JP2015078797A - Energy interchange management system, energy interchange management method and energy interchange management program - Google Patents

Energy interchange management system, energy interchange management method and energy interchange management program Download PDF

Info

Publication number
JP2015078797A
JP2015078797A JP2013216541A JP2013216541A JP2015078797A JP 2015078797 A JP2015078797 A JP 2015078797A JP 2013216541 A JP2013216541 A JP 2013216541A JP 2013216541 A JP2013216541 A JP 2013216541A JP 2015078797 A JP2015078797 A JP 2015078797A
Authority
JP
Japan
Prior art keywords
hot water
amount
consumption
operation plan
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013216541A
Other languages
Japanese (ja)
Inventor
安芸 裕久
Hirohisa Aki
裕久 安芸
弘 飯高
Hiroshi Iitaka
弘 飯高
晃伸 村田
Akinobu Murata
晃伸 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2013216541A priority Critical patent/JP2015078797A/en
Publication of JP2015078797A publication Critical patent/JP2015078797A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies

Landscapes

  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To interchange hot water among residences having different types of water heaters in consideration of characteristics thereof and to interchange energy in accordance with an operation plan established on the basis of demand predictions of required quantities of hot water storage tanks and planned interchange quantities of respective residences.SOLUTION: In an energy interchange management system 10, control devices 12to 12installed in residences 11to 11predict hot water consumption from a next day onward in consideration of hot water consumption, data on past consumption and a weather forecast of the next day and determines quantities of water to be boiled with solar water heaters. Also, a management device establishes an optimal facility operation plan on the basis of prediction results in consideration of energy interchange among neighboring residences through intercommunication, collaboration and cooperation of the control devices 12to 12. Then, the energy interchange management system 10 operates facilities in respective residences in accordance with the facility operation plan in a manner that interchanges hot water from a residence with excess hot water to the residence with shortage in the hot water even among the residences having different types of water heaters and thereby achieving optimal energy interchange in an entire residence group.

Description

本発明はエネルギ融通マネジメントシステム、エネルギ融通マネジメント方法及びエネルギ融通マネジメントプログラムに係り、特に複数の住戸で温水を融通・共有するためのエネルギ融通マネジメントシステム、エネルギ融通マネジメント方法及びエネルギ融通マネジメントプログラムに関する。   The present invention relates to an energy accommodation management system, an energy accommodation management method, and an energy accommodation management program, and more particularly to an energy accommodation management system, an energy accommodation management method, and an energy accommodation management program for accommodating and sharing hot water among a plurality of dwelling units.

近年、各需要家の熱エネルギや電気エネルギなどのエネルギの需要量の益々の増大と、それに伴う費用増大に対応するため、必要エネルギ量が不足する場合に余剰のエネルギの融通を可能とするエネルギ融通マネジメントシステムの重要性が増している。   In recent years, in order to cope with the increasing demand for energy such as thermal energy and electrical energy of each consumer and the associated increase in cost, energy that allows the surplus energy to be accommodated when the required energy is insufficient. The importance of flexible management systems is increasing.

特許文献1には、燃料電池を用いて発電するとともにその発電の際に生じる排熱を給湯又は暖房等に利用するコジェネレーションシステムと、ガスエンジンを用いた熱電併給システムとからなるハイブリッドシステムにおいて、電力需要量をすべてコジェネレーションシステムで賄うと仮定した場合の不足熱量を熱電併給システムで賄うのに必要な時間だけ熱電併給システムを稼働させることにより、熱余り状態であっても熱不足状態であっても、相互に電力又は熱を補完し合う、エネルギ需給バランス調整システムが開示されている。   In Patent Document 1, in a hybrid system including a cogeneration system that generates power using a fuel cell and uses exhaust heat generated during the power generation for hot water supply or heating, and a combined heat and power system using a gas engine, By operating the combined heat and power system only for the time necessary to cover the shortage of heat with the cogeneration system, assuming that all the electricity demand is covered by the cogeneration system, even if there is a surplus heat, the system is in a state of insufficient heat. However, an energy supply and demand balance adjustment system that mutually complements electric power or heat is disclosed.

また、特許文献2には、熱電併給装置の発電電力を電気機器等の電力負荷に供給するとともに、発電時に発生する排熱を温水熱に変換して回収し、貯湯タンクに蓄熱し、給湯部や暖房機器等の熱負荷に供給するシステムにおいて、エネルギ消費に関する所定の指標に対する第1の評価と、ユーザが設定した運転時間帯に関する第2の評価のそれぞれの評価結果が一定の基準を満足するように熱電併給装置の運転計画を作成することで、熱電併給装置の運転時間帯に関する外部から入力されたユーザ要望等を反映しつつ、省エネルギ、省CO2排出量、省エネルギコストでの熱電併給装置の運転ができるようにしたシステムが開示されている。 Further, Patent Document 2 supplies the power generated by the combined heat and power supply device to a power load such as an electric device, converts exhaust heat generated during power generation into hot water heat, collects it, stores it in a hot water storage tank, In a system for supplying heat load such as a heating appliance or the like, each evaluation result of a first evaluation for a predetermined index relating to energy consumption and a second evaluation relating to an operation time zone set by a user satisfies a certain standard. In this way, the operation plan of the combined heat and power device can be used to reflect the user's requests etc. input from the outside regarding the operation time zone of the combined heat and power device, while saving energy, reducing CO 2 emissions, and reducing energy consumption. A system that enables operation of the co-feed device is disclosed.

さらに、特許文献3には、各住宅に設けられた住宅で使用する電力を蓄積する蓄電池に蓄電された電力のうち、他の住宅へ融通する電力量を決定し、その決定結果に基づいて、蓄電池の蓄電量に余裕がある住宅に設けられた融通制御手段へ電力の融通を要求して蓄電池の電力が不足する住宅へ電力を融通するように、複数の住宅電力供給装置間の電力の流れを制御するようにしたエネルギ融通マネジメントシステムが開示されている。   Furthermore, Patent Document 3 determines the amount of power to be accommodated in other houses out of the power stored in the storage battery that stores the power used in the houses provided in each house, and based on the determination result, The flow of power between multiple residential power supply devices so that the accommodation control means provided in a house with sufficient storage capacity of the storage battery requires the accommodation of the power and the electricity is accommodated to the house where the storage battery power is insufficient An energy interchange management system that controls the above is disclosed.

特開2007−040613号公報JP 2007-040613 A 特開2012−209113号公報JP 2012-209113 A 特開2010−220428号公報JP 2010-220428 A

しかしながら、特許文献1記載のエネルギ需給バランス調整システムでは、例えば集合住宅に適用した場合、集合住宅の各階にコジェネレーションシステムである第1のエネルギ生成装置を配置し、ガスエンジンを用いた熱電併給システムである第2のエネルギ生成装置を所定の階に集中配置する構成である。第1及び第2のエネルギ生成装置は集合住宅のすべて同じ種類の各住宅に対して使用され、エネルギ(電気エネルギ及び熱エネルギ)はエネルギ生成装置から各住宅へ一方方向に供給される。つまり、特許文献1記載のエネルギ需給バランス調整システムでは、エネルギが供給される機器の種類が異なった住宅が接続されることがないうえ、エネルギを双方向に融通することは想定していない。   However, in the energy supply and demand balance adjustment system described in Patent Document 1, for example, when applied to an apartment house, the first energy generator as a cogeneration system is arranged on each floor of the apartment house, and the combined heat and power system using a gas engine It is the structure which concentrates and arrange | positions the 2nd energy generation apparatus which is. The first and second energy generators are used for each house of the same type, all of the housing complex, and energy (electrical energy and thermal energy) is supplied from the energy generator to each house in one direction. That is, in the energy supply-demand balance adjustment system described in Patent Document 1, houses with different types of devices to which energy is supplied are not connected, and energy is not assumed to be interchanged in both directions.

また、特許文献2記載のシステムは、一需要家における熱電併給システムであり、複数の需要家間でエネルギの融通・共有を行うことはできない。
さらに、特許文献3記載のシステムは、蓄電池を備えた住宅間の電力の融通システムであり、異なる種類の給湯器などを備えた住宅間で温水を融通することはできない。
The system described in Patent Document 2 is a combined heat and power system for one consumer, and energy cannot be interchanged or shared among a plurality of consumers.
Furthermore, the system described in Patent Document 3 is a power interchange system between houses equipped with storage batteries, and hot water cannot be interchanged between houses equipped with different types of water heaters.

本発明は以上の点に鑑みなされたもので、異なる種類の給湯器を備えた住宅間でも温水を給湯器の特性を勘案して融通し得るエネルギ融通マネジメントシステム、エネルギ融通マネジメント方法及びエネルギ融通マネジメントプログラムを提供することを目的とする。
また、本発明の他の目的は、各住宅の貯湯槽の必要貯湯量や予定融通量等の需給予測を行って立案した運用計画に従ってエネルギを融通し得るエネルギ融通マネジメントシステム、エネルギ融通マネジメント方法及びエネルギ融通マネジメントプログラムを提供することにある。
The present invention has been made in view of the above points. An energy interchange management system, an energy interchange management method, and an energy interchange management capable of allowing hot water to be interchanged between houses having different types of water heaters in consideration of characteristics of the water heater. The purpose is to provide a program.
In addition, another object of the present invention is to provide an energy interchange management system, an energy interchange management method, and an energy interchange management method capable of accommodating energy in accordance with an operation plan prepared by forecasting demand and supply such as a required hot water storage amount and a planned interchange amount of a hot water tank in each house, and To provide an energy interchange management program.

上記の目的を達成するため、本発明のエネルギ融通マネジメントシステムは、各々給湯器を備える複数の住宅内の各制御装置が予め定めた管理装置との間で相互通信可能に接続されており、運用計画に従って前記複数の住宅間で温水を共有して融通可能とするエネルギ融通マネジメントシステムであって、
前記制御装置は、少なくとも宅内の給湯器に対して給水される水の流量及び温度と、出力される温水の流量及び温度とをそれぞれ測定する測定手段からの測定データに基づき温水消費量を算出する算出手段と、算出された前記温水消費量を過去の消費量データとして前記管理装置に送信し、温水使用時は前記管理装置に温水使用を通知するとともに、前記管理装置からの前記通知に応答する温水制御指令を受信する通信手段と、前記温水制御指令に基づき宅内の前記給湯器の運転を制御する制御手段とを備え、
前記管理装置は、前記複数の住宅からそれぞれ前記過去の消費量データを通信により取得する取得手段と、前記取得手段により取得した前記過去の消費量データと、外部から取得した翌日以降の将来の天気予報データとを用いた予測モデルを実行して、温水消費量と太陽熱温水器による沸かし上げ量の予測を行うエネルギ需給予測手段と、前記エネルギ需給予測手段で得た前記温水消費量と前記太陽熱温水器による沸かし上げ量の各予測データを最適化モデルに与えることで、住宅群全体と各住宅戸別の経済性、省エネルギ及び二酸化炭素排出量の各要素のうち予め定めた一又は二以上の要素の組み合わせの値を最小化し、かつ、異なる種類の給湯器を備える住宅間で温水を融通するとき、前記異なる種類の給湯器の特性を考慮した、予測消費量、温水融通予定量、貯湯式給湯器の温水器沸かし上げ量に関する各住宅間の温水共有の運用計画を立案する運用計画立案手段と、前記住宅から温水使用通知を受信すると、前記運用計画に従い通知元の住宅に対し前記温水制御指令を送信するとともに、前記運用計画を逐次修正する運用計画修正手段とを備えることを特徴とする。
In order to achieve the above object, the energy interchange management system of the present invention is configured such that each control device in a plurality of houses each having a water heater is connected to a predetermined management device so as to be able to communicate with each other. An energy interchange management system that enables sharing by sharing hot water among the plurality of houses according to a plan,
The control device calculates hot water consumption based on measurement data from at least measuring means for measuring the flow rate and temperature of water supplied to at least a hot water heater in the house and the flow rate and temperature of hot water to be output. The calculation means and the calculated hot water consumption are transmitted to the management device as past consumption data, and when using hot water, the management device is notified of the use of hot water and responds to the notification from the management device. A communication means for receiving a hot water control command; and a control means for controlling the operation of the water heater in the house based on the hot water control command;
The management device includes an acquisition unit that acquires the past consumption data from each of the plurality of houses by communication, the past consumption data acquired by the acquisition unit, and a future weather after the next day acquired from the outside. An energy supply / demand prediction unit that executes a prediction model using forecast data and predicts a hot water consumption amount and a boiling amount by a solar water heater, and the hot water consumption amount and the solar hot water obtained by the energy supply / demand prediction unit By providing each model with the prediction data of the amount of boiling by the equipment to the optimization model, one or more elements determined in advance among the elements of economy, energy saving and carbon dioxide emissions for the entire housing group and each house When combining hot water between houses with different types of water heaters, minimizing the value of the combination, predictive consumption considering the characteristics of the different types of water heaters When receiving a hot water use notification from the house, an operation plan drafting means for drafting a hot water sharing operation plan between each house regarding the amount, the hot water interchange plan amount, the hot water heater boiling amount of the hot water storage water heater, The hot water control command is transmitted to the notification source house, and operation plan correction means for correcting the operation plan sequentially is provided.

また、上記の目的を達成するため、本発明のエネルギ融通マネジメントシステムは、各々給湯器を備える複数の住宅内の各制御装置が予め定めた管理装置との間で相互通信可能に接続されており、運用計画に従って前記複数の住宅間で温水を共有して融通可能とするエネルギ融通マネジメントシステムであって、
前記制御装置は、少なくとも宅内の給湯器に対して給水される水の流量及び温度と、出力される温水の流量及び温度とをそれぞれ測定する測定手段からの測定データに基づき温水消費量を算出する算出手段と、算出された前記温水消費量である過去の消費量データと少なくとも翌日以降の将来の天気予報とに基づいて、将来の温水消費量と太陽熱温水器による沸かし上げ量の予測データを生成する予測手段と、前記予測手段により生成された前記温水消費量及び沸かし上げ量の予測データを前記管理装置に送信し、温水使用時は前記管理装置に温水使用を通知するとともに、前記管理装置からの前記通知に応答する温水制御指令を受信する通信手段と、前記温水制御指令に基づき宅内の前記給湯器の運転を制御する制御手段とを備え、
前記管理装置は、前記複数の住宅からそれぞれ送信された前記温水消費量及び沸かし上げ量の予測データを通信により取得する取得手段と、前記取得手段により取得した前記温水消費量及び沸かし上げ量の予測データを用いて予測モデルを実行して、予測消費量、温水融通予定量、貯湯式給湯器の温水器沸かし上げ量に関するエネルギ需給の予測データを生成するエネルギ需給予測手段と、前記エネルギ需給予測手段で生成された前記エネルギ需給の予測データを最適化モデルに与えることで、住宅群全体と各住宅戸別の経済性、省エネルギ及び二酸化炭素排出量の各要素のうち予め定めた一又は二以上の要素の組み合わせの値を最小化し、かつ、異なる種類の給湯器を備える住宅間で温水を融通するとき、前記異なる種類の給湯器の特性を考慮した、前記予測消費量、前記温水融通予定量及び前記貯湯式給湯器の温水器沸かし上げ量に関する各住宅間の温水共有の運用計画を立案する運用計画立案手段と、前記住宅から温水使用通知を受信すると、前記運用計画に従い通知元の住宅に対し前記温水制御指令を送信するとともに、前記運用計画を逐次修正する運用計画修正手段とを備えることを特徴とする。
Moreover, in order to achieve said objective, the energy accommodation management system of this invention is connected so that each control apparatus in several houses each provided with a water heater can mutually communicate with the management apparatus defined beforehand. , An energy accommodation management system that enables sharing by sharing hot water among the plurality of houses according to an operation plan,
The control device calculates hot water consumption based on measurement data from at least measuring means for measuring the flow rate and temperature of water supplied to at least a hot water heater in the house and the flow rate and temperature of hot water to be output. Based on the calculation means, the past consumption data that is the calculated hot water consumption, and at least the future weather forecast for the next day and thereafter, the prediction data of the future hot water consumption and the boiling amount by the solar water heater is generated. And the prediction data of the hot water consumption and the boiling amount generated by the prediction means are transmitted to the management device, and when the hot water is used, the management device is notified of the use of the hot water, and from the management device Communication means for receiving a hot water control command in response to the notification, and a control means for controlling the operation of the water heater in the home based on the hot water control command,
The management device includes: acquisition means for acquiring prediction data of the hot water consumption and boiling amount transmitted from each of the plurality of houses by communication; and prediction of the hot water consumption and boiling amount acquired by the acquisition means An energy supply and demand prediction means for generating prediction data of energy supply and demand related to a predicted consumption amount, a hot water interchange expected amount, and a hot water heater boiling amount of a hot water storage water heater by executing a prediction model using the data; and the energy supply and demand prediction means By providing the optimization model with the energy supply / demand prediction data generated in step 1, one or two or more of the elements of economic efficiency, energy saving, and carbon dioxide emissions for the entire housing group and each house are determined. When minimizing the value of the combination of elements and accommodating hot water between houses with different types of water heaters, the characteristics of the different types of water heaters In consideration of the predicted consumption amount, the expected hot water interchange amount, and the hot water heater boiling amount of the hot water storage water heater, an operation plan drafting means for planning an operation plan for sharing hot water among houses, and notification of hot water usage from the house Is received, and the operation plan correction means for sequentially correcting the operation plan is provided while transmitting the hot water control command to the notification source house according to the operation plan.

また、上記の目的を達成するため、本発明のエネルギマネジメント方法は、各々給湯器を備える複数の住宅内の各制御装置が予め定めた管理装置との間で相互通信可能に接続されており、運用計画に従って前記複数の住宅間で温水を共有して融通可能とするエネルギ融通マネジメント方法であって、
前記制御装置により、少なくとも宅内の給湯器に対して給水される水の流量及び温度と、出力される温水の流量及び温度とをそれぞれ測定する測定手段からの測定データに基づき温水消費量を算出する算出ステップと、前記管理装置が、前記算出ステップにより算出された前記温水消費量を過去の消費量データとして前記複数の住宅の各制御装置から取得する取得ステップと、前記管理装置が、前記取得ステップにより取得した前記過去の消費量データと、外部から取得した翌日以降の将来の天気予報データとを用いた予測モデルを実行して、温水消費量と太陽熱温水器による沸かし上げ量の予測を行うエネルギ需給予測ステップと、前記管理装置が、前記エネルギ需給予測ステップで得た前記温水消費量と前記太陽熱温水器による沸かし上げ量の各予測データを最適化モデルに与えることで、住宅群全体と各住宅戸別の経済性、省エネルギ及び二酸化炭素排出量の各要素のうち予め定めた一又は二以上の要素の組み合わせの値を最小化し、かつ、異なる種類の給湯器を備える住宅間で温水を融通するとき、前記異なる種類の給湯器の特性を考慮した、予測消費量、温水融通予定量、貯湯式給湯器の温水器沸かし上げ量に関する各住宅間の温水共有の運用計画を立案する運用計画立案ステップと、前記住宅から温水使用通知を受信すると、前記運用計画に従い通知元の住宅に対し温水制御指令を送信するとともに、前記運用計画を逐次修正する運用計画修正ステップとを含むことを特徴とする。
Moreover, in order to achieve said objective, the energy management method of this invention is connected so that mutual communication is possible between each control apparatus in the some house each provided with a hot water heater with the management apparatus defined beforehand, An energy accommodation management method that enables sharing by sharing hot water among the plurality of houses according to an operation plan,
The control device calculates hot water consumption based on measurement data from measuring means for measuring at least the flow rate and temperature of water supplied to the hot water heater in the house and the flow rate and temperature of the output hot water, respectively. A calculation step; an acquisition step in which the management device acquires the hot water consumption calculated in the calculation step as past consumption data from each control device of the plurality of houses; and the management device includes the acquisition step. Energy for performing prediction model using the past consumption data acquired by the above and future weather forecast data from the next day acquired from the outside to predict the hot water consumption and the amount of boiling by the solar water heater The supply and demand prediction step, and the management device uses the hot water consumption obtained in the energy supply and demand prediction step and the boiling by the solar water heater. By providing each prediction data of the amount to the optimization model, the value of the combination of one or more elements determined in advance among the elements of economic efficiency, energy saving and carbon dioxide emissions for the entire housing group and each house When the hot water is interchanged between houses equipped with different types of water heaters, the estimated consumption, the expected hot water interchange amount, the hot water heater of the hot water storage water heater, taking into account the characteristics of the different types of water heaters When receiving an operation plan planning step for preparing an operation plan for sharing hot water between houses regarding the amount of boiling, and receiving a hot water use notification from the house, a hot water control command is transmitted to the notification source house according to the operation plan, An operation plan correcting step for sequentially correcting the operation plan.

また、上記の目的を達成するため、本発明のエネルギマネジメント方法は、各々給湯器を備える複数の住宅内の各制御装置が予め定めた管理装置との間で相互通信可能に接続されており、運用計画に従って前記複数の住宅間で温水を共有して融通可能とするエネルギ融通マネジメント方法であって、
前記制御装置により、少なくとも宅内の給湯器に対して給水される水の流量及び温度と、出力される温水の流量及び温度とをそれぞれ測定する測定手段からの測定データに基づき温水消費量を算出する算出ステップと、前記制御装置が、前記算出ステップにより算出された前記温水消費量である過去の消費量データと少なくとも翌日以降の将来の天気予報とに基づいて、将来の温水消費量と太陽熱温水器による沸かし上げ量の予測データを生成する予測ステップと、前記管理装置が、前記予測ステップで生成された前記温水消費量及び沸かし上げ量の予測データを前記複数の住宅の各制御装置から取得する取得ステップと、前記管理装置が、前記取得ステップにより取得した前記温水消費量及び沸かし上げ量の予測データを用いて予測モデルを実行して、予測消費量、温水融通予定量、貯湯式給湯器の温水器沸かし上げ量に関するエネルギ需給の予測データを生成するエネルギ需給予測ステップと、前記管理装置が、前記エネルギ需給予測ステップで生成された前記エネルギ需給の予測データを最適化モデルに与えることで、住宅群全体と各住宅戸別の経済性、省エネルギ及び二酸化炭素排出量の各要素のうち予め定めた一又は二以上の要素の組み合わせの値を最小化し、かつ、異なる種類の給湯器を備える住宅間で温水を融通するとき、前記異なる種類の給湯器の特性を考慮した、前記予測消費量、前記温水融通予定量及び前記貯湯式給湯器の温水器沸かし上げ量に関する各住宅間の温水共有の運用計画を立案する運用計画立案ステップと、前記管理装置が、前記住宅から温水使用通知を受信すると、前記運用計画に従い通知元の住宅に対し温水制御指令を送信するとともに、前記運用計画を逐次修正する運用計画修正ステップとを含むことを特徴とする。
Moreover, in order to achieve said objective, the energy management method of this invention is connected so that mutual communication is possible between each control apparatus in the some house each provided with a hot water heater with the management apparatus defined beforehand, An energy accommodation management method that enables sharing by sharing hot water among the plurality of houses according to an operation plan,
The control device calculates hot water consumption based on measurement data from measuring means for measuring at least the flow rate and temperature of water supplied to the hot water heater in the house and the flow rate and temperature of the output hot water, respectively. Based on the calculation step and the past consumption data, which is the hot water consumption calculated by the calculation step, and at least the future weather forecast after the next day, the future hot water consumption and the solar water heater A prediction step of generating prediction data of the amount of boiling by the acquisition, and the management device acquires the prediction data of the hot water consumption and boiling amount generated in the prediction step from each control device of the plurality of houses A prediction model using the prediction data of the hot water consumption amount and boiling amount acquired by the step and the management device in the acquisition step An energy supply / demand prediction step for generating predicted data of energy supply / demand related to predicted consumption, hot water interchange planned amount, hot water heater boiling amount of a hot water storage water heater, and the management device generates in the energy supply / demand prediction step By providing the optimized energy supply / demand prediction data to the optimization model, one or more predetermined elements among the elements of economy, energy saving and carbon dioxide emission of the entire housing group and each house are determined. When the hot water is accommodated between houses provided with different types of water heaters while minimizing the value of the combination, the predicted consumption amount, the expected hot water interchange amount, and the hot water storage, taking into account the characteristics of the different types of water heaters An operation plan planning step for preparing an operation plan for sharing hot water among houses regarding the amount of water heater heated by a water heater, and the management device uses hot water from the house Upon receiving the notification, transmits a hot water control command to the notification source housing in accordance with the operational plan, characterized in that it comprises a management plan correction step of sequentially correcting the operation plan.

また、上記の目的を達成するため、本発明のエネルギ融通マネジメントプログラムは、各々給湯器を備える複数の住宅内の各制御装置が予め定めた管理装置との間で相互通信可能に接続されており、前記管理装置内のコンピュータにより運用計画に従って前記複数の住宅間で温水を共有して融通可能とするエネルギ融通マネジメントを行わせるエネルギ融通マネジメントプログラムであって、前記コンピュータに、
前記制御装置により、少なくとも宅内の給湯器に対して給水される水の流量及び温度と、出力される温水の流量及び温度とをそれぞれ測定する測定手段からの測定データに基づき算出された温水消費量を、過去の消費量データとして前記複数の住宅の各制御装置から取得する取得ステップと、前記取得ステップにより取得した前記過去の消費量データと、外部から取得した翌日以降の将来の天気予報データとを用いた予測モデルを実行して、温水消費量と太陽熱温水器による沸かし上げ量の予測を行うエネルギ需給予測ステップと、前記エネルギ需給予測ステップで得た前記温水消費量と前記太陽熱温水器による沸かし上げ量の各予測データを最適化モデルに与えることで、住宅群全体と各住宅戸別の経済性、省エネルギ及び二酸化炭素排出量の各要素のうち予め定めた一又は二以上の要素の組み合わせの値を最小化し、かつ、異なる種類の給湯器を備える住宅間で温水を融通するとき、前記異なる種類の給湯器の特性を考慮した、予測消費量、温水融通予定量、貯湯式給湯器の温水器沸かし上げ量に関する各住宅間の温水共有の運用計画を立案する運用計画立案ステップと、前記運用計画立案ステップで立案した前記運用計画を実際の運用に基づき、逐次修正する運用計画修正ステップとを実行させることを特徴とする。
Moreover, in order to achieve said objective, the energy interchange management program of this invention is connected so that each control apparatus in several houses each provided with a water heater can mutually communicate with the management apparatus defined beforehand. , An energy accommodation management program for performing energy accommodation management to allow accommodation by sharing hot water among the plurality of houses according to an operation plan by a computer in the management device, the computer comprising:
Hot water consumption calculated by the control device based on measurement data from measurement means for measuring at least the flow rate and temperature of water supplied to the hot water heater in the house and the flow rate and temperature of the output hot water, respectively. An acquisition step of acquiring from the control devices of the plurality of houses as past consumption data, the past consumption data acquired by the acquisition step, and future weather forecast data from the next day acquired from the outside, An energy supply and demand prediction step for predicting the hot water consumption and the amount of boiling by the solar water heater by executing a prediction model using, and the hot water consumption obtained in the energy supply and demand prediction step and the boiling by the solar water heater By giving each prediction data of the amount of increase to the optimization model, the economy, energy saving and carbon dioxide emission of the whole house group and each house Considering the characteristics of the different types of water heaters when minimizing the value of a combination of one or more predetermined elements of each of the elements and allowing hot water to flow between houses with different types of water heaters An operation plan planning step for formulating an operation plan for sharing hot water among the homes regarding the predicted consumption, the expected hot water interchange amount, and the hot water heater heating amount of the hot water storage water heater, and the operation planned in the operation plan planning step. An operation plan correction step of sequentially correcting the plan based on actual operation is executed.

また、上記の目的を達成するため、本発明のエネルギ融通マネジメントプログラムは、各々給湯器を備える複数の住宅内の各制御装置が予め定めた管理装置との間で相互通信可能に接続されており、前記管理装置内のコンピュータにより運用計画に従って前記複数の住宅間で温水を共有して融通可能とするエネルギ融通マネジメントを行わせるエネルギ融通マネジメントプログラムであって、前記コンピュータに、
前記制御装置により、少なくとも宅内の給湯器に対して給水される水の流量及び温度と、出力される温水の流量及び温度とをそれぞれ測定する測定手段からの測定データに基づき算出された温水消費量である過去の消費量データと少なくとも翌日以降の将来の天気予報とに基づいて生成された、将来の温水消費量と太陽熱温水器による沸かし上げ量の予測データを、前記複数の住宅の各制御装置から取得する取得ステップと、前記取得ステップにより取得した前記温水消費量及び沸かし上げ量の予測データを用いて予測モデルを実行して、予測消費量、温水融通予定量、貯湯式給湯器の温水器沸かし上げ量に関するエネルギ需給の予測データを生成するエネルギ需給予測ステップと、前記エネルギ需給予測ステップで生成された前記エネルギ需給の予測データを最適化モデルに与えることで、住宅群全体と各住宅戸別の経済性、省エネルギ及び二酸化炭素排出量の各要素のうち予め定めた一又は二以上の要素の組み合わせの値を最小化し、かつ、異なる種類の給湯器を備える住宅間で温水を融通するとき、前記異なる種類の給湯器の特性を考慮した、前記予測消費量、前記温水融通予定量及び前記貯湯式給湯器の温水器沸かし上げ量に関する各住宅間の温水共有の運用計画を立案する運用計画立案ステップと、前記運用計画立案ステップで立案した前記運用計画を実際の運用に基づき、逐次修正する運用計画修正ステップとを実行させることを特徴とする。
Moreover, in order to achieve said objective, the energy interchange management program of this invention is connected so that each control apparatus in several houses each provided with a water heater can mutually communicate with the management apparatus defined beforehand. , An energy accommodation management program for performing energy accommodation management to allow accommodation by sharing hot water among the plurality of houses according to an operation plan by a computer in the management device, the computer comprising:
Hot water consumption calculated by the control device based on measurement data from measurement means for measuring at least the flow rate and temperature of water supplied to the hot water heater in the house and the flow rate and temperature of the output hot water, respectively. Each of the control devices of the plurality of houses, the prediction data of the future hot water consumption and the amount of boiling by the solar water heater, which are generated based on the past consumption data and the future weather forecast on the next day or later. And a prediction model using the prediction data of the hot water consumption and boiling amount acquired by the acquisition step, the predicted consumption, the hot water interchange expected amount, the hot water heater of the hot water storage type water heater An energy supply / demand prediction step for generating energy supply / demand prediction data related to the boiling amount, and the energy generated in the energy supply / demand prediction step By providing the prediction model of salary to the optimization model, the value of the combination of one or more elements determined in advance among the economic efficiency, energy saving, and carbon dioxide emissions of the entire housing group and each house When hot water is accommodated between houses that are minimized and equipped with different types of hot water heaters, the predicted consumption, the hot water interchange planned amount, and the hot water storage hot water heater are considered in consideration of the characteristics of the different types of hot water heaters. An operation plan drafting step for drafting an operation plan for sharing hot water among the homes related to the amount of water heated, and an operation plan revision step for sequentially correcting the operation plan drafted in the operation plan drafting step based on actual operation; Is executed.

本発明によれば、異なる種類の給湯器を備えた住宅間でも温水を給湯器の特性を勘案して融通できる。また、本発明によれば、各住宅の貯湯槽の必要貯湯量や予定融通量等の需給予測を行って立案した運用計画に従ってエネルギを融通できる。   ADVANTAGE OF THE INVENTION According to this invention, warm water can be interchanged in consideration of the characteristic of a water heater even between houses provided with different types of water heaters. Further, according to the present invention, energy can be accommodated in accordance with an operation plan that is prepared by making a demand and supply prediction such as a necessary hot water storage amount and a planned accommodation amount of a hot water tank in each house.

本発明に係るエネルギ融通マネジメントシステムの一実施形態の概略構成図である。It is a schematic structure figure of one embodiment of an energy interchange management system concerning the present invention. 本発明に係るエネルギ融通マネジメントシステムの一実施形態の配電系統の概略構成図である。It is a schematic block diagram of the power distribution system of one Embodiment of the energy accommodation management system which concerns on this invention. 住宅内の制御装置と配電線との接続例を示す図である。It is a figure which shows the example of a connection of the control apparatus in a house, and a distribution line. CO2ヒートポンプ給湯機の一例の構成図である。An example of a CO 2 heat pump water heater is a configuration diagram of a. 太陽熱温水器の一例の構成図である。It is a block diagram of an example of a solar water heater. コージェネレーションの一例の構成図である。It is a block diagram of an example of cogeneration. 住宅間の温水融通のための配管の一例の概略図である。It is the schematic of an example of the piping for warm water accommodation between houses. 住宅間の温水融通のための配管の他の例の概略図である。It is the schematic of the other example of piping for the warm water accommodation between houses. 本発明に係るエネルギ融通マネジメント方法の第1の実施形態のフローチャート及びその方法が適用される要部の構成図である。It is a block diagram of the principal part to which the flowchart and method of 1st Embodiment of the energy accommodation management method concerning this invention are applied. 本発明に係るエネルギ融通マネジメント方法の第2の実施形態のフローチャート及びその方法が適用される要部の構成図である。It is a block diagram of the principal part to which the flowchart and method of 2nd Embodiment of the energy accommodation management method which concern on this invention are applied. 2住宅における貯湯目標量(単位L/日)と、融通予定量(単位L/日)と、予想消費量(単位L/日)のシミュレーション結果の一例を示す図である。It is a figure which shows an example of the simulation result of the hot water storage target amount (unit L / day) in 2 houses, planned interchange amount (unit L / day), and estimated consumption (unit L / day). 日々の運用結果の一例を示す図である。It is a figure which shows an example of a daily operation result. 図11の住宅A及び住宅Bに対して本実施形態を適用した場合と適用しなかった場合(従来方式)の、全体のエネルギ比と戸別エネルギ比を対比して示す図である。It is a figure which shows the case where this embodiment is not applied with respect to the house A and the house B of FIG.

次に、本発明の実施の形態について図面を参照して説明する。
図1は、本発明に係るエネルギ融通マネジメントシステムの一実施形態の概略構成を示す。本実施形態のエネルギ融通マネジメントシステム10は、n戸の住宅111〜11nのそれぞれが備える制御装置121〜12nにより、温水消費量と過去の消費量データと翌日の天気予報とから翌日の太陽熱温水器による温水消費量を予測し、その予測結果を基に制御装置121〜12n間で通信を行い、制御装置121〜12nの連携・協調のもと近隣住宅とエネルギ融通を考慮した最適な機器運用計画を管理装置が立案し、その機器運用立案計画に従って各住宅内の機器を運転して、異なる種類の給湯器などを備えた住宅間においても電力や温水量に余剰のある住宅から不足する住宅へ電力や温水を融通するとともに、住宅群全体でも最適なエネルギ融通を行うシステムである。なお、本明細書において管理装置とは、制御装置121〜12nのうち予め定めた一の制御装置、又はエージェント技術を用いて全体を管理する専用の装置(エージェント)である。
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic configuration of an embodiment of an energy accommodation management system according to the present invention. The energy accommodation management system 10 of the present embodiment uses the control devices 12 1 to 12 n provided in each of the n houses 11 1 to 11 n to calculate the next day from the hot water consumption, past consumption data, and the next day's weather forecast. of predicting hot water consumption by solar water heater, the prediction result to communicate between the control unit 12 1 to 12 n based on the control unit 12 1 to 12 n cooperation and coordination based on neighboring houses and energy interchange of The management device formulates an optimal equipment operation plan that takes into account the surplus in the amount of electric power and hot water between houses equipped with different types of water heaters, etc., by operating the equipment in each house according to the equipment operation plan It is a system that allows power and hot water to be accommodated from a deficient house to a deficient house, and also provides optimum energy accommodation for the entire housing group. Note that the management device herein is a predetermined one control device of the control device 12 1 to 12 n, or a dedicated device that manages the entire using agent technology (Agent).

図1において、住宅111〜113は太陽光発電パネル131〜133によって発電された電力をパワコンにおいて交流電力に変換して配線を通して分電盤に供給し、さらその分電盤から住宅内の各種電力消費機器に電力が供給される。また、住宅11nは太陽熱温水器14が設置されており、太陽熱温水器14によって発生した温水を住宅内の給湯設備に供給する。このような太陽光発電パネル131〜133や太陽熱温水器14が設置されている場合は、翌日の天候予測も含めてそれらの翌日の消費量を予測して前記機器運用計画に反映させる。 In FIG. 1, houses 11 1 to 11 3 convert power generated by the photovoltaic power generation panels 13 1 to 13 3 into AC power in a power conditioner and supply it to a distribution board through wiring. Power is supplied to various power consuming devices. Further, housing 11 n are installed solar water heater 14 supplies hot water generated by the solar water heater 14 to the hot water supply equipment in homes. When such photovoltaic power generation panels 13 1 to 13 3 and solar water heaters 14 are installed, the consumption of the next day including the weather prediction of the next day is predicted and reflected in the equipment operation plan.

また、住宅111及び113にはヒートポンプ15が設置され、住宅112には燃料電池16及び蓄電池17が設置され、住宅11にはガス給湯器18が設置されている。これにより、エネルギ融通マネジメントシステム10は、蓄電池17の逆潮流しきれない余剰電力を調整し、電力系統安定化に貢献したり、太陽熱温水器14、ガス給湯器18、ヒートポンプ15を各住宅で共有できる。なお、これらの設置例は一例であり、これに限定されるものではない。また、住宅111〜11nは図1では戸建ての住宅を示しているが、本明細書において「住宅」とはこれに限らず、共同住宅や集合住宅における各個別住居も包含するものとする。 In addition, a heat pump 15 is installed in the houses 11 1 and 11 3 , a fuel cell 16 and a storage battery 17 are installed in the house 11 2 , and a gas water heater 18 is installed in the house 11 n . Thereby, the energy accommodation management system 10 adjusts the surplus power that the reverse flow of the storage battery 17 cannot flow, contributes to the stabilization of the power system, and shares the solar water heater 14, the gas water heater 18, and the heat pump 15 with each house. it can. In addition, these installation examples are examples and are not limited thereto. Further, although the houses 11 1 to 11 n are detached houses in FIG. 1, the term “house” is not limited to this in this specification, and includes individual houses in apartment houses and apartment houses. .

図2は、本発明に係るエネルギ融通マネジメントシステムの一実施形態の配電系統の概略構成図を示す。同図中、図1と同一構成部分には同一符号を付し、その説明を省略する。図2において、住宅111〜11nは低圧の配電線21に共通接続され、更に変圧器22を介して高圧又は中圧の配電線23に接続されている。これにより、電力線通信技術を用いて、変圧器22より下流側の住宅111〜11nのそれぞれに設置された制御装置121〜12n間で通信を行うことで、住宅111〜11n間でエネルギ融通を実現できる。 FIG. 2: shows the schematic block diagram of the power distribution system of one Embodiment of the energy accommodation management system which concerns on this invention. In the figure, the same components as those in FIG. In FIG. 2, houses 11 1 to 11 n are commonly connected to a low-voltage distribution line 21 and further connected to a high-voltage or medium-pressure distribution line 23 via a transformer 22. Thereby, it communicates between each of the control devices 12 1 to 12 n installed in each of the houses 11 1 to 11 n on the downstream side of the transformer 22 by using the power line communication technology, and thus the houses 11 1 to 11 n. Energy interchange can be realized.

また、各住宅111〜11nがそれぞれ備える制御装置121〜12nを統括管理するための管理装置が存在する。その管理装置は、前述したように制御装置121〜12nのうち予め定めた一の制御装置であるか、又は例えばエージェント技術を用いて全体を管理するエージェントである。 In addition, there is a management device for comprehensively managing the control devices 12 1 to 12 n provided in the respective houses 11 1 to 11 n . As described above, the management device is a predetermined control device among the control devices 12 1 to 12 n , or is an agent that manages the whole using, for example, agent technology.

図3は、住宅内の制御装置と配電線との接続例を示す。図1及び図2の住宅111〜11nに相当する住宅11内には、図1の制御装置121〜12nに相当する制御装置12が設けられている。制御装置12は、低圧の配電線に接続されており、前述したように電力線通信技術を用いて管理装置との間で通信を行うとともに、同じ住宅11内の各機器からの電力量、給水量、ガス流量などの各種測定データが供給される。また、制御装置12は供給された各種測定データのうち、少なくとも給水される水の流量及び温度と、給湯器から出力される温水の流量及び温度の測定データに基づき温水消費量を算出する。 FIG. 3 shows an example of connection between a control device and a distribution line in a house. A control device 12 corresponding to the control devices 12 1 to 12 n shown in FIG. 1 is provided in the home 11 corresponding to the homes 11 1 to 11 n shown in FIGS. The control device 12 is connected to a low-voltage distribution line, communicates with the management device using the power line communication technology as described above, and also includes the amount of power and water supply from each device in the same house 11. Various measurement data such as gas flow rate are supplied. Moreover, the control apparatus 12 calculates hot water consumption based on the measurement data of the flow volume and temperature of the water supplied at least and the flow volume and temperature of the hot water output from a water heater among the various measurement data supplied.

制御装置12が図示しない管理装置へのデータ送信方法には2つのケースがある。第1のケースは、制御装置12が算出した温水消費量を過去の消費量データとして管理装置に送信し、管理装置において、受信した過去の消費量データと外部よりの天気予報データとに基づいて、温水消費量と太陽熱温水器による沸かし上げ量とを予測させる場合である。第2のケースは、制御装置12が算出した温水消費量を過去の消費量データとし、その過去の消費量データと少なくとも翌日を含む将来の天気予報のデータとに基づいて、将来の温水消費量と太陽熱温水器による沸かし上げ量の予測データを生成して管理装置へ送信する場合である。管理装置は、制御装置12から受信した過去の消費量データ又は上記予測データに基づき、翌日以降の将来の予測消費量と、温水融通予定量と、貯湯式給湯器(ヒートポンプ給湯機やコージェネレーション)が沸かし上げるべき温水器沸かし上げ量の予測データを決定して制御装置12へ送信する。   There are two cases in which the control device 12 transmits data to a management device (not shown). In the first case, the hot water consumption calculated by the control device 12 is transmitted to the management device as past consumption data, and the management device is based on the received past consumption data and the weather forecast data from the outside. In this case, the amount of hot water consumed and the amount of water heated by the solar water heater are predicted. In the second case, the hot water consumption calculated by the control device 12 is used as past consumption data, and the future hot water consumption is based on the past consumption data and future weather forecast data including at least the next day. And the prediction data of the amount of boiling by the solar water heater are generated and transmitted to the management device. The management device is based on the past consumption data received from the control device 12 or the above-mentioned prediction data, the future predicted consumption from the next day, the expected hot water interchange amount, and the hot water storage hot water heater (heat pump water heater or cogeneration). Predicts the water heater boiling amount prediction data to be boiled and transmits it to the control device 12.

次に、住宅内の機器の各例について説明する。
図4は、CO2ヒートポンプ給湯機の一例の構成図を示す。図4において、CO2ヒートポンプ給湯機30は、図1のヒートポンプ15に相当し、ヒートポンプユニット31と貯湯槽32とを備え、交流電力によってヒートポンプユニット31を稼働させ、大気中の熱を吸熱し自然冷媒である二酸化炭素(CO2)を圧縮して熱くさせ、熱交換機を通して貯湯槽32に給水されて貯められる水を加熱し温水とする給湯器である。ヒートポンプユニット31に供給される電力を測定する電力計34、貯湯槽32に供給される水の流量と温度を測定する流量及び温度計35、貯湯槽32から出力される温水の流量と温度を測定する流量及び温度計36、貯湯槽32内の貯湯量を測定する複数の温度計からなる貯湯量測定計37からの各測定データは、CO2ヒートポンプ給湯機30が設けられた住宅内の図3の制御装置12へ供給される。また、管理装置(図示せず)との相互通信により管理装置からの指令に基づきヒートポンプユニット31内の制御部33が制御され、ヒートポンプユニット31の稼働制御ができる構成とされている。
Next, each example of equipment in a house will be described.
FIG. 4 shows a configuration diagram of an example of a CO 2 heat pump water heater. In FIG. 4, a CO 2 heat pump water heater 30 corresponds to the heat pump 15 in FIG. 1, and includes a heat pump unit 31 and a hot water storage tank 32. The heat pump unit 31 is operated by AC power to absorb heat in the atmosphere and naturally. This is a water heater that compresses and heats carbon dioxide (CO 2 ), which is a refrigerant, and supplies the hot water stored in the hot water tank 32 through a heat exchanger to warm water. A power meter 34 for measuring the power supplied to the heat pump unit 31; a flow rate for measuring the flow rate and temperature of the water supplied to the hot water tank 32; a thermometer 35; and the flow rate and temperature of hot water output from the hot water tank 32. The measured data from the hot water storage meter 37 comprising a plurality of thermometers for measuring the flow rate and the thermometer 36 and the hot water storage amount in the hot water storage tank 32 are shown in FIG. 3 in the house where the CO 2 heat pump water heater 30 is provided. Is supplied to the controller 12. In addition, the control unit 33 in the heat pump unit 31 is controlled based on a command from the management device through mutual communication with the management device (not shown), and the operation of the heat pump unit 31 can be controlled.

CO2ヒートポンプ給湯機30は、寒冷地を除きガス給湯器よりも高効率であり、電力需要の少ない深夜(23時−7時)に温水沸かし上げをするため、社会的には電力系統の負荷平準化に貢献し、深夜は原子力発電の割合が高いため二酸化炭素排出量が少なく、電気代も安いので消費者にも経済的メリットがある。一方、深夜に翌日の温水需要を予測して沸かし上げをする必要がある。沸かし上げには時間がかかるため、万一、入浴中に貯湯槽42の温水が無くなる(「湯切れ」という)と対処の方法がない。そのため、常に多めに沸かし上げする必要がある。未使用の温水は、エネルギ損失の原因となる。 The CO 2 heat pump water heater 30 is more efficient than a gas water heater except in cold regions, and hot water is raised at midnight (23: 00-7pm) when power demand is low. It contributes to leveling, and since the percentage of nuclear power generation is high at midnight, there is little carbon dioxide emissions, and the electricity bill is cheap, so consumers have economic benefits. On the other hand, it is necessary to predict the hot water demand of the next day at midnight and bring it up. Since it takes time to boil, if there is no hot water in the hot water storage tank 42 during bathing (referred to as “hot water out”), there is no way to deal with it. Therefore, it is necessary to always boil up a lot. Unused hot water causes energy loss.

図5は、太陽熱温水器の一例の構成図を示す。図5において、太陽熱温水器40は、図1の太陽熱温水器14に相当し、集熱器41、貯湯槽42、混合器43、及びガス給湯器44を有する。太陽熱温水器40は、集熱器41により太陽光を集光して発生させた太陽熱を利用して貯湯槽42に給水されて貯められる水を加熱し温水とし、貯湯槽42から出力される温水と給水される水とを混合器43で混合してガス給湯器44に供給し、ガス給湯器44において都市ガスを用いて温水を作る構成の給湯器である。貯湯槽42内の貯湯量を測定する複数の温度計からなる貯湯量測定計45、貯湯槽42から出力される温水の流量と温度を測定する流量及び温度計46a、混合器43に供給される水の流量と温度を測定する流量及び温度計46b、ガス給湯器44に供給される温水の流量と温度を測定する流量及び温度計46c、ガス給湯器44に供給されるガスの流量を計測する気体流量計47、ガス給湯器44から出力される温水の流量と温度を測定する流量及び温度計46dからの各測定データが、太陽熱温水器40が設けられた住宅内の図3の制御装置12へ供給される。   FIG. 5 shows a configuration diagram of an example of a solar water heater. In FIG. 5, the solar water heater 40 corresponds to the solar water heater 14 in FIG. 1, and includes a heat collector 41, a hot water tank 42, a mixer 43, and a gas water heater 44. The solar water heater 40 uses the solar heat generated by collecting sunlight from the heat collector 41 to heat the water supplied to the hot water storage tank 42 and store it as hot water, and the hot water output from the hot water storage tank 42. And the water to be supplied are mixed in the mixer 43 and supplied to the gas water heater 44, and the gas water heater 44 is configured to make hot water using city gas. A hot water storage meter 45 comprising a plurality of thermometers for measuring the amount of hot water stored in the hot water tank 42, a flow rate and temperature meter 46 a for measuring the flow rate and temperature of hot water output from the hot water tank 42, and the mixer 43 are supplied. A flow rate for measuring the flow rate and temperature of water and a thermometer 46b, a flow rate for measuring the flow rate and temperature of hot water supplied to the gas water heater 44, a thermometer 46c, and a flow rate of gas supplied to the gas water heater 44 are measured. The flow rate for measuring the flow rate and temperature of the hot water output from the gas flow meter 47 and the gas water heater 44 and the measurement data from the thermometer 46d are the control device 12 in FIG. 3 in the house where the solar water heater 40 is provided. Supplied to.

太陽熱温水器40は、再生可能エネルギを利用するため二酸化炭素の排出も化石燃料の消費もない。日射量や季節によって、得られる温水の量は様々に異なる。得られる温水量が消費量よりも少ない場合は、ガス給湯器44により都市ガスを用いて温水を作る。得られる温水の量が消費量よりも多い場合は、未使用の温水は貯湯槽42の中に放置され、翌日使用される。この際に、放熱により温度が低下する(=エネルギ損失)。一方、ガス給湯器44は一般的に普及しているガス給湯器と同じである。図1に示したガス給湯器18は温水を使う度に、使う分だけ都市ガスを用いて温水を沸かし上げるので、CO2ヒートポンプ給湯機や太陽熱温水器のような「貯湯式」で生じる放熱による損失がない。 Since the solar water heater 40 uses renewable energy, it does not emit carbon dioxide or consume fossil fuel. The amount of hot water obtained varies depending on the amount of solar radiation and the season. When the amount of hot water obtained is less than the amount of consumption, hot water is produced using city gas by the gas water heater 44. If the amount of hot water obtained is greater than the consumption, unused hot water is left in the hot water storage tank 42 and used the next day. At this time, the temperature decreases due to heat radiation (= energy loss). On the other hand, the gas water heater 44 is the same as a gas water heater that is generally spread. The gas water heater 18 shown in FIG. 1 uses the city gas to boil the hot water every time it uses hot water, so the heat generated by “hot water storage” such as CO 2 heat pump water heaters and solar water heaters. There is no loss.

図6は、コージェネレーションの一例の構成図を示す。図6において、コージェネレーション50は、発電ユニット51及び貯湯ユニット52を備え、都市ガスを用いて発電ユニット51で発電し、その際に生じた熱で貯湯ユニット52内の貯湯槽54に供給されて貯められている水を温水とし、また貯湯槽54に供給されて貯められている水を貯湯ユニット52内のガス給湯器55により温水とすることもできる。発電ユニット51で発電された電力と、貯湯槽54の温水とは宅内へ出力される。貯湯ユニット52に入力される都市ガスの流量を測定する気体流量計56b、発電ユニット51から出力される電力の電力量を測定する電力計57、貯湯ユニット52に給水される水の流量と温度を測定する流量及び温度計58a、貯湯槽54内の貯湯量を測定する複数の温度計からなる貯湯量測定計59、貯湯ユニット52から出力される温水の流量と温度を測定する流量及び温度計58bの各測定データは、コージェネレーション50が設けられた住宅内の図3の制御装置12へ供給される。また、管理装置(図示せず)との相互通信により管理装置からの指令に基づき発電ユニット51内の制御部53が制御され、発電ユニット51の駆動制御ができる構成とされている。なお、発電ユニット51に供給されるガスの流量は気体流量計56aにより測定される。発電ユニット51はガスエンジンでなく燃料電池のような発電機を用いることも可能である。   FIG. 6 shows a configuration diagram of an example of cogeneration. In FIG. 6, the cogeneration 50 includes a power generation unit 51 and a hot water storage unit 52, generates electricity with the power generation unit 51 using city gas, and is supplied to the hot water storage tank 54 in the hot water storage unit 52 by the heat generated at that time. The stored water can be used as hot water, and the water supplied to and stored in the hot water storage tank 54 can be used as hot water by the gas water heater 55 in the hot water storage unit 52. The electric power generated by the power generation unit 51 and the hot water in the hot water tank 54 are output to the house. A gas flow meter 56b that measures the flow rate of city gas input to the hot water storage unit 52, a watt meter 57 that measures the amount of power output from the power generation unit 51, and the flow rate and temperature of water supplied to the hot water storage unit 52 A flow rate and thermometer 58a for measuring, a hot water storage meter 59 comprising a plurality of thermometers for measuring the amount of hot water stored in the hot water tank 54, and a flow rate and thermometer 58b for measuring the flow rate and temperature of hot water output from the hot water storage unit 52 Each measurement data is supplied to the control device 12 in FIG. 3 in the house where the cogeneration 50 is provided. In addition, the control unit 53 in the power generation unit 51 is controlled based on a command from the management device through mutual communication with a management device (not shown), so that the drive control of the power generation unit 51 can be performed. The flow rate of the gas supplied to the power generation unit 51 is measured by the gas flow meter 56a. The power generation unit 51 may use a generator such as a fuel cell instead of a gas engine.

コージェネレーション50は、電力と温水とを供給できるので高効率である反面、貯湯槽54が温水で一杯になると発電ユニット51の冷却ができず、運転を止めざるを得ない。また、需要を超える温水を得ても、太陽熱温水器40と同様に貯湯槽54で温水が放置され、エネルギ損失が生じる。特に、温水需要は季節によって大きく異なり、需要の多い冬期は多く運転できて大きなメリットが得られるが、夏期は温水需要が少なくあまり運転ができなくなる。一般的に、夏期はあまり運転できず、冬期は温水が足りない(ガス給湯器55が貯湯ユニット52に内蔵されていて沸かし上げる)。また、電力会社が余剰電力の逆潮流を拒否するため、発電量は、その瞬間の電力消費に合わせる必要がある。一般的に発電容量は700W程度であるが、深夜又は住民が不在の時の住宅の電力需要は200W〜300W程度のため、深夜や住民不在時は運転できない。   The cogeneration 50 can supply electric power and hot water and is highly efficient. On the other hand, when the hot water storage tank 54 is filled with hot water, the power generation unit 51 cannot be cooled, and the operation must be stopped. Moreover, even if hot water exceeding demand is obtained, the hot water is left in the hot water storage tank 54 similarly to the solar water heater 40, resulting in energy loss. In particular, the demand for hot water varies greatly depending on the season, and in winter when there is a lot of demand, it is possible to operate a lot and obtain great advantages. Generally, it is not possible to drive much in the summer, and there is not enough hot water in the winter (the gas water heater 55 is built in the hot water storage unit 52 and heated up). Moreover, since the electric power company refuses the reverse power flow of surplus power, the amount of power generation needs to match the power consumption at that moment. Generally, the power generation capacity is about 700 W, but the power demand of the house at midnight or when there is no resident is about 200 W to 300 W, so it cannot be operated at midnight or when there is no resident.

次に、住宅間の温水融通のための配管について説明する。図7は、住宅間の温水融通のための配管の一例の概略図を示す。同図において、住宅61内の配管614と住宅62内の配管624とが配管63により結合されて連通しており、配管63の途中には電磁弁64が設けられている。住宅61は貯湯式給湯器を有し、貯湯式給湯器の貯湯槽611に一端が接続され、かつ、途中に電磁弁613が設けられた配管612の他端が配管614に結合されて連通している。通常は電磁弁64が閉状態、電磁弁613が開状態とされているので、貯湯槽611からの温水は配管612及び614を通って住宅61内の温水が必要な場所(浴槽、台所、洗面所等)へ送られる。   Next, piping for warm water interchange between houses will be described. FIG. 7 shows a schematic diagram of an example of piping for warm water accommodation between houses. In the figure, a pipe 614 in a house 61 and a pipe 624 in a house 62 are connected by a pipe 63 to communicate with each other, and an electromagnetic valve 64 is provided in the middle of the pipe 63. The house 61 has a hot water storage type water heater, one end of which is connected to the hot water storage tank 611 of the hot water storage type water heater, and the other end of the pipe 612 provided with the electromagnetic valve 613 is connected to the pipe 614 to communicate therewith. ing. Normally, the solenoid valve 64 is closed and the solenoid valve 613 is open, so that the hot water from the hot water tank 611 passes through the pipes 612 and 614 and the place where hot water is required in the house 61 (tub, kitchen, wash basin). Etc.).

一方、住宅62も住宅61と同じ貯湯式給湯器を有し、貯湯式給湯器の貯湯槽621に一端が接続され、かつ、途中に通常は開状態とされた電磁弁623が設けられた配管622の他端が配管624に結合されて連通しているので、貯湯槽621からの温水は配管622及び624を通って住宅62内の温水が必要な場所(浴槽、台所、洗面所等)へ送られる。ここで、電磁弁64は通常は閉状態とされているが、住宅61及び住宅62の間で温水を融通する場合に、温水を必要とする住宅側の操作により開状態に制御される。従って、例えば、住宅61が温水余剰状態にあり、かつ、住宅62が温水不足状態にあり、住宅62が温水を使用する時に、管理装置からの制御により住宅62の住民が温水使用操作をすると、電磁弁64が開状態に制御され、住宅61内の貯湯槽611からの温水が配管612、配管63、配管624を通って住宅62内に供給される。   On the other hand, the house 62 also has the same hot water storage type hot water heater as the home 61, one end of which is connected to the hot water storage tank 621 of the hot water storage type water heater, and a pipe provided with an electromagnetic valve 623 that is normally opened in the middle. Since the other end of 622 is connected to and communicates with the pipe 624, the hot water from the hot water storage tank 621 passes through the pipes 622 and 624 to a place where hot water in the house 62 is necessary (tub, kitchen, washroom, etc.). Sent. Here, although the solenoid valve 64 is normally closed, when warm water is accommodated between the house 61 and the house 62, the solenoid valve 64 is controlled to be opened by an operation on the house side that requires hot water. Thus, for example, when the house 61 is in a hot water surplus state, the house 62 is in a hot water shortage state, and the house 62 uses hot water, if the residents of the house 62 perform a hot water use operation under the control of the management device, The electromagnetic valve 64 is controlled to be in an open state, and hot water from the hot water storage tank 611 in the house 61 is supplied into the house 62 through the pipe 612, the pipe 63, and the pipe 624.

図8は、住宅間の温水融通のための配管の他の例の概略図を示す。同図において、住宅71内の配管714と住宅72内の配管724とが配管73により結合されており、配管73の途中には電磁弁74が設けられている。住宅71はCO2ヒートポンプ給湯機を有し、その貯湯槽711に一端が接続され、かつ、途中に電磁弁713が設けられた配管712の他端が配管714に結合されている。通常は電磁弁74が閉状態、電磁弁713が開状態とされているので、貯湯槽711からの温水は配管712及び714を通って住宅71内の温水が必要な場所(浴槽、台所、洗面所等)へ送られる。 FIG. 8 shows a schematic diagram of another example of piping for warm water accommodation between houses. In the figure, a pipe 714 in a house 71 and a pipe 724 in a house 72 are connected by a pipe 73, and an electromagnetic valve 74 is provided in the middle of the pipe 73. The house 71 has a CO 2 heat pump water heater. One end of the house 71 is connected to the hot water storage tank 711, and the other end of the pipe 712 provided with the electromagnetic valve 713 is coupled to the pipe 714. Normally, the solenoid valve 74 is closed and the solenoid valve 713 is open, so that hot water from the hot water tank 711 passes through the pipes 712 and 714 where hot water in the house 71 is required (tub, kitchen, washbasin). Etc.).

一方、住宅72は住宅71内の給湯器と異なるガス給湯器を有し、ガス給湯器の貯湯槽721に一端が接続され、かつ、途中に通常は開状態とされた電磁弁723が設けられた配管722の他端が配管724に結合されているので、貯湯槽721からの温水は配管722及び724を通って住宅72内の温水が必要な場所(浴槽、台所、洗面所等)へ送られる。ここで、電磁弁74は通常は閉状態とされているが、住宅71及び住宅72の間で温水を融通する場合に、温水を必要とする住宅側の操作により開状態に制御される。従って、例えば、住宅71が温水余剰状態にあり、かつ、住宅72が温水不足状態にあり、住宅72が温水を使用する時に、管理装置からの制御により住宅72の住民が温水使用操作をすると、電磁弁74が開状態に制御され、住宅71内の貯湯槽711からの温水が配管712、配管73、配管724を通って住宅72内に供給される。   On the other hand, the house 72 has a gas water heater different from the water heater in the house 71, and one end is connected to the hot water storage tank 721 of the gas water heater, and an electromagnetic valve 723 that is normally opened is provided on the way. Since the other end of the pipe 722 is connected to the pipe 724, the hot water from the hot water tank 721 passes through the pipes 722 and 724 to a place where hot water is required in the house 72 (tub, kitchen, washroom, etc.). It is done. Here, although the solenoid valve 74 is normally closed, when warm water is accommodated between the house 71 and the house 72, the solenoid valve 74 is controlled to be opened by an operation on the house side that requires hot water. Thus, for example, when the house 71 is in a hot water surplus state, the house 72 is in a hot water shortage state, and the house 72 uses hot water, when the residents of the house 72 perform a hot water use operation under the control of the management device, The electromagnetic valve 74 is controlled to be in an open state, and hot water from the hot water storage tank 711 in the house 71 is supplied into the house 72 through the pipe 712, the pipe 73, and the pipe 724.

次に、本発明のエネルギ融通マネジメント方法の各実施形態について説明する。
図9(A)、(B)は、本発明に係るエネルギ融通マネジメント方法の第1の実施形態のフローチャート及びその方法が適用される要部の構成図を示す。本実施形態のエネルギ融通マネジメント方法は、図1に示した住宅111〜11nのそれぞれが備える制御装置121〜12nを統括的に管理する管理装置により実行される。ここで、図9(B)に示す構成図は、同一構成の制御装置121〜12nを代表して制御装置12として示し、また、管理装置を91として示す。
Next, each embodiment of the energy interchange management method of the present invention will be described.
FIGS. 9A and 9B show a flowchart of the first embodiment of the energy accommodation management method according to the present invention and a configuration diagram of a main part to which the method is applied. The energy interchange management method according to the present embodiment is executed by a management device that comprehensively manages the control devices 12 1 to 12 n included in each of the houses 11 1 to 11 n illustrated in FIG. Here, the configuration diagram illustrated in FIG. 9B represents the control devices 12 1 to 12 n having the same configuration as the control device 12, and the management device is illustrated as 91.

まず、管理装置91は、制御装置12において、過去の消費量データと天気予報(晴れ、曇り、雨)及び気温・温度からなる天候データとにより予測された、温水消費量及び太陽熱温水器による沸かし上げ量の予測データが、制御装置12から入力され、その予測データに基づいて予測モデルを実行してエネルギ需給予測を行う(図9(A)のステップS11)。   First, the management device 91 causes the control device 12 to boil the hot water consumption and the solar water heater predicted by the past consumption data, weather forecast (sunny, cloudy, rain), and weather data including temperature and temperature. The prediction data of the increase amount is input from the control device 12, and the energy supply / demand prediction is performed by executing the prediction model based on the prediction data (step S11 in FIG. 9A).

エネルギ需給予測は、供給と需要(消費)とに分けられる。供給予測に関しては、太陽光発電及び太陽熱温水器については、出力が太陽の日射に大きく依存することから、天気予報データにより日射量を予測することで、各住宅内のそれぞれの機器の出力を予測する。   The energy supply and demand forecast is divided into supply and demand (consumption). With regard to supply forecasting, for solar power generation and solar water heaters, the output largely depends on solar radiation, so forecasting the amount of solar radiation based on weather forecast data predicts the output of each device in each house. To do.

なお、太陽光発電は太陽光を電気に変換するという原理のため、日射量と発電量とに強い相関がある。日射量は時々刻々と変化することから、発電量も時々刻々と変化し、発電量を制御することはできない。また、太陽光発電では例えば一つの低圧配電電線(100/200V)に多数の太陽光発電が連係された場合、日射が良い時(晴れの時)に発電量が大きくなり、余剰電力の配電線への逆潮流が増加し、配電線電圧が制限値を超える可能性がある。そこで、上記の太陽光発電の出力予測時にはこの可能性を考慮した予測が行われる。   Note that solar power generation has a strong correlation between the amount of solar radiation and the amount of power generation due to the principle of converting sunlight into electricity. Since the amount of solar radiation changes every moment, the amount of power generation also changes every moment, and the amount of power generation cannot be controlled. In addition, in the case of photovoltaic power generation, for example, when a large number of photovoltaic power generations are linked to one low-voltage distribution line (100 / 200V), the amount of power generation increases when the solar radiation is good (when it is clear), and the distribution line for surplus power There is a possibility that the reverse power flow to will increase and the distribution line voltage will exceed the limit value. Therefore, at the time of predicting the output of the above-described photovoltaic power generation, prediction considering this possibility is performed.

需要予測に関しては、エネルギ需要の種類が電力需要と温水需要とに分けられることから種類毎に予測する(冷暖房は電気に含まれる)。電力需要は、気温によって冷暖房の使用が変化することから、一日合計で見ると、気温に或る程度の依存性がある。ただし、実用上は最近1週間程度の電力消費実績を用いても差し支えない(毎日、大きく変化するわけではない)。むしろ、電力需要は生活パターンによる影響が大きい。平日と週末とでは、家族の滞在状況が異なるので、電力消費も異なる。そのため、平日と週末とに分けた過去の電力消費実績を予測に活用することも考えられる。そこで、例えば、翌日が平日である場合は、過去の平日5日分の電力消費実績の平均値を翌日の予測量とすることが考えられる。従って、本発明において、予測する温水消費量は翌日から1週間先までの将来の温水消費量を予測することが望ましい。   Regarding the demand prediction, since the types of energy demand are divided into electric power demand and hot water demand, prediction is made for each type (air conditioning is included in electricity). Since the use of cooling and heating varies depending on the temperature, the power demand has a certain degree of dependence on the temperature when viewed in total. However, in practice, the power consumption record of the last week or so can be used (it does not change greatly every day). Rather, electricity demand is greatly influenced by lifestyle patterns. Since weekdays and weekends have different family stays, power consumption is also different. For this reason, it may be possible to use the past power consumption record divided into weekdays and weekends for prediction. Therefore, for example, when the next day is a weekday, it is conceivable that the average value of the power consumption results for the past five weekdays is used as the predicted amount of the next day. Accordingly, in the present invention, it is desirable to predict the future hot water consumption from the next day to one week ahead as the predicted hot water consumption.

温水需要については、日々の差が大きい世帯もあれば、毎日、同じように温水を使用する世帯もある。例えば、毎日ほぼ同じ時刻に入浴する世帯もあるし、日によって、浴槽を使用するか、またはシャワーだけで済ませるか、がランダムに変化する世帯もある。温水需要(温水量)は、大雑把に、浴槽(湯張り)とシャワーと台所の各温水使用量の和で表される。浴槽を使用する頻度(確率)は季節によって変化もする。そこで、過去の実績データから浴槽の使用確率を求める。確率が高い(例えば、70%以上)世帯は、浴槽を使用するものとする。浴槽の湯張りに必要な温水量は、一般的には、毎日同じ量であるため、過去の実績データを使用できる。確率が低い(例えば、30%以下)世帯は、浴槽は使用しないものとする(浴槽での使用=0)。確率が中程度(例えば、30%−70%)の世帯は、浴槽を使用した場合に必要な温水量の70%程度を予測量とする。シャワーと台所での温水需要は過去の実績データの平均値をとればよい。   Regarding hot water demand, some households have large daily differences, while other households use hot water in the same way every day. For example, some households take baths at approximately the same time every day, and other households change randomly depending on the day whether they use a bathtub or only need a shower. The demand for hot water (the amount of hot water) is roughly expressed as the sum of the amount of hot water used in the bathtub (water bath), shower and kitchen. The frequency (probability) of using the bathtub varies depending on the season. Therefore, the use probability of the bathtub is obtained from past performance data. Households with a high probability (for example, 70% or more) shall use a bathtub. Since the amount of hot water required for filling a bathtub is generally the same amount every day, past performance data can be used. Households with low probability (for example, 30% or less) shall not use the bathtub (use in the bathtub = 0). Households with a moderate probability (for example, 30% -70%) use about 70% of the amount of hot water required when using a bathtub as the predicted amount. What is necessary is just to take the average value of past performance data for the hot water demand in a shower and a kitchen.

続いて、管理装置91は、上記のエネルギ需給予測に基づいて、夜に将来(少なくとも翌日を含む翌日から1週間程度先まで)のエネルギ運用計画を立案する(図9(A)のステップS12)。CO2ヒートポンプ給湯機や家庭用コージェネレーションといった貯湯式の給湯器は、予め沸かし上げ量(本明細書ではこれを温水器沸かし上げ量ともいう)を決定しておき、計画的に運用する必要がある。一方、ガス給湯器は、温水を使用する時に瞬間的に沸かし上げを行うので、計画性は必要ない。さらに住戸間のエネルギ融通についても計画に組み込んでおく必要がある。計画立案のツールとして、本実施形態では、数理計画モデルである最適化モデルを利用する。この最適化モデルにエネルギ需給予測のデータを与えることで、管理装置91は、住宅群全体と各住宅戸別のそれぞれに最適な、予測消費量、温水融通予定量、貯湯式給湯器における温水器沸かし上げ量からなる運用計画を立案する。 Subsequently, the management device 91 drafts a future energy operation plan (at least from the next day including the next day to about one week ahead) at night based on the energy supply and demand prediction (step S12 in FIG. 9A). . Hot water storage hot water heaters such as CO 2 heat pump water heaters and household cogeneration systems must be pre-determined and the amount of water to be heated (this is also referred to as the amount of water heated in this specification) in advance. is there. On the other hand, the gas water heater instantaneously boils up when using hot water, and therefore does not require planning. In addition, it is necessary to incorporate energy interchange between dwelling units into the plan. In this embodiment, an optimization model that is a mathematical programming model is used as a planning tool. By giving energy optimization data to this optimization model, the management device 91 can optimize the predicted consumption, the hot water interchange amount, and the hot water heater in the hot water storage water heater that is optimal for the entire housing group and each house. Develop an operation plan consisting of the increased amount.

立案される運用計画では、例えば、エネルギ費用(電気代+ガス代)を最小化するように、設定した時間(例えば、1時間、2時間、30分など)毎のエネルギ機器の運用(CO2ヒートポンプ給湯機による沸かし上げ量や消費電力、ガス給湯器による沸かし上げ量、コージェネレーションの発電量や温水供給量、住宅間の温水融通量など)が決定される。なお、数理計画モデルによる計画作成が実用化されている例としては、電力会社による電源運用計画がある。電力会社は数理計画モデルを用いて、日々、電力消費量の予測値に基づき1時間毎の最適運用を策定している。 In the planned operation plan, for example, the operation of energy equipment (CO 2 ) at a set time (for example, 1 hour, 2 hours, 30 minutes, etc.) so as to minimize the energy cost (electricity cost + gas cost). The amount of boiling and power consumption by the heat pump water heater, the amount of boiling by the gas water heater, the amount of power generation and hot water supplied by cogeneration, the amount of hot water interchanged between houses, etc.) are determined. An example of practical use of the plan creation based on the mathematical programming model is a power supply operation plan by an electric power company. The electric power company uses the mathematical programming model to formulate the optimal operation every hour based on the predicted value of power consumption every day.

また、本実施形態では、運用計画の立案の際に、異なる種類の給湯器を備える住宅間で温水を融通する場合、それらの機器の特性を考慮して運用計画を立案する。例えば、太陽熱温水器は夏期では太陽熱の熱量が高く温水量が余り気味になるので、夏期に太陽熱温水器からの温水を他の住宅へ融通する。また、CO2ヒートポンプ給湯機は四季に関係なく温水量が得られるので、冬期にCO2ヒートポンプ給湯機で沸かした温水を、別の住宅へ融通することもできる。 In the present embodiment, when warm water is interchanged between houses having different types of water heaters when planning an operation plan, the operation plan is formulated in consideration of the characteristics of those devices. For example, since a solar water heater has a high amount of solar heat in summer and the amount of hot water is too small, the hot water from the solar water heater is accommodated in other houses in the summer. In addition, since the CO 2 heat pump water heater can obtain the amount of hot water regardless of the season, the hot water boiled in the CO 2 heat pump water heater during the winter can be accommodated in another house.

そして、各住宅11内の制御装置12と管理装置との通信により、立案された運用計画に従い、各住宅11内の給湯器が運転される。例えば、住宅11内の給湯器使用時にその住宅11内の制御装置12から給湯器を使用する旨の通知及び温水消費データが管理装置91になされ、管理装置91は立案した運用計画において、通知元の住宅の貯湯目標量(貯湯式給湯器における一日の沸かし上げ量)、融通予定量及び予想消費量に基づきそのまま通知元の住宅の給湯器の運転を可能とするか、又は図7、図8とともに説明した通知元の住宅へ近隣の住宅から温水融通を行わせる温水制御指令を行う。   And the water heater in each house 11 is drive | operated according to the planned operation plan by communication with the control apparatus 12 in each house 11, and a management apparatus. For example, when the water heater in the house 11 is used, the control device 12 in the house 11 notifies the management device 91 that the water heater is used and the hot water consumption data, and the management device 91 is notified in the planned operation plan. Based on the target hot water storage amount (daily boiling amount in a hot water type hot water heater), the planned amount of accommodation, and the expected consumption amount, it is possible to operate the hot water heater of the notification source as it is, or FIG. The hot water control command which performs hot water interchange from the neighboring house to the notification source house described together with 8 is performed.

しかしながら、立案した運用計画を実際に実行した場合に、予測された通りに温水が消費されるわけではない。そのため、実際の運用において運用計画をどのように利用するかという問題がある。そこで、本実施形態では、管理装置91は、機器の実際の運用に基づき運用計画を逐次修正する(図9(A)のステップS13)。このステップS13では、管理装置91は立案された運用計画から一日の貯湯目標量と、一日の融通予定量と、一日の予想消費量の計3つの要素の値を逐次計算モデルに与えて、立案した運用計画を逐次修正する。   However, when the planned operation plan is actually executed, the hot water is not consumed as predicted. Therefore, there is a problem of how to use the operation plan in actual operation. Therefore, in the present embodiment, the management device 91 sequentially corrects the operation plan based on the actual operation of the device (step S13 in FIG. 9A). In this step S13, the management device 91 gives the values of three elements, that is, a daily hot water storage target amount, a daily interchangeable amount, and an expected daily consumption amount to the sequential calculation model from the planned operation plan. To revise the planned operation plan.

次に、本発明のエネルギ融通マネジメント方法の第2の実施形態について説明する。図10(A)、(B)は、本発明に係るエネルギ融通マネジメント方法の第2の実施形態のフローチャート及びその方法が適用される要部の構成図を示す。本実施形態のエネルギ融通マネジメント方法は、図1に示した住宅111〜11nのそれぞれが備える制御装置121〜12nを統括的に管理する管理装置により実行される。ここで、図10(B)に示す構成図は、同一構成の制御装置121〜12nを代表して制御装置12として示し、また、管理装置を92として示す。本実施形態は制御装置12から予測データを取得するのではなく、自身で予測データを生成するものである。 Next, a second embodiment of the energy accommodation management method of the present invention will be described. FIGS. 10A and 10B show a flowchart of the second embodiment of the energy accommodation management method according to the present invention and a configuration diagram of the main part to which the method is applied. The energy interchange management method according to the present embodiment is executed by a management device that comprehensively manages the control devices 12 1 to 12 n included in each of the houses 11 1 to 11 n illustrated in FIG. Here, the configuration diagram illustrated in FIG. 10B represents the control devices 12 1 to 12 n having the same configuration as the control device 12, and the management device is illustrated as 92. In the present embodiment, prediction data is not acquired from the control device 12 but is generated by itself.

まず、管理装置92は、制御装置12からは過去の消費量データのみを通信により取得するとともに、外部より天気予報データを取得し、これらに基づいて、予測モデルを実行してエネルギ需給予測を行う(図10(A)のステップS21)。管理装置92は、このエネルギ需給予測により、各住宅更には住宅群全体の温水消費量、太陽熱温水器による沸かし上げ量の予測データを得る。   First, the management device 92 obtains only past consumption data from the control device 12 through communication, obtains weather forecast data from the outside, and executes a prediction model based on these to perform energy supply and demand prediction. (Step S21 in FIG. 10A). The management device 92 obtains predicted data of the hot water consumption of each house and the entire housing group and the amount of boiling by the solar water heater by this energy supply and demand prediction.

続いて、管理装置92は、上記のエネルギ需給予測に基づいて、夜に将来(少なくとも翌日を含む翌日から1週間程度先まで)のエネルギ運用計画を立案する(図10(A)のステップS22)。CO2ヒートポンプ給湯機や家庭用コージェネレーションといった貯湯式の給湯器は、予め沸かし上げ量を決定しておき、計画的に運用する必要がある。一方、ガス給湯器は、温水を使用する時に瞬間的に沸かし上げを行うので、計画性は必要ない。さらに住戸間のエネルギ融通についても計画に組み込んでおく必要がある。計画立案のツールとして、本実施形態においても、数理計画モデルである最適化モデルを利用する。この最適化モデルにエネルギ需給予測のデータを与えることで、管理装置92は、例えばエネルギ費用(電気代+ガス代)を最小化し、かつ、異なる種類の給湯器を備える住宅間で温水を融通するとき異なる種類の給湯器の特性を考慮した、住宅群全体と各住宅戸別のそれぞれに最適な、予測消費量、温水融通予定量、貯湯式給湯器における温水器沸かし上げ量からなる運用計画を立案する。 Subsequently, the management device 92 makes a future energy operation plan at night (from the next day including at least the next day to about one week ahead) based on the energy supply and demand prediction (step S22 in FIG. 10A). . A hot water storage type water heater such as a CO 2 heat pump water heater or a household cogeneration system needs to be preliminarily determined in advance and operated in a planned manner. On the other hand, the gas water heater instantaneously boils up when using hot water, and therefore does not require planning. In addition, it is necessary to incorporate energy interchange between dwelling units into the plan. As a planning tool, an optimization model that is a mathematical programming model is also used in this embodiment. By providing energy optimization data to this optimization model, the management device 92 minimizes, for example, energy costs (electricity charges + gas charges), and accommodates hot water between houses equipped with different types of water heaters. Considering the characteristics of different types of hot water heaters, an operational plan consisting of the predicted consumption, the expected hot water interchange amount, and the hot water heater heating amount in the hot water heater is optimal for the entire housing group and each individual house. To do.

そして、管理装置92は、各住宅から通知された温水消費データに基づき通知元の住宅の制御装置12に運用計画に基づく温水制御指令を行う。このとき、管理装置92は立案した運用計画において、通知元の住宅の貯湯目標量(貯湯式給湯器における一日の沸かし上げ量)、融通予定量及び予想消費量に基づきそのまま通知元の住宅の給湯器の運転を可能とするか、又は図7、図8とともに説明した通知元の住宅へ近隣の住宅から温水融通を行わせる温水制御指令を行う。   And the management apparatus 92 performs the warm water control instruction | command based on an operation plan to the control apparatus 12 of the notification origin house based on the warm water consumption data notified from each house. At this time, in the operation plan that the management device 92 has planned, the hot water storage target amount of the notification source house (the amount of boiling water in a hot water heater), the planned amount of accommodation, and the expected consumption amount are used as they are. The hot water heater is allowed to operate, or a hot water control command is issued to allow hot water interchange from a neighboring house to the notification source house described with reference to FIGS.

更に、本実施形態においても、管理装置92は、機器の実際の運用に基づき運用計画を逐次修正する(図10(A)のステップS23)。このステップS23では、管理装置92は立案された運用計画から一日の貯湯目標量と、一日の融通予定量と、一日の予想消費量の計3つの要素の値を逐次計算モデルに与えて、立案した運用計画を逐次修正する。   Furthermore, also in the present embodiment, the management device 92 sequentially corrects the operation plan based on the actual operation of the device (step S23 in FIG. 10A). In this step S23, the management device 92 gives the values of three elements, that is, a daily hot water storage target amount, a daily interchangeable amount, and an expected daily consumption amount to the sequential calculation model from the planned operation plan. To revise the planned operation plan.

図11は、2住宅における貯湯目標量(単位L/日)と、融通予定量(単位L/日)と、予想消費量(単位L/日)のシミュレーション結果の一例を示す。住宅Aは一日の貯湯目標量が1日目から4日目まではそれぞれ300Lで、5日目から7日目までは150Lと変化し、また温水の一日の融通予定量が1日目と2日目において100Lあり、一日の予想消費量は1日目から7日目までは300Lで同じである。一方、住宅Bは1日目から7日目までは一日の貯湯目標量はそれぞれ250L、一日の融通予定量はそれぞれ0L、一日の予想消費量は300Lと同じである。   FIG. 11 shows an example of a simulation result of a hot water storage target amount (unit L / day), a planned accommodation amount (unit L / day), and an expected consumption amount (unit L / day) in two houses. House A has a daily hot water storage target of 300L from the first day to the fourth day, and 150L from the fifth day to the seventh day. On the second day, there is 100L, and the expected daily consumption is the same at 300L from the first day to the seventh day. On the other hand, from the first day to the seventh day of the house B, the daily hot water storage target amount is 250L, the daily accommodation amount is 0L, and the expected daily consumption amount is 300L.

図12は、日々の運用結果の一例を示す。同図において、Ia、IIa、IIIa、及びIVaは、それぞれ住宅Aの最大貯湯量、消費量、融通量、及びCO2ヒートポンプ給湯機の温水供給量(HP供給量)を示す。一方、Ib、IIb、IIIbは、それぞれ住宅Bの最大貯湯量、消費量、融通量を示し、IVb1及びIVb2はそれぞれ住宅Bの太陽熱温水器の温水供給量(ST供給量)及びガス給湯器の温水供給量(BLR供給量)を示す。住宅Bでは温水の融通量はIIIbで示すように0であり、太陽熱温水器の温水供給量(ST供給量)はIVb1で示すように毎日ほぼ一定量で、かつ、IVb2に示すガス給湯器の温水供給量(BLR供給量)に比べて少量である。 FIG. 12 shows an example of a daily operation result. In the figure, Ia, IIa, IIIa, and IVa represent the maximum hot water storage amount, consumption amount, accommodation amount, and hot water supply amount (HP supply amount) of the CO 2 heat pump water heater, respectively. On the other hand, Ib, IIb, and IIIb indicate the maximum hot water storage amount, consumption amount, and accommodation amount of the house B, respectively. IVb1 and IVb2 are the hot water supply amount (ST supply amount) of the solar water heater of the house B and the gas water heater, respectively. The hot water supply amount (BLR supply amount) is shown. In House B, the hot water capacity is zero as indicated by IIIb, and the hot water supply amount (ST supply amount) of the solar water heater is almost constant every day as indicated by IVb1, and the gas water heater shown in IVb2 The amount is smaller than the hot water supply amount (BLR supply amount).

図13は、図11の住宅A及び住宅Bに対して本実施形態を適用した場合と適用しなかった場合(従来方式)の、全体のエネルギ比と戸別エネルギ比を対比して示す。前述したように、本実施形態では、エネルギ需給予測に基づいて、住宅間で異なる種類の給湯器の特性を勘案した温水融通ができ、かつ、エネルギ費用(電気代+ガス代)を最小化するようにエネルギ運用計画を立案し、更にそのエネルギ運用計画を貯湯目標量、融通予定量及び予想消費量の計3つの要素の値に基づいて逐次修正し、各住宅からの給湯器使用通知に応じて修正後の運用計画に従って、住宅群全体及び戸別の住宅毎の温水の融通を勘案した通知元の住宅の最適な給湯器の制御(温水融通を含む温水量制御)ができる。その結果、無駄な給湯器の運転によるCO2発生の抑圧及びエネルギ費の低減、省エネルギを実現できる。 FIG. 13 shows the overall energy ratio and the door-to-door energy ratio in a case where the present embodiment is not applied to the house A and the house B shown in FIG. 11 (conventional method). As described above, in the present embodiment, based on the energy supply and demand prediction, it is possible to accommodate hot water considering the characteristics of different types of hot water heaters among houses, and to minimize energy costs (electricity charges + gas charges). The energy operation plan is formulated as follows, and the energy operation plan is revised sequentially based on the values of three factors, the target amount of hot water storage, the planned amount of interchange, and the expected consumption, and in response to notification of hot water heater usage from each house Thus, according to the revised operation plan, it is possible to control the water heater optimally for the notification source house (warm water amount control including hot water accommodation) in consideration of the accommodation of hot water for the entire house group and each house. As a result, it is possible to suppress the generation of CO 2 due to the operation of a useless water heater, reduce the energy cost, and save energy.

図13において、住宅AにCO2ヒートポンプ給湯機(HP)があり、住宅Bに太陽熱温水器(ST)とガス給湯器(BLR)とがある場合、本実施形態によれば、住宅A及び住宅Bの異なる種類の給湯器の特性を勘案した温水融通ができるため、従来に比べて全体のエネルギ費、一次エネルギ消費量、二酸化炭素排出量のいずれも改善しており、また戸別の住宅A及び住宅Bの各エネルギ費も従来に比べて改善している。また、住宅A及び住宅Bの両方共に太陽熱温水器とガス給湯器とがある場合の従来のエネルギ融通方法と比べた場合は、より一層の改善効果が得られることが確かめられた。 In FIG. 13, when the house A has a CO 2 heat pump water heater (HP) and the house B has a solar water heater (ST) and a gas water heater (BLR), according to this embodiment, the house A and the house Since it is possible to accommodate hot water in consideration of the characteristics of different types of water heaters in B, the overall energy cost, primary energy consumption, and carbon dioxide emissions are all improved compared to the conventional ones. Each energy cost of the house B has also improved compared with the past. In addition, it was confirmed that a further improvement effect can be obtained when both the house A and the house B are compared with the conventional energy interchange method when there is a solar water heater and a gas water heater.

なお、本発明は、図9及び図10に示したエネルギ融通マネジメント方法を管理装置のコンピュータにより実行させるエネルギ融通マネジメントプログラムも包含する。このエネルギ融通マネジメントプログラムは記録媒体に記録されていてもよいし、通信ネットワークを介して配信されるようにしてもよい。   In addition, this invention also includes the energy accommodation management program which makes the computer of a management apparatus perform the energy accommodation management method shown in FIG.9 and FIG.10. This energy interchange management program may be recorded on a recording medium or distributed via a communication network.

なお、本発明は上記の実施形態に限定されるものではなく、例えば、図2では電力線通信技術を用いて制御装置121〜12n間で通信を行うことで、住宅111〜11n間でエネルギ融通を実現するように説明したが、通信方法はこれに限定されるものではなく、例えば無線通信やインターネットなどの通信ネットワークを通しての通信も可能である。また、各住宅に設置する制御装置に代えて、クラウドなどの外部サービスを利用することも可能である。 The present invention is not limited to the above embodiments, for example, by performing communication between the control device 12 1 to 12 n using power line communication technology in FIG. 2, housing 11 1 to 11 n between However, the communication method is not limited to this, and communication through a communication network such as wireless communication or the Internet is also possible. Further, it is possible to use an external service such as a cloud instead of the control device installed in each house.

更に、図9のステップS12及び図10のステップS22ではエネルギ費用(電気代+ガス代)を最小化するように運用計画を立案するように説明したが、エネルギ費用のような経済性に限定されるものではなく、経済性、省エネルギ及び環境負荷(二酸化炭素排出量)の3つの要素のいずれか一つまたは二以上の要素の組み合わせにおいて最小の結果が得られるように運用計画を立案すればよい。   Furthermore, in step S12 of FIG. 9 and step S22 of FIG. 10, it has been described that the operation plan is made so as to minimize the energy cost (electricity cost + gas cost), but it is limited to economic efficiency such as energy cost. If the operation plan is made so that the minimum result is obtained in any one of the three elements of economic efficiency, energy saving and environmental load (carbon dioxide emissions) or a combination of two or more elements. Good.

10 エネルギ融通マネジメントシステム
111〜11n 住宅
121〜12n、12 制御装置
131〜133 太陽光発電パネル
14、40 太陽熱温水器
15 ヒートポンプ
16 燃料電池
17 蓄電池
21、23 配電線
22 変圧器
30 CO2ヒートポンプ給湯機
31 ヒートポンプユニット
32、42、54、611、621、711、721 貯湯槽
41 集熱器
43 混合器
44、55 ガス給湯器
50 コージェネレーション
51 発電ユニット
52 貯湯ユニット
91、92 管理装置
10 energy interchange management system 11 1 to 11 n Housing 12 1 ~12 n, 12 controller 131-134 3 solar panels 14 and 40 solar water heater 15 heat pump 16 fuel cell 17 battery 21, 23 distribution line 22 transformer 30 CO2 heat pump water heater 31 Heat pump unit 32, 42, 54, 611, 621, 711, 721 Hot water storage tank 41 Heat collector 43 Mixer 44, 55 Gas water heater 50 Cogeneration 51 Power generation unit 52 Hot water storage unit 91, 92 Management device

Claims (10)

各々給湯器を備える複数の住宅内の各制御装置が予め定めた管理装置との間で相互通信可能に接続されており、運用計画に従って前記複数の住宅間で温水を共有して融通可能とするエネルギ融通マネジメントシステムであって、
前記制御装置は、
少なくとも宅内の給湯器に対して給水される水の流量及び温度と、出力される温水の流量及び温度とをそれぞれ測定する測定手段からの測定データに基づき温水消費量を算出する算出手段と、
算出された前記温水消費量を過去の消費量データとして前記管理装置に送信し、温水使用時は前記管理装置に温水使用を通知するとともに、前記管理装置からの前記通知に応答する温水制御指令を受信する通信手段と、
前記温水制御指令に基づき宅内の前記給湯器の運転を制御する制御手段とを備え、
前記管理装置は、
前記複数の住宅からそれぞれ前記過去の消費量データを通信により取得する取得手段と、
前記取得手段により取得した前記過去の消費量データと、外部から取得した翌日以降の将来の天気予報データとを用いた予測モデルを実行して、温水消費量と太陽熱温水器による沸かし上げ量の予測を行うエネルギ需給予測手段と、
前記エネルギ需給予測手段で得た前記温水消費量と前記太陽熱温水器による沸かし上げ量の各予測データを最適化モデルに与えることで、住宅群全体と各住宅戸別の経済性、省エネルギ及び二酸化炭素排出量の各要素のうち予め定めた一又は二以上の要素の組み合わせの値を最小化し、かつ、異なる種類の給湯器を備える住宅間で温水を融通するとき、前記異なる種類の給湯器の特性を考慮した、予測消費量、温水融通予定量、貯湯式給湯器の温水器沸かし上げ量に関する各住宅間の温水共有の運用計画を立案する運用計画立案手段と、
前記住宅から温水使用通知を受信すると、前記運用計画に従い通知元の住宅に対し前記温水制御指令を送信するとともに、前記運用計画を逐次修正する運用計画修正手段と
を備えることを特徴とするエネルギ融通マネジメントシステム。
Each control device in each of a plurality of houses each having a water heater is connected to a predetermined management device so as to be able to communicate with each other, and the hot water can be shared between the plurality of houses according to an operation plan. An energy interchange management system,
The controller is
Calculation means for calculating the consumption of hot water based on measurement data from at least the measurement means for measuring the flow rate and temperature of water supplied to at least a hot water heater in the house and the flow rate and temperature of the output hot water, respectively;
The calculated hot water consumption is transmitted to the management device as past consumption data, and when using hot water, the management device is notified of the use of hot water, and a hot water control command is sent in response to the notification from the management device. A communication means for receiving;
Control means for controlling the operation of the hot water heater in the house based on the hot water control command,
The management device
Acquisition means for acquiring the past consumption data from the plurality of houses by communication;
A prediction model using the past consumption data acquired by the acquisition means and future weather forecast data from the next day acquired from the outside is executed, and prediction of hot water consumption and boiling amount by a solar water heater is performed. Energy supply and demand prediction means for
By giving each of the prediction data of the hot water consumption obtained by the energy supply and demand prediction means and the amount of boiling by the solar water heater to an optimization model, the economy, energy saving and carbon dioxide for the entire house group and each house The characteristics of the different types of water heaters when minimizing the value of a combination of one or more elements determined in advance among the elements of the discharge amount and accommodating hot water between houses equipped with different types of water heaters An operation plan drafting means for formulating an operation plan for sharing hot water among houses regarding predicted consumption, hot water interchange planned amount, hot water heater boiling amount of hot water storage water heater,
When receiving a hot water use notification from the house, the hot water control command is transmitted to the notification source house in accordance with the operation plan, and operation plan correcting means for sequentially correcting the operation plan is provided. Management system.
各々給湯器を備える複数の住宅内の各制御装置が予め定めた管理装置との間で相互通信可能に接続されており、運用計画に従って前記複数の住宅間で温水を共有して融通可能とするエネルギ融通マネジメントシステムであって、
前記制御装置は、
少なくとも宅内の給湯器に対して給水される水の流量及び温度と、出力される温水の流量及び温度とをそれぞれ測定する測定手段からの測定データに基づき温水消費量を算出する算出手段と、
算出された前記温水消費量である過去の消費量データと少なくとも翌日以降の将来の天気予報とに基づいて、将来の温水消費量と太陽熱温水器による沸かし上げ量の予測データを生成する予測手段と、
前記予測手段により生成された前記温水消費量及び沸かし上げ量の予測データを前記管理装置に送信し、温水使用時は前記管理装置に温水使用を通知するとともに、前記管理装置からの前記通知に応答する温水制御指令を受信する通信手段と、
前記温水制御指令に基づき宅内の前記給湯器の運転を制御する制御手段とを備え、
前記管理装置は、
前記複数の住宅からそれぞれ送信された前記温水消費量及び沸かし上げ量の予測データを通信により取得する取得手段と、
前記取得手段により取得した前記温水消費量及び沸かし上げ量の予測データを用いて予測モデルを実行して、予測消費量、温水融通予定量、貯湯式給湯器の温水器沸かし上げ量に関するエネルギ需給の予測データを生成するエネルギ需給予測手段と、
前記エネルギ需給予測手段で生成された前記エネルギ需給の予測データを最適化モデルに与えることで、住宅群全体と各住宅戸別の経済性、省エネルギ及び二酸化炭素排出量の各要素のうち予め定めた一又は二以上の要素の組み合わせの値を最小化し、かつ、異なる種類の給湯器を備える住宅間で温水を融通するとき、前記異なる種類の給湯器の特性を考慮した、前記予測消費量、前記温水融通予定量及び前記貯湯式給湯器の温水器沸かし上げ量に関する各住宅間の温水共有の運用計画を立案する運用計画立案手段と、
前記住宅から温水使用通知を受信すると、前記運用計画に従い通知元の住宅に対し前記温水制御指令を送信するとともに、前記運用計画を逐次修正する運用計画修正手段と
を備えることを特徴とするエネルギ融通マネジメントシステム。
Each control device in each of a plurality of houses each having a water heater is connected to a predetermined management device so as to be able to communicate with each other, and the hot water can be shared between the plurality of houses according to an operation plan. An energy interchange management system,
The controller is
Calculation means for calculating the consumption of hot water based on measurement data from at least the measurement means for measuring the flow rate and temperature of water supplied to at least a hot water heater in the house and the flow rate and temperature of the output hot water, respectively;
Prediction means for generating prediction data of the future hot water consumption and the boiling amount by the solar water heater based on the past consumption data that is the calculated hot water consumption and at least the future weather forecast from the next day ,
The prediction data of the hot water consumption and boiling amount generated by the prediction means is transmitted to the management device, and when using hot water, the management device is notified of the use of hot water and responds to the notification from the management device. Communication means for receiving a hot water control command to
Control means for controlling the operation of the hot water heater in the house based on the hot water control command,
The management device
Obtaining means for obtaining prediction data of the hot water consumption and boiling amount transmitted from each of the plurality of houses by communication;
The prediction model is executed using the prediction data of the hot water consumption and the boiling amount acquired by the acquisition unit, and the energy supply and demand for the predicted consumption, the hot water interchange expected amount, and the hot water heater boiling amount of the hot water storage water heater are calculated. Energy supply and demand forecasting means for generating forecast data;
By providing the energy supply / demand prediction data generated by the energy supply / demand prediction means to the optimization model, it is predetermined among the elements of economy, energy saving, and carbon dioxide emissions for the entire housing group and each house. The predicted consumption amount considering the characteristics of the different types of water heaters when minimizing the value of a combination of one or more elements and accommodating hot water between houses equipped with different types of water heaters, An operation plan drafting means for drafting an operation plan for sharing hot water between the houses regarding the planned hot water interchange amount and the amount of boiling water of the hot water heater;
When receiving a hot water use notification from the house, the hot water control command is transmitted to the notification source house in accordance with the operation plan, and operation plan correcting means for sequentially correcting the operation plan is provided. Management system.
前記運用計画立案手段は、設定した時間毎のCO2ヒートポンプ給湯機による沸かし上げ量及び消費電力、ガス給湯器による沸かし上げ量、コージェネレーションの発電量及び温水供給量、並びに前記住宅間の温水融通量を決定した計画を前記運用計画として立案することを特徴とする請求項1又は2記載のエネルギ融通マネジメントシステム。 The operation planning means includes a heating amount and power consumption by a CO 2 heat pump water heater every set time, a boiling amount by a gas water heater, a power generation amount and hot water supply amount of cogeneration, and hot water interchange between the houses. The energy interchange management system according to claim 1 or 2, wherein a plan for which an amount is determined is made as the operation plan. 前記運用計画修正手段は、前記運用計画立案手段で立案された前記運用計画から一日の貯湯目標量と、一日の融通予定量と、一日の予想消費量の計3つの要素の値を逐次計算モデルに与えて逐次修正することを特徴とする請求項1又は2記載のエネルギ融通マネジメントシステム。   The operation plan correction means determines the values of three elements in total, that is, a daily hot water storage target amount, a daily interchange planned amount, and an expected daily consumption amount from the operation plan prepared by the operation plan preparation means. 3. The energy accommodation management system according to claim 1 or 2, wherein the energy calculation management system is given to a sequential calculation model and sequentially corrected. 各々給湯器を備える複数の住宅内の各制御装置が予め定めた管理装置との間で相互通信可能に接続されており、運用計画に従って前記複数の住宅間で温水を共有して融通可能とするエネルギ融通マネジメント方法であって、
前記制御装置により、少なくとも宅内の給湯器に対して給水される水の流量及び温度と、出力される温水の流量及び温度とをそれぞれ測定する測定手段からの測定データに基づき温水消費量を算出する算出ステップと、
前記管理装置が、前記算出ステップにより算出された前記温水消費量を過去の消費量データとして前記複数の住宅の各制御装置から取得する取得ステップと、
前記管理装置が、前記取得ステップにより取得した前記過去の消費量データと、外部から取得した翌日以降の将来の天気予報データとを用いた予測モデルを実行して、温水消費量と太陽熱温水器による沸かし上げ量の予測を行うエネルギ需給予測ステップと、
前記管理装置が、前記エネルギ需給予測ステップで得た前記温水消費量と前記太陽熱温水器による沸かし上げ量の各予測データを最適化モデルに与えることで、住宅群全体と各住宅戸別の経済性、省エネルギ及び二酸化炭素排出量の各要素のうち予め定めた一又は二以上の要素の組み合わせの値を最小化し、かつ、異なる種類の給湯器を備える住宅間で温水を融通するとき、前記異なる種類の給湯器の特性を考慮した、予測消費量、温水融通予定量、貯湯式給湯器の温水器沸かし上げ量に関する各住宅間の温水共有の運用計画を立案する運用計画立案ステップと、
前記管理装置が、前記運用計画立案ステップで立案した前記運用計画を実際の運用に基づき、逐次修正する運用計画修正ステップと
を含むことを特徴とするエネルギ融通マネジメント方法。
Each control device in each of a plurality of houses each having a water heater is connected to a predetermined management device so as to be able to communicate with each other, and the hot water can be shared between the plurality of houses according to an operation plan. An energy interchange management method,
The control device calculates hot water consumption based on measurement data from measuring means for measuring at least the flow rate and temperature of water supplied to the hot water heater in the house and the flow rate and temperature of the output hot water, respectively. A calculation step;
The management device acquires the hot water consumption calculated by the calculation step from each control device of the plurality of houses as past consumption data; and
The management device executes a prediction model using the past consumption data acquired by the acquisition step and future weather forecast data after the next day acquired from the outside, and uses hot water consumption and a solar water heater. An energy supply and demand prediction step for predicting the amount of boiling;
The management device gives the prediction data of the hot water consumption obtained in the energy supply and demand prediction step and the amount of boiling by the solar water heater to the optimization model, so that the economy of the entire house group and each house house, When the value of the combination of one or more predetermined elements among the elements of energy saving and carbon dioxide emission is minimized and the hot water is interchanged between houses having different types of water heaters, the different types An operation plan planning step for formulating an operation plan for sharing hot water among houses regarding predicted consumption, hot water interchange planned amount, hot water heater boiling amount of hot water storage water heater, taking into account the characteristics of
An energy accommodation management method comprising: an operation plan correction step in which the management device sequentially corrects the operation plan prepared in the operation plan preparation step based on actual operation.
各々給湯器を備える複数の住宅内の各制御装置が予め定めた管理装置との間で相互通信可能に接続されており、運用計画に従って前記複数の住宅間で温水を共有して融通可能とするエネルギ融通マネジメント方法であって、
前記制御装置により、少なくとも宅内の給湯器に対して給水される水の流量及び温度と、出力される温水の流量及び温度とをそれぞれ測定する測定手段からの測定データに基づき温水消費量を算出する算出ステップと、
前記制御装置が、前記算出ステップにより算出された前記温水消費量である過去の消費量データと少なくとも翌日以降の将来の天気予報とに基づいて、将来の温水消費量と太陽熱温水器による沸かし上げ量の予測データを生成する予測ステップと、
前記管理装置が、前記予測ステップで生成された前記温水消費量及び沸かし上げ量の予測データを前記複数の住宅の各制御装置から取得する取得ステップと、
前記管理装置が、前記取得ステップにより取得した前記温水消費量及び沸かし上げ量の予測データを用いて予測モデルを実行して、予測消費量、温水融通予定量、貯湯式給湯器の温水器沸かし上げ量に関するエネルギ需給の予測データを生成するエネルギ需給予測ステップと、
前記管理装置が、前記エネルギ需給予測ステップで生成された前記エネルギ需給の予測データを最適化モデルに与えることで、住宅群全体と各住宅戸別の経済性、省エネルギ及び二酸化炭素排出量の各要素のうち予め定めた一又は二以上の要素の組み合わせの値を最小化し、かつ、異なる種類の給湯器を備える住宅間で温水を融通するとき、前記異なる種類の給湯器の特性を考慮した、前記予測消費量、前記温水融通予定量及び前記貯湯式給湯器の温水器沸かし上げ量に関する各住宅間の温水共有の運用計画を立案する運用計画立案ステップと、
前記管理装置が、前記運用計画立案ステップで立案した前記運用計画を実際の運用に基づき、逐次修正する運用計画修正ステップと
を含むことを特徴とするエネルギ融通マネジメント方法。
Each control device in each of a plurality of houses each having a water heater is connected to a predetermined management device so as to be able to communicate with each other, and the hot water can be shared between the plurality of houses according to an operation plan. An energy interchange management method,
The control device calculates hot water consumption based on measurement data from measuring means for measuring at least the flow rate and temperature of water supplied to the hot water heater in the house and the flow rate and temperature of the output hot water, respectively. A calculation step;
Based on past consumption data that is the hot water consumption calculated by the calculation step and at least a future weather forecast from the next day onward, the control device calculates the future hot water consumption and the amount heated by the solar water heater. A prediction step for generating prediction data for
The management device acquires the hot water consumption amount and the boiling amount prediction data generated in the prediction step from each control device of the plurality of houses,
The management device executes the prediction model using the prediction data of the hot water consumption and the boiling amount acquired in the acquisition step, and predicts the consumption, the hot water interchange expected amount, and the hot water heater boiling of the hot water heater An energy supply and demand prediction step for generating energy supply and demand prediction data for the quantity;
The management device gives prediction data of the energy supply and demand generated in the energy supply and demand prediction step to the optimization model, so that each element of economy, energy saving, and carbon dioxide emission for the entire house group and each house Minimizing the value of a combination of one or more elements determined in advance, and taking into account the characteristics of the different types of water heaters when warm water is accommodated between houses with different types of water heaters, An operation plan drafting step for formulating an operation plan for sharing hot water between houses regarding the predicted consumption, the expected hot water interchange amount, and the hot water heater heating amount of the hot water storage water heater,
An energy accommodation management method comprising: an operation plan correction step in which the management device sequentially corrects the operation plan prepared in the operation plan preparation step based on actual operation.
前記運用計画修正ステップは、前記運用計画立案ステップで立案された前記運用計画から一日の貯湯目標量と、一日の融通予定量と、一日の予想消費量の計3つの要素の値を逐次計算モデルに与えて逐次修正することを特徴とする請求項5又は6記載のエネルギ融通マネジメント方法。   The operation plan correction step includes the values of three elements in total, that is, a daily hot water storage target amount, a daily interchangeable amount, and a daily expected consumption amount from the operation plan prepared in the operation plan formulation step. 7. The energy interchange management method according to claim 5 or 6, wherein the sequential calculation model is applied to perform sequential correction. 各々給湯器を備える複数の住宅内の各制御装置が予め定めた管理装置との間で相互通信可能に接続されており、前記管理装置内のコンピュータにより運用計画に従って前記複数の住宅間で温水を共有して融通可能とするエネルギ融通マネジメントを行わせるエネルギ融通マネジメントプログラムであって、
前記コンピュータに、
前記制御装置により、少なくとも宅内の給湯器に対して給水される水の流量及び温度と、出力される温水の流量及び温度とをそれぞれ測定する測定手段からの測定データに基づき算出された温水消費量を、過去の消費量データとして前記複数の住宅の各制御装置から取得する取得ステップと、
前記取得ステップにより取得した前記過去の消費量データと、外部から取得した翌日以降の将来の天気予報データとを用いた予測モデルを実行して、温水消費量と太陽熱温水器による沸かし上げ量の予測を行うエネルギ需給予測ステップと、
前記エネルギ需給予測ステップで得た前記温水消費量と前記太陽熱温水器による沸かし上げ量の各予測データを最適化モデルに与えることで、住宅群全体と各住宅戸別の経済性、省エネルギ及び二酸化炭素排出量の各要素のうち予め定めた一又は二以上の要素の組み合わせの値を最小化し、かつ、異なる種類の給湯器を備える住宅間で温水を融通するとき、前記異なる種類の給湯器の特性を考慮した、予測消費量、温水融通予定量、貯湯式給湯器の温水器沸かし上げ量に関する各住宅間の温水共有の運用計画を立案する運用計画立案ステップと、
前記運用計画立案ステップで立案した前記運用計画を実際の運用に基づき、逐次修正する運用計画修正ステップと
を実行させることを特徴とするエネルギ融通マネジメントプログラム。
Each control device in a plurality of houses each provided with a water heater is connected to a predetermined management device so as to be able to communicate with each other, and hot water is supplied between the plurality of houses according to an operation plan by a computer in the management device. An energy accommodation management program that allows energy accommodation management to be shared and accommodated.
In the computer,
Hot water consumption calculated by the control device based on measurement data from measurement means for measuring at least the flow rate and temperature of water supplied to the hot water heater in the house and the flow rate and temperature of the output hot water, respectively. Acquiring from each control device of the plurality of houses as past consumption data,
Execute a prediction model using the past consumption data acquired by the acquisition step and future weather forecast data from the next day acquired from the outside, and predict hot water consumption and boiling amount by solar water heater Energy supply and demand prediction step,
By giving each of the prediction data of the hot water consumption obtained in the energy supply and demand prediction step and the amount of boiling by the solar water heater to the optimization model, the economy, energy saving and carbon dioxide for the entire house group and each house The characteristics of the different types of water heaters when minimizing the value of a combination of one or more elements determined in advance among the elements of the discharge amount and accommodating hot water between houses equipped with different types of water heaters An operation plan planning step for preparing an operation plan for sharing hot water among houses regarding predicted consumption, hot water interchange planned amount, hot water heater boiling amount of hot water storage water heater,
An energy interchange management program, comprising: executing an operation plan correction step of sequentially correcting the operation plan prepared in the operation plan planning step based on actual operation.
各々給湯器を備える複数の住宅内の各制御装置が予め定めた管理装置との間で相互通信可能に接続されており、前記管理装置内のコンピュータにより運用計画に従って前記複数の住宅間で温水を共有して融通可能とするエネルギ融通マネジメントを行わせるエネルギ融通マネジメントプログラムであって、
前記コンピュータに、
前記制御装置により、少なくとも宅内の給湯器に対して給水される水の流量及び温度と、出力される温水の流量及び温度とをそれぞれ測定する測定手段からの測定データに基づき算出された温水消費量である過去の消費量データと少なくとも翌日以降の将来の天気予報とに基づいて生成された、将来の温水消費量と太陽熱温水器による沸かし上げ量の予測データを、前記複数の住宅の各制御装置から取得する取得ステップと、
前記取得ステップにより取得した前記温水消費量及び沸かし上げ量の予測データを用いて予測モデルを実行して、予測消費量、温水融通予定量、貯湯式給湯器の温水器沸かし上げ量に関するエネルギ需給の予測データを生成するエネルギ需給予測ステップと、
前記エネルギ需給予測ステップで生成された前記エネルギ需給の予測データを最適化モデルに与えることで、住宅群全体と各住宅戸別の経済性、省エネルギ及び二酸化炭素排出量の各要素のうち予め定めた一又は二以上の要素の組み合わせの値を最小化し、かつ、異なる種類の給湯器を備える住宅間で温水を融通するとき、前記異なる種類の給湯器の特性を考慮した、前記予測消費量、前記温水融通予定量及び前記貯湯式給湯器の温水器沸かし上げ量に関する各住宅間の温水共有の運用計画を立案する運用計画立案ステップと、
前記運用計画立案ステップで立案した前記運用計画を実際の運用に基づき、逐次修正する運用計画修正ステップと
を実行させることを特徴とするエネルギ融通マネジメントプログラム。
Each control device in a plurality of houses each provided with a water heater is connected to a predetermined management device so as to be able to communicate with each other, and hot water is supplied between the plurality of houses according to an operation plan by a computer in the management device. An energy accommodation management program that allows energy accommodation management to be shared and accommodated.
In the computer,
Hot water consumption calculated by the control device based on measurement data from measurement means for measuring at least the flow rate and temperature of water supplied to the hot water heater in the house and the flow rate and temperature of the output hot water, respectively. Each of the control devices of the plurality of houses, the prediction data of the future hot water consumption and the amount of boiling by the solar water heater, which are generated based on the past consumption data and the future weather forecast on the next day or later. An acquisition step to acquire from,
The prediction model is executed using the prediction data of the hot water consumption and the boiling amount acquired in the acquisition step, and the energy supply and demand regarding the predicted consumption, the expected hot water interchange amount, and the hot water heater heating amount of the hot water storage water heater are calculated. An energy supply and demand forecasting step for generating forecast data;
By providing the energy supply / demand prediction data generated in the energy supply / demand prediction step to the optimization model, it is predetermined among the elements of the economy, energy saving, and carbon dioxide emission of the entire house group and each house. The predicted consumption amount considering the characteristics of the different types of water heaters when minimizing the value of a combination of one or more elements and accommodating hot water between houses equipped with different types of water heaters, An operation plan planning step for preparing an operation plan for sharing hot water among the homes regarding the planned hot water interchange amount and the amount of water heated by the hot water heater;
An energy interchange management program, comprising: executing an operation plan correction step of sequentially correcting the operation plan prepared in the operation plan planning step based on actual operation.
前記運用計画修正ステップは、前記運用計画立案ステップで立案された前記運用計画から一日の貯湯目標量と、一日の融通予定量と、一日の予想消費量の計3つの要素の値を逐次計算モデルに与えて逐次修正することを特徴とする請求項8又は9記載のエネルギ融通マネジメントプログラム。   The operation plan correction step includes the values of three elements in total, that is, a daily hot water storage target amount, a daily interchangeable amount, and a daily expected consumption amount from the operation plan prepared in the operation plan formulation step. The energy interchange management program according to claim 8 or 9, wherein the sequential calculation model is given and corrected sequentially.
JP2013216541A 2013-10-17 2013-10-17 Energy interchange management system, energy interchange management method and energy interchange management program Pending JP2015078797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013216541A JP2015078797A (en) 2013-10-17 2013-10-17 Energy interchange management system, energy interchange management method and energy interchange management program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013216541A JP2015078797A (en) 2013-10-17 2013-10-17 Energy interchange management system, energy interchange management method and energy interchange management program

Publications (1)

Publication Number Publication Date
JP2015078797A true JP2015078797A (en) 2015-04-23

Family

ID=53010352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013216541A Pending JP2015078797A (en) 2013-10-17 2013-10-17 Energy interchange management system, energy interchange management method and energy interchange management program

Country Status (1)

Country Link
JP (1) JP2015078797A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018017492A (en) * 2016-07-29 2018-02-01 トヨタホーム株式会社 Hot water system
CN108844122A (en) * 2018-06-05 2018-11-20 北京大正永业科技有限公司 Remote parameter predetermined system, method and the parameter correction method of thermal storage electric boiler
JP2019020024A (en) * 2017-07-14 2019-02-07 トヨタホーム株式会社 Hot water system
JP2019020023A (en) * 2017-07-14 2019-02-07 トヨタホーム株式会社 Hot water system
JP2019135430A (en) * 2018-02-05 2019-08-15 三菱電機株式会社 Energy management device, hot water storage type water heater, gateway, energy management system, energy management method, and program
JP2019152378A (en) * 2018-03-05 2019-09-12 三菱電機株式会社 Hot water system, hot water path construction method and program
JP2020148429A (en) * 2019-03-15 2020-09-17 大和ハウス工業株式会社 Hot water supply system
CN112258302A (en) * 2020-10-23 2021-01-22 国网能源研究院有限公司 Optimization method for pumped storage to participate in electric energy spot market bidding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012159243A (en) * 2011-02-01 2012-08-23 Tokyo Gas Co Ltd Heat accommodation control method
JP2012225543A (en) * 2011-04-18 2012-11-15 Tokyo Gas Co Ltd Method for controlling heat accommodation
JP2013156937A (en) * 2012-01-31 2013-08-15 Hitachi Ltd Optimal operation control device of energy network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012159243A (en) * 2011-02-01 2012-08-23 Tokyo Gas Co Ltd Heat accommodation control method
JP2012225543A (en) * 2011-04-18 2012-11-15 Tokyo Gas Co Ltd Method for controlling heat accommodation
JP2013156937A (en) * 2012-01-31 2013-08-15 Hitachi Ltd Optimal operation control device of energy network

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018017492A (en) * 2016-07-29 2018-02-01 トヨタホーム株式会社 Hot water system
JP2019020024A (en) * 2017-07-14 2019-02-07 トヨタホーム株式会社 Hot water system
JP2019020023A (en) * 2017-07-14 2019-02-07 トヨタホーム株式会社 Hot water system
JP2019135430A (en) * 2018-02-05 2019-08-15 三菱電機株式会社 Energy management device, hot water storage type water heater, gateway, energy management system, energy management method, and program
JP7101490B2 (en) 2018-02-05 2022-07-15 三菱電機株式会社 Energy management equipment, hot water storage machines, gateways, energy management systems, energy management methods, and programs
JP2019152378A (en) * 2018-03-05 2019-09-12 三菱電機株式会社 Hot water system, hot water path construction method and program
JP7109210B2 (en) 2018-03-05 2022-07-29 三菱電機株式会社 Hot water supply system, hot water supply route construction method and program
CN108844122A (en) * 2018-06-05 2018-11-20 北京大正永业科技有限公司 Remote parameter predetermined system, method and the parameter correction method of thermal storage electric boiler
JP2020148429A (en) * 2019-03-15 2020-09-17 大和ハウス工業株式会社 Hot water supply system
JP7228421B2 (en) 2019-03-15 2023-02-24 大和ハウス工業株式会社 hot water system
CN112258302A (en) * 2020-10-23 2021-01-22 国网能源研究院有限公司 Optimization method for pumped storage to participate in electric energy spot market bidding

Similar Documents

Publication Publication Date Title
JP5789792B2 (en) Supply and demand control device, supply and demand control method, and supply and demand control system
JP2015078797A (en) Energy interchange management system, energy interchange management method and energy interchange management program
Asaee et al. Techno-economic assessment of photovoltaic (PV) and building integrated photovoltaic/thermal (BIPV/T) system retrofits in the Canadian housing stock
US8019445B2 (en) Method and apparatus for optimization of distributed generation
US7444189B1 (en) Method and apparatus for simultaneous optimization of distributed generation and hydrogen production
US20140257584A1 (en) Energy management system, energy management method, medium, and server
Entchev et al. Energy, economic and environmental performance simulation of a hybrid renewable microgeneration system with neural network predictive control
Deng et al. A MINLP model of optimal scheduling for a district heating and cooling system: A case study of an energy station in Tianjin
Entchev et al. Application of hybrid micro-cogeneration system—Thermal and power energy solutions for Canadian residences
Cui et al. Effect of device models on the multiobjective optimal operation of CCHP microgrids considering shiftable loads
WO2014136341A1 (en) Energy management system, energy management method, program, and server
Vrettos et al. Maximizing local PV utilization using small-scale batteries and flexible thermal loads
Rogers et al. The 20% house–An integrated assessment of options for reducing net carbon emissions from existing UK houses
EP2573474B1 (en) Heat management algorithm for optimized CHP operation
Romaní et al. Optimization of deterministic controls for a cooling radiant wall coupled to a PV array
Del Pero et al. Modelling of an Integrated multi-energy system for a nearly Zero Energy Smart District
JP6678347B2 (en) Power management system
JP6678348B2 (en) Distributed power generation system and method for providing at least part of the operation plan of the system outside the system
Aki et al. Optimal management of fuel cells in a residential area by Integrated-Distributed Energy Management System (IDEMS)
Qi et al. Optimal dispatching of household air-source heat pump heating system considering thermal comfort
Feron et al. Development and assessment of a market-based multi-agent system for domestic heat and electricity management
Bando et al. Impact of various characteristics of electricity and heat demand on the optimal configuration of a microgrid
Shaneb et al. Evaluation of alternative operating strategies for residential micro combined heat and power
CN106651050A (en) User demand-based building energy supply system
Moradzadeh et al. Optimal Demand Control of Electric Water Heaters to Accommodate the Integration of Plug-in Electric Vehicles in Residential Distribution Networks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170801