JP2015100784A - Preparation method of diesel oxidation catalyst - Google Patents

Preparation method of diesel oxidation catalyst Download PDF

Info

Publication number
JP2015100784A
JP2015100784A JP2013245909A JP2013245909A JP2015100784A JP 2015100784 A JP2015100784 A JP 2015100784A JP 2013245909 A JP2013245909 A JP 2013245909A JP 2013245909 A JP2013245909 A JP 2013245909A JP 2015100784 A JP2015100784 A JP 2015100784A
Authority
JP
Japan
Prior art keywords
catalyst
platinum group
group metal
acid
oxidation catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013245909A
Other languages
Japanese (ja)
Other versions
JP6401455B2 (en
Inventor
佐々木 基
Motoi Sasaki
基 佐々木
浜田 秀昭
Hideaki Hamada
秀昭 浜田
羽田 政明
Masaaki Haneda
政明 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Nagoya Institute of Technology NUC
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Nagoya Institute of Technology NUC filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2013245909A priority Critical patent/JP6401455B2/en
Publication of JP2015100784A publication Critical patent/JP2015100784A/en
Application granted granted Critical
Publication of JP6401455B2 publication Critical patent/JP6401455B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a preparation method of a high-performance diesel oxidation catalyst having a function for oxidizing nitrogen monoxide included in exhaust gas having the atmosphere containing oxygen excessively into nitrogen dioxide, and a function for accelerating combustion of an unburned fuel in the exhaust gas, incomplete combustion products or the like.SOLUTION: In a preparation method of a diesel oxidation catalyst in which a platinum group metal is carried on an oxide carrier, when carrying on the oxide carrier by using a solution containing the platinum group metal compound, an oil-soluble carboxylic acid having a carbon number of 3 or larger is allowed to coexist, and then burned.

Description

本発明は、酸素を含有する排出ガス中で用いられる白金族金属を担持したディーゼル酸化触媒の調製法に関するものである。   The present invention relates to a method for preparing a diesel oxidation catalyst carrying a platinum group metal used in an exhaust gas containing oxygen.

ディーゼルエンジンの燃焼排出ガス中には多量の酸素が含まれているため、この条件で排出ガス中の有害成分を除去する必要がある。排出ガス中の有害物質の代表的なものとして窒素酸化物(以下、「NOx」と記すこともある)および未燃燃料に由来する物質(炭化水素、COなど)があげられる。   Since a large amount of oxygen is contained in the combustion exhaust gas of a diesel engine, it is necessary to remove harmful components in the exhaust gas under these conditions. Typical examples of harmful substances in exhaust gas include nitrogen oxides (hereinafter sometimes referred to as “NOx”) and substances derived from unburned fuel (hydrocarbons, CO, etc.).

NOxは燃焼等による高温空気中の窒素と酸素の反応が主たる原因で生成し、生成時にはほとんど一酸化窒素(以下、「NO」と記すこともある)の形である。   NOx is produced mainly due to the reaction between nitrogen and oxygen in high-temperature air due to combustion, etc., and is almost in the form of nitric oxide (hereinafter sometimes referred to as “NO”) when produced.

酸素が含まれている排出ガス中のNOxを浄化するには、酸素が含まれている条件で選択的にNOxを還元することが必要であり、耐久性が重視される大型システム、商用車を中心としてアンモニアもしくは尿素を外部から供給する選択的接触還元法が実用化されている。   In order to purify NOx in exhaust gas that contains oxygen, it is necessary to selectively reduce NOx under conditions that contain oxygen. A selective catalytic reduction method in which ammonia or urea is supplied from the outside as a center has been put into practical use.

近年の燃焼システムの高効率化に伴い、一般的に排出ガスの温度は低くなる傾向にあるが、この排出ガス処理システムにおいては、浄化されるNOxのNO:NO2の比率が1:1程度の時に処理システムが良好に働き低い温度でも十分な浄化率が得られることが知られている。 Along with higher efficiency in recent years of the combustion system, generally the temperature of the exhaust gas tends to be lower but, in this exhaust gas treatment system, NO of NOx purification: the ratio of NO 2 is 1: about 1 It is known that a sufficient purification rate can be obtained even at low temperatures when the treatment system works well at this time.

前述のようにNOxは発生直後はほとんどNOであり、十分な浄化を行うためには排出ガス中のNO2の比率を上げる必要があるため、白金族金属を担持した触媒を使用して排出ガス中でNO2生成反応を促進し、NO2の割合を増加させることが多い。この時用いる白金族金属は、活性金属として少なくとも白金もしくはパラジウムのうちの1つを含んでいる。 As mentioned above, NOx is almost NO immediately after generation, and it is necessary to increase the ratio of NO 2 in the exhaust gas in order to perform sufficient purification, so the exhaust gas using a catalyst carrying a platinum group metal is used. Among them, the NO 2 production reaction is promoted, and the ratio of NO 2 is often increased. The platinum group metal used at this time contains at least one of platinum or palladium as an active metal.

一方、この白金族金属を担持した触媒は未燃のまま排出ガス中に含有された炭化水素、COなどの不完全燃焼分を完全に酸化しCO2にする機能も併せ持つことを期待されている。特にディーゼル排出ガスの場合には、排出ガス中にすすが含まれるため、それをディーゼルパティキュレートフィルタ(以下、「DPF」と記すこともある)と呼ばれるフィルターで捕集する後処理システムが組み合わされていることが多い。その再生(捕集したすすが蓄積したものを燃焼除去すること)は、あえて排出ガス中に未燃燃料を混入させた運転を行い、DPF付近で燃焼させる燃焼熱による再生であることがほとんどであるが、その着火のためにも本触媒は利用される。 On the other hand, this platinum group metal-supported catalyst is also expected to have the function of completely oxidizing incomplete combustion components such as hydrocarbons and CO contained in the exhaust gas while remaining unburned into CO 2 . . In particular, in the case of diesel exhaust gas, soot is included in the exhaust gas, so a post-processing system that collects it with a filter called a diesel particulate filter (hereinafter sometimes referred to as “DPF”) is combined. There are many. The regeneration (to remove the accumulated accumulated soot by burning) is mostly due to the combustion heat generated by burning unburned fuel in the exhaust gas and burning near the DPF. However, this catalyst is also used for the ignition.

しかしながら本触媒に使用される白金族金属はレアメタルとも呼ばれる希少資源であり、かつ貴金属のため大きなコスト要因となっていることから、その使用量を削減することが望まれている。   However, the platinum group metal used in the present catalyst is a rare resource also called a rare metal and is a large cost factor due to the noble metal, so it is desired to reduce the amount of use.

酸化触媒の白金族金属の使用量を低減するためには、金属あたりの触媒の性能を向上させることが有効である。すなわち同じ白金族金属の担持量でより高い性能を示す触媒を開発することが求められている。   In order to reduce the amount of platinum group metal used in the oxidation catalyst, it is effective to improve the performance of the catalyst per metal. That is, it is required to develop a catalyst that exhibits higher performance with the same platinum group metal loading.

このような目的の酸化触媒としては、一般的に熱耐久性の高いアルミナ系担体に、活性成分として酸化能力が高い白金族金属を担持した触媒が使われているが、活性成分である白金族金属は高価なうえ資源量も限られているので、触媒としての効果を維持しつつ使用する白金量を低減させるための研究が進められている。   As an oxidation catalyst for this purpose, a catalyst in which a platinum group metal having a high oxidation ability is supported as an active component on an alumina carrier having high heat durability is generally used. Since metals are expensive and have limited resources, research is underway to reduce the amount of platinum used while maintaining its effect as a catalyst.

たとえば特許文献1〜4にあるように担体のナノ構造化、共存成分の工夫などにより白金族金属の使用量を低減させた触媒が報告されている。しかし、それらの成果は基本的には担体の構造もしくは共存成分を変化させることにより効果を示すものであり、担体や共存成分など周りの環境によらず白金族金属の担持方法自体について工夫し効果を示した具体例はこれまでなかった。   For example, as disclosed in Patent Documents 1 to 4, a catalyst has been reported in which the amount of platinum group metal used is reduced by nano-structuring the carrier and devising coexisting components. However, these results basically show an effect by changing the structure or coexisting components of the support, and the platinum group metal support method itself is effective regardless of the surrounding environment such as the support and coexisting components. There has never been a specific example showing this.

他方、特許文献7の技術も開示されている。特許文献7に記載の発明は、「金属の担持量を従来と同程度又は少量としても十分耐久性、活性に優れる触媒、及びその製造方法であり、触媒粒子として1種以上の金属を多孔質体よりなる担体上に担持してなる金属触媒であって、1種以上の金属塩と有機物の溶液を担体に吸着させ、加熱及び焼成することにより得られる1種以上の金属からなるクラスターサイズ1〜10nmの触媒粒子が担体上に担持された金属触媒である。
このとき前記有機物は、一価アルコール、多価アルコール、多価アルコールのモノマー、ダイマー、トリマー、ポリマー、水溶性高分子化合物、単糖類、二糖類、多糖類、炭水化物、カルボン酸類及びその塩、界面活性剤といった水溶性有機化合物であることが好ましいとされる。しかしながら、触媒活性は従来にくらべ高くなるものの、金属量を低減させるにはまだまだ十分ではない。
On the other hand, the technique of Patent Document 7 is also disclosed. The invention described in Patent Document 7 is “a catalyst having sufficient durability and activity even when the amount of supported metal is the same as or smaller than that of the prior art, and a method for producing the same. A metal catalyst which is supported on a support made of a body and has a cluster size of 1 or more kinds of metals obtained by adsorbing a solution of one or more kinds of metal salts and an organic substance on the support, heating and firing. It is a metal catalyst in which catalyst particles of 10 nm are supported on a carrier.
At this time, the organic substance is monohydric alcohol, polyhydric alcohol, polyhydric alcohol monomer, dimer, trimer, polymer, water-soluble polymer compound, monosaccharide, disaccharide, polysaccharide, carbohydrate, carboxylic acids and salts thereof, interface A water-soluble organic compound such as an activator is preferred. However, although the catalytic activity is higher than before, it is still not sufficient to reduce the amount of metal.

特開2012−55826号公報JP 2012-55826 A 特開2013−139035号公報JP 2013-139035 A 特開2011−6775号公報JP 2011-6775 A 特開2013−56336号公報JP 2013-56336 A 特開2012−206005号公報JP 2012-206005 A 特開2012−67641号公報JP 2012-67641 A 特開2006−212464号公報JP 2006-212464 A

本発明の課題は、酸素雰囲気下、排出ガス中に含まれるNOをNO2に酸化する、および未燃・不完全燃焼成分を酸化除去するために、同じ白金族金属の担持量で既知の触媒よりも高い性能を示す酸化触媒の調製法を提供することである。 An object of the present invention is to oxidize NO contained in exhaust gas into NO 2 in an oxygen atmosphere and to oxidize and remove unburned / incompletely burned components with the same platinum group metal loadings. It is to provide a method for preparing an oxidation catalyst that exhibits higher performance.

本発明は本触媒の活性成分である白金族金属を担持するにあたり、原料となる白金族金属塩を炭素数3以上の高級脂肪酸とともに担体に含浸させ、その後の触媒焼成において高級脂肪酸を完全に燃焼分解しつつ焼成することを特徴とする調製により、排気ガス中窒素酸化物のNO2分率をあげるとともに、未燃燃料成分の除去が可能な高性能ディーゼル酸化触媒の調製方法を提供するものである。 In the present invention, when supporting the platinum group metal which is an active component of the catalyst, the support is impregnated with a platinum group metal salt as a raw material together with a higher fatty acid having 3 or more carbon atoms, and the higher fatty acid is completely burned in the subsequent catalyst firing. The preparation characterized by firing while decomposing is to provide a method for preparing a high-performance diesel oxidation catalyst capable of increasing the NO 2 fraction of nitrogen oxides in exhaust gas and removing unburned fuel components. is there.

本発明者らは鋭意研究を重ねた結果、担体に白金族金属の原料塩を担持する際に、一般的に植物油の成分として知られる炭素数3以上の高級脂肪酸を共存させるとNO酸化および未燃分の酸化に著しく高い活性を示すことを見出した。   As a result of intensive research, the present inventors have found that when a platinum group metal raw material salt is supported on a carrier, if a higher fatty acid having 3 or more carbon atoms, which is generally known as a component of vegetable oil, is allowed to coexist, NO oxidation and non-oxidation have occurred. It has been found that it exhibits a significantly higher activity in the oxidation of fuel.

なお、このとき用いる炭素数3以上の高級脂肪酸は、調製中にすべて焼失し調製後の触媒には残留しない。触媒調製時に炭素数3以上の高級脂肪酸を共存させることにより、活性成分である貴金属と担体との過剰な相互作用を抑制するとともに、焼成による油溶性である高級脂肪酸燃焼と同時に白金族金属の還元が起こることにより、高い活性を有する白金族金属の担持形態を生じると考察しているが、高い活性を生ずる詳細な機構は現在のところ明確にはなってはいない。   The higher fatty acids having 3 or more carbon atoms used at this time are all burned off during the preparation and do not remain in the prepared catalyst. By coexisting a higher fatty acid having 3 or more carbon atoms during catalyst preparation, excessive interaction between the noble metal as an active ingredient and the support is suppressed, and the reduction of platinum group metals simultaneously with combustion of oil-soluble higher fatty acids by firing. Is considered to result in a supported form of a platinum group metal having high activity, but the detailed mechanism for generating high activity is not clear at present.

すなわち、本発明は、調製時に白金族原料塩と炭素数3以上の油溶性である高級脂肪酸を共存させ、焼成することによる調製を特徴とする酸化触媒の調製法である。   That is, the present invention is a method for preparing an oxidation catalyst characterized in that a platinum group raw material salt and an oil-soluble higher fatty acid having 3 or more carbon atoms coexist at the time of preparation and calcined.

より具体的には、
(1)
白金族金属が酸化物担体に担持したディーゼル酸化触媒の調製方法であって、
白金族金属化合物を含有する溶液を用いて酸化物担体に担持する際に、油溶性の炭素数3以上のカルボン酸を共存させ、その後焼成することを特徴とするディーゼル酸化触媒の調製方法の構成とした。
(2)
前記カルボン酸を、有機溶媒に溶解して共存させることを特徴とする(1)に記載のディーゼル酸化触媒の調製方法の構成とした。
(3)
前記カルボン酸が、炭素数12〜18の脂肪酸を含むことを特徴とする(1)又は(2)に記載のディーゼル酸化触媒の調製方法の構成とした。
(4)
前記脂肪酸が、ラウリン酸、ミリスチン酸、パルミチン酸およびオレイン酸のうちの少なくとも1つを含むことを特徴とする(3)に記載のディーゼル酸化触媒の調製方法の構成とした。
(5)
前記カルボン酸の量が、前記酸化物担体に対し2〜50質量%であることを特徴とする(1)〜(4)のいずれかに記載のディーゼル酸化触媒の調製方法の構成とした。
(6)
前記白金族金属の量が、前記酸化物担体に対し0.1〜10質量%であることを特徴とする(1)〜(5)のいずれかに記載のディーゼル酸化触媒の調製方法の構成とした。
(7)
前記有機溶媒が、親水性有機溶媒であることを特徴とする(2)〜(6)のいずれかに記載のディーゼル酸化触媒の調製方法の構成とした。
More specifically,
(1)
A method for preparing a diesel oxidation catalyst in which a platinum group metal is supported on an oxide carrier,
A structure of a method for preparing a diesel oxidation catalyst, characterized in that an oil-soluble carboxylic acid having 3 or more carbon atoms coexists when it is supported on an oxide carrier using a solution containing a platinum group metal compound, and then calcined. It was.
(2)
The method for preparing a diesel oxidation catalyst according to (1), wherein the carboxylic acid is dissolved and coexisted in an organic solvent.
(3)
The carboxylic acid contains a fatty acid having 12 to 18 carbon atoms, and the method for preparing a diesel oxidation catalyst according to (1) or (2) is used.
(4)
The fatty acid contains at least one of lauric acid, myristic acid, palmitic acid and oleic acid. The method for preparing a diesel oxidation catalyst according to (3) is provided.
(5)
The amount of the carboxylic acid is 2 to 50% by mass with respect to the oxide carrier, and the diesel oxidation catalyst preparation method according to any one of (1) to (4) is provided.
(6)
The composition of the method for preparing a diesel oxidation catalyst according to any one of (1) to (5), wherein the amount of the platinum group metal is 0.1 to 10% by mass with respect to the oxide carrier; did.
(7)
The method for preparing a diesel oxidation catalyst according to any one of (2) to (6), wherein the organic solvent is a hydrophilic organic solvent.

本発明の手法により調製された触媒は、油溶性である炭素数3以上のカルボン酸を、有機溶媒に溶解させて白金族金属化合物と共存できるため、一般的な調製法で調製された酸化触媒を超えるNO酸化性能および未燃成分浄化性能が期待できる。これにより、使用する白金族金属量を低減しかつ従来と同等の性能を有する触媒を作成することができ、白金族金属に必要なコストを従来より削減することができる。また触媒の形状自体は従来品と変わらないため空間配置的にも現行品を置き換えることにより提供することができる。   Since the catalyst prepared by the method of the present invention can coexist with a platinum group metal compound by dissolving an oil-soluble carboxylic acid having 3 or more carbon atoms in an organic solvent, an oxidation catalyst prepared by a general preparation method. NO oxidation performance and unburned component purification performance can be expected. As a result, the amount of platinum group metal to be used can be reduced and a catalyst having the same performance as the conventional one can be created, and the cost required for the platinum group metal can be reduced as compared with the conventional one. Further, since the shape of the catalyst itself is not different from the conventional product, it can be provided by replacing the current product in terms of spatial arrangement.

さらに、希少資源である白金族金属の製品あたりの使用量を抑えることができるため、より多数の製品を制作することができ、酸化触媒を利用した排出ガス浄化システムのさらなる普及を促進することができる。なお、本発明で調製の際に共存させる高級脂肪酸のうち効果の大きいもののほとんどはてんぷら油、サラダ油などの植物油の成分として容易に入手でき、安価で安定的な工業生産につなげることができるとともに大きなコスト要因とはならない。   Furthermore, since the amount of platinum group metal, which is a rare resource, can be reduced per product, a larger number of products can be produced, and further promotion of exhaust gas purification systems using oxidation catalysts can be promoted. it can. In the present invention, most of the higher fatty acids coexisting during the preparation are easily available as components of vegetable oils such as tempura oil and salad oil, and can be connected to inexpensive and stable industrial production. It is not a cost factor.

また、本触媒調製法は広い白金族金属の濃度範囲に適応することができ、ゾーンコーティングと呼ばれる触媒をハニカム担体に塗布する際に濃淡をつける巨視的な部材化技術にも応用できる(特許文献5、6など)。   In addition, this catalyst preparation method can be applied to a wide platinum group metal concentration range, and can also be applied to a macroscopic materialization technique that adds light and shade when a catalyst called zone coating is applied to a honeycomb carrier (Patent Literature). 5, 6).

特に未燃燃料成分の酸化処理に関しては、反応が起こればその燃焼熱により反応は拡大して進行するため、最初に接触する部分、すなわち触媒の一番前の部分の有効成分濃度を上げ、部分的に非常に高い触媒性能を持たせる(濃淡をつける)ゾーンコーティング法が有効である。   In particular, regarding the oxidation treatment of unburned fuel components, if the reaction occurs, the reaction proceeds in an enlarged manner due to the heat of combustion, so the concentration of the active component in the first contact portion, that is, the frontmost portion of the catalyst is increased, A zone coating method that gives a very high catalytic performance (partially shaded) is effective.

このような部材化技術に対応しかつ白金族金属を低減する触媒においては、少量ではあるが高い白金族金属濃度の条件で触媒を提供できる技術である必要があり、白金族金属の広い濃度範囲に適用できる本発明の使用も可能である。   A catalyst that can support such a materialization technology and reduce platinum group metals needs to be a technology that can provide a catalyst under conditions of a small amount of platinum group metal concentration, but a wide concentration range of platinum group metals. It is also possible to use the present invention applicable to the above.

このように、本発明による酸化触媒は、コスト的・資源量的また部材化技術的にもメリットが多く、工業的価値は極めて高いものである。   As described above, the oxidation catalyst according to the present invention has many advantages in terms of cost, resource, and component technology, and has an extremely high industrial value.

異なる高級脂肪酸を含浸した炭素数3以上の高級脂肪酸処理触媒のNO酸化活性の評価グラフである。3 is an evaluation graph of NO oxidation activity of a higher fatty acid treatment catalyst having 3 or more carbon atoms impregnated with different higher fatty acids. 高級脂肪酸以外の有機物処理触媒のNO酸化活性の評価グラフである。It is an evaluation graph of NO oxidation activity of organic substance processing catalysts other than higher fatty acids. 原料は同じで異なる調製手順で調製したミリスチン酸処理触媒のNO酸化活性の評価グラフである。It is an evaluation graph of NO oxidation activity of the myristic acid treatment catalyst prepared by the same raw material and different preparation procedures. 異なる量のミリスチン酸処理を施した触媒のNO酸化活性の評価グラフである。It is an evaluation graph of NO oxidation activity of the catalyst which performed different amount myristic acid treatment. 焼成時の昇温速度の影響を確認するためのNO転化率の評価グラフである。It is an evaluation graph of NO conversion rate for confirming the influence of the temperature rising rate at the time of baking.

以下、本発明の詳細を説明する。   Details of the present invention will be described below.

本発明の触媒の担体としては、耐熱性の高いアルミナ系担体を用いることが望ましいが、純粋なアルミナのみならずジルコニア、シリカ等とアルミナの複合酸化物も担体として用いることができる。また、アルミナおよびアルミナを主成分とする複合酸化物は種々の合成法が知られているが、従来公知の方法やアルコキシド化合物を用いるゾルゲル法など、いかなる方法で合成されたものを使用してもよい。   As the carrier of the catalyst of the present invention, it is desirable to use an alumina carrier having high heat resistance, but not only pure alumina but also a composite oxide of zirconia, silica, etc. and alumina can be used as the carrier. Also, various synthetic methods are known for alumina and composite oxides containing alumina as a main component. However, any synthesized method such as a conventionally known method or a sol-gel method using an alkoxide compound may be used. Good.

本発明は、そのような担体に白金族金属を含浸させ高い性能を有する酸化触媒を調製する方法である。   The present invention is a method for preparing an oxidation catalyst having high performance by impregnating such a carrier with a platinum group metal.

白金族金属を含有する触媒における白金族金属の含有量は、白金族金属の金属形態の換算で、触媒の0.1〜10wt%で調製可能であるが、実用的にはコスト要因を考慮に入れ0.1〜5wt%であることが好ましい。   The platinum group metal content in the platinum group metal-containing catalyst can be adjusted to 0.1 to 10 wt% of the catalyst in terms of the metal form of the platinum group metal, but practically 0.1% in consideration of cost factors. It is preferably ˜5 wt%.

アルミナへの白金族金属の含有方法は、金属化合物の水溶液を用いて、従来公知の含浸や沈着法などで行うことができる。複数の白金族金属塩を同時に含浸することも可能である。このときに炭素数3以上の高級脂肪酸を同時に含浸させる。含浸させる順番には特に制限はなく、あらかじめ担体に高級脂肪酸を含浸させたものに金属塩を共存させても、白金族金属と同時に含浸させても、金属担持後に高級脂肪酸を含浸させても構わない。高級脂肪酸を含浸させるにあたり、溶媒としてエタノールを少量共存させると容易に含浸できることがあるが必須ではない。なお、このときの溶媒はアセトンなどほかの親水性有機溶媒でも代替することができる。   The platinum group metal can be contained in alumina using an aqueous solution of a metal compound by a conventionally known impregnation or deposition method. It is also possible to impregnate a plurality of platinum group metal salts simultaneously. At this time, a higher fatty acid having 3 or more carbon atoms is impregnated simultaneously. The order of impregnation is not particularly limited, and the metal salt may coexist with the carrier previously impregnated with higher fatty acid, impregnated with the platinum group metal, or impregnated with higher fatty acid after supporting the metal. Absent. When impregnating higher fatty acids, it may be easily impregnated with a small amount of ethanol as a solvent, but it is not essential. The solvent at this time can be replaced with another hydrophilic organic solvent such as acetone.

例えば、高級脂肪酸をエタノールに溶解させた溶液を担体に含浸し乾燥後、白金族金属の金属化合物の水溶液にその担体を投入し、乾燥させることにより、白金族金属と高級脂肪酸を同時に含浸させた担体を得ることができる。このとき白金族金属源となる金属化合物は、水に可溶な化合物であればいずれのものでもよいが、通常は残存陰イオンが空気焼成処理によって比較的低温で分解除去される硝酸塩、白金であればジニトロジアミン硝酸酸性溶液を用いる。   For example, after impregnating the carrier with a solution of higher fatty acid dissolved in ethanol and drying, the carrier is poured into an aqueous solution of a metal compound of a platinum group metal and dried to simultaneously impregnate the platinum group metal and the higher fatty acid. A carrier can be obtained. At this time, the platinum group metal source may be any metal compound as long as it is soluble in water. However, it is usually a nitrate or platinum from which residual anions are decomposed and removed at a relatively low temperature by air baking treatment. Use dinitrodiamine nitric acid solution if present.

含浸の温度は室温〜100℃で、時間は1〜24時間で行うが、一般的には60℃前後で3〜4時間程度であり、スラリー状態のまま次の工程に移ってもよく完全に乾燥させる必要はない。重要なことは炭素数3以上の高級脂肪酸と白金族金属の原料塩が共存して担体に含浸されていることで、この状態の触媒を空気中で焼成する。   The impregnation temperature is from room temperature to 100 ° C., and the time is from 1 to 24 hours. Generally, the temperature is about 60 ° C. for about 3 to 4 hours, and the slurry may be transferred to the next step completely. There is no need to dry. What is important is that the higher fatty acid having 3 or more carbon atoms and the platinum group metal raw material salt coexist in the carrier, and the catalyst in this state is calcined in the air.

焼成は500cc空気気流を導入した電気炉で設定として600℃まで昇温しそのまま600℃で5時間程度保温することにより行う。焼成前の触媒は十分に広い皿に広げて入れ、焼成中の空気との接触に問題がないようにする。昇温中に触媒に含まれる高級脂肪酸および原料塩中の貴金属以外の成分は分解・燃焼されて脱離するが、触媒層が厚すぎる場合には高級脂肪酸分解・燃焼過程で問題が生じ目的の触媒が得られない。   Firing is performed by setting the temperature in an electric furnace with a 500 cc airflow to 600 ° C and keeping the temperature at 600 ° C for about 5 hours. The catalyst before calcination is spread in a sufficiently large dish so that there is no problem in contact with air during calcination. Components other than higher fatty acids contained in the catalyst and noble metals in the raw material salt are decomposed and burned during the temperature rise, but if the catalyst layer is too thick, problems will occur in the higher fatty acid decomposition and combustion process. A catalyst cannot be obtained.

本発明の触媒は、粉状、粒体状、ペレット状、ハニカム状などで使用することができ、その形状、構造を特定するものではない。触媒を成形して使用する場合には、成形時に通常使用される粘結剤すなわちポリビニルアルコールなど、あるいは滑剤すなわち黒鉛、ワックス、高級脂肪酸類、カーボンワックスなどを使用することもできる。また、ハニカム状に塗布するにあたって濃淡をつけ、濃度の異なる触媒を組み合わせることも可能である。   The catalyst of the present invention can be used in the form of powder, granules, pellets, honeycombs, etc., and its shape and structure are not specified. When the catalyst is molded and used, it is also possible to use a binder that is usually used during molding, such as polyvinyl alcohol, or a lubricant, such as graphite, wax, higher fatty acids, carbon wax, and the like. It is also possible to combine the catalysts with different concentrations by applying a shade when applying in a honeycomb shape.

本発明において使用する触媒は、使用前に特別な前処理を施す必要はないが、還元、予備焼成等の前処理を行うことを妨げない。本発明において、処理の対象となる排出ガスは、ディーゼル車や定置式ディーゼル機関等のディーゼル排出ガスをあげることができる。   The catalyst used in the present invention does not need to be subjected to special pretreatment before use, but does not prevent pretreatment such as reduction and pre-calcination. In the present invention, the exhaust gas to be treated can be diesel exhaust gas from a diesel vehicle or a stationary diesel engine.

これら排出ガス中のNOの酸化および未燃成分の燃焼は、上記した触媒に酸素雰囲気の排出ガスを接触させることにより行う。   The oxidation of NO in these exhaust gases and the combustion of unburned components are performed by bringing the exhaust gas in an oxygen atmosphere into contact with the above-described catalyst.

上記のNOおよび未燃燃料等は、排出ガス中に存在するものであり、その量、濃度に特に制限はない。ただし、特に未燃燃料については反応しきれない未燃燃料が触媒に残留付着する可能性があるので、瞬間的に酸素雰囲気でなくなるのはかまわないが、継続的には酸素雰囲気の範囲であることが好ましい。   The above-mentioned NO and unburned fuel are present in the exhaust gas, and there are no particular restrictions on the amount and concentration thereof. However, there is a possibility that unburned fuel that cannot react in particular will remain attached to the catalyst, especially for unburned fuel, so it may be instantaneously lost in the oxygen atmosphere, but it is continuously in the oxygen atmosphere range. It is preferable.

本発明のNOおよび未燃燃料の酸化方法は、一般的な方法と全く同じであり、ディーゼル排出ガスを触媒と接触させることにより行う。このときの触媒温度は排出ガスの温度および残留する未燃燃料により発生する燃焼熱によって制御されるが、一般には、約100〜800℃であり、とくに、200〜700℃で運転されることが多い。反応圧力は特に制限されず、加圧下でも減圧下でも反応は進行するが、通常の排気圧で排出ガスを触媒層へ導入し、反応を進行させるのが簡便である。   The method for oxidizing NO and unburned fuel of the present invention is exactly the same as a general method, and is performed by bringing diesel exhaust gas into contact with a catalyst. The catalyst temperature at this time is controlled by the temperature of the exhaust gas and the combustion heat generated by the remaining unburned fuel, but is generally about 100 to 800 ° C., particularly 200 to 700 ° C. Many. The reaction pressure is not particularly limited, and the reaction proceeds either under pressure or under reduced pressure. However, it is convenient to introduce the exhaust gas into the catalyst layer at a normal exhaust pressure to advance the reaction.

空間速度にも特に制限はないが、一般的に約10,000〜500,000h−1である。 The space velocity is not particularly limited, but is generally about 10,000 to 500,000 h −1 .

以下に、具体的な実施例を挙げて本発明を説明するが、本発明は、これらの実施例に限定されるものではない。   Hereinafter, the present invention will be described with reference to specific examples, but the present invention is not limited to these examples.

(実施例、比較例で用いる触媒構成成分及び触媒の調製)
〔触媒構成成分の調製〕
・アルミナ、シリカ含有アルミナおよびジルコニア含有アルミナ担持白金族金属触媒[A1〜A3]の調製
市販のジニトロジアミン白金硝酸溶液およびジニトロジアミンパラジウム硝酸溶液を蒸留水で希釈した溶液に、担体として、アルミナ(A1)、シリカ含有アルミナ(A2)もしくはジルコニア含有アルミナ(A3)を加え、60℃に保温したマントルヒータ中で撹拌しながら余分な水分を除去した後、電気炉に移し空気中で1℃/minで200℃まで昇温し200℃で2時間焼成、引き続き1℃/minで600℃まで昇温し600℃で5時間焼成して、アルミナ担持白金族金属触媒[A1]、シリカ含有アルミナ担持白金族金属触媒[A2]およびジルコニア含有アルミナ担持白金族金属触媒[A3]を得た。このとき触媒に対する白金およびパラジウムの含有量は、A1では金属換算で各々0.75wt%(Pt)、0.25wt%(Pd)、A2,A3については金属換算で各々0.9wt%(Pt)、0.1wt%(Pd)とした。
(Preparation of catalyst components and catalysts used in Examples and Comparative Examples)
(Preparation of catalyst components)
Preparation of alumina, silica-containing alumina and zirconia-containing alumina-supported platinum group metal catalyst [A1 to A3] A commercially available dinitrodiamine platinum nitric acid solution and dinitrodiamine palladium nitric acid solution diluted with distilled water was used as a support with alumina (A1 ), Silica-containing alumina (A2) or zirconia-containing alumina (A3) was added, and after removing excess water while stirring in a mantle heater kept at 60 ° C, it was transferred to an electric furnace at 1 ° C / min in air. Heated to 200 ° C and calcined at 200 ° C for 2 hours, then heated to 600 ° C at 1 ° C / min and then calcined at 600 ° C for 5 hours. Alumina-supported platinum group metal catalyst [A1], silica-containing alumina-supported platinum group A metal catalyst [A2] and a zirconia-containing alumina-supported platinum group metal catalyst [A3] were obtained. At this time, the content of platinum and palladium with respect to the catalyst is 0.75 wt% (Pt) and 0.25 wt% (Pd), respectively, in terms of metal in A1, and 0.9 wt% (Pt) and 0.1 wt% in terms of metal for A2 and A3, respectively. % (Pd).

・ミリスチン酸を調製中に共存させたアルミナ、シリカ含有アルミナおよびジルコニア含有アルミナ担持白金族金属触媒[A4〜A6]の調製
担体として使用するアルミナ(A4)、シリカ含有アルミナ(A5)もしくはジルコニア含有アルミナ(A6)にあらかじめ担体に対し20wt%量のミリスチン酸をエタノールに溶解させた溶液を含浸し、100℃で乾燥させミリスチン酸を含んだ担体を調製する。
Preparation of alumina, silica-containing alumina and zirconia-containing alumina-supported platinum group metal catalyst [A4 to A6] coexisting during the preparation of myristic acid Alumina (A4), silica-containing alumina (A5) or zirconia-containing alumina used as a support (A6) is impregnated with a solution of 20 wt% myristic acid in ethanol in advance with respect to the carrier, and dried at 100 ° C. to prepare a carrier containing myristic acid.

市販のジニトロジアミン白金硝酸溶液およびジニトロジアミンパラジウム硝酸溶液を蒸留水で希釈した溶液に、担体として、上述のミリスチン酸を含んだアルミナ(A4)、シリカ含有アルミナ(A5)もしくはジルコニア含有アルミナ(A6)を加え、60℃に保温したマントルヒータ中で撹拌しながら余分な水分を除去した後、電気炉に移し空気中で1℃/minで200℃まで昇温し200℃で2時間焼成、引き続き1℃/minで600℃まで昇温し600℃で5時間焼成して、ミリスチン酸処理アルミナ担持白金族金属触媒[A4]、ミリスチン酸処理シリカ含有アルミナ担持白金族金属触媒[A5]およびミリスチン酸処理ジルコニア含有アルミナ担持白金族金属触媒[A6]を得た。このときの触媒に対する白金およびパラジウムの含有量は、A4では金属換算で各々0.75wt%(Pt)、0.25wt%(Pd)、A5,A6については金属換算で各々0.9wt%(Pt)、0.1wt%(Pd)とした。   A solution obtained by diluting a commercially available dinitrodiamine platinum nitric acid solution and dinitrodiamine palladium nitric acid solution with distilled water, as a carrier, alumina (A4) containing the above-mentioned myristic acid, silica-containing alumina (A5) or zirconia-containing alumina (A6) After removing excess water while stirring in a mantle heater kept at 60 ° C, it was transferred to an electric furnace and heated to 200 ° C at 1 ° C / min in air and baked at 200 ° C for 2 hours. The temperature is raised to 600 ° C. at 600 ° C./min and calcined at 600 ° C. for 5 hours. The myristate-treated alumina-supported platinum group metal catalyst [A4], myristate-treated silica-containing alumina-supported platinum group metal catalyst [A5] and myristic acid treatment A zirconia-containing alumina-supported platinum group metal catalyst [A6] was obtained. The platinum and palladium contents with respect to the catalyst at this time are 0.75 wt% (Pt) and 0.25 wt% (Pd), respectively, in terms of metal in A4, and 0.9 wt% (Pt) and 0.1 in terms of metal for A5 and A6, respectively. wt% (Pd).

・高級脂肪酸を調製中に共存させたシリカ含有アルミナ担持白金族金属触媒[B1〜B8]の調製
担体として使用するシリカ含有アルミナにあらかじめ担体に対し20wt%量のプロピオン酸(B1), カプリン酸(B2), ラウリン酸(B3),ミリスチン酸(B4),パルミチン酸(B5), ステアリン酸(B6), オレイン酸(B7)もしくはリノール酸(B8)をエタノールに溶解させた溶液を含浸し、100℃で乾燥させ各々の高級脂肪酸を含んだ担体を調製する。
・ Preparation of silica-containing alumina-supported platinum group metal catalyst [B1 ~ B8] coexisting with higher fatty acids during preparation 20% by weight propionic acid (B1), capric acid (silica-containing alumina used as support in advance) B2), lauric acid (B3), myristic acid (B4), palmitic acid (B5), stearic acid (B6), oleic acid (B7) or linoleic acid (B8) dissolved in ethanol. A carrier containing each higher fatty acid is prepared by drying at 0 ° C.

市販のジニトロジアミン白金硝酸溶液およびジニトロジアミンパラジウム硝酸溶液を蒸留水で希釈した溶液に、担体として、上述の高級脂肪酸を含んだシリカ含有アルミナを加え、60℃に保温したマントルヒータ中で撹拌しながら余分な水分を除去した後、電気炉に移し空気中で1℃/minで200℃まで昇温し200℃で2時間焼成、引き続き1℃/minで600℃まで昇温し600℃で5時間焼成して、プロピオン酸処理シリカ含有アルミナ担持白金族金属触媒[B1],カプリン酸処理シリカ含有アルミナ担持白金族金属触媒[B2],ミリスチン酸処理シリカ含有アルミナ担持白金族金属触媒-2[B3],パルミチン酸処理シリカ含有アルミナ担持白金族金属触媒[B4],ステアリン酸処理シリカ含有アルミナ担持白金族金属触媒[B5],オレイン酸処理シリカ含有アルミナ担持白金族金属触媒[B6]およびリノール酸処理シリカ含有アルミナ担持白金族金属触媒[B7]を得た。このときの触媒に対する白金およびパラジウムの含浸量は、金属換算で各々0.9wt%(Pt)、0.1wt%(Pd)とした。   To a solution obtained by diluting a commercially available dinitrodiamine platinum nitric acid solution and dinitrodiamine palladium nitric acid solution with distilled water, silica-containing alumina containing the above-mentioned higher fatty acid was added as a carrier, and the mixture was stirred in a mantle heater kept at 60 ° C. After removing excess water, transfer to an electric furnace, raise the temperature to 200 ° C at 1 ° C / min in air and sinter at 200 ° C for 2 hours, then raise the temperature to 600 ° C at 1 ° C / min and continue at 600 ° C for 5 hours Firing, propionate-treated silica-containing alumina-supported platinum group metal catalyst [B1], capric acid-treated silica-containing alumina-supported platinum group metal catalyst [B2], myristic acid-treated silica-containing alumina-supported platinum group metal catalyst-2 [B3] , Alumina-supported platinum group metal catalyst containing palmitic acid treated silica [B4], Alumina supported platinum group metal catalyst containing stearic acid treated silica [B5], Alumina containing oleic acid treated silica To obtain a lifting platinum group metal catalyst [B6] and linoleic acid-treated silica-containing alumina supported platinum group metal catalyst [B7]. The impregnation amounts of platinum and palladium into the catalyst at this time were 0.9 wt% (Pt) and 0.1 wt% (Pd), respectively, in terms of metal.

・ミリスチン酸および高級脂肪酸以外の有機化合物を調製中に共存させたシリカ含有アルミナ担持白金族金属触媒[C1〜C4]の調製
担体として使用するシリカ含有アルミナにあらかじめ担体に対し20wt%量のポリビニルピロリドン(C1), ポリエチレングリコール(C2), ヘキサメチレンジアミン(C3)を溶解させた水溶液を含浸し、110℃で乾燥させ各々の有機物を含んだ担体を調製する。また、ミリスチン酸(C4)およびポリビニルピロリドン(C5)に関してはエタノールに溶解させた溶液をシリカ含有アルミナに含浸し、100℃で乾燥させた担体を別途調製する。さらにミリスチン酸については溶媒を用いず70℃に昇温し融解させたものをシリカ含有アルミナに含浸した担体も用意する(C6)。
・ Preparation of silica-containing alumina-supported platinum group metal catalyst [C1-C4] in the presence of organic compounds other than myristic acid and higher fatty acids during the preparation Polyvinylpyrrolidone in an amount of 20 wt% with respect to the support in advance in the silica-containing alumina used as the support An aqueous solution in which (C1), polyethylene glycol (C2), and hexamethylenediamine (C3) are dissolved is impregnated and dried at 110 ° C. to prepare a carrier containing each organic substance. As for myristic acid (C4) and polyvinylpyrrolidone (C5), a carrier prepared by impregnating silica-containing alumina with a solution dissolved in ethanol and drying at 100 ° C. is prepared separately. For myristic acid, a carrier prepared by impregnating silica-containing alumina with a melted temperature raised to 70 ° C. without using a solvent is also prepared (C6).

市販のジニトロジアミン白金硝酸溶液およびジニトロジアミンパラジウム硝酸溶液を蒸留水で希釈した溶液に、担体として、上述の有機物を含んだシリカ含有アルミナを加え、60℃に保温したマントルヒータ中で撹拌しながら余分な水分を除去した後、電気炉に移し空気中で1℃/minで200℃まで昇温し200℃で2時間焼成、引き続き1℃/minで750℃まで昇温し750℃で50h焼成して、ポリビニルピロリドン処理シリカ含有アルミナ担持白金族金属触媒[C1]、ポリエチレングリコール処理シリカ含有アルミナ担持白金族金属触媒[C2]、ヘキサメチレンジアミン処理シリカ含有アルミナ担持白金族金属触媒[C3]、ミリスチン酸エタノール処理シリカ含有アルミナ担持白金族金属触媒[C4]、ポリビニルピロリドンエタノール処理シリカ含有アルミナ担持白金族金属触媒[C5]、ミリスチン酸直接処理シリカ含有アルミナ担持白金族金属触媒[C6]、を得た。このときの触媒に対する白金およびパラジウムの含浸量は、金属換算で各々0.9wt%(Pt)、0.1wt%(Pd)とした。   To a solution obtained by diluting a commercially available dinitrodiamine platinum nitric acid solution and dinitrodiamine palladium nitric acid solution with distilled water, silica-containing alumina containing the above-mentioned organic substance is added as a carrier, and the mixture is stirred while stirring in a mantle heater kept at 60 ° C. After removing excessive moisture, it was transferred to an electric furnace, heated to 200 ° C at 1 ° C / min in air, fired at 200 ° C for 2 hours, then heated to 750 ° C at 1 ° C / min and fired at 750 ° C for 50h. Polyvinylpyrrolidone-treated silica-containing alumina-supported platinum group metal catalyst [C1], polyethylene glycol-treated silica-containing alumina-supported platinum group metal catalyst [C2], hexamethylenediamine-treated silica-containing alumina-supported platinum group metal catalyst [C3], myristic acid Ethanol-treated silica-containing alumina-supported platinum group metal catalyst [C4], polyvinylpyrrolidone ethanol-treated silica-containing alumina-supported platinum Metal catalyst [C5], myristic acid directly treated silica-containing alumina supported platinum group metal catalyst [C6], was obtained. The impregnation amounts of platinum and palladium into the catalyst at this time were 0.9 wt% (Pt) and 0.1 wt% (Pd), respectively, in terms of metal.

・調製時の投入順番を変更したミリスチン酸処理シリカ含有アルミナ担持白金族金属触媒の調製[D1〜D4]
担体として使用するシリカ含有アルミナにあらかじめ担体に対し20wt%量のミリスチン酸 をエタノールに溶解させた溶液を含浸した担体(D1)、20wt%量のミリスチン酸 80℃で融解させ温めておいた担体に含浸した担体(D2)を調製する。市販のジニトロジアミン白金硝酸溶液およびジニトロジアミンパラジウム硝酸溶液を蒸留水で希釈した溶液に、無処理のシリカ含有アルミナもしくは上述の(D1)または(D2)を担体として加え110℃で乾燥する。
・ Preparation of alumina-supported platinum group metal catalysts containing myristic acid-treated silica with different order of preparation [D1-D4]
A carrier (D1) obtained by impregnating a silica-containing alumina used as a carrier with a solution obtained by dissolving 20 wt% myristic acid in ethanol in advance into the carrier, and a 20 wt% myristic acid melted at 80 ° C and heated to a carrier. An impregnated carrier (D2) is prepared. To a solution obtained by diluting a commercially available dinitrodiamine platinum nitric acid solution and dinitrodiamine palladium nitric acid solution with distilled water, untreated silica-containing alumina or the above (D1) or (D2) is added as a carrier and dried at 110 ° C.

無処理のシリカ含有アルミナを担体とした試料については、そのあとで、20wt%量のミリスチン酸 をエタノールに溶解させた溶液(D3)もしくは(D4) 80℃で融解させたミリスチン酸を含浸し110℃で乾燥させる。   For samples using untreated silica-containing alumina as a carrier, a solution (D3) in which 20 wt% myristic acid was dissolved in ethanol or (D4) was impregnated with myristic acid melted at 80 ° C. Dry at ℃.

以上の4種類の触媒はいずれも、電気炉に移し空気中で1℃/minで200℃まで昇温し200℃で2時間焼成、引き続き1℃/minで750℃まで昇温し750℃で50h焼成することにより調製し、担体ミリスチン酸エタノール処理シリカ含有アルミナ担持白金族金属触媒[D1]、担体ミリスチン酸処理シリカ含有アルミナ担持白金族金属触媒[D2]、触媒ミリスチン酸エタノール処理シリカ含有アルミナ担持白金族金属触媒[D3]、担体ミリスチン酸エタノール処理シリカ含有アルミナ担持白金族金属触媒[D4]の4種類の調製工程の順番が異なるミリスチン酸理シリカ含有アルミナ担持白金族金属触媒を得た。   All of the above four types of catalysts were transferred to an electric furnace, heated in air to 200 ° C at 1 ° C / min and calcined at 200 ° C for 2 hours, and then heated to 750 ° C at 1 ° C / min and heated to 750 ° C. Prepared by calcination for 50 hours, supported platinum-group metal catalyst [D1] containing alumina treated with myristate ethanol treated silica, supported platinum group metal catalyst [D2] containing silica treated with myristic acid treated silica, supported alumina containing silica treated with myristate ethanol An alumina-supported platinum group metal catalyst containing myristic acid-silica was obtained in which the order of the four types of preparation steps of platinum group metal catalyst [D3] and carrier-supported myristate ethanol-treated silica-containing alumina-supported platinum group metal catalyst [D4] was different.

・異なる量のミリスチン酸処理を施したシリカ含有アルミナ担持白金族金属触媒[E1〜E7]の調製
担体として使用するシリカ含有アルミナにあらかじめ担体に対し1wt%(E1)、2wt%(E2)、5wt%(E3)、10wt%(E4)、20wt%(E5)および50wt%(E6)量のミリスチン酸をエタノールに溶解させた溶液を含浸し、100℃で乾燥させ担体を調製する。
・ Preparation of silica-containing alumina-supported platinum group metal catalysts [E1 to E7] treated with different amounts of myristic acid 1wt% (E1), 2wt% (E2), 5wt on silica-containing alumina used as a support A carrier is prepared by impregnating a solution prepared by dissolving myristic acid in an amount of% (E3), 10 wt% (E4), 20 wt% (E5) and 50 wt% (E6) in ethanol and drying at 100 ° C.

市販のジニトロジアミン白金硝酸溶液およびジニトロジアミンパラジウム硝酸溶液を蒸留水で希釈した溶液に、担体として、上述のミリスチン酸を含んだシリカ含有アルミナを加え、60℃に保温したマントルヒータ中で撹拌しながら余分な水分を除去した後、電気炉に移し空気中で1℃/minで200℃まで昇温し200℃で2時間焼成、引き続き1℃/minで600℃まで昇温し600℃で5時間焼成して、1%ミリスチン酸処理シリカ含有アルミナ担持白金族金属触媒[E1]、2%ミリスチン酸処理シリカ含有アルミナ担持白金族金属触媒[E2]、5%ミリスチン酸処理シリカ含有アルミナ担持白金族金属触媒[E3]、10%ミリスチン酸処理シリカ含有アルミナ担持白金族金属触媒[E4]、20%ミリスチン酸処理シリカ含有アルミナ担持白金族金属触媒[E5]および50%ミリスチン酸処理シリカ含有アルミナ担持白金族金属触媒[E6]を得た。このときの触媒に対する白金およびパラジウムの含浸量は、金属換算で各々0.9wt%(Pt)、0.1wt%(Pd)とした。   To a solution obtained by diluting a commercially available dinitrodiamine platinum nitric acid solution and dinitrodiamine palladium nitric acid solution with distilled water, silica-containing alumina containing the above-mentioned myristic acid is added as a carrier, and the mixture is stirred in a mantle heater kept at 60 ° C. After removing excess water, transfer to an electric furnace, raise the temperature to 200 ° C at 1 ° C / min in air and sinter at 200 ° C for 2 hours, then raise the temperature to 600 ° C at 1 ° C / min and continue at 600 ° C for 5 hours 1% myristic acid-treated silica-containing alumina-supported platinum group metal catalyst [E1], 2% myristic acid-treated silica-containing alumina-supported platinum group metal catalyst [E2], 5% myristic acid-treated silica-containing alumina-supported platinum group metal Catalyst [E3], 10% myristic acid treated silica containing alumina supported platinum group metal catalyst [E4], 20% myristic acid treated silica containing alumina supported platinum group metal catalyst [E5] and 50% myristic acid treatment Rika was obtained containing alumina supported platinum group metal catalyst [E6]. The impregnation amounts of platinum and palladium into the catalyst at this time were 0.9 wt% (Pt) and 0.1 wt% (Pd), respectively, in terms of metal.

・焼成時昇温速度の異なるミリスチン酸処理シリカ含有アルミナ担持白金族金属触媒の調製[F1〜F3]
担体として使用するシリカ含有アルミナにあらかじめ担体に対し20wt%量のミリスチン酸をエタノールに溶解させた溶液を含浸し、100℃で乾燥させ担体を調製する。
・ Preparation of alumina-supported platinum group metal catalysts containing myristic acid-treated silica with different heating rates during firing [F1-F3]
A silica-containing alumina used as a carrier is impregnated with a solution prepared by dissolving 20 wt% myristic acid in ethanol in advance with respect to the carrier, and dried at 100 ° C. to prepare a carrier.

市販のジニトロジアミン白金硝酸溶液およびジニトロジアミンパラジウム硝酸溶液を蒸留水で希釈した溶液に、担体として、上述のミリスチン酸を含んだシリカ含有アルミナを加え、60℃に保温したマントルヒータ中で撹拌しながら余分な水分を除去した後、電気炉に移し空気中で600℃まで昇温し600℃のまま5時間焼成するが、この時の昇温を昇温速度1℃/minで200℃まで昇温し200℃で2時間焼成、引き続き1℃/minで600℃まで昇温した触媒[F1]、ステップを設けず室温から1℃/minで600℃まで昇温した触媒[F2]、ステップを設けず室温から20℃/minで600℃まで昇温した触媒[F3]を得た。このときの触媒に対する白金およびパラジウムの含浸量は、金属換算で各々4.05wt%(Pt)、0.45wt%(Pd)とした。   To a solution obtained by diluting a commercially available dinitrodiamine platinum nitric acid solution and dinitrodiamine palladium nitric acid solution with distilled water, silica-containing alumina containing the above-mentioned myristic acid is added as a carrier, and the mixture is stirred in a mantle heater kept at 60 ° C. After removing excess moisture, transfer to an electric furnace, raise the temperature to 600 ° C in air, and fire at 600 ° C for 5 hours. At this time, increase the temperature to 200 ° C at a rate of 1 ° C / min. The catalyst was baked at 200 ° C for 2 hours and then heated to 600 ° C at 1 ° C / min [F1], the catalyst was heated from room temperature to 600 ° C at 1 ° C / min [F2], and the step was provided First, catalyst [F3] was heated from room temperature to 600 ° C. at 20 ° C./min. The impregnation amounts of platinum and palladium into the catalyst at this time were 4.05 wt% (Pt) and 0.45 wt% (Pd), respectively, in terms of metal.

・白金族金属の担持濃度の異なるミリスチン酸処理シリカ含有アルミナ担持白金族金属触媒の調製[G1〜G9]
担体として使用するシリカ含有アルミナにあらかじめ担体に対し20wt%量のミリスチン酸をエタノールに溶解させた溶液を含浸し、100℃で乾燥させ担体を調製する。市販のジニトロジアミン白金硝酸溶液およびジニトロジアミンパラジウム硝酸溶液を蒸留水で希釈した溶液に担体として、上述のミリスチン酸を含んだシリカ含有アルミナを加え、60℃に保温したマントルヒータ中で撹拌しながら余分な水分を除去した後、電気炉に移し空気中で1℃/minで200℃まで昇温し200℃で2時間焼成、引き続き1℃/minで600℃まで昇温し600℃で5時間焼成して触媒を得た。
・ Preparation of alumina-supported platinum group metal catalysts containing myristic acid-treated silica with different platinum group metal support concentrations [G1-G9]
A silica-containing alumina used as a carrier is impregnated with a solution prepared by dissolving 20 wt% myristic acid in ethanol in advance with respect to the carrier, and dried at 100 ° C. to prepare a carrier. Add a silica-containing alumina containing myristic acid as a carrier to a solution obtained by diluting a commercially available dinitrodiamine platinum nitric acid solution and dinitrodiamine palladium nitric acid solution with distilled water, and stir in a mantle heater kept at 60 ° C while stirring. After removing excessive moisture, it was transferred to an electric furnace and heated in air to 200 ° C at 1 ° C / min and baked at 200 ° C for 2 hours, then heated to 600 ° C at 1 ° C / min and baked at 600 ° C for 5 hours As a result, a catalyst was obtained.

このときの触媒に対する白金およびパラジウムの含浸量として、金属換算で各々9wt%(Pt)、1wt%(Pd)とした触媒を[G1]、各々0.45wt%(Pt)、0.05wt%(Pd)とした触媒を[G2]、各々1wt%(Pt)、0wt%(Pd)(白金のみ担持)とした触媒を[G3]、各々0.5wt%(Pt)、0.5wt%(Pd)とした触媒を[G4]とした。また、比較例として無処理のシリカ含有アルミナを担体として用い、同様の調製を行った触媒で、金属換算で各々9wt%(Pt)、1wt%(Pd)とした触媒を[G5]、各々0.45wt%(Pt)、0.05wt%(Pd)とした触媒を[G6]、各々1wt%(Pt)、0wt%(Pd)(白金のみ担持)とした触媒を[G7]、各々0.5wt%(Pt)、0.5wt%(Pd)とした触媒を[G8]とした。   At this time, the catalyst impregnation amount of platinum and palladium to the catalyst was 9 wt% (Pt) and 1 wt% (Pd), respectively, in terms of metal [G1], 0.45 wt% (Pt) and 0.05 wt% (Pd), respectively. [G2], catalysts with 1 wt% (Pt) and 0 wt% (Pd) (supporting only platinum), respectively [G3], catalysts with 0.5 wt% (Pt) and 0.5 wt% (Pd), respectively Was designated as [G4]. Further, as a comparative example, untreated silica-containing alumina was used as a support, and the catalyst was prepared in the same manner, and the catalysts with 9 wt% (Pt) and 1 wt% (Pd) in terms of metal were [G5], 0.45 each. Catalysts with wt% (Pt) and 0.05 wt% (Pd) [G6], catalysts with 1 wt% (Pt) and 0 wt% (Pd) (supporting only platinum), respectively [G7], 0.5 wt% ( The catalyst with Pt) and 0.5 wt% (Pd) was designated as [G8].

無処理のシリカ含有アルミナを担体として用い、市販のジニトロジアミン白金硝酸溶液およびジニトロジアミンパラジウム硝酸溶液を触媒に対する白金およびパラジウムの含浸量として、金属換算で各々4.05wt%(Pt)、0.45wt%(Pd)とした溶液を蒸留水およびエタノールで希釈後含浸し、100℃で乾燥させた後、電気炉に移し同様の調製を行った触媒を[G9]とした。   Using untreated silica-containing alumina as a carrier, commercially available dinitrodiamine platinum nitric acid solution and dinitrodiamine palladium nitric acid solution as impregnation amounts of platinum and palladium to the catalyst, 4.05 wt% (Pt), 0.45 wt% (in terms of metal, respectively) The solution prepared as Pd) was diluted with distilled water and ethanol, impregnated, dried at 100 ° C., transferred to an electric furnace, and a catalyst prepared in the same manner was designated as [G9].

〔NO酸化活性評価〕
上記のようにして得られた本発明の触媒50mgを常圧固定床流通式反応装置に充填し、約300ppmの一酸化窒素(以下、「NO」と記す)、約10vol%の酸素および約5vol%の水を含む窒素バランスの模擬排出ガスを毎分1Lの流速で流して反応を行い、活性の評価は500℃から150℃までステップ状に降温し、各々の温度において反応後のガスを分析した。反応ガスの分析にはFT-IRガスセルを利用し(赤外本体 サーモサイエンス製 iS30 専用ガスセル)、生成したNOと原料を定量し、その比から転化率を算出した。
[Evaluation of NO oxidation activity]
50 mg of the catalyst of the present invention obtained as described above was charged into an atmospheric pressure fixed bed flow reactor, about 300 ppm nitric oxide (hereinafter referred to as “NO”), about 10 vol% oxygen and about 5 vol. The reaction is conducted by flowing a simulated nitrogen balance exhaust gas containing 1% water at a flow rate of 1 liter per minute, and the activity is evaluated in steps from 500 ° C to 150 ° C, and the gas after reaction is analyzed at each temperature. did. For the analysis of the reaction gas, an FT-IR gas cell was used (iS30 dedicated gas cell manufactured by Infrared main body Thermoscience), the produced NO 2 and the raw material were quantified, and the conversion rate was calculated from the ratio.

[未燃燃料燃焼特性評価]
上記のようにして得られた本発明の触媒30mgを常圧固定床流通式反応装置に充填し、NO=200ppm, O2=5%,
デカン=1780ppmC、1-メチルナフタレン=220ppmC, H2O=10%を含む窒素バランスの模擬排出ガスを500ml/minの流速で流して反応を行い、定常活性は600℃から100℃まで10℃/minで降温し分析した。反応ガスの分析にはVOC計(島津製作所製 VMS-100F)およびポータブルガス分析計(堀場製作所製 PG-320)を用い、原料の減少量からT50(原料が半分量燃焼し、半分量残留する温度)を見積もった。
[Evaluation of unburned fuel combustion characteristics]
30 mg of the catalyst of the present invention obtained as described above was charged into an atmospheric pressure fixed bed flow type reactor, NO = 200 ppm, O 2 = 5%,
Decane = 1780ppmC, = 1- methylnaphthalene 220PpmC, a simulated exhaust gas of nitrogen balance comprising H 2 O = 10% Reactions were conducted at a flow rate of 500 ml / min, constant activity 10 ° C. to 100 ° C. from 600 ° C. / The temperature was reduced at min and analyzed. Using VOC meter (manufactured by Shimadzu Corporation VMS-100F) and a portable gas analyzer (Horiba PG-320) for the analysis of the reaction gas, T 50 from the decrease amount of the raw material (the raw material is half of combustion, half of the residual Temperature).

(ミリスチン酸処理触媒のNO酸化活性)
[実施例1〜3]
上記の[A4](実施例1)[A5](実施例2)[A6](実施例3)を触媒として用い、上記の〔NO酸化活性評価〕に従い、400〜200℃の温度範囲でNO転化率の評価を行った。評価結果を表1に示した。なお実施例2および実施例3については、前処理として400℃水素還元および750℃50時間空気酸化を行った。
(NO oxidation activity of myristic acid treatment catalyst)
[Examples 1 to 3]
Using the above [A4] (Example 1) [A5] (Example 2) [A6] (Example 3) as a catalyst, according to the above [Evaluation of NO oxidation activity], NO in a temperature range of 400 to 200 ° C. The conversion rate was evaluated. The evaluation results are shown in Table 1. In addition, about Example 2 and Example 3, 400 degreeC hydrogen reduction and 750 degreeC 50-hour air oxidation were performed as pre-processing.

[比較例1〜3]
上記の[A1](比較例1)[A2](比較例2)[A3](比較例3)を触媒として用い、上記の〔NO酸化活性評価〕に従い、400〜200℃の温度範囲でNO転化率の評価を行った。評価結果を表1に示した。なお比較例2および比較例3については、前処理として400℃水素還元および750℃50時間空気酸化を行った。
[Comparative Examples 1-3]
[A1] (Comparative Example 1) [A2] (Comparative Example 2) [A3] (Comparative Example 3) is used as a catalyst, and NO in a temperature range of 400 to 200 ° C. according to the above [Evaluation of NO oxidation activity]. The conversion rate was evaluated. The evaluation results are shown in Table 1. In Comparative Example 2 and Comparative Example 3, hydrogenation at 400 ° C. and air oxidation at 750 ° C. for 50 hours were performed as pretreatment.

表1に各触媒のNO酸化活性を示す。担体の種類、白金族金属の割合によらず、200〜400℃のいずれの温度範囲においても、ミリスチン酸処理を施した触媒(実施例1〜3)のほうが、ミリスチン酸処理をしなかった触媒(比較例1〜3)よりも高い活性を示した。前処理は特段の処理を行わなくても、水素還元および高温空気酸化を行っても、ミリスチン酸処理触媒の優位性は変わらなかった。 Table 1 shows the NO oxidation activity of each catalyst. Regardless of the type of carrier and the proportion of the platinum group metal, the myristate-treated catalyst (Examples 1 to 3) was not treated with myristic acid in any temperature range of 200 to 400 ° C. It showed higher activity than (Comparative Examples 1 to 3). Even if the pretreatment was not performed specially, even if hydrogen reduction and high-temperature air oxidation were performed, the superiority of the myristic acid treatment catalyst did not change.

(ミリスチン酸処理触媒の未燃燃料酸化活性)
[実施例4]
上記の[A5](実施例4)を触媒として用い、上記の〔未燃燃料燃焼特性評価〕に従い、T50を測定した。評価結果を表2に示した。なお、触媒は前処理として400℃水素還元および750℃50時間空気酸化を行った。
(Unburned fuel oxidation activity of myristic acid treatment catalyst)
[Example 4]
Using the above [A5] (Example 4) as a catalyst, T50 was measured according to the above [Evaluation of unburned fuel combustion characteristics]. The evaluation results are shown in Table 2. The catalyst was subjected to hydrogen reduction at 400 ° C. and air oxidation at 750 ° C. for 50 hours as pretreatment.

[比較例4]
上記の[A2](比較例4)を触媒として用い、上記の〔未燃燃料燃焼特性評価〕に従い、T50を測定した。評価結果を表2に示した。なお、触媒した触媒は前処理として400℃水素還元および750℃50時間空気酸化を行った。
[Comparative Example 4]
Using the above [A2] (Comparative Example 4) as a catalyst, T50 was measured according to the above [Evaluation of unburned fuel combustion characteristics]. The evaluation results are shown in Table 2. The catalyzed catalyst was subjected to hydrogen reduction at 400 ° C. and air oxidation at 750 ° C. for 50 hours as pretreatment.

表2にNO酸化と同様に、ミリスチン酸処理を施した実施例4のほうが、比較例4より低いT50を示す、すなわちより低温で未燃燃料が燃焼する高活性触媒であり、NO酸化だけではなく未燃燃料の燃焼特性もミリスチン酸処理触媒のほうが高いことが明らかになった。 As shown in Table 2, Example 4 treated with myristic acid shows a lower T 50 than Comparative Example 4, that is, a highly active catalyst in which unburned fuel burns at a lower temperature, and only NO oxidation is performed. However, it was revealed that the combustion characteristics of unburned fuel were higher with the myristic acid treatment catalyst.

(異なる高級脂肪酸を含浸した炭素数3以上の高級脂肪酸処理触媒のNO酸化活性)
[実施例5〜11]
[B1](実施例5)、[B2](実施例6)、[B3](実施例7)、[B4](実施例8)、[B5](実施例9)、[B6](実施例10)、[B7](実施例11)、[B8](実施例12)を触媒として用い、上記の〔NO酸化活性評価〕に従い、NO転化率の評価を行った。評価結果を図1に示した。
(NO oxidation activity of higher fatty acid treatment catalyst with 3 or more carbon atoms impregnated with different higher fatty acids)
[Examples 5 to 11]
[B1] (Example 5), [B2] (Example 6), [B3] (Example 7), [B4] (Example 8), [B5] (Example 9), [B6] (Implementation) Example 10), [B7] (Example 11), and [B8] (Example 12) were used as catalysts, and the NO conversion rate was evaluated according to the above [NO oxidation activity evaluation]. The evaluation results are shown in FIG.

[比較例5]
[A2]を触媒として用い、上記の〔NO酸化活性評価〕に従い、NO転化率の評価を行った。評価結果を図1に示した。
[Comparative Example 5]
Using [A2] as a catalyst, the NO conversion rate was evaluated according to the above [NO oxidation activity evaluation]. The evaluation results are shown in FIG.

図1に示す結果によれば、200〜400℃のいずれの温度範囲においても、飽和高級脂肪酸である、プロピオン酸処理触媒(実施例5)、カプリン酸処理触媒(実施例6)、ラウリン酸処理触媒(実施例7)、ミリスチン酸処理触媒(実施例8)、パルミチン酸処理触媒(実施例9)、ステアリン酸処理触媒(実施例10)、および不飽和高級脂肪酸であるオレイン酸処理触媒(実施例11)、リノール酸処理触媒(実施例12)のほうが、高級脂肪酸処理をしなかった触媒(比較例5)よりも有意に高い活性を示した。中でも、実施例7、実施例8、実施例9、実施例11は高い活性を示し、この4種類による処理が特に有効であった。   According to the results shown in FIG. 1, the propionic acid treatment catalyst (Example 5), capric acid treatment catalyst (Example 6), and lauric acid treatment which are saturated higher fatty acids in any temperature range of 200 to 400 ° C. Catalyst (Example 7), myristic acid treatment catalyst (Example 8), palmitic acid treatment catalyst (Example 9), stearic acid treatment catalyst (Example 10), and oleic acid treatment catalyst (unsaturated higher fatty acid) Example 11) and the linoleic acid-treated catalyst (Example 12) showed significantly higher activity than the catalyst not treated with the higher fatty acid (Comparative Example 5). Among them, Example 7, Example 8, Example 9, and Example 11 showed high activity, and the treatment with these four types was particularly effective.

(高級脂肪酸以外の有機物処理触媒のNO酸化活性)
[実施例13〜14]
[C4](実施例13)、[C6](実施例14)を触媒として用い、上記の〔NO酸化活性評価〕に従い、NO転化率の評価を行った。評価結果を図2に示した。
(NO oxidation activity of organic processing catalysts other than higher fatty acids)
[Examples 13 to 14]
[C4] (Example 13) and [C6] (Example 14) were used as catalysts, and the NO conversion rate was evaluated according to the above [Evaluation of NO oxidation activity]. The evaluation results are shown in FIG.

[比較例6〜10]
[C1](比較例6)、[C2](比較例7)、[C3](比較例8)、[C5](比較例9)を触媒として用い、上記の〔NO酸化活性評価〕に従い、NO転化率の評価を行った。評価結果を図2に示した。
[Comparative Examples 6 to 10]
Using [C1] (Comparative Example 6), [C2] (Comparative Example 7), [C3] (Comparative Example 8), and [C5] (Comparative Example 9) as a catalyst, according to the above [NO oxidation activity evaluation], The NO conversion rate was evaluated. The evaluation results are shown in FIG.

図2の結果から、ミリスチン酸を共存させて触媒を調製した実施例13(エタノール溶媒)および実施例14(溶媒なし)は、高級脂肪酸以外の水溶性有機物を共存させて触媒を調製した比較例6〜9に比べ高い活性を示し、調製時に共存させる有機物としては水溶性有機物より油溶性の高級脂肪酸のほうがより有益であることがわかる。また、実施例14に比べ実施例13のほうが高い活性を示し、調製時にエタノール等の親水性有機溶媒が共存するとより活性が向上するが、ミリスチン酸の担体へのなじみがよくなるためであると推定している。   From the results shown in FIG. 2, Example 13 (ethanol solvent) and Example 14 (without solvent) in which a catalyst was prepared in the presence of myristic acid were comparative examples in which a catalyst was prepared in the presence of a water-soluble organic substance other than a higher fatty acid. It can be seen that an oil-soluble higher fatty acid is more useful as an organic substance exhibiting a higher activity than 6 to 9 and coexisting at the time of preparation, rather than a water-soluble organic substance. Further, Example 13 shows a higher activity than Example 14, and the activity is improved when a hydrophilic organic solvent such as ethanol coexists at the time of preparation, but it is estimated that this is because the familiarity of myristic acid with the carrier is improved. doing.

(原料は同じで異なる調製手順で調製したミリスチン酸処理触媒のNO酸化活性)
[実施例15〜17]
[D1](実施例15)、[D2](実施例16)、[D3](実施例17)、[D4](実施例18)を触媒として用い、上記の〔NO酸化活性評価〕に従い、NO転化率の評価を行った。評価結果を図3に示した。図3には比較例2も併記した。
(NO oxidation activity of myristic acid treatment catalyst prepared using the same raw material but different preparation procedures)
[Examples 15 to 17]
Using [D1] (Example 15), [D2] (Example 16), [D3] (Example 17), and [D4] (Example 18) as a catalyst, according to the above [NO oxidation activity evaluation], The NO conversion rate was evaluated. The evaluation results are shown in FIG. FIG. 3 also shows Comparative Example 2.

図3に示す結果によれば、触媒を調製するにあたって調製の順番を変更した実施例15〜18のいずれも比較例2より高い活性を示しおのおのの活性の差はそれほど大きくなかった。白金族金属含浸の際に高級脂肪酸が共存する方法であればどの方法でも調製法として有効であり、順番によらないといえる。   According to the results shown in FIG. 3, all of Examples 15 to 18 in which the order of preparation was changed in preparing the catalyst showed higher activity than Comparative Example 2, and the difference in activity was not so large. Any method in which higher fatty acids coexist in the platinum group metal impregnation is effective as a preparation method and can be said to be independent of the order.

(異なる量のミリスチン酸処理を施した触媒のNO酸化活性)
[実施例19〜24]
[E1](実施例19)、[E2](実施例20)、[E3](実施例21)、[E4](実施例22)、[E5](実施例23)、[E6](実施例24)を触媒として用い、上記の〔NO酸化活性評価〕に従い、NO転化率の評価を行った。評価結果を図4に示した。図4には比較例5も併記した。
(NO oxidation activity of catalysts treated with different amounts of myristic acid)
[Examples 19 to 24]
[E1] (Example 19), [E2] (Example 20), [E3] (Example 21), [E4] (Example 22), [E5] (Example 23), [E6] (Implementation) Using Example 24) as a catalyst, the NO conversion rate was evaluated according to the above [NO oxidation activity evaluation]. The evaluation results are shown in FIG. FIG. 4 also shows Comparative Example 5.

図4の結果によれば、触媒調製時のミリスチンの少量の転化でも活性の向上が認められるが、本反応において特に重要な300℃以下の特性については2重量%以上、望ましくは10重量%以上のミリスチン酸共存により顕著にNO酸化活性の向上が認められ、10%重量%以上50%重量%以下の共存では大きな特性の変化はなくいずれの条件でも高い触媒活性を示した。他のカルボン酸においても同様である。   According to the results shown in FIG. 4, the activity is improved even when a small amount of myristin is converted during the preparation of the catalyst. However, the characteristics of 300 ° C. or less which are particularly important in this reaction are 2% by weight or more, preferably 10% by weight or more. Coexistence of myristic acid markedly improved the NO oxidation activity. Coexistence of 10% to 50% by weight showed no significant change in properties and high catalytic activity under any conditions. The same applies to other carboxylic acids.

(焼成時の昇温速度の影響)
[実施例25〜27]
[F1](実施例25)、[F2](実施例26)、[E3](実施例27)を触媒として用い、上記の〔NO酸化活性評価〕に従い、NO転化率の評価を行った。評価結果を図5に示した。
(Effect of heating rate during firing)
[Examples 25 to 27]
[F1] (Example 25), [F2] (Example 26), and [E3] (Example 27) were used as catalysts, and the NO conversion rate was evaluated according to the above [Evaluation of NO oxidation activity]. The evaluation results are shown in FIG.

図5の結果によれば、昇温過程にステップ状の定温領域があってもなくても、昇温速度が1℃/minの場合も20℃/minの場合も、20℃/min以下の昇温速度の範囲内においてはいずれの触媒も十分な活性を示しており、触媒調製において昇温速度の影響はほとんど見られず、昇温条件による触媒活性への影響は少ない。   According to the results shown in FIG. 5, whether the temperature rising rate is 1 ° C./min or 20 ° C./min, 20 ° C./min or less, regardless of whether there is a stepped constant temperature region in the temperature rising process. Within the range of the temperature increase rate, all the catalysts show sufficient activity, and the temperature increase rate is hardly observed in the catalyst preparation, and the effect of the temperature increase on the catalyst activity is small.

(白金族金属の担持濃度が異なるミリスチン酸処理触媒の触媒活性)
[実施例28〜31]
[G1](実施例28)、[G2](実施例29)、[G3](実施例30)、[G4](実施例31)を触媒として用い、上記の〔NO酸化活性評価〕に従い、NO転化率の評価を行った。評価結果を表3に示した。
(Catalytic activity of myristic acid treatment catalysts with different platinum group metal loadings)
[Examples 28 to 31]
Using [G1] (Example 28), [G2] (Example 29), [G3] (Example 30), and [G4] (Example 31) as a catalyst, according to the above [NO oxidation activity evaluation], The NO conversion rate was evaluated. The evaluation results are shown in Table 3.

[比較例10〜13]
[G5](比較例10)、[G6](比較例11)、[G7](実施例12)、[G3](実施例13)を触媒として用い、上記の〔NO酸化活性評価〕に従い、NO転化率の評価を行った。評価結果を表3に示した。
[Comparative Examples 10 to 13]
Using [G5] (Comparative Example 10), [G6] (Comparative Example 11), [G7] (Example 12), and [G3] (Example 13) as catalysts, according to the above [NO oxidation activity evaluation], The NO conversion rate was evaluated. The evaluation results are shown in Table 3.

実用的な白金族金属担持濃度の上限と下限であると考えられる白金族金属0.5%および10%の触媒いずれについても、本発明で調製した触媒は比較例の触媒より格段に高い性能を示す。また、白金族金属の中で白金とパラジウムの比率を調整することがあるが、実用的な比率であるPt/Pd=1以上の白金濃度の組成の範囲では組成が変わっても本発明が有効に働いた。   For both the platinum group metal 0.5% and 10% catalysts considered to be the upper and lower limits of the practical platinum group metal loading concentration, the catalyst prepared in the present invention shows much higher performance than the catalyst of the comparative example. The platinum-to-palladium ratio in the platinum group metals may be adjusted, but the present invention is effective even if the composition changes within the range of the platinum concentration of Pt / Pd = 1 or more, which is a practical ratio. Worked on.

[実施例32]
[F1] 触媒として用い、〔未燃燃料燃焼特性評価〕に従い、T50を測定した。評価結果を表4に示した。
[Example 32]
[F1] Used as a catalyst, T 50 was measured according to [Evaluation of unburned fuel combustion characteristics]. The evaluation results are shown in Table 4.

[比較例14]
[G9]を触媒として用い、〔未燃燃料燃焼特性評価〕に従い、T50を測定した。評価結果を表4に示した。
[Comparative Example 14]
Using [G9] as a catalyst, T 50 was measured according to [Evaluation of unburned fuel combustion characteristics]. The evaluation results are shown in Table 4.

未燃燃料酸化特性においても、高濃度の白金族金属を担持した条件でも本発明で調製した触媒はより低温での酸化活性を有しており、効果が高いことは明らかである。また、比較例として用いたエタノールのみ共存させ調製した触媒に比べても有意に高い活性を示した。   Even in the unburned fuel oxidation characteristics, it is clear that the catalyst prepared in the present invention has an oxidation activity at a lower temperature even under conditions where a high concentration of platinum group metal is supported, and is highly effective. In addition, the activity was significantly higher than the catalyst prepared by coexisting only ethanol used as a comparative example.

本発明の触媒は、過剰酸素を含む排出ガス中のNOxおよび未燃燃料等炭化水素の低減に有効な活性を示すものであり、排出ガス規制強化が進められつつあるディーゼル車あるいはディーゼル車と同じく排出ガス中に酸素が存在しNOxの還元無害化が難しいリーンバーンガソリン車の排出ガス処理技術として利用されることが期待される。また、今後発展が期待されているDPFに組み込んだ触媒としても応用可能である。また、本調製法による効果は金属濃度の濃淡にあまり影響なく有効なため、ゾーンコート等部材化技術を採用する場合にも応用することができる。   The catalyst of the present invention exhibits an effective activity for reducing hydrocarbons such as NOx and unburned fuel in exhaust gas containing excess oxygen, and is similar to a diesel vehicle or a diesel vehicle whose exhaust gas regulations are being strengthened. It is expected to be used as an exhaust gas treatment technology for lean-burn gasoline vehicles, where oxygen is present in the exhaust gas and it is difficult to reduce and harm NOx. It can also be applied as a catalyst incorporated in DPF, which is expected to develop in the future. Moreover, since the effect by this preparation method is effective without much influence on the density of the metal concentration, it can be applied to the case of adopting a member coating technique such as zone coating.

Claims (7)

白金族金属が酸化物担体に担持したディーゼル酸化触媒の調製方法であって、
白金族金属化合物を含有する溶液を用いて酸化物担体に担持する際に、油溶性の炭素数3以上のカルボン酸を共存させ、その後焼成することを特徴とするディーゼル酸化触媒の調製方法。
A method for preparing a diesel oxidation catalyst in which a platinum group metal is supported on an oxide carrier,
A method for preparing a diesel oxidation catalyst, which comprises coexisting an oil-soluble carboxylic acid having 3 or more carbon atoms and then calcining it when supported on an oxide carrier using a solution containing a platinum group metal compound.
前記カルボン酸を、有機溶媒に溶解して共存させることを特徴とする請求項1に記載のディーゼル酸化触媒の調製方法。 The method for preparing a diesel oxidation catalyst according to claim 1, wherein the carboxylic acid is dissolved in an organic solvent and coexists. 前記カルボン酸が、炭素数12〜18の脂肪酸を含むことを特徴とする請求項1又は2に記載のディーゼル酸化触媒の調製方法。 The method for preparing a diesel oxidation catalyst according to claim 1 or 2, wherein the carboxylic acid contains a fatty acid having 12 to 18 carbon atoms. 前記脂肪酸が、ラウリン酸、ミリスチン酸、パルミチン酸およびオレイン酸のうちの少なくとも1つを含むことを特徴とする請求項3に記載のディーゼル酸化触媒の調製方法。 4. The method for preparing a diesel oxidation catalyst according to claim 3, wherein the fatty acid contains at least one of lauric acid, myristic acid, palmitic acid and oleic acid. 前記カルボン酸の量が、前記酸化物担体に対し2〜50質量%であることを特徴とする請求項1〜4のいずれか1項に記載のディーゼル酸化触媒の調製方法。 The method for preparing a diesel oxidation catalyst according to any one of claims 1 to 4, wherein the amount of the carboxylic acid is 2 to 50% by mass with respect to the oxide support. 前記白金族金属の量が、前記酸化物担体に対し0.1〜10質量%であることを特徴とする請求項1〜5のいずれか1項に記載のディーゼル酸化触媒の調製方法。 The method for preparing a diesel oxidation catalyst according to any one of claims 1 to 5, wherein an amount of the platinum group metal is 0.1 to 10% by mass with respect to the oxide carrier. 前記有機溶媒が、親水性有機溶媒であることを特徴とする請求項2〜6のいずれか1項に記載のディーゼル酸化触媒の調製方法。 The method for preparing a diesel oxidation catalyst according to any one of claims 2 to 6, wherein the organic solvent is a hydrophilic organic solvent.
JP2013245909A 2013-11-28 2013-11-28 Method for preparing diesel oxidation catalyst Active JP6401455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013245909A JP6401455B2 (en) 2013-11-28 2013-11-28 Method for preparing diesel oxidation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013245909A JP6401455B2 (en) 2013-11-28 2013-11-28 Method for preparing diesel oxidation catalyst

Publications (2)

Publication Number Publication Date
JP2015100784A true JP2015100784A (en) 2015-06-04
JP6401455B2 JP6401455B2 (en) 2018-10-10

Family

ID=53376976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013245909A Active JP6401455B2 (en) 2013-11-28 2013-11-28 Method for preparing diesel oxidation catalyst

Country Status (1)

Country Link
JP (1) JP6401455B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5121592A (en) * 1974-08-15 1976-02-20 Toyota Motor Co Ltd Parajiumushokubaino seizoho
JP2006212585A (en) * 2005-02-07 2006-08-17 Babcock Hitachi Kk Filter for purifying exhaust gas and method for manufacturing the same
JP2007229642A (en) * 2006-03-01 2007-09-13 Toyota Motor Corp Manufacturing method of supported type catalyst
JP2009255064A (en) * 2008-03-21 2009-11-05 Toyota Central R&D Labs Inc Catalyst for cleaning automobile exhaust gas and manufacturing method of the same
JP2010264359A (en) * 2009-05-13 2010-11-25 Honda Motor Co Ltd Exhaust gas purifying device of internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5121592A (en) * 1974-08-15 1976-02-20 Toyota Motor Co Ltd Parajiumushokubaino seizoho
JP2006212585A (en) * 2005-02-07 2006-08-17 Babcock Hitachi Kk Filter for purifying exhaust gas and method for manufacturing the same
JP2007229642A (en) * 2006-03-01 2007-09-13 Toyota Motor Corp Manufacturing method of supported type catalyst
JP2009255064A (en) * 2008-03-21 2009-11-05 Toyota Central R&D Labs Inc Catalyst for cleaning automobile exhaust gas and manufacturing method of the same
JP2010264359A (en) * 2009-05-13 2010-11-25 Honda Motor Co Ltd Exhaust gas purifying device of internal combustion engine

Also Published As

Publication number Publication date
JP6401455B2 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
KR101553425B1 (en) Exhaust system for lean-burn internal combustion engine comprising pd-au-alloy catalyst
US20170165653A1 (en) Catalyst design for heavy-duty diesel combustion engines
JP5855116B2 (en) Diesel oxidation catalyst
KR20140010061A (en) Alloy-comprising catalyst, method of preparation and uses
JP2011140011A (en) Method for producing co oxidation catalyst and co oxidation catalyst obtained thereby
Aalam et al. Reduction of diesel engine emissions using catalytic converter with nano aluminium oxide catalyst
JP5616382B2 (en) Oxidation catalyst and exhaust gas purification method using the same
JP2009226327A (en) CATALYST FOR SELECTIVELY REDUCING NOx
JP5871257B2 (en) Exhaust purification catalyst, method of using exhaust purification catalyst, and method of manufacturing exhaust purification catalyst
JP2009119430A (en) Low-temperature oxidation catalyst, its production method and exhaust-gas cleaning method using the catalyst
JP2012245452A (en) Exhaust gas purification catalyst and production method thereof
JP6401455B2 (en) Method for preparing diesel oxidation catalyst
JP6102608B2 (en) Exhaust gas purification catalyst
US9358527B2 (en) Exhaust gas purification catalyst and production method thereof
CN117615836A (en) Improved TWC catalyst for gasoline engine exhaust gas treatment
JP2016500331A (en) Zoned diesel oxidation catalyst
EP3042720B1 (en) Oxidation catalyst for purifying exhaust gas, catalyst structure for purifying exhaust gas, and exhaust gas purifying method using same
JP5880412B2 (en) Method for supporting catalytic metal particles and method for producing exhaust gas removing catalyst
KR102246434B1 (en) Vehicle exhaust gas treatment catalyst, method for preparing thereof and method for vehicle exhaust gas treatment using the same
JP4697506B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3387417B2 (en) Exhaust gas purification catalyst and method for producing the same
JP6108289B2 (en) CO oxidation catalyst and method for producing the same
CN114029055B (en) Catalyst, preparation method and application thereof
JP7250906B2 (en) Exhaust gas purification catalyst
JP2007130590A (en) Exhaust gas cleaning catalyst and manufacturing method of exhaust gas cleaning catalyst

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20161110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180201

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180907

R150 Certificate of patent or registration of utility model

Ref document number: 6401455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250