JP2015070255A - Photovoltaic element and manufacturing method therefor - Google Patents

Photovoltaic element and manufacturing method therefor Download PDF

Info

Publication number
JP2015070255A
JP2015070255A JP2013206484A JP2013206484A JP2015070255A JP 2015070255 A JP2015070255 A JP 2015070255A JP 2013206484 A JP2013206484 A JP 2013206484A JP 2013206484 A JP2013206484 A JP 2013206484A JP 2015070255 A JP2015070255 A JP 2015070255A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
photovoltaic device
thin film
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013206484A
Other languages
Japanese (ja)
Inventor
小林 英治
Eiji Kobayashi
英治 小林
宣孝 中村
Nobutaka Nakamura
宣孝 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Choshu Industry Co Ltd
Advanced Nano Products Co Ltd
Original Assignee
Choshu Industry Co Ltd
Advanced Nano Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Choshu Industry Co Ltd, Advanced Nano Products Co Ltd filed Critical Choshu Industry Co Ltd
Priority to JP2013206484A priority Critical patent/JP2015070255A/en
Priority to PCT/JP2014/076640 priority patent/WO2015050264A1/en
Priority to TW103133977A priority patent/TW201521216A/en
Publication of JP2015070255A publication Critical patent/JP2015070255A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

PROBLEM TO BE SOLVED: To provide a heterojunction photovoltaic power generation element exhibiting sufficient power generation efficiency, even if a transparent conductive film is deposited by sputtering, and to provide a method of manufacturing such a photovoltaic power generation element.SOLUTION: In a photovoltaic power generation element 10 including an n-type crystal semiconductor substrate 11, a p-type amorphous semiconductor thin film 13 and a first transparent conductive film 14 which are laminated in this order on one side of the n-type crystal semiconductor substrate 11, and an n-type amorphous semiconductor thin film 16 and a second transparent conductive film 17 which are laminated in this order on the other side of the n-type crystal semiconductor substrate 11, any one of the first and second transparent conductive films 14, 17 is a transparent conductive film (α) formed of indium oxide doped at least with tantalum.

Description

本発明は、ヘテロ接合を有する光発電素子(太陽電池)及びその製造方法に関する。 The present invention relates to a photovoltaic device (solar cell) having a heterojunction and a method for manufacturing the photovoltaic device.

CO等の温室効果ガスを発生しないクリーンな発電手段として、また、原子力発電に代わる操業安全性の高い発電手段として、光発電素子(太陽電池)が注目されている。光発電素子の一つとして、発電効率の高いヘテロ接合を有する光発電素子(ヘテロ接合型の光発電素子)がある。ヘテロ接合とは、例えば単結晶半導体と非晶質半導体との接合をいい、この接合により拡散電位が形成される。 Photovoltaic elements (solar cells) are attracting attention as clean power generation means that does not generate greenhouse gases such as CO 2 and as power generation means with high operational safety in place of nuclear power generation. As one of the photovoltaic elements, there is a photovoltaic element having a heterojunction with high power generation efficiency (heterojunction photovoltaic element). The heterojunction refers to, for example, a junction between a single crystal semiconductor and an amorphous semiconductor, and a diffusion potential is formed by this junction.

一方、光発電素子の電極には、透光性と導電性とが必要であるため、通常、透明導電膜が用いられる。透明導電膜を形成する材料としては、低抵抗性(導電性)を有するインジウム錫酸化物(Indium Tin Oxide:ITO)が広く使用されている。このような中、透明導電膜の導電性等をより高めるべく各種材料が開発されており、例えば水素及びセリウムを含む酸化インジウムから形成された透明導電膜が提案されている(特許文献1参照)。 On the other hand, a transparent conductive film is usually used for the electrode of the photovoltaic device because it requires translucency and conductivity. As a material for forming the transparent conductive film, indium tin oxide (ITO) having low resistance (conductivity) is widely used. Under such circumstances, various materials have been developed in order to further increase the conductivity and the like of the transparent conductive film. For example, a transparent conductive film formed of indium oxide containing hydrogen and cerium has been proposed (see Patent Document 1). .

また、透明導電膜は、スパッタリング法により成膜されることが一般的であるが、スパッタリング法によれば、積層される側の層(通常、非晶質半導体の層)の劣化が生じやすい。従って、このような事情も考慮し、特許文献1においてはイオンプレーティング法により透明導電膜を成膜することが記載されている。しかし、イオンプレーティング法は、スパッタリング法に比してコスト増になるという不都合がある。 In addition, the transparent conductive film is generally formed by a sputtering method, but the sputtering method tends to cause deterioration of a layer on the side to be laminated (usually an amorphous semiconductor layer). Therefore, in consideration of such circumstances, Patent Document 1 describes forming a transparent conductive film by an ion plating method. However, the ion plating method has a disadvantage that the cost is increased as compared with the sputtering method.

加えて、ITO等からなる膜は、結晶化させて抵抗を下げるために比較的高温(例えば200℃以上)で成膜することや、成膜後熱処理することが必要となる。しかし、ヘテロ接合型の光発電素子においては、200℃以上といった高温で透明導電膜を積層又は処理すると、非晶質半導体の結晶化が生じることなどにより性能が劣化する傾向にある。 In addition, a film made of ITO or the like needs to be formed at a relatively high temperature (for example, 200 ° C. or higher) and heat-treated after the film formation in order to crystallize and lower the resistance. However, in a heterojunction photovoltaic device, when a transparent conductive film is laminated or processed at a high temperature of 200 ° C. or higher, performance tends to deteriorate due to crystallization of an amorphous semiconductor.

国際公開第2011/034145号International Publication No. 2011-034145

本発明はかかる事情に鑑みてなされたもので、透明導電膜をスパッタリング法により成膜しても高い発電効率を有するヘテロ接合型の光発電素子、及びこのような光発電素子の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a heterojunction photovoltaic device having high power generation efficiency even when a transparent conductive film is formed by sputtering, and a method for manufacturing such a photovoltaic device. The purpose is to do.

前記目的に沿う第1の発明に係る光発電素子は、n型結晶半導体基板と、該n型結晶半導体基板の一側にこの順に積層されるp型非晶質系半導体薄膜及び第1の透明導電膜と、前記n型結晶半導体基板の他側にこの順に積層されるn型非晶質系半導体薄膜及び第2の透明導電膜とを備える光発電素子において、
前記第1及び第2の透明導電膜のいずれかは、少なくともタンタルがドープされた酸化インジウムから形成されている透明導電膜(α)である。
The photovoltaic device according to the first invention that meets the above object includes an n-type crystal semiconductor substrate, a p-type amorphous semiconductor thin film stacked in this order on one side of the n-type crystal semiconductor substrate, and a first transparent element. In a photovoltaic device comprising a conductive film, an n-type amorphous semiconductor thin film stacked in this order on the other side of the n-type crystal semiconductor substrate, and a second transparent conductive film,
One of the first and second transparent conductive films is a transparent conductive film (α) formed of indium oxide doped with at least tantalum.

第1の発明に係る光発電素子によれば、少なくともタンタルがドープされた酸化インジウムにより透明導電膜(α)を形成することで、発電効率を高めることができる。具体的には、透明導電膜(α)は、比較的低温で結晶化し、低抵抗性が得られる。このため、スパッタリング法により高温処理を経ることなく低抵抗性に優れる透明導電膜(α)を得ることができ、高い発電効率を有するヘテロ接合型の光発電素子を得ることができる。 According to the photovoltaic device of the first invention, the power generation efficiency can be increased by forming the transparent conductive film (α) from indium oxide doped with at least tantalum. Specifically, the transparent conductive film (α) is crystallized at a relatively low temperature, and low resistance is obtained. For this reason, the transparent conductive film (α) having excellent low resistance can be obtained without high temperature treatment by sputtering, and a heterojunction photovoltaic device having high power generation efficiency can be obtained.

第1の発明に係る光発電素子において、前記透明導電膜(α)における前記タンタルの含有量が酸化物換算で0.1質量%以上5質量%以下であることが好ましい。透明導電膜(α)にタンタルを前記範囲で含有させることにより、低抵抗性と熱安定性等とをバランスよく高めることができる。 In the photovoltaic device according to the first invention, the tantalum content in the transparent conductive film (α) is preferably 0.1% by mass or more and 5% by mass or less in terms of oxide. By including tantalum in the above range in the transparent conductive film (α), low resistance, thermal stability, and the like can be improved in a balanced manner.

第1の発明に係る光発電素子において、前記酸化インジウムには、チタン、バナジウム及びニオブからなる群より選ばれる少なくとも1種の元素(x)がさらにドープされていることが好ましい。元素(x)がさらにドープされていることで、膜の均質性、低温結晶性、低抵抗性等をさらに高めることができる。 In the photovoltaic device according to the first invention, it is preferable that the indium oxide is further doped with at least one element (x) selected from the group consisting of titanium, vanadium and niobium. When the element (x) is further doped, the homogeneity, low temperature crystallinity, low resistance, etc. of the film can be further enhanced.

第1の発明に係る光発電素子において、前記透明導電膜(α)における前記タンタル及び前記元素(x)それぞれの含有量が酸化物換算で共に0.1質量%以上であり、かつ前記タンタル及び前記元素(x)の合計含有量が酸化物換算で5質量%以下であることが好ましい。タンタル及び元素(x)の含有量を前記範囲とすることにより、低抵抗性と熱安定性等とをよりバランスよく高めることができる。 In the photovoltaic device according to the first invention, the contents of the tantalum and the element (x) in the transparent conductive film (α) are both 0.1% by mass or more in terms of oxides, and the tantalum and The total content of the element (x) is preferably 5% by mass or less in terms of oxide. By setting the contents of tantalum and element (x) in the above range, low resistance, thermal stability, and the like can be improved in a balanced manner.

第1の発明に係る光発電素子において、前記第1及び第2の透明導電膜が共に前記透明導電膜(α)であることが好ましい。このように両面に透明導電膜(α)を用いることで、発電効率に加え、生産性等もより高めることができる。 In the photovoltaic device according to the first invention, it is preferable that both the first and second transparent conductive films are the transparent conductive film (α). Thus, by using the transparent conductive film (α) on both sides, productivity and the like can be further increased in addition to the power generation efficiency.

第1の発明に係る光発電素子において、前記n型結晶半導体基板がテクスチャー構造を有する面を備えることが好ましい。n型結晶半導体基板がテクスチャー構造を有する面を有すると、光の乱反射による光閉じ込め効果が生じ、発電効率等をさらに高めることができる。 In the photovoltaic device according to the first invention, it is preferable that the n-type crystal semiconductor substrate has a surface having a texture structure. When the n-type crystal semiconductor substrate has a surface having a texture structure, a light confinement effect due to irregular reflection of light occurs, and the power generation efficiency and the like can be further increased.

第1の発明に係る光発電素子において、前記透明導電膜(α)が形成温度200℃未満のスパッタリング法により形成されていることが好ましい。このように形成温度200℃未満で透明導電膜(α)を成膜することにより、高い発電効率を有するヘテロ接合型光発電素子とすることができる。また、スパッタリング法を用いることで、生産性の高い光発電素子とすることができる。 In the photovoltaic device according to the first invention, the transparent conductive film (α) is preferably formed by a sputtering method having a formation temperature of less than 200 ° C. Thus, by forming a transparent conductive film (α) at a formation temperature of less than 200 ° C., a heterojunction photovoltaic device having high power generation efficiency can be obtained. Further, by using a sputtering method, a photovoltaic device with high productivity can be obtained.

前記目的に沿う第2の発明に係る光発電素子の製造方法は、n型結晶半導体基板と、該n型結晶半導体基板の一側にこの順に積層されるp型非晶質系半導体薄膜及び第1の透明導電膜と、前記n型結晶半導体基板の他側にこの順に積層されるn型非晶質系半導体薄膜及び第2の透明導電膜とを備える光発電素子の製造方法において、
主成分が酸化インジウムであり、酸化タンタルを含むスパッタリングターゲットを用いたスパッタリング法により、前記第1及び第2の透明導電膜の少なくともいずれかを形成する工程を有し、
該工程における形成温度が200℃未満である。
A photovoltaic device manufacturing method according to a second aspect of the invention that meets the above-described object is an n-type crystal semiconductor substrate, a p-type amorphous semiconductor thin film stacked in this order on one side of the n-type crystal semiconductor substrate, In a method for manufacturing a photovoltaic device, comprising: 1 transparent conductive film; an n-type amorphous semiconductor thin film stacked in this order on the other side of the n-type crystal semiconductor substrate; and a second transparent conductive film.
A step of forming at least one of the first and second transparent conductive films by a sputtering method using a sputtering target containing indium oxide as a main component and containing tantalum oxide;
The formation temperature in this step is less than 200 ° C.

第2の発明に係る光発電素子の製造方法によれば、生産コストを抑え、高い発電効率を有する光発電素子を得ることができる。 According to the photovoltaic element manufacturing method according to the second aspect of the present invention, it is possible to obtain a photovoltaic element having a low generation cost and high power generation efficiency.

ここで、「非晶質系」とは、非晶質のみならず、微結晶を含む意味である。「微結晶」とは、ラマン分光法により結晶ピークが観察されるものを意味する。また、「形成温度」とは、スパッタリングを行う際の基板温度、及び必要に応じて行われるスパッタリングによる膜積層後の熱処理温度をいう。 Here, “amorphous” means not only amorphous but also microcrystals. “Microcrystal” means a crystal peak observed by Raman spectroscopy. The “forming temperature” refers to a substrate temperature at the time of sputtering and a heat treatment temperature after film deposition by sputtering performed as necessary.

第1の発明に係る光発電素子は高い発電効率を有し、特に透明導電膜(α)をスパッタリング法により成膜しても十分な発電効率を有することから、低コストで生産することができる。また、第2の発明に係る光発電素子の製造方法によれば、高い発電効率を有する光発電素子を低コストで製造することができる。 The photovoltaic device according to the first invention has high power generation efficiency, and particularly has sufficient power generation efficiency even when the transparent conductive film (α) is formed by sputtering, so that it can be produced at low cost. . Moreover, according to the method for manufacturing a photovoltaic device according to the second invention, a photovoltaic device having high power generation efficiency can be manufactured at low cost.

本発明の第1の実施の形態に係る光発電素子を示す断面図である。It is sectional drawing which shows the photovoltaic device which concerns on the 1st Embodiment of this invention. 比較製造例で得られた透明導電膜(In−Sn−O)の熱処理前後のSEM画像である。It is a SEM image before and behind heat processing of the transparent conductive film (In-Sn-O) obtained by the comparative manufacture example. 製造例で得られた透明導電膜(In−Ta−O)の熱処理前後のSEM画像である。It is a SEM image before and behind heat processing of the transparent conductive film (In-Ta-O) obtained by the manufacture example. 製造例で得られた透明導電膜(In−Ta−Ti−O)の熱処理前後のSEM画像である。It is a SEM image before and behind heat processing of the transparent conductive film (In-Ta-Ti-O) obtained by the manufacture example. 比較例1、2及び実施例1の測定結果を示すグラフである。6 is a graph showing measurement results of Comparative Examples 1 and 2 and Example 1.

続いて、添付した図面を参照しながら本発明を具体化した実施の形態について説明する。 Next, embodiments of the present invention will be described with reference to the accompanying drawings.

(光発電素子)
図1に示すように、本発明の第1の実施の形態に係る光発電素子10は、板状の多層構造体である。光発電素子10は、n型結晶半導体基板11と、n型結晶半導体基板11の一側(図1における上側)にこの順で積層される第1の真性非晶質系半導体薄膜12、p型非晶質系半導体薄膜13及び第1の透明導電膜14と、n型結晶半導体基板11の他側(図1における下側)にこの順で積層される第2の真性非晶質系半導体薄膜15、n型非晶質系半導体薄膜16及び第2の透明導電膜17とを有する。さらに、光発電素子10は、第1の透明導電膜14の表面(一側)に配設される集電極18と、第2の透明導電膜17の表面(他側)に配設される集電極19とを有する。
(Photovoltaic element)
As shown in FIG. 1, the photovoltaic device 10 according to the first exemplary embodiment of the present invention is a plate-like multilayer structure. The photovoltaic device 10 includes an n-type crystal semiconductor substrate 11, a first intrinsic amorphous semiconductor thin film 12 stacked in this order on one side of the n-type crystal semiconductor substrate 11 (upper side in FIG. 1), a p-type A second intrinsic amorphous semiconductor thin film laminated in this order on the other side (lower side in FIG. 1) of the amorphous semiconductor thin film 13 and the first transparent conductive film 14 and the n-type crystal semiconductor substrate 11 15 and an n-type amorphous semiconductor thin film 16 and a second transparent conductive film 17. Further, the photovoltaic element 10 is a collector electrode 18 disposed on the surface (one side) of the first transparent conductive film 14 and a collector electrode disposed on the surface (other side) of the second transparent conductive film 17. And an electrode 19.

n型結晶半導体基板11としては、n型の半導体特性を有する結晶体の基板であれば特に限定されず公知のものを用いることができる。n型結晶半導体基板11を構成する結晶半導体としては、シリコン(Si)の他、SiC、SiGe、SiN等を挙げることができるが、生産性等の点からシリコンが好ましい。n型結晶半導体基板11は、単結晶体であってもよいし、多結晶体であってもよい。 The n-type crystal semiconductor substrate 11 is not particularly limited as long as it is a crystalline substrate having n-type semiconductor characteristics, and a known substrate can be used. Examples of the crystal semiconductor constituting the n-type crystal semiconductor substrate 11 include SiC (SiGe), SiN, etc. in addition to silicon (Si), but silicon is preferable from the viewpoint of productivity. The n-type crystal semiconductor substrate 11 may be a single crystal or a polycrystal.

n型結晶半導体基板11の一側の面には、テクスチャー構造が形成されている。このテクスチャー構造は他側の面にも形成されていてもよい。このテクスチャー構造は、光の乱反射による光閉じ込めを有効にする。このテクスチャー構造としては、具体的にはn型結晶半導体基板11の上下(一側及び他側)の面の略全面を覆うように多数のピラミッド形状を有する凹凸構造が不規則に配置されている。前記凹凸構造(テクスチャー構造)の高さ(大きさ)は不揃いであって、隣り合う凹凸の一部が重なっていてもよい。また、頂点や谷部が丸みを帯びていてもよい。この凹凸の高さとしては、数μm〜数十μm程度である。このようなテクスチャー構造は、例えば、約1〜5質量%の水酸化ナトリウムを含むエッチング液に基板材料を浸漬し、基板材料の(100)面を異方性エッチングすることにより得ることが出来る。 A texture structure is formed on one surface of the n-type crystal semiconductor substrate 11. This texture structure may also be formed on the other surface. This texture structure enables light confinement due to diffuse reflection of light. Specifically, as this texture structure, a concavo-convex structure having a large number of pyramid shapes is irregularly arranged so as to cover substantially the entire upper and lower surfaces (one side and the other side) of the n-type crystal semiconductor substrate 11. . The height (size) of the concavo-convex structure (texture structure) may be uneven, and adjacent concavo-convex portions may overlap. Moreover, a vertex and a trough part may be roundish. The height of the unevenness is about several μm to several tens of μm. Such a texture structure can be obtained, for example, by immersing the substrate material in an etching solution containing about 1 to 5% by mass of sodium hydroxide and anisotropically etching the (100) plane of the substrate material.

第1の真性非晶質系半導体薄膜12は、n型結晶半導体基板11の一側に積層されている。第1の真性非晶質系半導体薄膜12を構成する半導体としては、シリコン(Si)の他、SiC、SiGe、SiN等を挙げることができるが、生産性等の点からシリコンが好ましい。真性非晶質系半導体薄膜12の膜厚としては特に限定されないが、例えば1nm以上10nm以下とすることができ、4nm以下が好ましい。この膜厚が1nm未満の場合は、欠陥が発生しやすくなることなどにより、キャリアの再結合が生じやすくなる。また、この膜厚が10nmを超える場合は、短絡電流の低下や、光吸収量の増加が生じやすくなる。 The first intrinsic amorphous semiconductor thin film 12 is stacked on one side of the n-type crystal semiconductor substrate 11. Examples of the semiconductor constituting the first intrinsic amorphous semiconductor thin film 12 include silicon (Si), SiC, SiGe, SiN, etc., but silicon is preferable from the viewpoint of productivity. The thickness of the intrinsic amorphous semiconductor thin film 12 is not particularly limited, but can be, for example, 1 nm or more and 10 nm or less, and preferably 4 nm or less. When the film thickness is less than 1 nm, recombination of carriers is likely to occur due to defects easily occurring. Moreover, when this film thickness exceeds 10 nm, it becomes easy to produce the fall of a short circuit current and the increase in light absorption.

p型非晶質系半導体薄膜13は、第1の真性非晶質系半導体薄膜12の一側に積層されている。p型非晶質系半導体薄膜13を構成する半導体としては、p型非晶質系シリコンのほか、それぞれp型非晶質系のSiC、SiGe、SiN等を挙げることができるが、生産性等の点からp型非晶質系シリコンが好ましい。p型非晶質系半導体薄膜13の膜厚としては特に限定されないが、例えば1nm以上6nm未満が好ましく、2nm以上5nm以下がさらに好ましい。このような範囲の膜厚とすることで、キャリアの再結合の発生と直列抵抗とをバランスよく低減することができる。 The p-type amorphous semiconductor thin film 13 is laminated on one side of the first intrinsic amorphous semiconductor thin film 12. Examples of the semiconductor constituting the p-type amorphous semiconductor thin film 13 include p-type amorphous silicon, p-type amorphous SiC, SiGe, SiN and the like. From this point, p-type amorphous silicon is preferable. The thickness of the p-type amorphous semiconductor thin film 13 is not particularly limited, but is preferably 1 nm or more and less than 6 nm, for example, and more preferably 2 nm or more and 5 nm or less. By setting the film thickness within such a range, occurrence of carrier recombination and series resistance can be reduced in a balanced manner.

第1の透明導電膜14(透明導電膜(α))は、p型非晶質系半導体薄膜13の一側に積層されている。第1の透明導電膜14を構成する材料は、少なくともタンタルがドープされた酸化インジウムであり、チタン、バナジウム及びニオブからなる群より選ばれる少なくとも1種の元素(x)がさらにドープされていることが好ましい。元素(x)の中では、チタンがより好ましい。第1の透明導電膜14には、本発明の効果を阻害しない範囲で他の元素(例えば、錫等)がさらに含まれていてもよい。 The first transparent conductive film 14 (transparent conductive film (α)) is laminated on one side of the p-type amorphous semiconductor thin film 13. The material constituting the first transparent conductive film 14 is indium oxide doped with at least tantalum, and is further doped with at least one element (x) selected from the group consisting of titanium, vanadium and niobium. Is preferred. Of the elements (x), titanium is more preferable. The first transparent conductive film 14 may further contain other elements (for example, tin and the like) as long as the effects of the present invention are not impaired.

第1の透明導電膜14におけるタンタルの含有量としては、酸化物(Ta)換算で0.1質量%以上5質量%以下が好ましく、0.5質量%以上3質量%以下がより好ましい。また、第1の透明導電膜14における元素(x)の含有量としては、酸化物(TiO、V及びNb)換算で0.1質量%以上5質量%以下が好ましく、0.5質量%以上3質量%以下がより好ましい。さらには、タンタル及び元素(x)の合計含有量は酸化物換算で5質量%以下が好ましく、3質量%以下がより好ましい。各ドーパント(タンタル及び元素(x))の含有量が上記下限未満の場合は、各ドーパントを添加させた効果(低温での結晶性、低抵抗性、熱安定性等)が十分に発揮されない場合がある。一方、各ドーパントの含有量が上記上限を超える場合は、低抵抗性、成膜性、透光性等が低下する傾向にある。なお、第1の透明導電膜14における酸化インジウムの含有量としては、90質量%以上が好ましく、95質量%以上がより好ましく、97質量%以上99.9質量%以下がさらに好ましい。 The content of tantalum in the first transparent conductive film 14 is preferably 0.1% by mass or more and 5% by mass or less, more preferably 0.5% by mass or more and 3% by mass or less in terms of oxide (Ta 2 O 5 ). preferable. Further, the content of the element (x) in the first transparent conductive film 14 is preferably 0.1% by mass or more and 5% by mass or less in terms of oxides (TiO 2 , V 2 O 5 and Nb 2 O 5 ). 0.5 mass% or more and 3 mass% or less is more preferable. Furthermore, the total content of tantalum and element (x) is preferably 5% by mass or less, more preferably 3% by mass or less in terms of oxide. When the content of each dopant (tantalum and element (x)) is less than the above lower limit, the effects of adding each dopant (crystallinity at low temperature, low resistance, thermal stability, etc.) are not sufficiently exhibited. There is. On the other hand, when the content of each dopant exceeds the above upper limit, low resistance, film formability, translucency, and the like tend to decrease. In addition, as content of indium oxide in the 1st transparent conductive film 14, 90 mass% or more is preferable, 95 mass% or more is more preferable, 97 mass% or more and 99.9 mass% or less are further more preferable.

第1の透明導電膜14の主成分である酸化インジウムは結晶化されている。この結晶性の酸化インジウムの面内長軸平均結晶粒径としては、10nm以上300nm未満が好ましく、40nm以上200nm以下がより好ましい。面内長軸平均結晶粒径とは、走査型電子顕微鏡(SEM)から得られる像において、面内に存在する各結晶粒子の最も長い径を測定し、この測定値が大きい上位20粒子の測定値を数平均したものをいう。第1の透明導電膜14が、このように小さい粒径の結晶性酸化インジウムから主に構成されることで、結晶性の高く、移動度の高い膜となる。なお、このように粒径の小さい結晶が形成されることは、ドープされるタンタルに由来すると考えられる。 Indium oxide which is the main component of the first transparent conductive film 14 is crystallized. The in-plane long axis average crystal grain size of the crystalline indium oxide is preferably 10 nm or more and less than 300 nm, and more preferably 40 nm or more and 200 nm or less. The in-plane long axis average crystal grain size is the measurement of the top 20 particles having the largest measured value by measuring the longest diameter of each crystal particle present in the plane in an image obtained from a scanning electron microscope (SEM). This is the number averaged value. When the first transparent conductive film 14 is mainly composed of crystalline indium oxide having such a small particle diameter, a film having high crystallinity and high mobility is obtained. In addition, it is thought that the crystal having such a small particle diameter is derived from doped tantalum.

第1の透明導電膜14の膜厚としては、特に限定されないが、透光性と集電性とを両立させることができるなどの点から40nm以上100nm以下が好ましい。また、第1の透明導電膜14の比抵抗値としては、5×10−5Ω・cm以上1×10−3Ω・cm以下が好ましく、5×10−4Ω・cm以下がより好ましい。 Although it does not specifically limit as a film thickness of the 1st transparent conductive film 14, 40 nm or more and 100 nm or less are preferable from the point of being able to make translucency and current collection compatible. In addition, the specific resistance value of the first transparent conductive film 14 is preferably 5 × 10 −5 Ω · cm to 1 × 10 −3 Ω · cm, and more preferably 5 × 10 −4 Ω · cm.

第2の真性非晶質系半導体薄膜15は、n型結晶半導体基板11の他側に積層されている。第2の真性非晶質系半導体薄膜15を構成する半導体は、第1の真性非晶質系半導体薄膜12と同様とすることができる。第2の真性非晶質系半導体薄膜15の膜厚としては、例えば1nm以上10nm以下とすることができる。 The second intrinsic amorphous semiconductor thin film 15 is stacked on the other side of the n-type crystal semiconductor substrate 11. The semiconductor constituting the second intrinsic amorphous semiconductor thin film 15 can be the same as the first intrinsic amorphous semiconductor thin film 12. The film thickness of the second intrinsic amorphous semiconductor thin film 15 can be, for example, 1 nm or more and 10 nm or less.

n型非晶質系半導体薄膜16は、第2の真性非晶質系半導体薄膜15の他側に積層されている。n型非晶質系半導体薄膜16を構成する半導体としては、n型非晶質系シリコンのほか、それぞれn型非晶質系のSiC、SiGe、SiN等を挙げることができるが、生産性等の点からn型非晶質系シリコンが好ましい。n型非晶質系半導体薄膜16の膜厚としては特に限定されないが、例えば1nm以上15nm以下が好ましく、2nm以上10nm以下がさらに好ましい。このような範囲の膜厚とすることで、キャリアの再結合の発生と直列抵抗とをバランスよく低減することができる。 The n-type amorphous semiconductor thin film 16 is laminated on the other side of the second intrinsic amorphous semiconductor thin film 15. Examples of the semiconductor constituting the n-type amorphous semiconductor thin film 16 include n-type amorphous silicon, n-type amorphous SiC, SiGe, SiN and the like. From this point, n-type amorphous silicon is preferable. The thickness of the n-type amorphous semiconductor thin film 16 is not particularly limited, but is preferably 1 nm to 15 nm, for example, and more preferably 2 nm to 10 nm. By setting the film thickness within such a range, occurrence of carrier recombination and series resistance can be reduced in a balanced manner.

第2の透明導電膜17(透明導電膜(α))は、n型非晶質系半導体薄膜16の他側に積層されている。第2の透明導電膜17を形成する材料(組成)、特性、好ましい膜厚等は、第1の透明導電膜14と同様である。但し、第1の透明導電膜14と第2の透明導電膜17とは、組成、膜厚等が異なっていてもよい。 The second transparent conductive film 17 (transparent conductive film (α)) is laminated on the other side of the n-type amorphous semiconductor thin film 16. The material (composition), characteristics, preferable film thickness, and the like for forming the second transparent conductive film 17 are the same as those of the first transparent conductive film 14. However, the first transparent conductive film 14 and the second transparent conductive film 17 may have different compositions, film thicknesses, and the like.

集電極18、19は、互いに平行かつ等間隔に形成される複数のバスバー電極、及びこれらのバスバー電極に直交し、互いに平行かつ等間隔に形成される複数のフィンガー電極を有する。 The collector electrodes 18 and 19 have a plurality of bus bar electrodes formed in parallel with each other at equal intervals, and a plurality of finger electrodes orthogonal to these bus bar electrodes and formed in parallel with each other at equal intervals.

バスバー電極及びフィンガー電極は、それぞれ線状又は帯状であり、導電性材料から形成されている。この導電性材料としては、銀ペースト等の導電性接着剤や、銅線等の金属導線を用いることができる。各バスバー電極の幅としては、例えば0.5mm以上2mm以下程度であり、各フィンガー電極の幅としては、例えば10μm以上300μm以下程度である。また、各フィンガー電極間の間隔としては、例えば0.5mm以上4mm以下程度である。 The bus bar electrode and the finger electrode each have a linear shape or a strip shape, and are formed of a conductive material. As this conductive material, a conductive adhesive such as a silver paste or a metal conductive wire such as a copper wire can be used. The width of each bus bar electrode is, for example, about 0.5 mm to 2 mm, and the width of each finger electrode is, for example, about 10 μm to 300 μm. Moreover, as a space | interval between each finger electrode, it is about 0.5 mm or more and 4 mm or less, for example.

なお、使用の際光入射面と反対側に位置する集電極18又は19は、バスバー電極とフィンガー電極とからなる構造ではなく、全面に導電性材料が積層された構造とすることもできる。このような構造の集電極はめっきや金属箔の積層等により形成することができる。他側の集電極をこのような構造にすることで、他側の集電効率を高めることができる。また、一側からの入射光のうち、pn接合部分を透過した入射光が、全面積層された集電極全面により反射するため発電効率を高めることができる。 In addition, the collector electrode 18 or 19 positioned on the opposite side to the light incident surface in use may be a structure in which a conductive material is laminated on the entire surface, instead of a structure including a bus bar electrode and a finger electrode. The collector electrode having such a structure can be formed by plating, metal foil lamination, or the like. By making the collector electrode on the other side into such a structure, the current collection efficiency on the other side can be increased. In addition, among incident light from one side, incident light transmitted through the pn junction portion is reflected by the entire surface of the collector electrode laminated on the entire surface, so that power generation efficiency can be improved.

このような構造を有する光発電素子10は、通常、複数を直列に接続して使用される。複数の光発電装置10を直列接続して使用することで、発電電圧を高めることができる。 The photovoltaic elements 10 having such a structure are usually used by connecting a plurality of photovoltaic elements 10 in series. By using a plurality of photovoltaic power generation devices 10 connected in series, the generated voltage can be increased.

光発電素子10における光入射面は特に限定されず、通常、一側(図1における上側)であるが、他側(図1における下側)を光入射面としてもよい。光発電素子10によれば、少なくともタンタルがドープされた酸化インジウムにより透明導電膜14、17が形成されているため、発電効率が優れる。 The light incident surface of the photovoltaic element 10 is not particularly limited, and is normally one side (the upper side in FIG. 1), but the other side (the lower side in FIG. 1) may be the light incident surface. According to the photovoltaic device 10, since the transparent conductive films 14 and 17 are formed of indium oxide doped with at least tantalum, the power generation efficiency is excellent.

(光発電素子の製造方法)
次いで、本発明の第2の実施の形態に係る光発電素子の製造方法について説明する。光発電素子10は、n型結晶半導体基板11の一側に第1の真性非晶質系半導体薄膜12を積層する工程、さらにp型非晶質系半導体薄膜13を積層する工程、さらに第1の透明導電膜14を積層する工程、n型結晶半導体基板11の他側に第2の真性非晶質系半導体薄膜15を積層する工程、さらにn型非晶質系半導体薄膜16を積層する工程、さらに第2の透明導電膜17を積層する工程、及び第1の透明導電膜14の一側表面及び第2の透明導電膜17の他側表面に集電極18、19を配設する工程を有する。なお、各工程の順は、光発電素子10の層構造を得ることができる順である限り特に限定されるものではない。
(Method for manufacturing photovoltaic device)
Next, a method for manufacturing a photovoltaic device according to the second embodiment of the present invention will be described. The photovoltaic element 10 includes a step of laminating a first intrinsic amorphous semiconductor thin film 12 on one side of an n-type crystal semiconductor substrate 11, a step of laminating a p-type amorphous semiconductor thin film 13, and a first step. A step of laminating the transparent conductive film 14, a step of laminating the second intrinsic amorphous semiconductor thin film 15 on the other side of the n-type crystal semiconductor substrate 11, and a step of laminating the n-type amorphous semiconductor thin film 16. Further, a step of laminating the second transparent conductive film 17 and a step of disposing the collector electrodes 18 and 19 on the one side surface of the first transparent conductive film 14 and the other side surface of the second transparent conductive film 17. Have. In addition, the order of each process will not be specifically limited as long as it is the order which can obtain the layer structure of the photovoltaic device 10. FIG.

第1及び第2の真性非晶質系半導体膜12、15を積層する方法としては、例えば、化学気相成長法(例えばプラズマCVD法や触媒CVD法(別名ホットワイヤCVD法)等)などの公知の方法が挙げられる。プラズマCVD法による場合、原料ガスとしては例えばSiHとHとの混合ガスを用いることができる。 As a method of laminating the first and second intrinsic amorphous semiconductor films 12 and 15, for example, chemical vapor deposition (for example, plasma CVD method or catalytic CVD method (also called hot wire CVD method)), etc. A well-known method is mentioned. In the case of the plasma CVD method, for example, a mixed gas of SiH 4 and H 2 can be used as the source gas.

p型非晶質系半導体薄膜13及びn型非晶質系半導体薄膜16を積層する方法としても、例えば、化学気相成長法(例えばプラズマCVD法や触媒CVD法(別名ホットワイヤCVD法)等)などの公知の方法により成膜することができる。プラズマCVD法による場合、原料ガスとしてはp型非晶質系半導体薄膜13においては例えばSiHとHとBとの混合ガスを、n型非晶質系半導体薄膜16においては例えばSiHとHとPHとの混合ガスを用いることができる。 As a method of laminating the p-type amorphous semiconductor thin film 13 and the n-type amorphous semiconductor thin film 16, for example, a chemical vapor deposition method (for example, plasma CVD method or catalytic CVD method (also called hot wire CVD method)) The film can be formed by a known method such as When the plasma CVD method is used, the source gas is, for example, a mixed gas of SiH 4 , H 2, and B 2 H 6 in the p-type amorphous semiconductor thin film 13, and in the n-type amorphous semiconductor thin film 16, for example, A mixed gas of SiH 4 , H 2, and PH 3 can be used.

第1及び第2の透明導電膜14、17を積層する方法としては、例えばスパッタリング法、真空蒸着法、イオンプレーティング法(反応性プラズマ蒸着法)等を挙げることができるが、スパッタリング法によることが好ましい。スパッタリング法は、膜厚制御性等に優れ、また、イオンプレーティング法等に比べて低コストで行うことができる。 Examples of the method of laminating the first and second transparent conductive films 14 and 17 include a sputtering method, a vacuum deposition method, an ion plating method (reactive plasma deposition method), and the like. Is preferred. The sputtering method is excellent in film thickness controllability and the like, and can be performed at a lower cost than the ion plating method.

第1及び第2の透明導電膜14、17の形成に用いられるスパッタリングターゲットとしては、主成分が酸化インジウムであり、酸化タンタル及び好ましくは元素(x)の酸化物を含むものが用いられる。スパッタリングターゲットにおける各成分の成分比は、所望する第1及び第2の透明導電膜14、17の成分比に応じて適宜調整することができる。また、スパッタリングターゲットには、さらに他の成分(例えば酸化錫等)が含まれていてもよい。なお、スパッタリング法により第1又は第2の透明導電膜14、17を形成した場合、各透明導電膜14、17における金属成分の含有量(含有比)は、用いたスパッタリングターゲットと実質的に同一であるとみなす。 As a sputtering target used for forming the first and second transparent conductive films 14 and 17, a sputtering target containing indium oxide as a main component and containing tantalum oxide and preferably an oxide of element (x) is used. The component ratio of each component in the sputtering target can be appropriately adjusted according to the desired component ratio of the first and second transparent conductive films 14 and 17. Further, the sputtering target may further contain other components (for example, tin oxide). In addition, when the 1st or 2nd transparent conductive films 14 and 17 are formed by sputtering method, content (content ratio) of the metal component in each transparent conductive films 14 and 17 is substantially the same as the used sputtering target. It is considered.

前記スパッタリングターゲットは、例えば、インジウム酸化物の前駆体と、タンタル酸化物の前駆体とを含む溶液を調製する工程(a)、前記溶液にアルカリ化合物を添加して、金属水酸化物の沈殿物を得る工程(b)、得られた金属水酸化物の沈殿物を洗浄及び乾燥し、金属酸化物の粉末を得る工程(c)、及び得られた金属酸化物の粉末を粉砕後焼結する工程(d)を含む方法により得ることができる。前記インジウム酸化物の前駆体としては硝酸インジウム、塩化インジウム等を挙げることができ、前記タンタル酸化物の前駆体としては塩化タンタル等を挙げることができる。工程(a)で得られた溶液のpHとしては、1〜4が好ましい。また、この溶液には、他の成分(例えば、元素(x)の酸化物又はその前駆体、pH調整剤等)を添加してもよい。工程(b)においてアルカリ化合物を添加した後の溶液のpHとしては、7〜10が好ましい。また、工程(d)における焼結温度は1250〜1600℃程度、焼結時間は10〜20時間程度とすることができる。 The sputtering target includes, for example, a step (a) of preparing a solution containing an indium oxide precursor and a tantalum oxide precursor, adding an alkali compound to the solution, and depositing a metal hydroxide Step (b) to obtain a metal hydroxide, washing and drying the obtained metal hydroxide precipitate (c) to obtain a metal oxide powder, and sintering the obtained metal oxide powder after pulverization It can be obtained by a method including step (d). Examples of the indium oxide precursor include indium nitrate and indium chloride, and examples of the tantalum oxide precursor include tantalum chloride. As pH of the solution obtained at the process (a), 1-4 are preferable. Moreover, you may add another component (For example, the oxide of an element (x) or its precursor, a pH adjuster etc.) to this solution. The pH of the solution after adding the alkali compound in the step (b) is preferably 7 to 10. Moreover, the sintering temperature in a process (d) can be about 1250-1600 degreeC, and sintering time can be about 10 to 20 hours.

スパッタリング法は、公知のスパッタリング装置を用いて行うことができる。スパッタリング装置のチャンバー内の初期真空度としては、1×10−7〜1×10−5Torr程度とすることができる。積層(蒸着)の際の基板温度としては、特に限定されないが、200℃未満が好ましく、0℃以上80℃以下がより好ましく、室温でよい。スパッタリングにより膜を積層後、必要に応じて、熱処理を行うことができる。この熱処理温度としては、50℃以上200℃未満が好ましく、160℃以下がより好ましい。ここで、透明導電膜14、17の形成においては、形成温度(スパッタリングの際の基板温度、及びその後必要に応じて行われる熱処理温度)200℃未満(より好ましくは、160℃以下。下限としては、例えば20℃)で行うことができ、透明導電膜14、17は前記組成からなるため、このような比較的低温での形成においても、結晶化が進行し、低抵抗の膜を得ることができる。また、形成温度が200℃未満であるため、他の非晶質系半導体薄膜等に与える影響が抑えられ、高い発電効率を有するヘテロ接合型光発電素子を得ることができる。 The sputtering method can be performed using a known sputtering apparatus. The initial degree of vacuum in the chamber of the sputtering apparatus can be about 1 × 10 −7 to 1 × 10 −5 Torr. Although it does not specifically limit as board | substrate temperature in the case of lamination | stacking (vapor deposition), Less than 200 degreeC is preferable, 0 degreeC or more and 80 degrees C or less are more preferable, and room temperature may be sufficient. After the films are stacked by sputtering, heat treatment can be performed as necessary. The heat treatment temperature is preferably 50 ° C. or higher and lower than 200 ° C., more preferably 160 ° C. or lower. Here, in the formation of the transparent conductive films 14 and 17, the formation temperature (the substrate temperature during sputtering and the heat treatment temperature performed thereafter as necessary) is less than 200 ° C. (more preferably, 160 ° C. or less. Since the transparent conductive films 14 and 17 have the above-described composition, crystallization progresses even in the formation at such a relatively low temperature, and a low-resistance film can be obtained. it can. Moreover, since the formation temperature is less than 200 ° C., the influence on other amorphous semiconductor thin films and the like can be suppressed, and a heterojunction photovoltaic device having high power generation efficiency can be obtained.

集電極18、19の配設は公知の方法で行うことができる。集電極18、19の材料として導電性接着剤が用いられている場合、スクリーン印刷やグラビアオフセット印刷等の印刷法により形成することができる。また、集電極18、19に金属導線を用いる場合、導電性接着剤や低融点金属(半田等)によりの透明導電膜14、17上に固定することができる。 The collector electrodes 18 and 19 can be disposed by a known method. When a conductive adhesive is used as a material for the collector electrodes 18 and 19, it can be formed by a printing method such as screen printing or gravure offset printing. Moreover, when using a metal conducting wire for the collector electrodes 18 and 19, it can fix on the transparent conductive films 14 and 17 with a conductive adhesive or a low melting point metal (solder etc.).

本発明は前記した実施の形態に限定されるものではなく、本発明の要旨を変更しない範囲でその構成を変更することもできる。例えば、光発電素子10が有する第1の真性非晶質系半導体薄膜12及び第2の真性非晶質系半導体薄膜15は必須の構成要件ではない。また、第1の透明導電膜14又は第2の透明導電膜17は、少なくともタンタルがドープされた酸化インジウム以外の透明導電材料からから形成されていてもよい。この透明導電材料としては、ITO、タングステンドープインジウム酸化物(Indium Tungsten Oxide:IWO)等を挙げることができる。 The present invention is not limited to the above-described embodiment, and the configuration thereof can be changed without changing the gist of the present invention. For example, the first intrinsic amorphous semiconductor thin film 12 and the second intrinsic amorphous semiconductor thin film 15 included in the photovoltaic device 10 are not essential components. The first transparent conductive film 14 or the second transparent conductive film 17 may be formed of a transparent conductive material other than indium oxide doped with at least tantalum. Examples of the transparent conductive material include ITO and tungsten-doped indium oxide (IWO).

以下、実施例及び比較例を挙げて、本発明の内容をより具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。 Hereinafter, the contents of the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not limited to a following example.

<製造例1>
硝酸インジウム(In(NO)溶液に酸化タンタルの含有量が1質量%となる量の塩化タンタルを添加した。さらに、超純水を添加して50℃で12時間攪拌し、pH3のIn/Ta混合塩溶液を得た。次いで、前記混合塩溶液にNHOH水溶液を添加しpH9とした後、40℃で20時間反応を進行させ、In/Ta混合水酸化物の沈殿物を得た。前記沈殿物を分離し、超純水で三回洗浄し、120℃の熱風で乾燥させてインジウムタンタル酸化物(In−Ta−O)粉末を得た。次いで、得られたIn−Ta−O粉末をポリビニルアルコール樹脂と共に湿式ボールミルで12時間粉砕混合した。粉砕混合後の混合スラリーを乾燥し、モールドを用いて加圧成型し、得られた成型体を1600℃、12時間で焼結させ、焼結体(スパッタリングターゲット)を得た。
得られたスパッタリングターゲットをDCマグネトロンスパッタに装着させ、チャンバー内の初期真空度を1×10−6Torr以下とし室温で100nmの厚みでガラス基板上にIn−Ta−O系薄膜を蒸着させた。その後、In−Ta−O系薄膜を大気雰囲気下で150℃、2時間熱処理し、透明導電膜を得た。得られた透明導電膜の表面はSEM観察により結晶性が確認でき、比抵抗は4.05×10−4Ω・cmであった。また、得られた透明導電膜を80℃、85%の室度下で5日間保管した後の抵抗変化を測定した結果、4.0%以内の抵抗変化であった。
<Production Example 1>
Tantalum chloride was added to an indium nitrate (In (NO 3 ) 3 ) solution so that the content of tantalum oxide was 1% by mass. Furthermore, ultrapure water was added and stirred at 50 ° C. for 12 hours to obtain a pH 3 In / Ta mixed salt solution. Next, an NH 3 OH aqueous solution was added to the mixed salt solution to adjust the pH to 9, and then the reaction was allowed to proceed at 40 ° C. for 20 hours to obtain an In / Ta mixed hydroxide precipitate. The precipitate was separated, washed three times with ultrapure water, and dried with hot air at 120 ° C. to obtain indium tantalum oxide (In—Ta—O) powder. Next, the obtained In-Ta-O powder was pulverized and mixed with a polyvinyl alcohol resin in a wet ball mill for 12 hours. The mixed slurry after pulverization and mixing was dried and pressure-molded using a mold, and the obtained molded body was sintered at 1600 ° C. for 12 hours to obtain a sintered body (sputtering target).
The obtained sputtering target was attached to DC magnetron sputtering, the initial vacuum degree in the chamber was set to 1 × 10 −6 Torr or less, and an In—Ta—O-based thin film was deposited on a glass substrate with a thickness of 100 nm at room temperature. Thereafter, the In—Ta—O-based thin film was heat-treated at 150 ° C. for 2 hours in an air atmosphere to obtain a transparent conductive film. The crystallinity of the surface of the obtained transparent conductive film could be confirmed by SEM observation, and the specific resistance was 4.05 × 10 −4 Ω · cm. Moreover, as a result of measuring the resistance change after storing the obtained transparent conductive film at 80 ° C. under a room temperature of 85% for 5 days, the resistance change was within 4.0%.

<製造例2>
酸化タンタルの含有量が3質量%となる量の塩化タンタルを添加したこと以外は、製造例1と同様の方法によりスパッタリングターゲットを得た。得られたスパッタリングターゲットを用い、製造例1と同様の方法により透明導電膜を得た。得られた透明導電膜の表面はSEM観察により結晶性が確認でき、比抵抗は5.22×10−4Ω・cmであった。また、得られた透明導電膜を80℃、85%の室度下で5日間保管した後の抵抗変化を測定した結果、3.8%以内の抵抗変化であった。
<Production Example 2>
A sputtering target was obtained by the same method as in Production Example 1 except that tantalum chloride was added in an amount that would result in a tantalum oxide content of 3% by mass. A transparent conductive film was obtained by the same method as in Production Example 1 using the obtained sputtering target. The surface of the obtained transparent conductive film was confirmed to have crystallinity by SEM observation, and the specific resistance was 5.22 × 10 −4 Ω · cm. Moreover, as a result of measuring the resistance change after storing the obtained transparent conductive film at 80 ° C. under a room temperature of 85% for 5 days, the resistance change was within 3.8%.

<製造例3>
酸化タンタルの含有量が5質量%となる量の塩化タンタルを添加したこと以外は、製造例1と同様の方法によりスパッタリングターゲットを得た。得られたスパッタリングターゲットを用い、製造例1と同様の方法により透明導電膜を得た。得られた透明導電膜の表面はSEM観察により結晶性が確認でき、比抵抗は6.43×10−4Ω・cmであった。また、得られた透明導電膜を80℃、85%の室度下で5日間保管した後の抵抗変化を測定した結果、3.5%以内の抵抗変化であった。
<Production Example 3>
A sputtering target was obtained by the same method as in Production Example 1 except that tantalum chloride was added in an amount that would result in a tantalum oxide content of 5% by mass. A transparent conductive film was obtained by the same method as in Production Example 1 using the obtained sputtering target. The crystallinity of the surface of the obtained transparent conductive film could be confirmed by SEM observation, and the specific resistance was 6.43 × 10 −4 Ω · cm. Moreover, as a result of measuring the resistance change after storing the obtained transparent conductive film at 80 ° C. under a room temperature of 85% for 5 days, the resistance change was within 3.5%.

<製造例4>
酸化タンタルの含有量が10質量%となる量の塩化タンタルを添加したこと以外は、製造例1と同様の方法によりスパッタリングターゲットを得た。得られたスパッタリングターゲットを用い、製造例1と同様の方法により透明導電膜を得た。得られた透明導電膜の表面はSEM観察により結晶性が確認でき、比抵抗は7.08×10−4Ω・cmであった。また、得られた透明導電膜を80℃、85%の室度下で5日間保管した後の抵抗変化を測定した結果、3.6%以内の抵抗変化であった。
<Production Example 4>
A sputtering target was obtained by the same method as in Production Example 1 except that tantalum chloride was added in an amount such that the tantalum oxide content was 10% by mass. A transparent conductive film was obtained by the same method as in Production Example 1 using the obtained sputtering target. The crystallinity of the surface of the obtained transparent conductive film could be confirmed by SEM observation, and the specific resistance was 7.08 × 10 −4 Ω · cm. Moreover, as a result of measuring the resistance change after storing the obtained transparent conductive film at 80 ° C. under a room temperature of 85% for 5 days, the resistance change was within 3.6%.

<製造例5>
硝酸インジウム(In(NO)溶液に酸化タンタルの含有量が0.5質量%となる量の塩化タンタル及び酸化チタンの含有量が0.5質量%となる量のオルトチタン酸テトライソプロピルを添加した。さらに、超純水を添加して50℃で12時間攪拌し、pH3.2のIn/Ta/Ti混合塩溶液を得た。次いで、前記混合塩溶液にNHOH水溶液を添加しpH9とした後、40℃で20時間反応を進行させ、In/Ta/Ti混合水酸化物の沈殿物を得た。前記沈殿物を分離し、超純水で三回洗浄し、120℃の熱風で乾燥させてインジウムタンタルチタン酸化物(In−Ta−Ti−O)粉末を得た。次いで、得られたIn−Ta−Ti−O粉末をポリビニルアルコール樹脂と共に湿式ボールミルで12時間粉砕混合した。粉砕混合後の混合スラリーを乾燥し、CIPを用いて加圧成型し、得られた成型体を1450℃、12時間で焼結させ、焼結体(スパッタリングターゲット)を得た。
得られたスパッタリングターゲットをDCマグネトロンスパッタに装着させ、チャンバー内の初期真空度を1×10−6Torr以下とし室温で100nmの厚みでガラス基板上にIn−Ta−Ti−O系薄膜を蒸着させた。その後、In−Ta−Ti−O系薄膜を大気雰囲気下で150℃、2時間熱処理し、透明導電膜を得た。得られた透明導電膜の表面はSEM観察により結晶性が確認でき、比抵抗は3.78×10−4Ω・cmであった。また、得られた透明導電膜を80℃、85%の室度下で5日間保管した後の抵抗変化を測定した結果、3.2%以内の抵抗変化であった。
<Production Example 5>
Tetraisopropyl orthotitanate in an amount of 0.5% by mass of tantalum chloride and titanium oxide in an amount of 0.5% by mass of tantalum oxide in an indium nitrate (In (NO 3 ) 3 ) solution Was added. Furthermore, ultrapure water was added and stirred at 50 ° C. for 12 hours to obtain an In / Ta / Ti mixed salt solution having a pH of 3.2. Next, an NH 3 OH aqueous solution was added to the mixed salt solution to adjust the pH to 9, and then the reaction was allowed to proceed at 40 ° C. for 20 hours to obtain an In / Ta / Ti mixed hydroxide precipitate. The precipitate was separated, washed three times with ultrapure water, and dried with hot air at 120 ° C. to obtain indium tantalum titanium oxide (In—Ta—Ti—O) powder. Next, the obtained In—Ta—Ti—O powder was pulverized and mixed with a polyvinyl alcohol resin in a wet ball mill for 12 hours. The mixed slurry after pulverization and mixing was dried and pressure-molded using CIP, and the obtained molded body was sintered at 1450 ° C. for 12 hours to obtain a sintered body (sputtering target).
The obtained sputtering target was attached to DC magnetron sputtering, the initial vacuum degree in the chamber was set to 1 × 10 −6 Torr or less, and an In—Ta—Ti—O-based thin film was deposited on a glass substrate with a thickness of 100 nm at room temperature. It was. Thereafter, the In—Ta—Ti—O-based thin film was heat-treated at 150 ° C. for 2 hours in an air atmosphere to obtain a transparent conductive film. The surface of the obtained transparent conductive film was confirmed to have crystallinity by SEM observation, and the specific resistance was 3.78 × 10 −4 Ω · cm. Moreover, as a result of measuring the resistance change after storing the obtained transparent conductive film at 80 ° C. under a room temperature of 85% for 5 days, the resistance change was within 3.2%.

<製造例6>
酸化タンタルの含有量が1.5質量%となる量の塩化タンタル、及び酸化チタンの含有量が1.5質量%となる量のオルトチタン酸テトライソプロピルを添加したこと以外は、製造例5と同様の方法によりスパッタリングターゲットを得た。得られたスパッタリングターゲットを用い、製造例5と同様の方法により透明導電膜を得た。得られた透明導電膜の表面はSEM観察により結晶性が確認でき、比抵抗は4.12×10−4Ω・cmであった。また、得られた透明導電膜を80℃、85%の室度下で5日間保管した後の抵抗変化を測定した結果、2.8%以内の抵抗変化であった。
<Production Example 6>
Production Example 5 except that tantalum chloride with an amount of tantalum oxide of 1.5% by mass and tetraisopropyl orthotitanate with an amount of titanium oxide of 1.5% by mass were added. A sputtering target was obtained by the same method. Using the obtained sputtering target, a transparent conductive film was obtained in the same manner as in Production Example 5. Crystallinity of the surface of the obtained transparent conductive film could be confirmed by SEM observation, and the specific resistance was 4.12 × 10 −4 Ω · cm. Further, the resistance change after the obtained transparent conductive film was stored at 80 ° C. under a room temperature of 85% for 5 days was a resistance change within 2.8%.

<製造例7>
酸化インジウムの含有量が89.1%、酸化錫の含有量が9.9%、酸化タンタルの含有量が1質量%となるように硝酸インジウム、塩化錫及び塩化タンタルを混合して溶液を得たこと以外は製造例5と同様の方法によりスパッタリングターゲットを得た。得られたスパッタリングターゲットを用い、製造例5と同様の方法により透明導電膜を得た。得られた透明導電膜の表面はSEM観察により結晶性が確認でき、比抵抗は4.25×10−4Ω・cmであった。また、得られた透明導電膜を80℃、85%の室度下で5日間保管した後の抵抗変化を測定した結果、4.3%以内の抵抗変化であった。
<Production Example 7>
A solution is obtained by mixing indium nitrate, tin chloride and tantalum chloride so that the indium oxide content is 89.1%, the tin oxide content is 9.9%, and the tantalum oxide content is 1% by mass. A sputtering target was obtained by the same method as in Production Example 5 except that. Using the obtained sputtering target, a transparent conductive film was obtained in the same manner as in Production Example 5. Crystallinity of the surface of the obtained transparent conductive film could be confirmed by SEM observation, and the specific resistance was 4.25 × 10 −4 Ω · cm. Moreover, as a result of measuring the resistance change after storing the obtained transparent conductive film at 80 ° C. under a room temperature of 85% for 5 days, the resistance change was within 4.3%.

<比較製造例1>
酸化インジウムの含有量が90質量%、酸化錫の含有量が10質量%のインジウム錫酸化物スパッタリングターゲットを用い、製造例5と同様の方法により透明導電膜を得た。得られた透明導電膜の表面はSEM観察により結晶性が確認できず、比抵抗は7.19×10−4Ω・cmであった。また、得られた透明導電膜を80℃、85%の室度下で5日間保管した後の抵抗変化を測定した結果、12.9%以内の抵抗変化であった。
<Comparative Production Example 1>
A transparent conductive film was obtained in the same manner as in Production Example 5 using an indium tin oxide sputtering target having an indium oxide content of 90% by mass and a tin oxide content of 10% by mass. As for the surface of the obtained transparent conductive film, crystallinity could not be confirmed by SEM observation, and the specific resistance was 7.19 × 10 −4 Ω · cm. Moreover, as a result of measuring the resistance change after storing the obtained transparent conductive film at 80 ° C. under a room temperature of 85% for 5 days, the resistance change was within 12.9%.

得られた各透明導電膜の評価結果を再度以下の表1に示す。 The evaluation results of the obtained transparent conductive films are again shown in Table 1 below.

比較製造例1の透明導電膜(In−Sn−O)の熱処理前後のSEM画像を図2に示す。また、製造例の透明導電膜(In−Ta−O)及び透明導電膜(In−Ta−Ti−O)の熱処理前後のSEM画像をそれぞれ図3、図4に示す。透明導電膜(In−Sn−O)は熱処理前は非晶質であり、150℃の熱処理を施しても結晶化が進行しないことがわかる。一方、透明導電膜(In−Ta−O)及び透明導電膜(In−Ta−Ti−O)においては、熱処理前の状態で既に結晶化されており、150℃の熱処理によりより結晶化が進むことがわかる。なお、図3、図4における熱処理後のSEM画像を元にした面内長軸平均結晶粒径は、共に約100nmであった。 FIG. 2 shows SEM images before and after the heat treatment of the transparent conductive film (In—Sn—O) of Comparative Production Example 1. 3 and 4 show SEM images before and after the heat treatment of the transparent conductive film (In-Ta-O) and the transparent conductive film (In-Ta-Ti-O) in the production example, respectively. It can be seen that the transparent conductive film (In—Sn—O) is amorphous before heat treatment, and crystallization does not proceed even when heat treatment at 150 ° C. is performed. On the other hand, the transparent conductive film (In—Ta—O) and the transparent conductive film (In—Ta—Ti—O) are already crystallized in the state before the heat treatment, and the crystallization proceeds further by the heat treatment at 150 ° C. I understand that. The in-plane long axis average crystal grain size based on the SEM images after heat treatment in FIGS. 3 and 4 was both about 100 nm.

<比較例1〜2、実施例1>
n型単結晶シリコン基板の一側に、第1の真性非晶質系シリコン薄膜(膜厚6nm)、p型非晶質系シリコン薄膜(膜厚4nm)及び第1の透明導電膜(膜厚65nm)をこの順に積層した。なお、n型単結晶シリコン基板は、両面に無数のピラミッド形状を有する微細な凹凸構造(テクスチャー構造)が形成されたものを用いた。この凹凸構造は、約3質量%の水酸化ナトリウムを含むエッチング液に基板材料を浸漬し、基板材料の(100)面を異方性エッチングすることにより形成した。
ついで、n型単結晶シリコン基板の他側に、第2の真性非晶質系シリコン薄膜(膜厚6nm)、n型非晶質系シリコン薄膜(膜厚8nm)及び第2の透明導電膜(膜厚65nm)をこの順に積層した。各シリコン薄膜は、プラズマCVD法により積層した。各実施例及び比較例における第1及び第2の透明導電膜は、以下の材料及び方法により積層した。
<Comparative Examples 1-2, Example 1>
A first intrinsic amorphous silicon thin film (film thickness 6 nm), a p-type amorphous silicon thin film (film thickness 4 nm), and a first transparent conductive film (film thickness) are formed on one side of an n-type single crystal silicon substrate. 65 nm) was laminated in this order. In addition, the n-type single crystal silicon substrate used what formed the fine uneven structure (texture structure) which has innumerable pyramid shape on both surfaces. This concavo-convex structure was formed by immersing the substrate material in an etching solution containing about 3% by mass of sodium hydroxide and anisotropically etching the (100) plane of the substrate material.
Then, on the other side of the n-type single crystal silicon substrate, a second intrinsic amorphous silicon thin film (film thickness 6 nm), an n-type amorphous silicon thin film (film thickness 8 nm), and a second transparent conductive film ( A film thickness of 65 nm) was laminated in this order. Each silicon thin film was laminated by a plasma CVD method. The first and second transparent conductive films in each example and comparative example were laminated by the following materials and methods.

比較例1:ITO(Sn=10質量%)、スパッタリング法
比較例2:ITO(Sn=5質量%)、イオンプレーティング法
実施例1:In−Ta−Ti−O材料(製造例5のスパッタリングターゲット)、スパッタリング法(製造例5の成膜条件)
Comparative Example 1: ITO (Sn = 10 mass%), sputtering method Comparative Example 2: ITO (Sn = 5 mass%), ion plating method Example 1: In-Ta-Ti-O material (Sputtering of Production Example 5) Target), sputtering method (film formation conditions of Production Example 5)

次いで、第1及び第2の透明導電膜の表面(外側の面)にそれぞれ、集電極として、平行な複数のバスバー電極と、このバスバー電極にそれぞれ直交する複数のフィンガー電極を形成した。この集電極は、銀ペーストを用いてスクリーン印刷により形成した。このようにして、比較例1〜2、及び実施例1の光発電素子を得た。 Next, a plurality of parallel bus bar electrodes and a plurality of finger electrodes respectively orthogonal to the bus bar electrodes were formed as collector electrodes on the surfaces (outer surfaces) of the first and second transparent conductive films. This collector electrode was formed by screen printing using a silver paste. Thus, the photovoltaic device of Comparative Examples 1-2 and Example 1 was obtained.

得られた各光発電素子の最大出力(Pmax)を測定した。測定結果として、比較例1を基準とした値を図5に示す。なお、一側を光入射面とした場合(p層が光入射側に積層されているヘテロ接合構造、Front emitter)、及び他側を光入射面とした場合(p層が光入射側とは反対側に積層されているヘテロ接合構造、Rear emitter)それぞれを測定した。 The maximum output (Pmax) of each obtained photovoltaic device was measured. As a measurement result, values based on Comparative Example 1 are shown in FIG. In addition, when one side is a light incident surface (a heterojunction structure in which a p layer is laminated on the light incident side, a front emitter), and when the other side is a light incident surface (the p layer is a light incident side) Each of the heterojunction structures (Rear emitters) stacked on the opposite side was measured.

図5に示されるように、実施例1の光発電素子は、ITOで透明導電膜を形成した比較例1、2と比べて高い最大出力を有する。また、スパッタリング法により高性能の透明導電膜を形成しているため低コストで効率的に生産することができる。 As shown in FIG. 5, the photovoltaic device of Example 1 has a higher maximum output than Comparative Examples 1 and 2 in which a transparent conductive film is formed of ITO. Moreover, since a high-performance transparent conductive film is formed by a sputtering method, it can be efficiently produced at low cost.

10:光発電素子、11:n型結晶半導体基板、12:第1の真性非晶質系半導体薄膜、13:p型非晶質系半導体薄膜、14:第1の透明導電膜、15:第2の真性非晶質系半導体薄膜、16:n型非晶質系半導体薄膜、17:第2の透明導電膜、18、19:集電極 10: photovoltaic device, 11: n-type crystal semiconductor substrate, 12: first intrinsic amorphous semiconductor thin film, 13: p-type amorphous semiconductor thin film, 14: first transparent conductive film, 15: first 2 intrinsic amorphous semiconductor thin film, 16: n-type amorphous semiconductor thin film, 17: second transparent conductive film, 18, 19: collector electrode

Claims (8)

n型結晶半導体基板と、該n型結晶半導体基板の一側にこの順に積層されるp型非晶質系半導体薄膜及び第1の透明導電膜と、前記n型結晶半導体基板の他側にこの順に積層されるn型非晶質系半導体薄膜及び第2の透明導電膜とを備える光発電素子において、
前記第1及び第2の透明導電膜のいずれかは、少なくともタンタルがドープされた酸化インジウムから形成されている透明導電膜(α)であることを特徴とする光発電素子。
an n-type crystal semiconductor substrate, a p-type amorphous semiconductor thin film and a first transparent conductive film stacked in this order on one side of the n-type crystal semiconductor substrate, and this on the other side of the n-type crystal semiconductor substrate In a photovoltaic device comprising an n-type amorphous semiconductor thin film and a second transparent conductive film, which are sequentially laminated,
Either of the first and second transparent conductive films is a transparent conductive film (α) formed of indium oxide doped with at least tantalum.
請求項1記載の光発電素子において、前記透明導電膜(α)における前記タンタルの含有量が酸化物換算で0.1質量%以上5質量%以下であることを特徴とする光発電素子。 2. The photovoltaic element according to claim 1, wherein the tantalum content in the transparent conductive film (α) is 0.1% by mass or more and 5% by mass or less in terms of oxide. 請求項1又は2記載の光発電素子において、前記酸化インジウムには、チタン、バナジウム及びニオブからなる群より選ばれる少なくとも1種の元素(x)がさらにドープされていることを特徴とする光発電素子。 3. The photovoltaic device according to claim 1, wherein the indium oxide is further doped with at least one element (x) selected from the group consisting of titanium, vanadium and niobium. element. 請求項3記載の光発電素子において、前記透明導電膜(α)における前記タンタル及び前記元素(x)それぞれの含有量が酸化物換算で共に0.1質量%以上であり、かつ前記タンタル及び前記元素(x)の合計含有量が酸化物換算で5質量%以下であることを特徴とする光発電素子。 4. The photovoltaic device according to claim 3, wherein the contents of the tantalum and the element (x) in the transparent conductive film (α) are both 0.1% by mass or more in terms of oxides, and the tantalum and the element. A photovoltaic element, wherein the total content of the element (x) is 5% by mass or less in terms of oxide. 請求項1〜4のいずれか1項に記載の光発電素子において、前記第1及び第2の透明導電膜が共に前記透明導電膜(α)であることを特徴とする光発電素子。 5. The photovoltaic element according to claim 1, wherein both the first and second transparent conductive films are the transparent conductive film (α). 6. 請求項1〜5のいずれか1項に記載の光発電素子において、前記n型結晶半導体基板がテクスチャー構造を有する面を備えることを特徴とする光発電素子。 The photovoltaic device according to any one of claims 1 to 5, wherein the n-type crystal semiconductor substrate includes a surface having a texture structure. 請求項1〜6のいずれか1項に記載の光発電素子において、前記透明導電膜(α)が形成温度200℃未満のスパッタリング法により形成されていることを特徴とする光発電素子。 The photovoltaic device according to any one of claims 1 to 6, wherein the transparent conductive film (α) is formed by a sputtering method having a formation temperature of less than 200 ° C. n型結晶半導体基板と、該n型結晶半導体基板の一側にこの順に積層されるp型非晶質系半導体薄膜及び第1の透明導電膜と、前記n型結晶半導体基板の他側にこの順に積層されるn型非晶質系半導体薄膜及び第2の透明導電膜とを備える光発電素子の製造方法において、
主成分が酸化インジウムであり、酸化タンタルを含むスパッタリングターゲットを用いたスパッタリング法により、前記第1及び第2の透明導電膜の少なくともいずれかを形成する工程を有し、
該工程における形成温度が200℃未満であることを特徴とする光発電素子の製造方法。
an n-type crystal semiconductor substrate, a p-type amorphous semiconductor thin film and a first transparent conductive film stacked in this order on one side of the n-type crystal semiconductor substrate, and this on the other side of the n-type crystal semiconductor substrate In a method for manufacturing a photovoltaic device comprising an n-type amorphous semiconductor thin film and a second transparent conductive film, which are sequentially laminated,
A step of forming at least one of the first and second transparent conductive films by a sputtering method using a sputtering target containing indium oxide as a main component and containing tantalum oxide;
The formation temperature in this process is less than 200 degreeC, The manufacturing method of the photovoltaic device characterized by the above-mentioned.
JP2013206484A 2013-10-01 2013-10-01 Photovoltaic element and manufacturing method therefor Pending JP2015070255A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013206484A JP2015070255A (en) 2013-10-01 2013-10-01 Photovoltaic element and manufacturing method therefor
PCT/JP2014/076640 WO2015050264A1 (en) 2013-10-01 2014-09-29 Photovoltaic element and method of manufacturing the same
TW103133977A TW201521216A (en) 2013-10-01 2014-09-30 Photovoltaic element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013206484A JP2015070255A (en) 2013-10-01 2013-10-01 Photovoltaic element and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2015070255A true JP2015070255A (en) 2015-04-13

Family

ID=52778846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013206484A Pending JP2015070255A (en) 2013-10-01 2013-10-01 Photovoltaic element and manufacturing method therefor

Country Status (3)

Country Link
JP (1) JP2015070255A (en)
TW (1) TW201521216A (en)
WO (1) WO2015050264A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179595A1 (en) * 2017-03-31 2018-10-04 Jx金属株式会社 Sputtering target, sputtering target production method, amorphous film, amorphous film production method, crystalline film, and crystalline film production method
JP2021177511A (en) * 2020-05-07 2021-11-11 株式会社カネカ Solar cell, solar cell module, and solar cell manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI579138B (en) * 2015-07-09 2017-04-21 國立臺灣師範大學 Strengthened hetero-connected structure and method of making the same
CN112110721B (en) * 2020-09-21 2022-07-01 先导薄膜材料(广东)有限公司 Preparation method of indium tin tantalum oxide target material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309511A (en) * 1989-05-24 1990-12-25 Showa Denko Kk Transparent conductive film
JP3447163B2 (en) * 1995-11-30 2003-09-16 出光興産株式会社 Transparent conductive laminate
WO2006095733A1 (en) * 2005-03-09 2006-09-14 Idemitsu Kosan Co., Ltd. Amorphous transparent conductive film, target and production method for amorphous conductive film
JP4568254B2 (en) * 2006-07-20 2010-10-27 三洋電機株式会社 Solar cell module
JP5279814B2 (en) * 2008-03-19 2013-09-04 三洋電機株式会社 Solar cell and manufacturing method thereof
JP5170009B2 (en) * 2009-06-24 2013-03-27 住友金属鉱山株式会社 Indium oxide sputtering target and method for producing the same
JP5502412B2 (en) * 2009-09-30 2014-05-28 三洋電機株式会社 Method for manufacturing photovoltaic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179595A1 (en) * 2017-03-31 2018-10-04 Jx金属株式会社 Sputtering target, sputtering target production method, amorphous film, amorphous film production method, crystalline film, and crystalline film production method
KR20180121478A (en) * 2017-03-31 2018-11-07 제이엑스금속주식회사 Sputtering target, method of producing sputtering target, amorphous film, method of producing amorphous film, method of producing crystalline film and crystalline film
JP2018172733A (en) * 2017-03-31 2018-11-08 Jx金属株式会社 Sputtering target, production method of sputtering target, amorphous film, production method of amorphous film, crystalline film and production method of crystalline film
KR102166104B1 (en) * 2017-03-31 2020-10-15 제이엑스금속주식회사 Sputtering target, method of producing sputtering target, method of producing amorphous film, method of producing amorphous film, method of producing crystalline film and crystalline film
JP2021177511A (en) * 2020-05-07 2021-11-11 株式会社カネカ Solar cell, solar cell module, and solar cell manufacturing method

Also Published As

Publication number Publication date
TW201521216A (en) 2015-06-01
WO2015050264A1 (en) 2015-04-09

Similar Documents

Publication Publication Date Title
JP5252066B2 (en) Transparent conductive film laminate and manufacturing method thereof, thin film solar cell and manufacturing method thereof
WO2009116580A1 (en) Solar cell and method for manufacturing the same
JP5729595B2 (en) Transparent conductive film for solar cell and method for producing the same
WO2014073329A1 (en) Transparent-conductive-film laminate, manufacturing method therefor, thin-film solar cell, and manufacturing method therefor
TW201342638A (en) Solar cell
JP5869674B2 (en) Photovoltaic element
JP2015070255A (en) Photovoltaic element and manufacturing method therefor
TW201448245A (en) Photovoltaic generation device
WO2015050082A1 (en) Photovoltaic element and method for producing same
JP2015072936A (en) Photovoltaic power generation element
JP5533448B2 (en) Transparent conductive film laminate and manufacturing method thereof, thin film solar cell and manufacturing method thereof
WO2014073328A1 (en) Transparent-conductive-film laminate, manufacturing method therefor, thin-film solar cell, and manufacturing method therefor
WO2015050083A1 (en) Photovoltaic element
TWI447919B (en) Silicon based solar cell with a heterojunction structure and the manufacturing method thereof
JP5987127B1 (en) Photovoltaic power generation element and manufacturing method thereof
JP5975841B2 (en) Manufacturing method of photovoltaic device and photovoltaic device
JP5843734B2 (en) Photoelectric conversion element and manufacturing method thereof
WO2012165289A1 (en) Method for producing solar cell
JP2016154172A (en) Cigs solar cell and manufacturing method for the same
TW201801339A (en) Photovoltaic element
US9297069B2 (en) Conductive film substrate, photovoltaic cell having the same, and method of manufacturing the same
WO2015050161A1 (en) Photovoltaic element
JP6226858B2 (en) Thin film solar cell and manufacturing method thereof