率差を小さくすることが好ましい。例えば、エポキシ樹脂の屈折率は1.55〜1.61であり、レンズの屈折率が1.85である場合は、エポキシ樹脂に屈折率の高い材料を混合させることで遮光膜の屈折率を1.80程度までに高くすることが好ましい。このようにして遮光膜2の屈折率を光学レンズの屈折率に近づけることにより、遮光膜2と光学レンズとの界面において内面反射を抑制することが可能である。   In an optical lens such as a lens, internal reflection occurs due to a difference in refractive index at the interface of the optical lens (in the case where the light shielding film 2 is provided, the interface between the optical lens and the light shielding film 2). For this reason, since the light shielding film 2 is provided on the surface of the optical lens, it is preferable to reduce the refractive index difference between the optical lens and the light shielding film 2. For example, when the refractive index of the epoxy resin is 1.55 to 1.61 and the refractive index of the lens is 1.85, the refractive index of the light shielding film can be changed by mixing a material having a high refractive index with the epoxy resin. It is preferable to increase it to about 1.80. By making the refractive index of the light shielding film 2 close to the refractive index of the optical lens in this way, it is possible to suppress internal reflection at the interface between the light shielding film 2 and the optical lens.

遮光膜2に含有される無機微粒子としては、酸化チタン(TiO、屈折率:2.71、比重:4.2〜4.3)、酸化ジルコニウム(ZrO、屈折率:2.10、比重:5.5)、酸化セリウム(CeO、屈折率:2.20、比重:7.1)、酸化錫(SnO、屈折率:2.00、比重:7.0)の微粒子を用いることが可能である。 The inorganic fine particles contained in the light shielding film 2 include titanium oxide (TiO 2 , refractive index: 2.71, specific gravity: 4.2 to 4.3), zirconium oxide (ZrO 2 , refractive index: 2.10, specific gravity). : 5.5), fine particles of cerium oxide (CeO 2 , refractive index: 2.20, specific gravity: 7.1), tin oxide (SnO 2 , refractive index: 2.00, specific gravity: 7.0) are used. Is possible.

遮光膜2中の無機微粒子の含有量は、5.0質量%以上25.0質量%以下が好ましく、5.0質量%以上15.0質量%以下がより好ましい。   The content of the inorganic fine particles in the light shielding film 2 is preferably 5.0% by mass or more and 25.0% by mass or less, and more preferably 5.0% by mass or more and 15.0% by mass or less.

(光学レンズの製造方法)
本発明の光学レンズの製造方法は、光学面33、非光学面31及び光学面33と非光学面31との間に面取り部32を有する光学レンズ3と、光学レンズの非光学面31及び面取り部32に形成されている遮光膜2と、を有する光学レンズの製造方法に関する。本発明の光学レンズの製造方法は、面取り部32に、赤外線を吸収する微粒子を含む光透過膜1を形成する工程と、光透過膜1を形成した後に、面取り部の光透過膜1に、光学レンズ側から赤外線を照射して光透過膜1を加熱する工程と、を有する。本発明は、その後、加熱された面取り部32及び非光学面31に遮光膜3を形成する工程と、を有することを特徴とする。
(Optical lens manufacturing method)
The optical lens manufacturing method of the present invention includes the optical surface 33, the non-optical surface 31, and the optical lens 3 having the chamfered portion 32 between the optical surface 33 and the non-optical surface 31, and the non-optical surface 31 and the chamfer of the optical lens. The present invention relates to a method of manufacturing an optical lens having the light shielding film 2 formed on the portion 32. The optical lens manufacturing method of the present invention includes a step of forming a light-transmitting film 1 containing fine particles that absorb infrared rays on the chamfered portion 32, and a step of forming the light-transmitting film 1 on the light-transmitting film 1 of the chamfered portion. Irradiating infrared rays from the optical lens side to heat the light transmission film 1. The present invention includes a step of forming the light shielding film 3 on the heated chamfered portion 32 and the non-optical surface 31 thereafter.

本発明の光学レンズの製造方法によれば、赤外線を照射して光透過膜3を加熱する。そして、光学レンズの面取り部32では、光透過膜1の上に遮光膜2を形成するので、遮光膜2の端部を内部よりもより先に加熱して端部の収縮を抑制することが可能である。これにより、光学レンズの白線欠陥の発生をより抑制することが可能である。   According to the method for manufacturing an optical lens of the present invention, the light transmission film 3 is heated by irradiation with infrared rays. In the chamfered portion 32 of the optical lens, since the light shielding film 2 is formed on the light transmission film 1, the end portion of the light shielding film 2 is heated earlier than the inside to suppress the contraction of the end portion. Is possible. Thereby, it is possible to further suppress the occurrence of white line defects in the optical lens.

本発明の光透過膜1を形成する工程では、面取り部32に光透過膜1を形成する。光透過膜1は、赤外線を吸収する微粒子および分散剤が溶媒中に分散された分散液を塗布した後に乾燥して得られる。   In the step of forming the light transmission film 1 of the present invention, the light transmission film 1 is formed on the chamfered portion 32. The light-transmitting film 1 is obtained by applying a dispersion liquid in which fine particles that absorb infrared rays and a dispersant are dispersed in a solvent and then drying.

分散液中の赤外線を吸収する微粒子は、上記のもの用いることが好ましい。   The fine particles that absorb infrared rays in the dispersion are preferably used as described above.

分散液には、分散液中に赤外線を吸収する微粒子が凝集しないように均一に分散するためには表面処理剤、分散剤(界面活性剤)を用いることが好ましい。表面処理剤、分散剤としては、顔料の誘導体や樹脂型や活性剤型のものを好適に用いることが可能である。ここで、表面処理剤、分散剤としては、カチオン系、弱カチオン系、ノニオン系あるいは両性界面活性剤が有効である。特に、ポリエステル系、ε−カプロラクトン系、ポリカルボン酸塩、ポリリン酸塩、ハイドロステアリン酸塩、アミドスルホン酸塩、ポリアクリル酸塩、オレフィンマレイン酸塩共重合物、アクリル−マレイン酸塩共重合物、アルキルアミン酢酸塩、アルキル脂肪酸塩、脂肪酸ポリエチレングリコールエステル系、シリコーン系、フッ素系を用いることが可能であるが、アンモニアよび有機アミン類から選択される少なくとも一種の塩基系のものを用いることが好適である。かかる表面処理剤、分散剤の添加量は、表面処理剤、分散剤の種類、微粒子の種類、微粒子の表面積(微粒子径)、微粒子を混合する分散樹脂の種類等、分散溶媒の種類に応じて異なる。表面処理剤、分散剤の添加量としては、赤外線を吸収する微粒子の質量に対して0.1質量%以上35.0質量%以下の範囲であることが好ましい。   In the dispersion, it is preferable to use a surface treatment agent and a dispersant (surfactant) in order to uniformly disperse the fine particles that absorb infrared rays in the dispersion so as not to aggregate. As the surface treatment agent and dispersant, pigment derivatives, resin types, and activator types can be suitably used. Here, a cationic, weakly cationic, nonionic or amphoteric surfactant is effective as the surface treatment agent and dispersant. In particular, polyester, ε-caprolactone, polycarboxylate, polyphosphate, hydrostearate, amide sulfonate, polyacrylate, olefin maleate copolymer, acrylic-maleate copolymer It is possible to use alkylamine acetate, alkyl fatty acid salt, fatty acid polyethylene glycol ester type, silicone type, fluorine type, but use at least one base type selected from ammonia and organic amines. Is preferred. The amount of the surface treatment agent and the dispersant added depends on the type of the dispersion solvent, such as the type of the surface treatment agent, the dispersant, the type of fine particles, the surface area (fine particle diameter) of the fine particles, and the type of the dispersion resin in which the fine particles are mixed. Different. The addition amount of the surface treatment agent and the dispersant is preferably in the range of 0.1% by mass to 35.0% by mass with respect to the mass of the fine particles that absorb infrared rays.

本発明に用いる分散溶媒としては、赤外線を吸収する微粒子を溶媒に分散させておくため、必要に応じて表面処理剤、分散剤を溶解させるために用いる。この分散溶媒は分散液を塗布・乾燥後には揮発するものが好ましい。   The dispersion solvent used in the present invention is used to dissolve the surface treatment agent and the dispersing agent as necessary because fine particles that absorb infrared rays are dispersed in the solvent. The dispersion solvent is preferably one that volatilizes after the dispersion is applied and dried.

光透過膜1を形成する工程では、赤外線を吸収する微粒子を含む分散液を、図3に示すように、微量塗布装置により塗布する。分散液の塗布は、光透過膜1を形成するための分散液を光学レンズ3の面取り部32に光透過膜1が該面取り部32の幅をすべて覆うように100μm以上2.0mm以下の線幅で形成する。   In the step of forming the light transmission film 1, a dispersion containing fine particles that absorb infrared rays is applied by a micro-applying device as shown in FIG. The dispersion is applied by applying a dispersion of 100 μm or more and 2.0 mm or less to the chamfered portion 32 of the optical lens 3 so that the light transmissive film 1 covers the entire width of the chamfered portion 32. Form with width.

本発明の赤外線を照射して光透過膜1を加熱する工程では、図4に示すように、光透過膜1を形成した後に、面取り部32の光透過膜1に、光学レンズ3の裏面側から赤外線を照射して光透過膜1を加熱する。   In the step of irradiating the infrared ray of the present invention to heat the light transmissive film 1, as shown in FIG. 4, after the light transmissive film 1 is formed, the light transmissive film 1 of the chamfered portion 32 is placed on the back surface side of the optical lens 3. The light transmission film 1 is heated by irradiating with infrared rays.

赤外線を照射することが可能な光源としては、特に限定はないが、ハロゲンヒータ、ハロゲンランプ、赤外線乾燥用ランプ、近赤外線領域の光を発する発光ダイオード、赤外線領域の光を発するレーザーを用いることが好ましい。近赤外線領域の光を発するレーザーとしては、半導体レーザー、Nd−YAGレーザー、色素レーザー、Tiドープサファイアレーザー等が挙げられる。なお、光源としては、赤外線領域の光を含んでいればよく、赤外線領域以外の波長の光を含んでいてもよい。この光源を用いて、光学素子の面取り部上に形成された光透過膜の表面温度が180℃以上220℃以下になるように加熱することが好ましい。   The light source capable of irradiating infrared rays is not particularly limited, but a halogen heater, a halogen lamp, an infrared drying lamp, a light emitting diode that emits light in the near infrared region, and a laser that emits light in the infrared region may be used. preferable. Examples of lasers that emit light in the near infrared region include semiconductor lasers, Nd-YAG lasers, dye lasers, and Ti-doped sapphire lasers. In addition, as a light source, what is necessary is just to contain the light of an infrared region, and the light of wavelengths other than an infrared region may be included. It is preferable that the light source is heated so that the surface temperature of the light transmission film formed on the chamfered portion of the optical element is 180 ° C. or higher and 220 ° C. or lower.

本発明の加熱された面取り部32の光透過膜1上及び非光学面31に遮光膜2を形成する工程では、加熱された光透過膜1上に、遮光膜2を形成する。   In the step of forming the light shielding film 2 on the light transmitting film 1 of the heated chamfered portion 32 and the non-optical surface 31 of the present invention, the light shielding film 2 is formed on the heated light transmitting film 1.

遮光膜2の形成は、樹脂、染料、無機微粒子を有機溶媒に有機溶媒と混合してなる遮光塗料を、光学レンズ3の非光学面31とあらかじめ面取り部32に塗布された赤外線を吸収する微粒子を含む光透過膜1上に塗布することにより形成される。遮光塗料の塗布は、図5に示されるように、遮光塗料を微量塗布装置により、光学レンズ3の非光学面31と面取り部32に塗布する。   The light-shielding film 2 is formed by using a light-shielding paint obtained by mixing resin, dye, and inorganic fine particles in an organic solvent with an organic solvent, and fine particles that absorb infrared rays applied to the non-optical surface 31 and the chamfered portion 32 of the optical lens 3 in advance. It forms by apply | coating on the light transmissive film | membrane 1 containing. As shown in FIG. 5, the light-shielding paint is applied to the non-optical surface 31 and the chamfered portion 32 of the optical lens 3 by a minute amount coating device.

本発明の光学レンズの製造方法は、赤外線を吸収する微粒子を含む光透過膜1に赤外線を照射することで、遮光膜2を形成する遮光塗料よりも光透過膜1が先に加熱される。そして、遮光塗料の端部が内部領域よりも先に加熱されることで、遮光塗料の端部の収縮が抑制されて、面取り部32上に遮光膜2が固定化される。これにより、面取り部32の遮光膜2の厚みが保たれるので、白線欠陥を抑制して、良好な外観を呈する光学レンズを製造することが可能である。   In the method for manufacturing an optical lens of the present invention, the light transmission film 1 including the fine particles that absorb infrared rays is irradiated with infrared rays, whereby the light transmission film 1 is heated before the light shielding coating material for forming the light shielding film 2. Then, the end portion of the light-shielding paint is heated before the internal region, so that the shrinkage of the end portion of the light-shielding paint is suppressed, and the light shielding film 2 is fixed on the chamfered portion 32. Thereby, since the thickness of the light shielding film 2 of the chamfered portion 32 is maintained, it is possible to manufacture an optical lens that suppresses white line defects and exhibits a good appearance.

以下、実施例により本発明の光学レンズ及び光学レンズの製造方法の具体例について説明する。   Hereinafter, specific examples of the optical lens of the present invention and the method for manufacturing the optical lens will be described with reference to examples.

(実施例1)
<分散液の準備>
光透過膜1を形成するために、赤外線を吸収する微粒子を含む塗膜を形成する分散液として、キシレン溶媒にインジウム錫酸化物(ITO)を分散した微粒子分散液(個数平均粒経20nm、ITO濃度9.96質量%、分散剤量2.19質量%:分散剤種[高分子量分散剤] CIKナノテック製)を準備した。
(Example 1)
<Preparation of dispersion>
In order to form the light-transmitting film 1, as a dispersion for forming a coating film containing fine particles that absorb infrared rays, a fine particle dispersion in which indium tin oxide (ITO) is dispersed in a xylene solvent (number average particle size 20 nm, ITO Concentration: 9.96% by mass, dispersant amount: 2.19% by mass: Dispersant type [high molecular weight dispersant] manufactured by CIK Nanotech Co., Ltd.) was prepared.

<遮光膜用材料の調製>
熱硬化性樹脂の前駆体としてエポキシ樹脂モノマー(ビスフェノールA型エポキシ樹脂)(製品名:jER828/三菱化学製)6.1g、及び弾性エポキシ樹脂モノマー(変性エポキシ樹脂)(EXA−4850−150/DIC製)24.5gと、色素材としてアゾ染料(製品名:VALIFAST/オリエント化学製)を26.3g、無機微粒子としてTiOを25wt%含有したチタニアスラリー(製品名:ND139/テイカ製、分散溶媒プロピレングリコールモノメチルエーテル(PGME))29.4g、溶媒としてプロピレングリコールモノメチルエーテル(PGME)10gを秤量した。これらの材料を遊星回転方式の混合・分散装置(商品名:泡とり練太郎/シンキー製)の250ml専用容器中で分散した。混合及び分散時間は20分間であった。
<Preparation of light shielding film material>
An epoxy resin monomer (bisphenol A type epoxy resin) (product name: jER828 / Mitsubishi Chemical) 6.1 g as a thermosetting resin precursor, and an elastic epoxy resin monomer (modified epoxy resin) (EXA-4850-150 / DIC) 24.5 g, titania slurry (product name: ND139 / Taika, dispersion solvent) containing 26.3 g of azo dye (product name: VALIFAST / manufactured by Orient Chemical) as a color material and 25 wt% of TiO 2 as inorganic fine particles 29.4 g of propylene glycol monomethyl ether (PGME)) and 10 g of propylene glycol monomethyl ether (PGME) as a solvent were weighed. These materials were dispersed in a 250 ml dedicated container of a planetary rotating type mixing / dispersing device (trade name: Netsutaro Awatori / Sinky). Mixing and dispersing time was 20 minutes.

<光透過膜および遮光膜の塗布>
図3に示されるように、微量塗布装置により、分散液を光学レンズ3の面取り部32に該光透過膜が該面取り部の幅をすべて覆うように1.0mmの線幅で塗布した。その後、30分間空気中で乾燥し、光透過膜1を形成した。光透過膜1を形成後、図4に示されるように、光学レンズ3の裏面側から赤外線照射装置(商品名:近赤外線乾燥器『プロモ SIR−760』トーコー製)を用いて赤外線を30秒照射し、光透過膜1を加熱した。光透過膜1の表面温度を非接触型熱電対で測定したところ、約185℃であった。加熱の際は、光学レンズ3を光透過膜形成時の塗布時と同様に回転し、赤外線が光透過膜1に対して均一に照射されるようにした。その後、赤外線照射を止め、光透過膜1が加熱されている状態で、図5に示されるように、遮光塗料を微量塗布装置により、光学レンズ3の非光学面31と面取り部32に塗布した。
<Application of light transmission film and light shielding film>
As shown in FIG. 3, the dispersion liquid was applied to the chamfered portion 32 of the optical lens 3 with a line width of 1.0 mm so that the light-transmitting film covered the entire width of the chamfered portion by a microscopic coating apparatus. Then, it dried in air for 30 minutes and formed the light transmissive film | membrane 1. After forming the light-transmitting film 1, as shown in FIG. 4, infrared rays are irradiated from the back side of the optical lens 3 using an infrared irradiation device (trade name: near infrared dryer “Promo SIR-760” manufactured by Toko) for 30 seconds. The light transmission film 1 was heated by irradiation. It was about 185 degreeC when the surface temperature of the light transmissive film | membrane 1 was measured with the non-contact type thermocouple. At the time of heating, the optical lens 3 was rotated in the same manner as at the time of application at the time of forming the light transmission film so that the infrared light was uniformly irradiated to the light transmission film 1. Thereafter, the infrared irradiation was stopped, and the light-transmitting film 1 was heated, and as shown in FIG. 5, a light-shielding coating material was applied to the non-optical surface 31 and the chamfered portion 32 of the optical lens 3 by a small amount coating device. .

<遮光膜の形成>
高温炉を用いて温度80℃で120分間遮光膜の焼成を行うことで、面取り部32上に光透過膜および遮光膜を形成し、非光学面31と光透過膜1とに遮光膜2が形成された光学レンズが得られた。
<Formation of light shielding film>
By baking the light shielding film at a temperature of 80 ° C. for 120 minutes using a high temperature furnace, the light transmission film and the light shielding film are formed on the chamfered portion 32, and the light shielding film 2 is formed on the non-optical surface 31 and the light transmission film 1. A formed optical lens was obtained.

<光透過膜および遮光膜の膜厚測定>
光学レンズ3の面取り部32を走査型電子顕微鏡(SEM)で観察し、光透過膜と遮光膜2の膜厚を測定した。光学レンズ3の面取り部32における光透過膜1の膜厚は3.0μmであり、遮光膜2の膜厚は7.6μmであった。この結果、遮光膜の塗布時における乾燥による遮光膜端部の収縮が抑制されており、面取り部上の遮光膜の厚みが十分保たれていることが確認された。
<Measurement of film thickness of light transmission film and light shielding film>
The chamfered portion 32 of the optical lens 3 was observed with a scanning electron microscope (SEM), and the film thicknesses of the light transmission film and the light shielding film 2 were measured. The film thickness of the light transmission film 1 in the chamfered portion 32 of the optical lens 3 was 3.0 μm, and the film thickness of the light shielding film 2 was 7.6 μm. As a result, it was confirmed that the shrinkage of the end portion of the light shielding film due to drying during application of the light shielding film was suppressed, and that the thickness of the light shielding film on the chamfered portion was sufficiently maintained.

<光透過膜の透過率測定>
直径30mm、厚み1mmの平板ガラスの上面に光学レンズ上に形成したときと同じ3μmの膜厚になるように光透過膜を形成し、分光光度計(U−4000:日立ハイテク製)を用いて透過率を測定した。透過率は平板ガラスの透過率を100%として、可視光域の波長400nm以上700nm以下の透過率を1nm間隔で測定し、その平均値を取って可視光域の平均透過率とした。光透過膜の平均透過率は94.5%であった。この結果、遮光膜の性能を阻害しない透明度が十分維持されていることが確認された。
<Measurement of transmittance of light transmission film>
A light transmission film is formed on the upper surface of a flat glass having a diameter of 30 mm and a thickness of 1 mm so as to have the same film thickness as 3 μm when formed on an optical lens, and a spectrophotometer (U-4000: manufactured by Hitachi High-Tech) is used. The transmittance was measured. The transmittance of the flat glass was set to 100%, the transmittance in the visible light range of 400 nm to 700 nm was measured at 1 nm intervals, and the average value was taken as the average transmittance in the visible light range. The average transmittance of the light transmission film was 94.5%. As a result, it was confirmed that the transparency that does not hinder the performance of the light shielding film is sufficiently maintained.

<個数平均粒径の測定方法>
レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒径を個数平均粒径とした。
<Measurement method of number average particle diameter>
The particle diameter at an integrated value of 50% in the particle size distribution determined by the laser diffraction / scattering method was taken as the number average particle diameter.

(実施例2)
光透過膜1の膜厚が5.0μmになるよう分散液のITO濃度を調整して分散液を用いた以外は、実施例1と同様にして光学レンズを作製した。
(Example 2)
An optical lens was produced in the same manner as in Example 1 except that the dispersion liquid was used by adjusting the ITO concentration of the dispersion liquid so that the film thickness of the light transmission film 1 was 5.0 μm.

光学レンズの面取り部32における光透過膜1の膜厚は5μmであり、遮光膜2の膜厚は8.7μmであった。光透過膜1の平均透過率は91.0%であった。この結果、遮光膜の塗布時における乾燥による遮光膜端部の収縮が抑制されており、面取り部上の遮光膜の厚みが十分保たれていること、また、遮光膜の性能を阻害しない透明度が十分維持されていることが確認された。   The film thickness of the light transmission film 1 in the chamfered portion 32 of the optical lens was 5 μm, and the film thickness of the light shielding film 2 was 8.7 μm. The average transmittance of the light transmission film 1 was 91.0%. As a result, the shrinkage of the edge of the light-shielding film due to drying during application of the light-shielding film is suppressed, the thickness of the light-shielding film on the chamfered portion is sufficiently maintained, and the transparency that does not impair the performance of the light-shielding film It was confirmed that it was well maintained.

(実施例3)
光透過膜1の膜厚が8.0μmになるよう分散液のITO濃度を調整して分散液を用いた以外は、実施例1と同様にして光学レンズを作製した。
(Example 3)
An optical lens was fabricated in the same manner as in Example 1 except that the dispersion was used by adjusting the ITO concentration of the dispersion so that the film thickness of the light transmission film 1 was 8.0 μm.

光学レンズの面取り部32における光透過膜1の膜厚は8.0μmであり、遮光膜2の膜厚は10.4μmであった。光透過膜1の平均透過率は86.0%であった。この結果、遮光膜の塗布時における乾燥による遮光膜端部の収縮が抑制されており、面取り部上の遮光膜の厚みが十分保たれていること、また、遮光膜の性能を阻害しない透明度が十分維持されていることが確認された。   The film thickness of the light transmission film 1 in the chamfered portion 32 of the optical lens was 8.0 μm, and the film thickness of the light shielding film 2 was 10.4 μm. The average transmittance of the light transmissive film 1 was 86.0%. As a result, the shrinkage of the edge of the light-shielding film due to drying during application of the light-shielding film is suppressed, the thickness of the light-shielding film on the chamfered portion is sufficiently maintained, and the transparency that does not impair the performance of the light-shielding film It was confirmed that it was well maintained.

(実施例4)
赤外線を吸収する微粒子を含む光透過膜の膜厚が10.0μmになるよう分散液のITO濃度を調整して分散液を用いた以外は、実施例1と同様にして光学レンズを作製した。
Example 4
An optical lens was produced in the same manner as in Example 1 except that the dispersion liquid was used by adjusting the ITO concentration of the dispersion liquid so that the film thickness of the light-transmitting film containing fine particles that absorb infrared rays was 10.0 μm.

光学レンズの面取り部32における光透過膜1の膜厚は10μmであり、遮光膜2の膜厚は10.5μmであった。光透過膜1の平均透過率は82.8%であった。この結果、遮光膜の塗布時における乾燥による遮光膜端部の収縮が抑制されており、面取り部上の遮光膜の厚みが十分保たれていること、また、遮光膜の性能を阻害しない透明度が十分維持されていることが確認された。   The film thickness of the light transmission film 1 in the chamfered portion 32 of the optical lens was 10 μm, and the film thickness of the light shielding film 2 was 10.5 μm. The average transmittance of the light transmissive film 1 was 82.8%. As a result, the shrinkage of the edge of the light-shielding film due to drying during application of the light-shielding film is suppressed, the thickness of the light-shielding film on the chamfered portion is sufficiently maintained, and the transparency that does not impair the performance of the light-shielding film It was confirmed that it was well maintained.

(実施例5)
赤外線を吸収する微粒子を含む光透過膜を形成するための分散液として、アンチモンドープ酸化錫(ATO)微粒子分散液(個数平均粒経100nm、固形分濃度17w%、三菱マテリアル電子化成製)を用いた以外は、実施例1と同様に光学レンズを作製した。
(Example 5)
Antimony-doped tin oxide (ATO) fine particle dispersion (number average particle size 100 nm, solid content concentration 17 w%, manufactured by Mitsubishi Materials Electronic Chemicals) is used as a dispersion for forming a light transmission film containing fine particles that absorb infrared rays. An optical lens was produced in the same manner as in Example 1 except that.

光学レンズの面取り部32における光透過膜1の膜厚は8.0μmであり、遮光膜2の膜厚は8.5μmであった。光透過膜1の平均透過率は81.1%であった。この結果、遮光膜の塗布時における乾燥による遮光膜端部の収縮が抑制されており、面取り部上の遮光膜の厚みが十分保たれていること、また、遮光膜の性能を阻害しない透明度が十分維持されていることが確認された。   The film thickness of the light transmission film 1 at the chamfered portion 32 of the optical lens was 8.0 μm, and the film thickness of the light shielding film 2 was 8.5 μm. The average transmittance of the light transmissive film 1 was 81.1%. As a result, the shrinkage of the edge of the light-shielding film due to drying during application of the light-shielding film is suppressed, the thickness of the light-shielding film on the chamfered portion is sufficiently maintained, and the transparency that does not impair the performance of the light-shielding film It was confirmed that it was well maintained.

(実施例6)
赤外線を吸収する微粒子を含む光透過膜の膜厚が1.0μmになるよう分散液のインジウム錫酸化物濃度を調整して分散液を用いた以外は、実施例1と同様に光学レンズを作製した。
(Example 6)
An optical lens was produced in the same manner as in Example 1 except that the dispersion liquid was used by adjusting the concentration of indium tin oxide in the dispersion liquid so that the film thickness of the light transmission film containing fine particles that absorb infrared rays was 1.0 μm. did.

光学レンズの面取り部32における光透過膜1の膜厚は1μmであり、遮光膜の膜厚は6.2μmであった。光透過膜1の平均透過率は98.1%であった。この結果、遮光膜の塗布時における乾燥による遮光膜端部の収縮が抑制されてはいるが、面取り部上の遮光膜の厚みが若干不足しているため、白線欠陥がごく僅かに発生していることが確認された。しかし、鏡筒に組み込まれた際の外観評価としては問題がないレベルであった。また、遮光膜の性能を阻害しない透明度は十分維持されていることが確認された。   The film thickness of the light transmission film 1 in the chamfered portion 32 of the optical lens was 1 μm, and the film thickness of the light shielding film was 6.2 μm. The average transmittance of the light transmissive film 1 was 98.1%. As a result, the shrinkage of the edge of the light-shielding film due to drying during the application of the light-shielding film is suppressed, but the thickness of the light-shielding film on the chamfered portion is slightly insufficient, so that white line defects are slightly generated. It was confirmed that However, there was no problem in the appearance evaluation when incorporated in the lens barrel. It was also confirmed that the transparency that does not hinder the performance of the light shielding film is sufficiently maintained.

(実施例7)
赤外線を吸収する微粒子を含む光透過膜1の膜厚が12.0μmになるよう分散液のインジウム錫酸化物濃度を調整して分散液に用いた以外は、実施例1と同様に光学レンズを作製した。
(Example 7)
The optical lens was used in the same manner as in Example 1 except that the concentration of indium tin oxide in the dispersion liquid was adjusted so that the film thickness of the light transmission film 1 containing fine particles that absorb infrared rays was 12.0 μm. Produced.

光学レンズの面取り部32における光透過膜1の膜厚は12μmであり、遮光膜の膜厚は11μmであった。光透過膜1の平均透過率は78.2%であった。この結果、遮光膜の塗布時における乾燥による遮光膜端部の収縮が抑制されており、面取り部上の遮光膜の厚みが十分保たれていることが確認された。しかし、光透過膜の膜厚が厚いため、若干透明度が不足していることが確認された。ただし、遮光膜の性能を阻害するレベルではなかった。   The thickness of the light transmission film 1 in the chamfered portion 32 of the optical lens was 12 μm, and the thickness of the light shielding film was 11 μm. The average transmittance of the light transmissive film 1 was 78.2%. As a result, it was confirmed that the shrinkage of the end portion of the light shielding film due to drying during application of the light shielding film was suppressed, and that the thickness of the light shielding film on the chamfered portion was sufficiently maintained. However, it was confirmed that the transparency is slightly insufficient because the light-transmitting film is thick. However, it was not a level that hindered the performance of the light shielding film.

(比較例1)
光透過膜を形成する分散液として、赤外線を吸収しても発熱しないチタニア微粒子(酸化チタン微粒子)を使用しているチタニアスラリー(製品名『ND139』一次粒子の個数平均粒経15nm、チタニア濃度25質量%、PGME分散液、テイカ製)を用いた。これ以外は、実施例1と同様に光学レンズを作製した。
(Comparative Example 1)
A titania slurry using titania fine particles (titanium oxide fine particles) that do not generate heat even when absorbing infrared rays as a dispersion for forming a light-transmitting film (product name “ND139” primary particle number average particle size 15 nm, titania concentration 25 % By mass, PGME dispersion, manufactured by Teika). Other than this, an optical lens was fabricated in the same manner as in Example 1.

光学レンズの面取り部32における光透過膜1の膜厚は7.0μm、遮光膜の膜厚は5.1μmであった。この結果、遮光膜の塗布時における乾燥による遮光膜端部の収縮が抑制されず遮光膜端部がひけてしまっており、面取り部上の遮光膜の厚みが十分残っていないことが確認された。   The film thickness of the light transmission film 1 in the chamfered portion 32 of the optical lens was 7.0 μm, and the film thickness of the light shielding film was 5.1 μm. As a result, it was confirmed that the shrinkage of the end portion of the light shielding film due to drying during the application of the light shielding film was not suppressed and the end portion of the light shielding film was lost, and that the thickness of the light shielding film on the chamfered portion did not remain sufficiently. .

(比較例2)
面取り部32に光透過膜を設けない以外は、実施例1と同様に光学レンズを作製した。
(Comparative Example 2)
An optical lens was produced in the same manner as in Example 1 except that the chamfered portion 32 was not provided with a light transmission film.

光学レンズの面取り部32における遮光膜の膜厚は4.4μmであった。この結果、遮光膜の塗布時における乾燥による遮光膜端部の収縮が抑制されず遮光膜端部がひけてしまっており、面取り部上の遮光膜の厚みが十分残っていないことが確認された。   The film thickness of the light shielding film in the chamfered portion 32 of the optical lens was 4.4 μm. As a result, it was confirmed that the shrinkage of the end portion of the light shielding film due to drying during the application of the light shielding film was not suppressed and the end portion of the light shielding film was lost, and that the thickness of the light shielding film on the chamfered portion did not remain sufficiently. .

表1に、実施例および比較例の結果を示す。   Table 1 shows the results of Examples and Comparative Examples.

Figure 2015114601
Figure 2015114601

表1中、平均透過率は、平板ガラスの透過率を100%として、可視光域の波長400nmから700nmの透過率を1nm間隔で測定した値の平均値とした。   In Table 1, the average transmittance was defined as an average value of values obtained by measuring transmittance at a wavelength of 400 nm to 700 nm in the visible light region at intervals of 1 nm with the transmittance of the flat glass as 100%.

表1中、白線欠陥の評価は以下の通りにおこなった。
○:白線欠陥が起きておらず、遮光膜が正常に塗り込まれている状態。
△:白線欠陥がわずかに発生しているが、鏡筒に組み込まれた際の外観評価としては問題がない程度。
×:白線欠陥が起きている。
In Table 1, white line defects were evaluated as follows.
○: No white line defect has occurred, and the light-shielding film is coated normally.
Δ: White line defects are slightly generated, but there is no problem in appearance evaluation when incorporated in a lens barrel.
X: A white line defect has occurred.

<評価結果>
実施例1から5の光学レンズは、いずれも面取り部における遮光膜の膜厚が十分厚いため、白線欠陥が起きていなかった。
<Evaluation results>
In each of the optical lenses of Examples 1 to 5, no white line defect occurred because the thickness of the light shielding film at the chamfered portion was sufficiently thick.

実施例6の光学レンズは光透過膜の膜厚が薄いため加熱性能が十分に発揮されず面取り部における遮光膜の膜厚が若干薄くなっているが、白線欠陥の発生は抑制されていた。   In the optical lens of Example 6, since the film thickness of the light transmission film was thin, the heating performance was not sufficiently exhibited, and the film thickness of the light shielding film at the chamfered portion was slightly thinned, but the occurrence of white line defects was suppressed.

実施例7の光学レンズは、光透過膜の膜厚が厚いため透過率がやや低下しているが、遮光膜の膜厚は十分厚いため白線欠陥は起きていなかった。   In the optical lens of Example 7, the transmittance was slightly lowered because the film thickness of the light transmission film was thick, but no white line defect occurred because the film thickness of the light shielding film was sufficiently thick.

比較例1の光学レンズは、透明性は高いが赤外線を吸収しても加熱性能のないチタニアが光透過膜として用いられているため、面取り部における遮光膜の膜厚が薄くなってしまい、白線欠陥が起きていた。   In the optical lens of Comparative Example 1, titania that has high transparency but absorbs infrared rays and does not have heating performance is used as the light transmission film. There was a defect.

面取り部32に光透過膜を設けないので、比較例2の光学レンズは、面取り部における遮光膜の膜厚が薄くなってしまい、白線欠陥が起きていた。   Since no light transmissive film is provided on the chamfered portion 32, the optical lens of Comparative Example 2 has a thin light-shielding film at the chamfered portion, resulting in white line defects.

この結果から、面取り部に光透過膜が適切な状態で存在していることで、遮光膜塗布時に乾燥による遮光膜端部の収縮が抑制され、面取り部上の遮光膜の厚みが十分保たれること、そのために白線欠陥の発生が抑制されていることが確認された。   From this result, the presence of the light transmissive film in the chamfered portion in an appropriate state suppresses the shrinkage of the light shielding film end due to drying when the light shielding film is applied, and the thickness of the light shielding film on the chamfered portion is sufficiently maintained. Therefore, it was confirmed that the generation of white line defects was suppressed.

本発明の遮光膜は、内面反射防止を兼ね備えているので、一眼レフカメラ用望遠レンズやデジタルカメラ用レンズの光学レンズに利用することが可能である。   Since the light shielding film of the present invention also has internal reflection prevention, it can be used as an optical lens for a single lens reflex camera telephoto lens or a digital camera lens.

1 光透過膜
2 遮光膜
3 光学レンズ
31 非光学面
32 面取り部
33 光学面
41 光軸
42 面取り部の面法線
DESCRIPTION OF SYMBOLS 1 Light transmission film 2 Light-shielding film 3 Optical lens 31 Non-optical surface 32 Chamfered part 33 Optical surface 41 Optical axis 42 Surface normal of chamfered part

Claims (16)

光学面、非光学面及び前記光学面と前記非光学面との間に面取り部を有する光学レンズと、前記光学レンズの前記非光学面及び前記面取り部に形成されている遮光膜と、を有する光学レンズの製造方法であって、
前記面取り部に、赤外線を吸収する微粒子を含む光透過膜を形成する工程と、
前記光透過膜を形成した後に、前記面取り部の前記光透過膜に、光学レンズ側から赤外線を照射して前記光透過膜を加熱する工程と、
加熱された前記面取り部及び前記非光学面に遮光膜を形成する工程と、を有することを特徴とする光学レンズの製造方法。
An optical surface, a non-optical surface, an optical lens having a chamfered portion between the optical surface and the non-optical surface, and a light shielding film formed on the non-optical surface and the chamfered portion of the optical lens. A method for manufacturing an optical lens, comprising:
Forming a light-transmitting film containing fine particles that absorb infrared rays in the chamfered portion;
After forming the light transmissive film, heating the light transmissive film by irradiating the light transmissive film of the chamfered portion with infrared rays from the optical lens side;
And a step of forming a light-shielding film on the heated chamfered portion and the non-optical surface.
前記赤外線を吸収する微粒子は、インジウム錫酸化物(ITO)、アンチモンドーピング酸化錫(ATO)、フッ素ドーピング酸化錫(FTO)の微粒子からなる群より選択される一種を含有することを特徴とする請求項1に記載の光学レンズの製造方法。   The fine particles that absorb infrared rays include one kind selected from the group consisting of fine particles of indium tin oxide (ITO), antimony-doped tin oxide (ATO), and fluorine-doped tin oxide (FTO). Item 2. A method for manufacturing an optical lens according to Item 1. 前記光学面は、最大半開角が30度以上であることを特徴とする請求項1又は2に記載の光学レンズの製造方法。   The method of manufacturing an optical lens according to claim 1, wherein the optical surface has a maximum half opening angle of 30 degrees or more. 前記光透過膜は、膜厚が3.0μm以上10.0μm以下であることを特徴とする請求項1乃至3のいずれか一項に記載の光学レンズの製造方法。   4. The method of manufacturing an optical lens according to claim 1, wherein the light transmission film has a thickness of 3.0 μm to 10.0 μm. 前記遮光膜は、膜厚が7.0μm以上10.5μm以下であることを特徴とする請求項1乃至4のいずれか一項に記載の光学レンズの製造方法。   5. The method of manufacturing an optical lens according to claim 1, wherein the light-shielding film has a thickness of 7.0 μm to 10.5 μm. 前記光透過膜は、波長400nm以上700nm以下の光の平均透過率が75%以上であることを特徴とする請求項1乃至5のいずれか一項に記載の光学レンズの製造方法。   6. The method of manufacturing an optical lens according to claim 1, wherein the light transmission film has an average transmittance of light of a wavelength of 400 nm or more and 700 nm or less of 75% or more. 前記遮光膜は、アゾ染料、アントラキノン染料、フタロシアニン染料、スチルベンゼン染料、ピラゾロン染料、チアゾール染料、カルボニウム染料、アジン染料からなる群より選択される一種を含むことを特徴とする請求項1乃至6のいずれか一項に記載の光学レンズの製造方法。   7. The light-shielding film includes one selected from the group consisting of azo dyes, anthraquinone dyes, phthalocyanine dyes, stilbenzene dyes, pyrazolone dyes, thiazole dyes, carbonium dyes, and azine dyes. The manufacturing method of the optical lens as described in any one. 前記遮光膜は、酸化チタン、酸化ジルコニウム、酸化セリウム又は酸化錫を含有することを特徴とする請求項1乃至7のいずれか一項に記載の光学レンズの製造方法。   The method for manufacturing an optical lens according to claim 1, wherein the light shielding film contains titanium oxide, zirconium oxide, cerium oxide, or tin oxide. 光学面、非光学面及び前記光学面と前記非光学面との間に面取り部を有し、前記非光学面及び前記面取り部に形成されている遮光膜を有する光学レンズであって、
前記面取り部の表面と前記遮光膜との間に、赤外線を吸収する微粒子を含む光透過膜が形成されていることを特徴とする光学レンズ。
An optical lens having an optical surface, a non-optical surface and a chamfered portion between the optical surface and the non-optical surface, and having a light shielding film formed on the non-optical surface and the chamfered portion,
An optical lens, wherein a light transmission film containing fine particles that absorb infrared rays is formed between a surface of the chamfered portion and the light shielding film.
前記赤外線を吸収する微粒子は、インジウム錫酸化物(ITO)、アンチモンドーピング酸化錫(ATO)、フッ素ドーピング酸化錫(FTO)の微粒子から選択される少なくとも1種を含有することを特徴とする請求項9に記載の光学レンズ。   The fine particles that absorb infrared rays include at least one selected from fine particles of indium tin oxide (ITO), antimony-doped tin oxide (ATO), and fluorine-doped tin oxide (FTO). 9. The optical lens according to 9. 前記光学面は、最大半開角が30度以上であることを特徴とする請求項9又は10に記載の光学レンズ。   The optical lens according to claim 9 or 10, wherein the optical surface has a maximum half opening angle of 30 degrees or more. 前記光透過膜は、膜厚が3.0μm以上10.0μm以下であることを特徴とする請求項9乃至11のいずれか一項に記載の光学レンズ。   The optical lens according to claim 9, wherein the light transmission film has a thickness of 3.0 μm to 10.0 μm. 前記光透過膜は、波長400nm以上700nm以下の光の平均透過率が75%以上であることを特徴とする請求項9乃至12のいずれか一項に記載の光学レンズ。   The optical lens according to any one of claims 9 to 12, wherein the light transmission film has an average transmittance of light of a wavelength of 400 nm or more and 700 nm or less of 75% or more. 前記遮光膜は、アゾ染料、アントラキノン染料、フタロシアニン染料、スチルベンゼン染料、ピラゾロン染料、チアゾール染料、カルボニウム染料、アジン染料からなる群より選択される一種を含むことを特徴とする請求項9乃至13のいずれか一項に記載の光学レンズ。   14. The light-shielding film includes one selected from the group consisting of azo dyes, anthraquinone dyes, phthalocyanine dyes, stilbenzene dyes, pyrazolone dyes, thiazole dyes, carbonium dyes, and azine dyes. The optical lens as described in any one. 前記遮光膜は、酸化チタン、酸化ジルコニウム、酸化セリウム又は酸化錫を含有することを特徴とする請求項9乃至14のいずれか一項に記載の光学レンズ。   The optical lens according to any one of claims 9 to 14, wherein the light shielding film contains titanium oxide, zirconium oxide, cerium oxide, or tin oxide. 前記遮光膜は、膜厚が7.0μm以上10.5μm以下であることを特徴とする請求項9乃至15のいずれか一項に記載の光学レンズ。   The optical lens according to claim 9, wherein the light-shielding film has a film thickness of 7.0 μm or more and 10.5 μm or less.
JP2013258143A 2013-12-13 2013-12-13 Method for manufacturing optical lens and optical lens Pending JP2015114601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013258143A JP2015114601A (en) 2013-12-13 2013-12-13 Method for manufacturing optical lens and optical lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013258143A JP2015114601A (en) 2013-12-13 2013-12-13 Method for manufacturing optical lens and optical lens

Publications (1)

Publication Number Publication Date
JP2015114601A true JP2015114601A (en) 2015-06-22

Family

ID=53528425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013258143A Pending JP2015114601A (en) 2013-12-13 2013-12-13 Method for manufacturing optical lens and optical lens

Country Status (1)

Country Link
JP (1) JP2015114601A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019070791A (en) * 2017-10-10 2019-05-09 キヤノン株式会社 Optical element, method for manufacturing optical element, and optical apparatus
JP2020129104A (en) * 2018-12-17 2020-08-27 ライカ カメラ アクチエンゲゼルシャフト Use of lacquer system for covering lens, method for covering edge of lens, and lens
JP2021165854A (en) * 2017-08-03 2021-10-14 キヤノン株式会社 Optical equipment and optical element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021165854A (en) * 2017-08-03 2021-10-14 キヤノン株式会社 Optical equipment and optical element
JP7225321B2 (en) 2017-08-03 2023-02-20 キヤノン株式会社 Optical equipment and optical elements
JP2019070791A (en) * 2017-10-10 2019-05-09 キヤノン株式会社 Optical element, method for manufacturing optical element, and optical apparatus
JP7195823B2 (en) 2017-10-10 2022-12-26 キヤノン株式会社 OPTICAL ELEMENT, OPTICAL ELEMENT MANUFACTURING METHOD, OPTICAL DEVICE
JP2020129104A (en) * 2018-12-17 2020-08-27 ライカ カメラ アクチエンゲゼルシャフト Use of lacquer system for covering lens, method for covering edge of lens, and lens
JP7372828B2 (en) 2018-12-17 2023-11-01 ライカ カメラ アクチエンゲゼルシャフト Use of lacquer systems to coat lenses, methods for coating the edges of lenses, and lenses

Similar Documents

Publication Publication Date Title
JP6197647B2 (en) Optical filter, method for manufacturing the same, and imaging apparatus
JP4959007B2 (en) Shielding film, shielding paint and optical element for optical element
JP6986339B2 (en) Antireflection film forming composition, antireflection film and its forming method
JP6790831B2 (en) Optical filter and imaging device
JP2011186438A5 (en)
JP5836833B2 (en) Shielding paint, shielding film and optical element for optical element
JP3998786B2 (en) Hard coat film forming coating liquid and hard coat film-coated substrate
JP6716236B2 (en) Optical element, method of manufacturing optical element, optical device, and camera
CN110291042B (en) Mixed powder for forming black film and method for producing same
JP2011164494A (en) Light shielding film for optical element, light shielding coating material, and optical element
JP2015114601A (en) Method for manufacturing optical lens and optical lens
WO2021132696A1 (en) Transparent laminate
KR100299252B1 (en) Antireflection film
JP2017107011A (en) Optical member and apparatus using the optical member
JP2005148376A (en) Film and reflection preventing film
TWI589652B (en) Light-shielding paint, light-shielding paint set, light-shielding film, optical element, method for producing light-shielding film, and method for producing optical element
JP6381337B2 (en) Optical element manufacturing method, light-shielding paint, light-shielding paint set, light-shielding film manufacturing method, and optical device manufacturing method
JP2024032021A (en) Articles with films, optical instruments, paints, and methods for producing articles
JP2014092632A (en) Inner surface antireflection coating material and method for manufacturing optical element
CN106536172A (en) Method for dyeing transparent article made of polymeric substrate with gradient tint
JP2016109943A (en) Optical element, light shielding film and light shielding coating
JP2014115393A (en) Optical element having light shielding film and method for manufacturing the same
JP2016200626A (en) Light-transmissive resin base material manufacturing method, light-transmissive resin base material, and light-transmissive molded body
JP2012168377A (en) Ultraviolet shielding particle, resin composition for ultraviolet shielding hard coat, ultraviolet shielding hard coat film, plastic head lens cover for vehicle
JP2008046392A (en) Method of manufacturing plastic optical article