JP2015095316A - Nonaqueous electrolyte power storage device - Google Patents

Nonaqueous electrolyte power storage device Download PDF

Info

Publication number
JP2015095316A
JP2015095316A JP2013233124A JP2013233124A JP2015095316A JP 2015095316 A JP2015095316 A JP 2015095316A JP 2013233124 A JP2013233124 A JP 2013233124A JP 2013233124 A JP2013233124 A JP 2013233124A JP 2015095316 A JP2015095316 A JP 2015095316A
Authority
JP
Japan
Prior art keywords
storage element
aqueous electrolyte
negative electrode
electrolyte
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013233124A
Other languages
Japanese (ja)
Other versions
JP6252119B2 (en
Inventor
洋明 川瀬
Hiroaki Kawase
洋明 川瀬
真理子 河本
Mariko Kawamoto
河本  真理子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2013233124A priority Critical patent/JP6252119B2/en
Publication of JP2015095316A publication Critical patent/JP2015095316A/en
Application granted granted Critical
Publication of JP6252119B2 publication Critical patent/JP6252119B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a power storage device which uses a high-capacity negative electrode including Si and a nonaqueous electrolyte including, as an electrolytic salt, a salt including F as a constituent element, and enables the increase in coulomb efficiency.SOLUTION: A nonaqueous electrolyte power storage device comprises a positive electrode, a negative electrode, and a nonaqueous electrolyte. The negative electrode includes an Si-containing active material. The nonaqueous electrolyte includes, as an electrolytic salt, a salt (e.g. LiPF) including F as a constituent element. The nonaqueous electrolyte includes zeolite having pores of 5Å or smaller in diameter. The Si-containing active material includes Si and O as constituent elements. In addition, the Si-containing active material is coated with a conductive substance such as a carbon material. The negative electrode further includes a carbon material. The zeolite (e.g. molecular sieve) preferably has a pore size of 4-5Å.

Description

本発明は、非水電解液蓄電素子、特にSiを含む高容量な負極を用いた、Fを含む塩を電解質塩として含有する非水電解液蓄電素子に関する。   The present invention relates to a nonaqueous electrolyte storage element, particularly a nonaqueous electrolyte storage element containing a salt containing F as an electrolyte salt using a high-capacity negative electrode containing Si.

リチウム二次電池に代表される非水電解質蓄電素子は、携帯用端末、電気自動車、ハイブリッド自動車等に広く用いられており、今後もエネルギー密度の向上が期待されている。現在、実用化されている非水電解質二次電池の負極活物質には炭素材料が、正極活物質にはリチウム遷移金属酸化物が主に用いられている。   Nonaqueous electrolyte storage elements typified by lithium secondary batteries are widely used in portable terminals, electric vehicles, hybrid vehicles, and the like, and further improvements in energy density are expected in the future. Currently, a carbon material is mainly used as a negative electrode active material of a non-aqueous electrolyte secondary battery in practical use, and a lithium transition metal oxide is mainly used as a positive electrode active material.

しかし、負極に使用する炭素材料の利用率は、その理論値近くにまで至っていることから、正極および負極に用いる活物質の重量を、従来の電池と同程度にしたままで、今後の電池の放電容量を10%以上向上させることは、困難な状況になってきている。
このため、近年、負極活物質として、炭素材料に置き代わる、大放電容量を有するケイ素などの材料の研究が盛んに行われている(特許文献1〜3参照)。
However, since the utilization rate of the carbon material used for the negative electrode has reached its theoretical value, the weight of the active material used for the positive electrode and the negative electrode remains the same as that of the conventional battery, It has become difficult to improve the discharge capacity by 10% or more.
For this reason, in recent years, research has been actively conducted on materials such as silicon having a large discharge capacity that replace carbon materials as negative electrode active materials (see Patent Documents 1 to 3).

特許文献1には、「正極と、負極と、非水電解質と、セパレータと、を備えた電池であって、非水電解質に化1〜化4の化合物の少なくとも1種のスルホン酸無水物を0.01〜5質量%、水分を100ppm以下含有する電池。・・・」(請求項1)の発明が記載され、また、「本発明によれば、非水電解質に含有する水分量を特定以下に低減することにより、電解液の分解を抑制することができ、特に高温保存時のガス発生を抑制すると共にサイクル特性を改善することができる。」(段落[0013])、「リチウムと合金を形成することが可能な金属元素あるいは半金属元素により構成された負極材料としては、長周期型周期表における14族の金属元素および半金族元素のうちの少なくとも1種を構成元素として有する材料が好ましく、ケイ素およびスズのうちの少なくとも1種を構成元素として有する材料が特に好ましい。リチウムを吸蔵および放出する能力が大きいため、高いエネルギー密度が得られるからである。」(段落[0074])、「電解液には炭酸エチレン(EC):炭酸ジメチル(DMC)=3:7の混合溶液を作成し、LiPF6を1.2mol/kgとなるように溶解させたものに化Aから化Eのスルホン酸無水物を溶解させた。モレキュラーシーブスで十分に乾燥させることにより、所定の水分量(100〜1ppm)の電解液を得た。」(段落[0099])と記載されている。   Patent Document 1 states that “a battery including a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator, wherein at least one sulfonic acid anhydride of the compounds represented by Chemical Formulas 1 to 4 is added to the non-aqueous electrolyte. A battery containing 0.01 to 5% by mass and water of 100 ppm or less .... (Claim 1) is described, and “According to the present invention, the amount of water contained in the nonaqueous electrolyte is specified. By reducing to the following, decomposition of the electrolytic solution can be suppressed, and particularly, gas generation during high-temperature storage can be suppressed and cycle characteristics can be improved ”(paragraph [0013]),“ lithium and alloys. As a negative electrode material composed of a metal element or a metalloid element capable of forming a metal, a material having at least one of a group 14 metal element and a metalloid element as a constituent element in the long-period periodic table Preferred In particular, a material having at least one of silicon and tin as a constituent element is particularly preferable because a high energy density is obtained because of its large ability to occlude and release lithium ”(paragraph [0074]). “For the electrolyte, a mixed solution of ethylene carbonate (EC): dimethyl carbonate (DMC) = 3: 7 was prepared, and LiPF6 was dissolved to a concentration of 1.2 mol / kg. The acid anhydride was dissolved and sufficiently dried with molecular sieves to obtain an electrolytic solution having a predetermined water content (100 to 1 ppm) ”(paragraph [0099]).

特許文献2には、「電気化学的にリチウムイオンを蓄積・放出できる材料において、シリコンもしくはスズまたはこれらの少なくとも一方を含む合金粒子が、金属酸化物又は半金属の酸化物で複合化されており、前記金属酸化物又は半金属の酸化物を構成する金属又は半金属を酸化させた場合のギブスの自由エネルギーが、前記合金粒子中に含まれるシリコンもしくはスズまたはこれらの少なくとも一方を含む合金を酸化させた場合のギブスの自由エネルギーよりも小さく、前記シリコンもしくはスズまたはこれらの少なくとも一方を含む合金粒子(A)に対する該合金粒子を複合化している前記金属酸化物又は半金属の酸化物(B)の重量比率(B/A)の範囲が1/99以上3/7以下であることを特徴とする粉末材料。」(請求項1)の発明が記載され、また、「そこで、本発明は、電気化学的に高電流密度で多量のリチウムイオンを蓄えまたは放出することができる粉末材料を提供することを目的とする。また、上記粉末材料から形成する電極構造体と、該電極構造体を有し、充放電の繰り返しによっても容量低下の少ない、高パワー密度、高エネルギー密度の、蓄電デバイスを提供することを目的とするものである。」(段落[0020])、「上記溶媒は、例えば、活性アルミナ、モレキュラーシーブ、五酸化リン、塩化カルシウムなどで脱水するか、溶媒によっては、不活性ガス中のアルカリ金属共存下で蒸留して不純物除去と脱水をも行なうのがよい。」(段落[0143])、「・・・なお、上記電解液には、十分に水分を除去したエチレンカーボネートとジエチルカーボネートとを、体積比3:7で混合した溶媒に、六フッ化リン酸リチウム塩(LiPF)を1M(モル/リットル)溶解して得られた溶液を使用した。」(段落[0204])と記載されている。 Patent Document 2 states that “in a material capable of electrochemically storing and releasing lithium ions, alloy particles containing silicon or tin or at least one of them are compounded with metal oxide or metalloid oxide. The Gibbs free energy when the metal or metalloid constituting the metal oxide or metalloid oxide is oxidized oxidizes silicon or tin contained in the alloy particles or an alloy containing at least one of them. The metal oxide or the semi-metal oxide (B), which is smaller than Gibbs free energy in the case of being made, and is composited with the alloy particles (A) containing silicon or tin or at least one of them The weight ratio (B / A) of the powder material is 1/99 or more and 3/7 or less. ”(Claim 1) The invention is described, and “therefore, an object of the present invention is to provide a powder material capable of storing or releasing a large amount of lithium ions electrochemically at a high current density. It is an object of the present invention to provide an electrode structure formed from the above, and an electricity storage device having the electrode structure and having a high power density and a high energy density that are less likely to be reduced in capacity by repeated charge and discharge. (Paragraph [0020]), “The above solvent is dehydrated with, for example, activated alumina, molecular sieve, phosphorus pentoxide, calcium chloride or the like, or depending on the solvent, distilled in the presence of an alkali metal in an inert gas. Impurities should be removed and dehydrated as well. "(Paragraph [0143])," ... In addition, the above-mentioned electrolyte solution contains ethylene carbonate and diene from which water has been sufficiently removed. And Le carbonate, the volume ratio of 3:. Of a solvent mixture at 7, using a lithium hexafluorophosphate (LiPF 6) 1M (mol / l) solution obtained by dissolving "(paragraph [0204 ]).

特許文献3には、「正極をSiOの化学式を有している酸化ケイ素(シリカ)とし、負極をSiの化学式を有している窒化ケイ素又はホウ化ケイ素SiB又は金とし、正極と負極との間に非水電解質を採用するシリコン二次電池を製造するために、シリコン化合物粉末にゼオライトを混合して、紫外線(UV)又は約130℃に加熱ながら印刷し各電極を製膜してから、当該電極にゼオライトを混合した固体電解質をコーティングした後、両電極を接合して単位セルを作成するシリカ電極二次電池、及び当該製造方法。」(請求項1)の発明が記載され、また、「ゼオライトを使用した固体電解質は、10ミクロン単位のゼオライトを非水電解質に混合して、コーティングする。ゼオライト種としては、A型、チャバサイト、フェリエライト、ZSMー5、及びクリノプチロライトから成る群から選ばれる少なくとも一種以上のゼオライトを用いることができる。A型ゼオライトであることがより好ましいが、これらのゼオライトはその細孔径が約6Å以下と小さく、中でもA型ゼオライトは8員環細孔構造であり細孔径が4Åとより小さい。」(段落[0017])と記載されている。 Patent Document 3 states that “the positive electrode is silicon oxide (silica) having a chemical formula of SiO 2 , and the negative electrode is silicon nitride or silicon boride SiB 4 or gold having the chemical formula of Si 3 N 4 , In order to manufacture a silicon secondary battery that employs a non-aqueous electrolyte between the positive electrode and the negative electrode, a silicon compound powder is mixed with zeolite and printed while being heated to ultraviolet (UV) or about 130 ° C. to produce each electrode. After the membrane is formed, the electrode is coated with a solid electrolyte in which zeolite is mixed, and then the two electrodes are joined to form a unit cell, and the manufacturing method of the invention ”(Claim 1). “Solid electrolyte using zeolite is coated with 10 micron unit zeolite mixed with non-aqueous electrolyte. Zeolite species include A type, Chabasite, Ferri At least one zeolite selected from the group consisting of Wright, ZSM-5, and clinoptilolite can be used, more preferably A-type zeolite, but these zeolites have a pore size of about 6 mm or less. Among them, A type zeolite has an 8-membered ring pore structure and a pore diameter smaller than 4 mm ”(paragraph [0017]).

また、非水電解質電池において、脱水剤として、ゼオライト(モレキュラーシーブ)を使用することも公知である(特許文献4〜6参照)。   In addition, it is also known to use zeolite (molecular sieve) as a dehydrating agent in a nonaqueous electrolyte battery (see Patent Documents 4 to 6).

特許文献4には、「フッ素化合物及び塩素化合物から選ばれる少なくとも一種を含有する電解液を有するリチウム電池において、前記電解液中に脱水剤を含有することを特徴とするリチウム電池。」(請求項2)の発明が記載され、また、「本発明は、含有水分による電解液の分解を抑制して、その劣化を防止すると共に、リチウムの作用を正常化せしめ、これにより、高容量での充放電サイクル寿命を向上させたリチウム電池を提供することを目的とする。」(段落[0007])、「つまり、電解質としては、六フッ化リン酸リチウム(LiPF6)を用いた場合を考えれば、先ず含有水分によって以下のような反応が起こる。」(段落[0015])、「LiPF+HO→POF+2HF+Li ここで生じたフッ化水素酸は、次のような反応によって金属性の容器の内面を腐蝕させる。」(段落[0016])、「上記負極6には、リチウムを吸蔵・放出する機能を有する活物質が用いられる。活物質としては、炭素質物質が挙げられる。」(段落[0024])、「前記電解液に更に含ませる脱水剤としては、活性アルミナ、ゼオライト、硫酸ナトリウム、活性炭、シリカゲル、酸化マグネシウム、酸化カルシウム等が挙げられる。これら脱水剤の添加量は、電解液中通常20重量%以下であり、2〜15重量%、特に5〜10重量%が好ましい。これら脱水剤は、電解液に添加する前に、加熱処理等の方法で充分に乾燥するのが望ましい。」(段落[0040])、「これらの脱水剤を含ませることにより、電解質の水による分解を防止し、ひいては電解液の劣化、酸性物質の生成を抑えることが出来る。また、酸性物質の生成の抑制は、電池容器内圧力の上昇を防ぎ、これにより電池外壁を薄くすることができ、電池を軽量化することができる。」(段落[0041])と記載されている。 Patent Document 4 states that “in a lithium battery having an electrolytic solution containing at least one selected from a fluorine compound and a chlorine compound, a dehydrating agent is contained in the electrolytic solution” (claim). The invention of 2) is described, and “the present invention suppresses the decomposition of the electrolyte solution by the contained water and prevents its deterioration and normalizes the action of lithium, thereby charging at a high capacity. The object is to provide a lithium battery with improved discharge cycle life. "(Paragraph [0007])," That is, considering the case of using lithium hexafluorophosphate (LiPF6) as the electrolyte, First, the following reaction takes place depending on the water content ”(paragraph [0015]),“ LiPF 6 + H 2 O → POF 4 + 2HF + Li + hydrofluoric acid produced here. Corrodes the inner surface of the metallic container by the following reaction ”(paragraph [0016]),“ The negative electrode 6 uses an active material having a function of occluding and releasing lithium. Active material Examples of the dehydrating agent further included in the electrolytic solution include activated alumina, zeolite, sodium sulfate, activated carbon, silica gel, magnesium oxide, calcium oxide and the like. The amount of the dehydrating agent added is usually 20% by weight or less in the electrolytic solution, preferably 2 to 15% by weight, and particularly preferably 5 to 10% by weight. It is desirable to dry sufficiently by a method such as heat treatment ”(paragraph [0040]),“ By including these dehydrating agents, the electrolyte is prevented from being decomposed by water, and thus the electrolyte solution. Deterioration and generation of acidic substances can be suppressed, and suppression of generation of acidic substances can prevent an increase in the pressure inside the battery container, thereby reducing the outer wall of the battery and reducing the weight of the battery. (Paragraph [0041]).

特許文献5には、「リチウムイオンのドープおよび脱ドープが可能な材料を負極とし、リチウム複合酸化物を正極とした非水電解液二次電池であって、上記非水電解液二次電池内に、水分吸着剤が添加されていることを特徴とする非水電解液二次電池。」(請求項1)
「上記水分吸着剤が、電解液中に添加されていることを特徴とする請求項1に記載の非水電解液二次電池。」(請求項4)、「上記負極活物質を、炭素材料、リチウム金属あるいはリチウム合金とし、上記正極材料を、リチウムコバルト酸、あるいはリチウムマンガン酸としたことを特徴とする請求項1に記載の非水電解液二次電池。」(請求項6)、「上記水分吸着剤が、ゼオライトであることを特徴とする請求項1に記載の非水電解液二次電池。」(請求項7)の発明が記載され、また、「そこで、本発明においては、電池内の水分の効果的な除去を図り、容量の減少を低減化した非水電解液二次電池を提供するものである。」(段落[0011])、「水分吸着剤としては、ゼオライト、活性アルミナ、活性炭、シリカゲル、多孔性ガラス等を例として挙げることができる。」(段落[0023])、「本発明の非水電解液二次電池においては、非水電解液二次電池の容器内のいずれかの箇所に水分吸着剤が添加されていればよく、例えば、負極合剤中、正極合剤中、電解液中、セパレータ中に添加されているものが挙げられる。」(段落[0024])、「(実施例1)水分吸着剤として、活性アルミナを使用し、これを正極合剤中に添加するものとする。」(段落[0026])、「(実施例2)水分吸着剤として、合成ゼオライト(A−4)を用いる。その他の条件は、上記(実施例1)と同様にして、円筒型非水電解液二次電池を作製した。」(段落[0030])と記載されている。
Patent Document 5 discloses a “non-aqueous electrolyte secondary battery in which a material capable of doping and dedoping lithium ions is used as a negative electrode and a lithium composite oxide as a positive electrode, in the non-aqueous electrolyte secondary battery. In addition, a water-absorbing agent is added to the non-aqueous electrolyte secondary battery. ”(Claim 1)
“The non-aqueous electrolyte secondary battery according to claim 1, wherein the moisture adsorbent is added to the electrolyte.” (Claim 4), “The negative electrode active material is a carbon material. The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode material is lithium cobalt acid or lithium manganic acid. The invention according to claim 1, wherein the moisture adsorbent is zeolite (claim 7) is described, and “in the present invention, The present invention provides a non-aqueous electrolyte secondary battery in which the moisture in the battery is effectively removed and the reduction in capacity is reduced "(paragraph [0011])," as the water adsorbent, zeolite, Activated alumina, activated carbon, silica gel, porous gas (Paragraph [0023]), “In the non-aqueous electrolyte secondary battery of the present invention, moisture is adsorbed at any location in the container of the non-aqueous electrolyte secondary battery. An agent may be added, and examples thereof include those added in a negative electrode mixture, a positive electrode mixture, an electrolytic solution, and a separator ”(paragraph [0024]),“ (Example 1). ) Activated alumina is used as the moisture adsorbent and added to the positive electrode mixture. "(Paragraph [0026])," (Example 2) Synthetic zeolite (A-4) as the moisture adsorbent In other conditions, a cylindrical non-aqueous electrolyte secondary battery was fabricated in the same manner as in (Example 1) ”(paragraph [0030]).

特許文献6には、「正極、負極及び電解質を備える二次電池において、前記正極及び負極の少なくとも一方が下記式(1)で示される環状ニトロキシドラジカル構造を有する化合物を含み、前記電解質が水との反応により酸を発生するリチウム含有化合物を含み、前記二次電池が更に、電池内部に存在する又は電池内部で発生する水、水素イオン或いはオキソニウムイオンを吸着するための吸着剤を電池内部に備えることを特徴とする二次電池。・・・」(請求項1)、「前記吸着剤がゼオライト、モレキュラーシーブ、シリカゲル及び活性アルミナからなる群から選択される少なくとも1種の吸着剤であることを特徴とする請求項1から4のいずれか1項に記載の二次電池。」(請求項5)の発明が記載され、また、「本発明者らが熱意検討した結果、環状ニトロキシドラジカル構造を有する化合物を電極活物質に用いる二次電池の劣化原因が、環状ニトロキシドラジカル構造の開環反応にあることを見出した。また、該開環反応が酸により引き起こされ、該酸はリチウム含有化合物と水等との反応により発生していることを見出した。そこで、この開環反応を引き起こす酸の発生原因である水等を電池内部から除去するため、電池内部に吸着剤を添加することにより、高温時の容量劣化が抑制される、長期信頼性に優れた電池が作製できることを見出した。」(段落[0014])、「前記式を説明すると、式a 電解質であるLiPFが分解してPFが発生する。式b PFと水が反応して、HF(フッ酸)が発生する。式c 発生したフッ化物イオン(F)とオキソアンモニウムカチオンが反応して開環が起こり、ニトロソ化合物を副生する。」(段落[0023])、「(実施例6) <セル作製> 実施例3で作製した正極と、負極であるリチウム張り合わせ銅箔とをセパレータを介して順に重ねあわせ、電極積層体を作製した。・・・次に、モレキュラーシーブ(商品名:『モレキュラーシーブ3A』、ユニオン昭和製)2.0mgと、1mol/LのLiPFを含むEC/DEC=3/7の混合電解液とをセル中に挿入し、電極に良く含浸させた。最終的に減圧下にて最後の4辺目を熱融着し、アルミラミネートセルを作製した。」(段落[0080])と記載されている。 In Patent Document 6, “in a secondary battery including a positive electrode, a negative electrode, and an electrolyte, at least one of the positive electrode and the negative electrode includes a compound having a cyclic nitroxide radical structure represented by the following formula (1), and the electrolyte is water and The secondary battery further includes an adsorbent for adsorbing water, hydrogen ions or oxonium ions existing inside the battery or generated inside the battery. Secondary battery characterized in that it is provided ... (Claim 1), "The adsorbent is at least one adsorbent selected from the group consisting of zeolite, molecular sieve, silica gel and activated alumina. The secondary battery according to any one of claims 1 to 4, characterized in that the invention of (claim 5) is described, and the present inventors As a result, it was found that the secondary battery using a compound having a cyclic nitroxide radical structure as an electrode active material was caused by the ring-opening reaction of the cyclic nitroxide radical structure, which was caused by an acid. It was found that the acid was generated by the reaction of the lithium-containing compound with water, etc. Therefore, in order to remove the water, which is the cause of the acid causing the ring-opening reaction, from the inside of the battery, It has been found that by adding an adsorbent, a battery having excellent long-term reliability in which capacity deterioration at high temperatures is suppressed can be produced. "(Paragraph [0014]) LiPF 6 is decomposed to generate PF 5. Formula b PF 5 reacts with water to generate HF (hydrofluoric acid) Formula c Generated fluoride ion (F ) and oxo Ammonium cation reacts to cause ring opening and by-product formation of nitroso compound "(paragraph [0023])," (Example 6) <Cell preparation> The positive electrode prepared in Example 3 and lithium bonding as the negative electrode An electrode laminate was prepared by sequentially stacking copper foil with a separator .... Next, 2.0 mg of molecular sieve (trade name: “Molecular sieve 3A”, manufactured by Union Showa), 1 mol / L A mixed electrolyte solution of EC / DEC = 3/7 containing LiPF 6 was inserted into the cell, and the electrodes were thoroughly impregnated. A cell was made "(paragraph [0080]).

特開2010−177025号公報JP 2010-177025 A 特開2008−016446号公報JP 2008-016446 A 特開2013−110004号公報JP2013-110004A 特開平09−139232号公報JP 09-139232 A 特開2001−126766号公報JP 2001-126766 A 特開2011−165433号公報JP 2011-165433 A

上記のように、特許文献1及び2に記載された発明おいては、LiPF系電解液を用いてSiを含む負極を評価している。また、モレキュラーシーブ等の脱水剤を用いて非水電解液を脱水することが記載されているが、脱水剤を電池内に入れることは記載されていない。特許文献3には、Siを含む負極を用い、固体電解質にゼオライトを混合することが記載されているが、正極・負極が固体電解質を隔てて作動するものであり、液体電解質(電解液)を用いることは記載されていない。Fを含む塩を電解質塩として含有した電解液を用いた場合は異なる反応が起きるので、特許文献3に記載された発明は、このような電解液を用いる電池に適用されるものではない。また、いずれの特許文献にも、Siを含む高容量負極のクーロン効率を改善する課題については示されていない。 As described above, in the inventions described in Patent Documents 1 and 2, the negative electrode containing Si is evaluated using the LiPF 6- based electrolytic solution. Further, it is described that the non-aqueous electrolyte is dehydrated using a dehydrating agent such as molecular sieve, but it is not described that the dehydrating agent is put in the battery. Patent Document 3 describes that a negative electrode containing Si is used and a zeolite is mixed with a solid electrolyte. However, the positive electrode and the negative electrode operate with the solid electrolyte separated, and a liquid electrolyte (electrolytic solution) is used. Use is not described. Since different reactions occur when an electrolytic solution containing a salt containing F as an electrolyte salt is used, the invention described in Patent Document 3 is not applied to a battery using such an electrolytic solution. In addition, neither patent document discloses a problem of improving the Coulomb efficiency of a high-capacity negative electrode containing Si.

特許文献4には、フッ素化合物を含有する電解液(LiPF系電解液)中にゼオライト等の脱水剤を含有させることにより、リチウム電池の電解液のHOによる分解を防止し、HFの生成を抑えることが記載されているが、負極活物質としては炭素質物質が記載されているだけで、Siを含む材料は記載されていない。特許文献5には、電池容量の減少の低減化を図ることを目的として、ゼオライト等の電池部材(正・負極合剤、電解液、セパレータ)中に添加する技術が開示されているが、水分吸着剤を電解液に添加することは実施例としては記載がなく、また、負極活物質としては炭素材料、リチウム金属あるいはリチウム合金が記載されているだけで、Siを含む材料は記載されていない。特許文献6には、LiPFを用いる電解液にモレキュラーシーブ等の吸着剤を添加することにより、電池内部に存在する又は電池内部で発生する水を吸着し、HFの発生を防止することが記載されているが、負極としてはリチウムが記載されているだけで、Siを含む材料は記載されていない。 Patent Document 4 discloses that an electrolytic solution containing a fluorine compound (LiPF 6- based electrolytic solution) contains a dehydrating agent such as zeolite to prevent decomposition of the electrolytic solution of the lithium battery by H 2 O. Although suppressing generation is described, only a carbonaceous material is described as a negative electrode active material, and a material containing Si is not described. Patent Document 5 discloses a technique of adding to a battery member (positive / negative electrode mixture, electrolyte, separator) such as zeolite for the purpose of reducing reduction in battery capacity. Adding an adsorbent to the electrolytic solution is not described as an example, and a carbon material, lithium metal or lithium alloy is only described as a negative electrode active material, and a material containing Si is not described. . Patent Document 6 describes that by adding an adsorbent such as a molecular sieve to an electrolytic solution using LiPF 6 , water existing inside the battery or generated inside the battery is adsorbed to prevent generation of HF. However, only lithium is described as the negative electrode, and no material containing Si is described.

本発明は、上記の従来技術に鑑みなされたものであり、Siを含む高容量な負極と構成元素にFを含む塩を電解質塩として含有する非水電解液を用いた蓄電素子のクーロン効率を高めることを課題とする。   The present invention has been made in view of the above-described prior art, and has the Coulomb efficiency of a power storage device using a high-capacity negative electrode containing Si and a nonaqueous electrolytic solution containing a salt containing F as an electrolyte salt as a constituent element. The challenge is to increase it.

本発明においては、上記課題を解決するために、以下の手段を採用する。
(1)正極、負極及び非水電解液を備えた非水電解液蓄電素子において、
前記負極は、Siを含む 活物質を含有し、かつ、
前記非水電解液は、構成元素にFを含む 塩を電解質塩として含有し、非水電解液中に5Å以下の孔径を有するゼオライトが含まれている
ことを特徴とする非水電解液蓄電素子。
(2)前記Siを含む活物質は、SiとOとを構成元素に含むことを特徴する前記(1)の非水電解液蓄電素子。
(3)前記Siを含む活物質は、導電性物質で被覆されていることを特徴する前記(1)又は(2)の非水電解液蓄電素子。
(4)前記導電性物質は、炭素材料であることを特徴する前記(3)の非水電解液蓄電素子。
(5)前記負極は、Siを含む 活物質と共に炭素材料を含有することを特徴とする前記(1)〜(4)のいずれか1項の非水電解液蓄電素子。
(6)前記構成元素にFを含む塩は、LiPFであることを特徴とする前記(1)〜(5)のいずれか1項の非水電解液蓄電素子。
(7)前記ゼオライトは、孔径が4〜5Åであることを特徴とする前記(1)〜(6)のいずれか1項の非水電解液蓄電素子。
In the present invention, in order to solve the above problems, the following means are adopted.
(1) In a non-aqueous electrolyte storage element including a positive electrode, a negative electrode, and a non-aqueous electrolyte,
The negative electrode contains an active material containing Si, and
The non-aqueous electrolyte contains a salt containing F as a constituent element as an electrolyte salt, and the non-aqueous electrolyte contains a zeolite having a pore size of 5 mm or less. .
(2) The nonaqueous electrolyte storage element according to (1), wherein the Si-containing active material contains Si and O as constituent elements.
(3) The non-aqueous electrolyte storage element according to (1) or (2), wherein the Si-containing active material is coated with a conductive material.
(4) The non-aqueous electrolyte storage element according to (3), wherein the conductive substance is a carbon material.
(5) The non-aqueous electrolyte storage element according to any one of (1) to (4), wherein the negative electrode contains a carbon material together with an active material containing Si.
(6) The nonaqueous electrolyte storage element according to any one of (1) to (5), wherein the salt containing F as a constituent element is LiPF 6 .
(7) The non-aqueous electrolyte storage element according to any one of (1) to (6), wherein the zeolite has a pore diameter of 4 to 5 mm.

本発明によれば、Siを含む高容量な負極を用いた蓄電素子において、構成元素にFを含む塩を電解質塩として含有する非水電解液に、特定の孔径を有するゼオライトを含有させることにより、 高い放電容量とクーロン効率を両立する蓄電素子が提供できる。   According to the present invention, in a power storage device using a high-capacity negative electrode containing Si, by adding a zeolite having a specific pore size to a non-aqueous electrolyte containing a salt containing F as an electrolyte salt as a constituent element. It is possible to provide a power storage device that achieves both high discharge capacity and coulomb efficiency.

モレキュラーシーブ孔径とクーロン効率改善率の関係を示す図Diagram showing the relationship between the molecular sieve hole diameter and the Coulomb efficiency improvement rate

本発明は、非水電解液蓄電素子の負極活物質として、Siを含む物質が導電性物質で被覆された材料を用いる。負極活物質としてSiを含む物質を用いることにより、放電容量の大きい、高エネルギー密度の非水電解液蓄電素子を得ることができる。Siを含む物質は、Liイオンと固溶体や金属間化合物を形成することにより、Liイオンを多量に貯蔵することができる。Siを含む物質としては、SiとOとを構成元素に含む一般式SiO(x<2)で表される物質が好ましい。 In the present invention, a material in which a substance containing Si is coated with a conductive substance is used as the negative electrode active material of the nonaqueous electrolyte storage element. By using a substance containing Si as the negative electrode active material, a high energy density non-aqueous electrolyte storage element having a large discharge capacity can be obtained. A substance containing Si can store a large amount of Li ions by forming a solid solution or an intermetallic compound with Li ions. As the substance containing Si, a substance represented by the general formula SiO x (x <2) containing Si and O as constituent elements is preferable.

負極活物質として、Siを含む物質が導電性物質で被覆された活物質を用いることが好ましい。充放電サイクル特性に優れた非水電解液蓄電素子を得ることができる。この場合、負極活物質粒子の表面の少なくとも一部が導電性物質によって被覆されていれば良い。Siを含む物質を導電性物質で被覆することにより、表面の導電性物質により導電経路が維持され、充放電サイクル特性が向上するものと推定される。   As the negative electrode active material, an active material in which a substance containing Si is coated with a conductive material is preferably used. A nonaqueous electrolyte storage element having excellent charge / discharge cycle characteristics can be obtained. In this case, it is sufficient that at least a part of the surface of the negative electrode active material particles is covered with the conductive material. It is presumed that by covering a substance containing Si with a conductive substance, a conductive path is maintained by the conductive substance on the surface, and charge / discharge cycle characteristics are improved.

Siを含む物質を被覆する導電性物質としては、Cu、Ni、Ti、Sn、Al、Co、Fe、Zn、Ag若しくはこれらの二種以上の合金又は炭素材料が挙げられるが、これらの中では炭素材料を用いることが好ましい。   Examples of the conductive substance covering the substance containing Si include Cu, Ni, Ti, Sn, Al, Co, Fe, Zn, Ag, or an alloy of two or more kinds thereof, or a carbon material. It is preferable to use a carbon material.

Siを含む物質を、炭素材料で被覆する方法としては、ベンゼン、トルエン、キシレン、メタンなどを炭素源として気相中で分解し、粒子の表面に化学的に蒸着させるCVD方法、ピッチ、タールあるいはフルフリルアルコールなどの熱可塑性樹脂を粒子の表面に塗布した後に焼成する方法、あるいは粒子と炭素材料との間に機械的エネルギーを作用させて複合体を形成するメカノケミカル反応を用いた方法を用いることができる。中でも、均一に炭素材料を被覆できることからCVD法を用いることが好ましい。   As a method of coating a substance containing Si with a carbon material, a CVD method in which benzene, toluene, xylene, methane or the like is decomposed in a gas phase using a carbon source and chemically deposited on the particle surface, pitch, tar or Use a method in which a thermoplastic resin such as furfuryl alcohol is applied to the surface of the particle and then fired, or a method using a mechanochemical reaction in which mechanical energy is applied between the particle and the carbon material to form a composite. be able to. Of these, the CVD method is preferably used because the carbon material can be uniformly coated.

また、Siを含む物質が導電性物質で被覆された活物質において、活物質に対する導電性物質の割合は、2〜20質量%であることが好ましい。被覆量が少なすぎると、導電性を充分に確保できないためサイクル特性が劣るようになり、また、被覆量が多すぎると、大きな放電容量を得ることができなくなる。   In the active material in which a substance containing Si is coated with a conductive material, the ratio of the conductive material to the active material is preferably 2 to 20% by mass. If the coating amount is too small, sufficient electrical conductivity cannot be secured, resulting in poor cycle characteristics. If the coating amount is too large, a large discharge capacity cannot be obtained.

Siを含む物質が導電性物質で被覆された活物質は、さらに炭素材料と混合することが好ましい。炭素材料としては、天然黒鉛、人造黒鉛、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維などが挙げられる。中でも、導電性を充分に確保できることから、平均粒径(D50)が1〜15μmの鱗片状黒鉛を含有することが好ましい。Siを含む物質が導電性物質で被覆された活物質:炭素材料の比は、1:9〜10:0とすることが好ましい。   The active material in which a substance containing Si is coated with a conductive substance is preferably mixed with a carbon material. Examples of the carbon material include natural graphite, artificial graphite, acetylene black, ketjen black, and vapor grown carbon fiber. Especially, since electroconductivity can fully be ensured, it is preferable to contain the flaky graphite whose average particle diameter (D50) is 1-15 micrometers. The ratio of active material: carbon material in which a substance containing Si is coated with a conductive substance is preferably 1: 9 to 10: 0.

負極活物質の結着剤としては、ポリアミドイミド、ポリイミド、アクリル樹脂などを用いることができる。   As a binder for the negative electrode active material, polyamideimide, polyimide, acrylic resin, or the like can be used.

正極活物質としては、二酸化マンガン、五酸化バナジウムのような遷移金属化合物や、硫化鉄、硫化チタンのような遷移金属カルコゲン化合物、又はCo、Ni及びMnから選択される一種以上の遷移金属とリチウムの複合酸化物、これらの複合酸化物にさらにAl、Fe、Cr、Ti、Znなどの金属元素、若しくはP、Bなどの非金属元素を含有した化合物を用いることができる。   As the positive electrode active material, transition metal compounds such as manganese dioxide and vanadium pentoxide, transition metal chalcogen compounds such as iron sulfide and titanium sulfide, or one or more transition metals selected from Co, Ni and Mn and lithium These composite oxides, and compounds containing metal elements such as Al, Fe, Cr, Ti, and Zn, or non-metal elements such as P and B can be used for these composite oxides.

正極及び負極は、前記主要構成成分(正極においては正極活物質、負極においては負極活物質)、およびその他の材料を混練し合剤とし、N−メチルピロリドン,トルエン等の有機溶媒又は水に混合させた後、得られた混合液を銅箔、アルミ箔等の集電体の上に塗布し、または圧着して、300〜400℃程度の温度で、5〜10時間程度加熱処理することにより好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚さ及び任意の形状に塗布することが望ましいが、これらに限定されるものではない。   The positive electrode and the negative electrode are prepared by mixing the main constituents (positive electrode active material for the positive electrode, negative electrode active material for the negative electrode) and other materials into a mixture and mixing with an organic solvent such as N-methylpyrrolidone or toluene or water. Then, the obtained mixed solution is applied on a current collector such as a copper foil or an aluminum foil, or pressure-bonded, and heated at a temperature of about 300 to 400 ° C. for about 5 to 10 hours. Produced suitably. About the application method, for example, it is desirable to apply to any thickness and any shape using means such as roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, etc. It is not limited.

本発明に係る非水電解液蓄電素子に用いる非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3−ジオキサン、1,4−ジオキサン、1,2−ジメトキシエタン、1,4−ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等の単独又はそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。   Examples of the nonaqueous solvent used in the nonaqueous electrolyte storage element according to the present invention include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, and vinylene carbonate; γ-butyrolactone, γ-valerolactone, and the like. Cyclic esters; chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate; chain esters such as methyl formate, methyl acetate, and methyl butyrate; tetrahydrofuran or a derivative thereof; 1,3-dioxane, 1,4- Ethers such as dioxane, 1,2-dimethoxyethane, 1,4-dibutoxyethane and methyldiglyme; nitriles such as acetonitrile and benzonitrile; dioxolane or derivatives thereof; ethylene sulfide, sulfolane, Examples thereof include sultone or a derivative thereof alone or a mixture of two or more thereof, but are not limited thereto.

本発明に係る非水電解液に用いる構成元素にFを含む電解質塩としては、Li塩が好ましく、LiPF、LiBF、LiAsF、LiCF(CF、LiCF(CF、LiCF(CF、LiCF(CF、LiCF(CF)、LiCF(C、LiCFSO、LiN(SOCF、LiN(SOCFCF、LiN(COCF、LiN(COCFCFなどの塩若しくはこれらの混合物を用いることができる。中でも、サイクル特性が良好になることから、LiPFを用いることが好ましい。 As an electrolyte salt containing F as a constituent element used in the nonaqueous electrolytic solution according to the present invention, a Li salt is preferable, and LiPF 6 , LiBF 4 , LiAsF 6 , LiCF (CF 3 ) 5 , LiCF 2 (CF 3 ) 4 , LiCF 3 (CF 3 ) 3 , LiCF 4 (CF 3 ) 2 , LiCF 5 (CF 3 ), LiCF 3 (C 2 F 5 ) 3 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3) 2, LiN (COCF 3) 2, LiN (COCF 2 CF 3) salts such as 2 or may be a mixture thereof. Among them, it is preferable to use LiPF 6 because cycle characteristics are improved.

非水電解液における電解質塩の濃度としては、高い蓄電素子特性を有する非水電解液蓄電素子を確実に得るために、0.1mol/l〜5mol/lが好ましく、さらに好ましくは、0.5mol/l〜2.5mol/lである。   The concentration of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol / l to 5 mol / l, more preferably 0.5 mol in order to reliably obtain a non-aqueous electrolyte storage element having high storage element characteristics. / L to 2.5 mol / l.

本発明においては、LiPFなどの構成元素にFを含む塩を電解質塩として用いた非水電解液に含まれるHOとHFとを低減する目的で、5Å以下の孔径を有するゼオライトを非水電解液に添加する。LiPF系電解液に含まれるHOが減少すれば、HFの発生は減少する。また、ゼオライトは、HOのみならずHFを吸着すると思われ、その近傍に水素結合によってHO及びHFが集まり、充放電の阻害要因が減少し、良好なサイクル特性を示すと推定される。
ここで、非水電解液中にゼオライトが含まれているとは、蓄電素子内部でゼオライトが非水電解液と少なくとも接している状態を表している。例えば、蓄電素子の組立工程において、ゼオライトを蓄電素子内に配置しておき、非水電解液を注液することでゼオライトと非水電解液とが接触する様にしても良く、また、予め非水電解液中にゼオライトを含ませておき、この非水電解液を蓄電素子に注液しても良い。後者の場合、予め非水電解液中にゼオライトを含ませておくことにより、蓄電素子に注液する時点において、電解液中に含まれるHOとHFとを十分に減少させることができるため、蓄電素子の初期効率改善の点で好ましい。
In the present invention, for the purpose of reducing H 2 O and HF contained in a non-aqueous electrolyte using a salt containing F as a constituent element such as LiPF 6 as an electrolyte salt, a zeolite having a pore size of 5 mm or less is not used. Add to water electrolyte. If the amount of H 2 O contained in the LiPF 6 electrolyte decreases, the generation of HF decreases. In addition, it is estimated that zeolite adsorbs not only H 2 O but also HF, and H 2 O and HF are gathered by hydrogen bonds in the vicinity thereof, thereby inhibiting charging / discharging inhibition factors and showing good cycle characteristics. The
Here, the phrase “zeolite is contained in the nonaqueous electrolytic solution” represents a state in which the zeolite is at least in contact with the nonaqueous electrolytic solution inside the electric storage element. For example, in the assembly process of the power storage element, the zeolite may be placed in the power storage element and the nonaqueous electrolyte solution may be injected so that the zeolite and the nonaqueous electrolyte solution come into contact with each other. Zeolite may be included in the water electrolyte, and this non-aqueous electrolyte may be injected into the electricity storage device. In the latter case, H 2 O and HF contained in the electrolytic solution can be sufficiently reduced at the time when the non-aqueous electrolytic solution is preliminarily filled with the zeolite at the time of pouring into the storage element. From the viewpoint of improving the initial efficiency of the electricity storage device.

ゼオライトの粒子径は、充放電特性の観点から、蓄電素子内においてセパレーターの細孔に入り込んで、孔が塞がれることを防止するため、蓄電素子に用いるセパレーターが有する細孔径よりも大きいことが好ましい。例えば、30nm以上であることが好ましく、500nm以上とすることがより好ましい。
予め非水電解液中にゼオライトを含ませておき、この電解液を蓄電素子に注液する場合には、蓄電素子の注液口よりも粒子径を小さくする必要がある。例えば、2mm以下とすることが好ましい。
なお、ここで示す粒子径とは、レーザー回折散乱式粒子径測定装置において測定された粒度分布における累積体積が50%となる粒子径(D50)である。
From the viewpoint of charge / discharge characteristics, the particle size of the zeolite may be larger than the pore size of the separator used in the electricity storage device in order to prevent the pores from entering and entering into the pores of the separator in the electricity storage device. preferable. For example, it is preferably 30 nm or more, and more preferably 500 nm or more.
In the case where zeolite is previously contained in the nonaqueous electrolytic solution and this electrolytic solution is injected into the electric storage element, it is necessary to make the particle diameter smaller than the injection port of the electric storage element. For example, it is preferably 2 mm or less.
In addition, the particle diameter shown here is a particle diameter (D50) which the accumulation volume in a particle size distribution measured in the laser diffraction scattering type particle diameter measuring apparatus becomes 50%.

また、ゼオライトとしては、アルミノシリケートから構成されるものを用いることが好ましい。中でも、後述の実施例で使用するモレキュラーシーブ(商品名)が特に好ましい。
なお、モレキュラーシーブは、アメリカのLinde Co.が工業的に製造している合成フッ石の商品名であり、均一細孔径をもった特殊な吸着材である。4A、5A、13Xなどの種類がある。天然産フッ石類と結晶構造は類似しているが、化学的組成は異なり、その実験式は4Aが0.99NaO・1.0Al・1.85SiO・5.1HO、13Xが0.9NaO・1.0Al・2.55SiO・6.1HO、また5Aは4AのNaの一部をCaで置換したものである。(化学大事典より)
Moreover, it is preferable to use what is comprised from an aluminosilicate as a zeolite. Among these, a molecular sieve (trade name) used in Examples described later is particularly preferable.
The molecular sieve is an American Linde Co. Is a trade name of synthetic fluorite manufactured industrially, and is a special adsorbent with a uniform pore size. There are 4A, 5A, and 13X types. Crystal structure as naturally occurring fluoride stone such are similar, the chemical composition is different, its empirical formula 4A is 0.99Na 2 O · 1.0Al 2 O 3 · 1.85SiO 2 · 5.1H 2 O , 13X is 0.9Na 2 O · 1.0Al 2 O 3 · 2.55SiO 2 · 6.1H 2 O, and 5A is obtained by substituting a part of 4A Na with Ca. (From the Chemical Dictionary)

非水電解液へのゼオライトの添加量は、放電容量及びクーロン効率を増加させるために、1〜10質量%とすることが好ましい。
後述する実施例においては、SiO−C負極において、水分量及びHFの減少の効果によって放電容量及びクーロン効率の増加が確認できた。これは、モレキュラーシーブの添加により、SiとHFとの反応、例えば、SiO+4HF→SiF+2HOの反応を防ぐことができるためと推定される。上記のようにHFによってSiO−Cに含まれるSiOが溶出すると新生Si表面が生成され、この新生Si表面がHOによって酸化され、SiOが形成され、反応活性のあるSiが減少すると考えられるが、特定孔径(5Å以下)のモレキュラーシーブの添加により、これを防ぐことができ、クーロン効率が向上する。
The amount of zeolite added to the non-aqueous electrolyte is preferably 1 to 10% by mass in order to increase discharge capacity and coulomb efficiency.
In Examples to be described later, in the SiO—C negative electrode, it was confirmed that the discharge capacity and the Coulomb efficiency were increased by the effect of the decrease in the moisture content and HF. This is presumably because the addition of molecular sieve can prevent the reaction between Si and HF, for example, the reaction of SiO 2 + 4HF → SiF 4 + 2H 2 O. When SiO 2 contained in SiO—C is eluted by HF as described above, a new Si surface is generated, and this new Si surface is oxidized by H 2 O to form SiO 2 , thereby reducing reactive active Si. Although it is considered, this can be prevented by adding a molecular sieve having a specific pore size (5 mm or less), and the coulomb efficiency is improved.

図1に示すように、SiO−C負極においては、モレキュラーシーブの孔径を4〜5Åとすることにより、10Åの孔径のものより高いクーロン効率を示す。これに対して、Gr負極においては、クーロン効率は、モレキュラーシーブの孔径に依存しない。   As shown in FIG. 1, in the SiO—C negative electrode, the molecular sieve has a pore diameter of 4 to 5 mm, so that the Coulomb efficiency is higher than that of the diameter of 10 mm. On the other hand, in the Gr negative electrode, the Coulomb efficiency does not depend on the pore size of the molecular sieve.

その他の本発明に係る非水電解液蓄電素子の構成要素について説明する。
セパレータとしては、織布、不織布、合成樹脂微多孔膜等を用いることができ、特に、合成樹脂微多孔膜が好適に用いることができる。その材質としては、ナイロン、セルロースアセテート、ニトロセルロース、ポリスルホン、ポリアクリロニトリル、ポリフッ化ビニリデン、およびポリプロピレン、ポリエチレン、ポリブテン等のポリオレフィンが例示される。なかでもポリエチレンおよびポリプロビレン製微多孔膜、またはこれらを複合した微多孔膜などのポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗等の面で好適に用いられる。
Other components of the nonaqueous electrolyte storage element according to the present invention will be described.
As the separator, a woven fabric, a non-woven fabric, a synthetic resin microporous membrane, or the like can be used. In particular, a synthetic resin microporous membrane can be suitably used. Examples of the material include nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, and polyolefins such as polypropylene, polyethylene, and polybutene. Among these, polyolefin microporous membranes such as polyethylene and polypropylene microporous membranes, or microporous membranes composed of these are preferably used in terms of thickness, membrane strength, membrane resistance, and the like.

また、蓄電素子の形状は特に限定されるものではなく、本発明は、角形、楕円形、コイン形、ボタン形、シート形蓄電素子等の様々な形状の非水電解液蓄電素子に適用可能である。   In addition, the shape of the electricity storage element is not particularly limited, and the present invention can be applied to non-aqueous electrolyte electricity storage elements having various shapes such as a square shape, an ellipse shape, a coin shape, a button shape, and a sheet shape electricity storage device. is there.

(実施例1)
<Siを含む負極の作製>
Siを含む活物質として、カーボンで被覆された酸化ケイ素(カーボン含有率5.9質量%、D50=4.5μm)、炭素材料として、流動法窒素ガス吸着法により測定されたBET比表面積が7.7m/gであり、粒径(D50)が10μmの鱗片状黒鉛(TIMCAL Ltd. 製、SFG−15)を使用した。
まず、Siを含む活物質と炭素材料とを質量比が、Siを含む活物質:炭素材料=4:6となるように混合した。続いて、結着剤であるポリイミドを、Siを含む活物質と炭素材料との混合物と結着剤との質量比が(Siを含む活物質+炭素材料):結着剤=9:1となるように混合した。さらに、分散媒としてN−メチルピロリドンを適量加えて混練分散し、塗布ペーストを調製した。該塗布ペーストを厚さ20μmの銅箔集電体の片面に塗布した後、ロールプレスを行った後に,350℃で5時間の真空乾燥を行うことで非水電解液蓄電素子用電極を作製した。Siを含む活物質を含む合剤層のプレス後の厚みは28μm、塗布重量は3mg/cmであった。
Example 1
<Production of negative electrode containing Si>
As an active material containing Si, silicon oxide coated with carbon (carbon content 5.9 mass%, D50 = 4.5 μm), and as a carbon material, a BET specific surface area measured by a flow method nitrogen gas adsorption method is 7 .7m a 2 / g, particle size (D50) was used 10μm of flake graphite (TIMCAL Ltd. Ltd., SFG-15).
First, the active material containing Si and the carbon material were mixed so that the mass ratio was Si-containing active material: carbon material = 4: 6. Subsequently, the polyimide, which is a binder, has a mass ratio of a mixture of an active material containing Si and a carbon material and a binder (active material containing Si + carbon material): binder = 9: 1. It mixed so that it might become. Furthermore, an appropriate amount of N-methylpyrrolidone was added as a dispersion medium and kneaded and dispersed to prepare a coating paste. The coating paste was applied to one side of a copper foil current collector having a thickness of 20 μm, and then roll-pressed, followed by vacuum drying at 350 ° C. for 5 hours to produce an electrode for a nonaqueous electrolyte storage element. . The thickness of the mixture layer containing the active material containing Si after pressing was 28 μm, and the coating weight was 3 mg / cm 2 .

<非水電解液蓄電素子の組み立て>
対極にはリチウム金属を使用した。ステンレス鋼(商品名:SUS316)製の端子を取り付けたステンレス鋼(商品名:SUS316)製のメッシュ集電体の両面に、厚さ300μmのリチウム金属箔を貼り合わせてプレス加工したものを対極とした。また、リチウム金属片をステンレス鋼(商品名:SUS316)製の集電棒の先端に貼り付けたものを参照極とした。
<Assembly of nonaqueous electrolyte storage element>
Lithium metal was used for the counter electrode. A counter electrode having a stainless steel (trade name: SUS316) mesh current collector attached with a stainless steel (trade name: SUS316) mesh current collector and press-bonded with 300 μm thick lithium metal foil. did. Moreover, what attached the lithium metal piece to the front-end | tip of the collector rod made from stainless steel (brand name: SUS316) was made into the reference electrode.

エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートを体積比6:6:7の割合で混合した混合溶媒に、含フッ素系電解質塩であるLiPFを1.0mol/lの濃度で溶解させ、非水電解液を作製した。続いて、添加剤として4Åの孔径を有するモレキュラシーブとして、水澤化学工業社製「モレキュラーシーブ3A(商品名)(粉末、粒径10μm以下、表面の細孔の孔径0.4nm)」を350℃で10時間の真空乾燥を行い水分を取り除いた状態で電解液に添加した。添加量は非水電解液に対して10質量%とした。その後、モレキュラシーブを含む電解液を5日間静置した。非水電解液中の水分量は40ppm未満であった。 In a mixed solvent in which ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate are mixed at a volume ratio of 6: 6: 7, LiPF 6 that is a fluorine-containing electrolyte salt is dissolved at a concentration of 1.0 mol / l, and non-aqueous electrolysis is performed. A liquid was prepared. Subsequently, “Molecular sieve 3A (trade name) (powder, particle diameter of 10 μm or less, pore diameter of surface pore 0.4 nm)” manufactured by Mizusawa Chemical Industry Co., Ltd. was used as a molecular sieve having a pore diameter of 4 mm as an additive at 350 ° C. It added to electrolyte solution in the state which vacuum-dried for 10 hours and removed the water | moisture content. The addition amount was 10% by mass with respect to the non-aqueous electrolyte. Thereafter, the electrolytic solution containing molecular sieve was allowed to stand for 5 days. The amount of water in the non-aqueous electrolyte was less than 40 ppm.

露点−40℃以下のArボックス中においてガラス製の非水電解液蓄電素子を組み立てた。予め容器の蓋部分に導線部を固定した金メッキクリップに対極と同じ面積になるように切断した非水電解液蓄電素子用電極と対極と参照極とを各1枚ずつ挟んだ後、非水電解液蓄電素子用電極と対極が対向するように固定した。参照極は対極から見て電極の裏側となる位置に固定した。次に、前記モレキュラシーブを含む一定量の電解液を入れたポリプロピレン製カップをガラス容器内に設置し、そこに非水電解液蓄電素子用電極、対極及び参照極が浸かるように蓋をすることで非水電解液蓄電素子を組み立てた。   A nonaqueous electrolyte storage element made of glass was assembled in an Ar box having a dew point of −40 ° C. or lower. A non-aqueous electrolyte storage element electrode, a counter electrode, and a reference electrode, which have been cut so as to have the same area as the counter electrode, are sandwiched by a gold-plated clip whose lead wire portion is fixed in advance on the lid of the container, and then non-aqueous The liquid storage element electrode and the counter electrode were fixed so as to face each other. The reference electrode was fixed at a position on the back side of the electrode when viewed from the counter electrode. Next, a polypropylene cup containing a certain amount of electrolyte containing the molecular sieve is placed in a glass container, and a lid is placed so that the electrode for the nonaqueous electrolyte storage element, the counter electrode, and the reference electrode are immersed therein. A nonaqueous electrolyte storage element was assembled.

(実施例2)
非水電解液を作製する工程において、電解液に添加するモレキュラシーブとして、ナカライテスク社製「モレキュラーシーブ5A(商品名)(円筒状、直径3.2mm、表面の細孔の孔径0.5nm)」を使用したことを除いては、実施例1と同様にして実施例2の非水電解液蓄電素子を作製した。
(Example 2)
“Molecular sieve 5A (trade name) (cylindrical shape, diameter 3.2 mm, pore diameter of surface pore 0.5 nm)” manufactured by Nacalai Tesque, Inc. as a molecular sieve to be added to the electrolyte in the step of preparing the non-aqueous electrolyte A non-aqueous electrolyte storage element of Example 2 was produced in the same manner as Example 1 except that was used.

(比較例1)
非水電解液を作製する工程において、電解液に添加するモレキュラシーブとして、ナカライテスク社製「モレキュラーシーブ13X(商品名)(円筒状、直径3.2mm、表面の細孔の孔径1.0nm)」を使用したことを除いては、実施例1と同様にして比較例1の非水電解液蓄電素子を作製した。
(Comparative Example 1)
“Molecular sieve 13X (trade name) (cylindrical, diameter: 3.2 mm, pore diameter of surface pore: 1.0 nm)” manufactured by Nacalai Tesque as a molecular sieve to be added to the electrolyte in the step of preparing the non-aqueous electrolyte A non-aqueous electrolyte storage element of Comparative Example 1 was produced in the same manner as Example 1 except that was used.

(比較例2)
非水電解液を作製する工程において、添加剤を40〜100Åの孔径を所有するシリカゲルにしたことを除いては、実施例1と同様にして比較例2の非水電解液蓄電素子を作製した。
(Comparative Example 2)
A nonaqueous electrolyte storage element of Comparative Example 2 was prepared in the same manner as in Example 1 except that in the step of preparing the nonaqueous electrolyte, the additive was silica gel having a pore size of 40 to 100 mm. .

(比較例3)
非水電解液を作製する工程において、電解液に添加するモレキュラシーブをモレキュラーシーブ5Aとし、さらに、ポリプロピレン製カップに電解液を注液する直前に、この円筒状のモレキュラシーブを予め加熱乾燥した篩に電解液を通すことで取り除いた。このモレキュラーシーブを取り除いた電解液を用いたことを除いては、実施例1と同様にして比較例3の非水電解液蓄電素子を作製した。
(Comparative Example 3)
In the step of preparing the non-aqueous electrolyte, the molecular sieve to be added to the electrolyte is the molecular sieve 5A, and the cylindrical molecular sieve is electrolyzed on a sieve that has been dried by heating immediately before injecting the electrolyte into a polypropylene cup. It was removed by passing the liquid. A non-aqueous electrolyte storage element of Comparative Example 3 was produced in the same manner as in Example 1 except that the electrolytic solution from which the molecular sieve was removed was used.

(比較例4)
非水電解液を作製する工程において、電解液に添加するモレキュラシーブをモレキュラーシーブ5Aとし、さらに、ポリプロピレン製カップに電解液を注液する4日前に、比較例3と同様にして、この円筒状のモレキュラシーブを電解液から取り除いた。モレキュラーシーブを取り除いた電解液は、Ar雰囲気中で4日間静置した。このモレキュラーシーブを4日前に取り除いた電解液を用いたことを除いては、実施例1と同様にして比較例4の非水電解液蓄電素子を作製した。
(Comparative Example 4)
In the step of preparing the non-aqueous electrolyte, the molecular sieve to be added to the electrolyte is a molecular sieve 5A, and four days before the electrolyte is poured into a polypropylene cup, this cylindrical shape is formed in the same manner as in Comparative Example 3. The molecular sieve was removed from the electrolyte. The electrolyte solution from which the molecular sieve was removed was allowed to stand for 4 days in an Ar atmosphere. A non-aqueous electrolyte storage element of Comparative Example 4 was produced in the same manner as in Example 1 except that the electrolyte solution from which the molecular sieve was removed 4 days ago was used.

(比較例5)
非水電解液を作製する工程において、添加剤をCaSOにしたことを除いては、実施例1と同様にして比較例5の非水電解液蓄電素子を作製した。
(Comparative Example 5)
A nonaqueous electrolyte storage element of Comparative Example 5 was prepared in the same manner as in Example 1 except that in the step of preparing the nonaqueous electrolyte, the additive was CaSO 4 .

(比較例6)
非水電解液を作製する工程において、電解液に添加剤を投入しなかったことを除いては、実施例1と同様にして比較例6の非水電解液蓄電素子を作製した。
(Comparative Example 6)
A nonaqueous electrolyte storage element of Comparative Example 6 was prepared in the same manner as in Example 1 except that the additive was not added to the electrolyte in the step of preparing the nonaqueous electrolyte.

<黒鉛からなる負極の作製>
活物質として黒鉛、結着剤としてスチレン−ブタジエン・ゴム(SBR)、増粘剤としてカルボキシメチルセルロース(CMC)を質量比96.7:2.1:1.2の割合(固形分換算)で含有し、水を溶剤とする負極ペーストを作製し、厚さ10μmの帯状の銅箔集電体の両面に塗布した。次に、これを25℃(室温)でローラープレス機により加圧成型して負極活物質層を成型した後、25℃(室温)で14時間減圧乾燥して、極板中の水分を除去し、黒鉛からなる負極とした。このときの極板の空孔率は34%であった。負極の片面あたりの塗布重量は10.7mg/cmであった。
<Production of negative electrode made of graphite>
Contains graphite as the active material, styrene-butadiene rubber (SBR) as the binder, and carboxymethylcellulose (CMC) as the thickener in a mass ratio of 96.7: 2.1: 1.2 (in terms of solid content) Then, a negative electrode paste using water as a solvent was prepared and applied to both surfaces of a strip-shaped copper foil current collector having a thickness of 10 μm. Next, this was pressure molded by a roller press at 25 ° C. (room temperature) to form a negative electrode active material layer, and then dried under reduced pressure at 25 ° C. (room temperature) for 14 hours to remove moisture in the electrode plate. And a negative electrode made of graphite. At this time, the porosity of the electrode plate was 34%. The coating weight per side of the negative electrode was 10.7 mg / cm 2 .

(比較例7)
非水電解液蓄電素子を組み立てる工程において、非水電解液蓄電素子用電極として上述の黒鉛からなる負極を使用したことを除いては、実施例1と同様にして比較例7の非水電解液蓄電素子を作製した。
(Comparative Example 7)
In the process of assembling the nonaqueous electrolyte storage element, the nonaqueous electrolyte of Comparative Example 7 was used in the same manner as in Example 1 except that the negative electrode made of graphite was used as the electrode for the nonaqueous electrolyte storage element. A storage element was produced.

(比較例8)
非水電解液蓄電素子を組み立てる工程において、非水電解液蓄電素子用電極として上述の黒鉛からなる負極を使用したことを除いては、実施例2と同様にして比較例8の非水電解液蓄電素子を作製した。
(Comparative Example 8)
In the process of assembling the nonaqueous electrolyte storage element, the nonaqueous electrolyte of Comparative Example 8 was used in the same manner as in Example 2 except that the negative electrode made of graphite was used as the electrode for the nonaqueous electrolyte storage element. A storage element was produced.

(比較例9)
非水電解液蓄電素子を組み立てる工程において、非水電解液蓄電素子用電極として上述の黒鉛からなる負極を使用したことを除いては、比較例1と同様にして比較例9の非水電解液蓄電素子を作製した。
(Comparative Example 9)
In the process of assembling the non-aqueous electrolyte storage element, the non-aqueous electrolyte of Comparative Example 9 is the same as Comparative Example 1 except that the negative electrode made of graphite is used as the electrode for the non-aqueous electrolyte storage element. A storage element was produced.

(比較例10)
非水電解液蓄電素子を組み立てる工程において、非水電解液蓄電素子用電極として上述の黒鉛からなる負極を使用したことを除いては、比較例2と同様にして比較例10の非水電解液蓄電素子を作製した。
(Comparative Example 10)
In the process of assembling the non-aqueous electrolyte storage element, the non-aqueous electrolyte of Comparative Example 10 is the same as Comparative Example 2 except that the negative electrode made of graphite is used as the electrode for the non-aqueous electrolyte storage element. A storage element was produced.

(比較例11)
非水電解液蓄電素子を組み立てる工程において、非水電解液蓄電素子用電極として上述の黒鉛からなる負極を使用したことを除いては、比較例3と同様にして比較例11の非水電解液蓄電素子を作製した。
(Comparative Example 11)
In the process of assembling the nonaqueous electrolyte storage element, the nonaqueous electrolyte of Comparative Example 11 was the same as Comparative Example 3 except that the negative electrode made of graphite was used as the electrode for the nonaqueous electrolyte storage element. A storage element was produced.

(比較例12)
非水電解液蓄電素子を組み立てる工程において、非水電解液蓄電素子用電極として上述の黒鉛からなる負極を使用したことを除いては、比較例4と同様にして比較例12の非水電解液蓄電素子を作製した。
(Comparative Example 12)
In the process of assembling the non-aqueous electrolyte storage element, the non-aqueous electrolyte of Comparative Example 12 is the same as Comparative Example 4 except that the negative electrode made of graphite is used as the electrode for the non-aqueous electrolyte storage element. A storage element was produced.

(比較例13)
非水電解液蓄電素子を組み立てる工程において、非水電解液蓄電素子用電極として上述の黒鉛からなる負極を使用したことを除いては、比較例6と同様にして比較例13の非水電解液蓄電素子を作製した。
(Comparative Example 13)
In the process of assembling the non-aqueous electrolyte storage element, the non-aqueous electrolyte of Comparative Example 13 is the same as Comparative Example 6 except that the above-described negative electrode made of graphite is used as the electrode for the non-aqueous electrolyte storage element. A storage element was produced.

(比較例14)
エチレンカーボネートとジエチルカーボネートを体積比5:5の割合で混合した混合溶媒に、含塩素系電解質塩であるLiClOを1.0mol/lの濃度で溶解させ、非水電解液を作製した。続いて、モレキュラシーブ4Aの粉末を350℃で10時間の真空乾燥を行い水分を取り除いた状態で該電解液に添加した。その後、このモレキュラシーブを含む電解液を5日間静置した。該非水電解液中の水分量は40ppm未満とした。
(Comparative Example 14)
In a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 5: 5, LiClO 4 that is a chlorine-containing electrolyte salt was dissolved at a concentration of 1.0 mol / l to prepare a nonaqueous electrolytic solution. Subsequently, the molecular sieve 4A powder was vacuum-dried at 350 ° C. for 10 hours to remove moisture, and then added to the electrolytic solution. Thereafter, the electrolytic solution containing the molecular sieve was allowed to stand for 5 days. The amount of water in the non-aqueous electrolyte was less than 40 ppm.

非水電解液を作製する工程において、実施例1と同様に非水電解液蓄電素子用電極として上述のSiを含む負極を用いる。また、モレキュラシーブ4Aの粉末を上述の含塩素系電解質塩電解液に添加したことを除いては、実施例1と同様にして比較例14の非水電解液蓄電素子を作製した。   In the step of preparing the non-aqueous electrolyte, the negative electrode containing Si described above is used as the electrode for the non-aqueous electrolyte storage element as in Example 1. Further, a nonaqueous electrolytic solution storage element of Comparative Example 14 was produced in the same manner as in Example 1 except that the molecular sieve 4A powder was added to the above-described chlorine-containing electrolyte salt electrolytic solution.

(比較例15)
非水電解液を作製する工程において、含塩素系電解質塩電解液に添加剤を投入しなかったことを除いては、比較例14と同様にして比較例15の非水電解液蓄電素子を作製した。
(Comparative Example 15)
The non-aqueous electrolyte storage element of Comparative Example 15 was prepared in the same manner as Comparative Example 14, except that the additive was not added to the chlorine-containing electrolyte salt electrolyte in the step of preparing the non-aqueous electrolyte. did.

(比較例16)
非水電解液蓄電素子を組み立てる工程において、モレキュラシーブ4Aの粉末を上述の含塩素系電解質塩電解液に投入したことを除いては、比較例7と同様にして比較例16の非水電解液蓄電素子を作製した。
(Comparative Example 16)
In the process of assembling the nonaqueous electrolyte storage element, the nonaqueous electrolyte storage of Comparative Example 16 was the same as Comparative Example 7 except that the powder of molecular sieve 4A was added to the above-described chlorine-containing electrolyte salt electrolyte. An element was produced.

(比較例17)
非水電解液蓄電素子を組み立てる工程において、含塩素系電解質塩電解液に添加剤を投入しなかったことを除いては、比較例7と同様にして比較例17の非水電解液蓄電素子を作製した。
(Comparative Example 17)
In the process of assembling the nonaqueous electrolyte storage element, the nonaqueous electrolyte storage element of Comparative Example 17 was prepared in the same manner as Comparative Example 7 except that no additive was added to the chlorine-containing electrolyte salt electrolyte. Produced.

(初期充放電工程)
上記のようにして作製された非水電解液蓄電素子を、25℃に設定したArボックス中で、以下の初期活性化工程に供した。
ここで、この初期活性化工程に適用した、実施例1〜2及び比較例1〜17の各非水電解液蓄電素子の電流値1CmAの値を表1に記す。
充電条件は、電流値0.1CmA、電位0.02Vの定電流定電圧充電とした。充電時間は通電開始から16時間とした。放電条件は、電流0.2CmA、終止電圧2.0Vの定電流放電とした。
この初期活性化工程の充電電気量および放電電気量を、それぞれ「充電容量(mAh/g)」及び「放電容量(mAh/g)」として表1に示す。また、充電容量に対する、放電容量の割合を、「クーロン効率(%)」として表1に示す。
(Initial charge / discharge process)
The nonaqueous electrolyte storage element produced as described above was subjected to the following initial activation step in an Ar box set at 25 ° C.
Here, Table 1 shows the current value 1 CmA of each of the nonaqueous electrolyte storage elements of Examples 1-2 and Comparative Examples 1-17 applied to the initial activation step.
The charging conditions were constant current and constant voltage charging with a current value of 0.1 CmA and a potential of 0.02 V. The charging time was 16 hours from the start of energization. The discharge conditions were constant current discharge with a current of 0.2 CmA and a final voltage of 2.0 V.
The amount of electricity charged and the amount of electricity discharged in this initial activation step are shown in Table 1 as “charge capacity (mAh / g)” and “discharge capacity (mAh / g)”, respectively. The ratio of the discharge capacity to the charge capacity is shown in Table 1 as “Coulomb efficiency (%)”.

Figure 2015095316
Figure 2015095316

表1より、Si系負極において、5Å以下の孔径を有するモレキュラーシーブ(MQ)がLiPF系非水電解液中にある場合(実施例1及び2)に、非水電解液にMQを存在させない場合(比較例6)と比較してクーロン効率が向上することがわかる。同様のMQで非水電解液を脱水処理後、MQを取り出すと、クーロン効率向上の効果は減少する(比較例3及び4)。また、5Åを超える10Åの孔径を有するMQを非水電解液中に存在させた場合(比較例1)には、MQを存在させない場合(比較例6)と比較してクーロン効率は大きく向上しない。シリカゲル、CaSOを非水電解液中に存在させてもクーロン効率向上の効果はない(比較例2及び5)。電解質塩がFを含む塩(LiPF)でないLiClOを含有する非水電解液においては、非水電解液にMQを存在させた場合でも、存在させない場合でも、クーロン効率に変化はない(比較例14及び15)。 From Table 1, in the Si-based negative electrode, when the molecular sieve (MQ) having a pore size of 5 mm or less is present in the LiPF 6- based non-aqueous electrolyte (Examples 1 and 2), MQ is not present in the non-aqueous electrolyte. It can be seen that the coulomb efficiency is improved as compared with the case (Comparative Example 6). When MQ is taken out after dehydrating the non-aqueous electrolyte with the same MQ, the effect of improving the Coulomb efficiency is reduced (Comparative Examples 3 and 4). Further, when MQ having a pore diameter of 10 mm exceeding 5 mm is present in the non-aqueous electrolyte (Comparative Example 1), the Coulomb efficiency is not greatly improved as compared with the case where MQ is not present (Comparative Example 6). . Even if silica gel and CaSO 4 are present in the non-aqueous electrolyte, there is no effect of improving the Coulomb efficiency (Comparative Examples 2 and 5). In the non-aqueous electrolyte containing LiClO 4 whose electrolyte salt is not a salt containing F (LiPF 6 ), there is no change in the Coulomb efficiency regardless of whether or not MQ is present in the non-aqueous electrolyte (comparison). Examples 14 and 15).

一方、黒鉛(Gr)系負極においては、MQが、LiPF系非水電解液中にある・なしのクーロン効率に与える影響は小さく、非水電解液にMQを存在させた場合は、MQを存在させない場合と比較してクーロン効率向上の効果は小さい(比較例13と比較例7及び8との比較)。同様のMQで非水電解液を脱水処理後、MQを取り出しても、クーロン効率向上の効果は変わらない(比較例11及び12と比較例7及び8との比較)。電解質塩がFを含む塩でないLiClOを含有する非水電解液において、非水電解液にMQを存在させた場合の効果は、LiPF系非水電解液における効果と同程度である(比較例16及び17と比較例7及び13との比較)。したがって、黒鉛(Gr)系負極においては、非水電解液へのMQ添加は、脱水のみの効果と考えられる。また、5Å以下の孔径を有するMQと10Åの孔径を有するMQとの効果の差も大きくない(比較例9と比較例7及び8との比較)。シリカゲルを非水電解液中に存在させてもクーロン効率向上の効果はない(比較例10)。 On the other hand, in the graphite (Gr) -based negative electrode, the effect of MQ on the coulombic efficiency in and without the LiPF 6- based non-aqueous electrolyte is small. When MQ is present in the non-aqueous electrolyte, the MQ is The effect of improving the coulomb efficiency is small compared with the case where it does not exist (comparison between comparative example 13 and comparative examples 7 and 8). Even if MQ is taken out after dehydrating the non-aqueous electrolyte with the same MQ, the effect of improving the Coulomb efficiency does not change (comparison between Comparative Examples 11 and 12 and Comparative Examples 7 and 8). In the non-aqueous electrolyte containing LiClO 4 whose electrolyte salt is not a salt containing F, the effect when MQ is present in the non-aqueous electrolyte is almost the same as the effect in the LiPF 6- based non-aqueous electrolyte (comparison) Comparison of Examples 16 and 17 with Comparative Examples 7 and 13). Therefore, in the graphite (Gr) negative electrode, addition of MQ to the non-aqueous electrolyte is considered to be an effect of only dehydration. Further, the difference in effect between MQ having a pore diameter of 5 mm or less and MQ having a diameter of 10 mm is not large (comparison between Comparative Example 9 and Comparative Examples 7 and 8). Even if silica gel is present in the non-aqueous electrolyte, there is no effect of improving the Coulomb efficiency (Comparative Example 10).

本発明のSiを含む負極を用い、Fを含む塩を電解質塩として含有した非水電解液中に5Å以下の孔径を有するゼオライトが含まれている非水電解液蓄電素子により、高い放電容量とクーロン効率を両立することができるので、この非水電解液蓄電素子は、車載用・定置用などの幅広い用途の非水電解液蓄電素子として有用である。   A non-aqueous electrolyte storage element in which a zeolite having a pore size of 5 mm or less is contained in a non-aqueous electrolyte containing a salt containing F as an electrolyte salt using a negative electrode containing Si of the present invention. Since the coulomb efficiency can be achieved at the same time, the nonaqueous electrolyte storage element is useful as a nonaqueous electrolyte storage element for a wide range of uses such as in-vehicle use and stationary use.

Claims (7)

正極、負極及び非水電解液を備えた非水電解液蓄電素子において、
前記負極は、Siを含む活物質を含有し、かつ、
前記非水電解液は、構成元素にFを含む塩を電解質塩として含有し、非水電解液中に5Å以下の孔径を有するゼオライトが含まれている
ことを特徴とする非水電解液蓄電素子。
In a non-aqueous electrolyte storage element comprising a positive electrode, a negative electrode and a non-aqueous electrolyte,
The negative electrode contains an active material containing Si, and
The non-aqueous electrolyte contains a salt containing F as a constituent element as an electrolyte salt, and the non-aqueous electrolyte contains a zeolite having a pore size of 5 mm or less. .
前記Siを含む活物質は、SiとOとを構成元素に含むことを特徴する請求項1に記載の非水電解液蓄電素子。   The non-aqueous electrolyte storage element according to claim 1, wherein the active material containing Si contains Si and O as constituent elements. 前記Siを含む活物質は、導電性物質で被覆されていることを特徴する請求項1又は2に記載の非水電解液蓄電素子。 The non-aqueous electrolyte storage element according to claim 1, wherein the Si-containing active material is coated with a conductive material. 前記導電性物質は、炭素材料であることを特徴する請求項3に記載の非水電解液蓄電素子。   The non-aqueous electrolyte storage element according to claim 3, wherein the conductive substance is a carbon material. 前記負極は、Siを含む 活物質と共に炭素材料を含有することを特徴とする請求項1〜4のいずれか1項に記載の非水電解液蓄電素子。   The said negative electrode contains a carbon material with the active material containing Si, The non-aqueous-electrolyte electrical storage element of any one of Claims 1-4 characterized by the above-mentioned. 前記構成元素にFを含む塩は、LiPFであることを特徴とする請求項1〜5のいずれか1項に記載の非水電解液蓄電素子。 The non-aqueous electrolyte storage element according to claim 1, wherein the salt containing F as a constituent element is LiPF 6 . 前記ゼオライトは、孔径が4〜5Åであることを特徴とする請求項1〜6のいずれか1項に記載の非水電解液蓄電素子。   The nonaqueous electrolyte storage element according to claim 1, wherein the zeolite has a pore size of 4 to 5 mm.
JP2013233124A 2013-11-11 2013-11-11 Non-aqueous electrolyte storage element Active JP6252119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013233124A JP6252119B2 (en) 2013-11-11 2013-11-11 Non-aqueous electrolyte storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013233124A JP6252119B2 (en) 2013-11-11 2013-11-11 Non-aqueous electrolyte storage element

Publications (2)

Publication Number Publication Date
JP2015095316A true JP2015095316A (en) 2015-05-18
JP6252119B2 JP6252119B2 (en) 2017-12-27

Family

ID=53197601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013233124A Active JP6252119B2 (en) 2013-11-11 2013-11-11 Non-aqueous electrolyte storage element

Country Status (1)

Country Link
JP (1) JP6252119B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012485A1 (en) * 2016-07-13 2018-01-18 栗田工業株式会社 Lithium ion battery
WO2018025422A1 (en) * 2016-08-03 2018-02-08 栗田工業株式会社 Electrolyte for nonaqueous electrolyte secondary batteries
WO2018043431A1 (en) * 2016-09-01 2018-03-08 栗田工業株式会社 Lithium ion battery
JP2021061110A (en) * 2019-10-03 2021-04-15 株式会社中村超硬 Lithium ion power storage element and method for manufacturing the same
CN114797762A (en) * 2022-04-18 2022-07-29 广州滨横低碳科技有限公司 Modified molecular sieve, preparation method thereof and application thereof in blast furnace blast dehumidification

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321226A (en) * 1997-05-21 1998-12-04 Asahi Chem Ind Co Ltd Secondary battery
JP2010177025A (en) * 2009-01-29 2010-08-12 Sony Corp Battery
WO2012081327A1 (en) * 2010-12-13 2012-06-21 日本電気株式会社 Lithium ion secondary cell and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321226A (en) * 1997-05-21 1998-12-04 Asahi Chem Ind Co Ltd Secondary battery
JP2010177025A (en) * 2009-01-29 2010-08-12 Sony Corp Battery
WO2012081327A1 (en) * 2010-12-13 2012-06-21 日本電気株式会社 Lithium ion secondary cell and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012485A1 (en) * 2016-07-13 2018-01-18 栗田工業株式会社 Lithium ion battery
JP2018107105A (en) * 2016-07-13 2018-07-05 栗田工業株式会社 Lithium ion battery
CN109478688A (en) * 2016-07-13 2019-03-15 栗田工业株式会社 Lithium ion battery
JP7073643B2 (en) 2016-07-13 2022-05-24 栗田工業株式会社 Lithium ion battery
WO2018025422A1 (en) * 2016-08-03 2018-02-08 栗田工業株式会社 Electrolyte for nonaqueous electrolyte secondary batteries
US20190198926A1 (en) * 2016-08-03 2019-06-27 Kurita Water Industries Ltd. Electrolyte for non-aqueous electrolyte secondary battery
WO2018043431A1 (en) * 2016-09-01 2018-03-08 栗田工業株式会社 Lithium ion battery
JP2018107108A (en) * 2016-09-01 2018-07-05 栗田工業株式会社 Lithium ion battery
JP2021061110A (en) * 2019-10-03 2021-04-15 株式会社中村超硬 Lithium ion power storage element and method for manufacturing the same
CN114797762A (en) * 2022-04-18 2022-07-29 广州滨横低碳科技有限公司 Modified molecular sieve, preparation method thereof and application thereof in blast furnace blast dehumidification

Also Published As

Publication number Publication date
JP6252119B2 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
KR101578262B1 (en) Porous silicon based electrode active material and secondary battery comprising the same
KR101634843B1 (en) Electrode active material for secondary battery
JP4445537B2 (en) Secondary battery, battery pack and car
WO2015111710A1 (en) Non-aqueous secondary battery
JP5260887B2 (en) Nonaqueous electrolyte secondary battery
WO2012081327A1 (en) Lithium ion secondary cell and manufacturing method thereof
JP2013045759A (en) Nonaqueous electrolyte secondary battery and manufacturing method of the same
JP5813336B2 (en) Nonaqueous electrolyte secondary battery
JP5890886B1 (en) Lithium manganese iron phosphate positive electrode active material and method for producing the same
JP6252119B2 (en) Non-aqueous electrolyte storage element
JP2010257689A (en) Lithium sulfur cell
WO2012111547A1 (en) Non-aqueous electrolyte secondary battery and method for producing same
JPWO2018180017A1 (en) Battery electrode and lithium ion secondary battery
CN111386621A (en) Binder for lithium-sulfur battery, positive electrode comprising same, and lithium-sulfur battery
JP2012221565A (en) Separator for nonaqueous secondary battery and nonaqueous secondary battery
JP2004349079A (en) Lithium secondary battery electrode structure, manufacturing method of same, secondary battery having the structure and manufacturing method of same
JP5528564B2 (en) Nonaqueous electrolyte secondary battery
JP6184200B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
EP2846383A1 (en) Conductive material for secondary battery and electrode for lithium secondary battery comprising same
JP2005174655A (en) Lithium battery
JP6862091B2 (en) Method for manufacturing negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, and negative electrode active material
JP5032038B2 (en) Non-aqueous electrolyte battery electrode material, non-aqueous electrolyte battery and battery pack
US20180337398A1 (en) Negative electrode active material and nonaqueous secondary battery
JP5662746B2 (en) Lithium ion secondary battery
JP4099970B2 (en) Secondary power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171113

R150 Certificate of patent or registration of utility model

Ref document number: 6252119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150