JP2015068648A - Circularity measuring device - Google Patents

Circularity measuring device Download PDF

Info

Publication number
JP2015068648A
JP2015068648A JP2013200288A JP2013200288A JP2015068648A JP 2015068648 A JP2015068648 A JP 2015068648A JP 2013200288 A JP2013200288 A JP 2013200288A JP 2013200288 A JP2013200288 A JP 2013200288A JP 2015068648 A JP2015068648 A JP 2015068648A
Authority
JP
Japan
Prior art keywords
holder
detector
measurement
measurement plane
linear scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013200288A
Other languages
Japanese (ja)
Other versions
JP6137544B2 (en
Inventor
陵 高梨
Ryo Takanashi
陵 高梨
光 増田
Hikari Masuda
光 増田
木村 浩章
Hiroaki Kimura
浩章 木村
倫裕 関本
Michihiro Sekimoto
倫裕 関本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2013200288A priority Critical patent/JP6137544B2/en
Publication of JP2015068648A publication Critical patent/JP2015068648A/en
Application granted granted Critical
Publication of JP6137544B2 publication Critical patent/JP6137544B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a circularity measuring device capable of accurately obtaining a diameter (radius) of the cylindrical surface of a work and measuring a circularity with high accuracy.SOLUTION: The circularity measuring device includes: a base 12; a rotary table 16 for rotating a mounted work 14; a column 20 extending in parallel to a rotary shaft of the rotary table; a carriage 22 movable along the column; a detector holder moving mechanism 24 having a holder support member 34 and a holder fixing part 36 and capable of moving the holder fixing part in parallel to a measurement plane including a rotary shaft of the rotary table and a measurement point of the work; a detector 28 attached to the detector holder for enabling a measuring element 30 to displace in the measurement plane; first and second position detection means 42, 44, 46, and 48 for detecting a position in a direction parallel to the measurement plane of the detector holder; and measurement point calculation means for calculating the position of the measurement point at which the measuring element of the detector contacts the work based on the detection result of each position detection means.

Description

本発明は、被測定物の真円度を測定する真円度測定装置に関する。   The present invention relates to a roundness measuring apparatus for measuring the roundness of an object to be measured.

従来より、被測定物(ワーク)の真円度を測定する装置として真円度測定装置が知られている(例えば、特許文献1〜3参照)。   Conventionally, a roundness measuring device is known as a device for measuring the roundness of a workpiece (workpiece) (see, for example, Patent Documents 1 to 3).

従来の真円度測定装置は、例えば図12に示すように、台状のベース112と、ベース112上に回転可能に設けられ、ワーク114を載置する載物台116と、載物台116を回転駆動するためのモータ等を有する回転駆動部118と、ベース112上に立設されたコラム120と、コラム120に沿って上下方向(Z方向)に移動可能なキャリッジ122と、キャリッジ122に対して水平方向(X方向)に移動可能に設けられたアーム124と、アーム124の先端部に取り付けられた検出器ホルダ126と、検出器ホルダ126に取り付けられた検出器128と、を備える。検出器128は、測定子130と、差動トランス等の変位検出部と、を有し、測定子130の変位を示す電気信号を出力する。   For example, as shown in FIG. 12, the conventional roundness measuring device is provided with a base-like base 112, a stage 116 that is rotatably provided on the base 112, and on which a work 114 is placed, and a stage 116. A rotation driving unit 118 having a motor for rotating the motor, a column 120 erected on the base 112, a carriage 122 movable in the vertical direction (Z direction) along the column 120, and a carriage 122 On the other hand, an arm 124 provided to be movable in the horizontal direction (X direction), a detector holder 126 attached to the tip of the arm 124, and a detector 128 attached to the detector holder 126 are provided. The detector 128 has a probe 130 and a displacement detector such as a differential transformer, and outputs an electrical signal indicating the displacement of the probe 130.

測定を行う場合には、ワーク114は、載物台116上に、ワーク114の円筒面の中心軸が載物台116の回転軸にほぼ一致するように載置する。測定子130がワーク114の測定する位置に接触するように、キャリッジ122を移動して上下方向の位置を調整し、アーム124を移動して水平方向の位置を調整する。この状態で、ワーク114の真円度を測定する。   When performing measurement, the workpiece 114 is placed on the mounting table 116 such that the central axis of the cylindrical surface of the workpiece 114 substantially coincides with the rotation axis of the mounting table 116. The carriage 122 is moved to adjust the vertical position so that the measuring element 130 contacts the position to be measured by the workpiece 114, and the arm 124 is moved to adjust the horizontal position. In this state, the roundness of the workpiece 114 is measured.

図13は、図12の真円度測定装置の上面図である。図13に示すように、コラム120は、載物台116の右側に設けられる。アーム124、検出器ホルダ126及び検出器128は、一直線上に配置され、その延長上に、載物台116の回転軸が位置する。測定子130は、検出器128の先端に設けられ、この直線と載物台116の回転軸がなす平面内で変位する。したがって、ワーク114の測定する円筒面の直径が異なる場合には、測定子130が測定する円筒面に接触するように、アーム124を移動する。ここでは、測定子130が測定する円筒面に接触する測定点と載物台116の回転軸がなす平面を測定平面と称し、載物台116の回転軸と測定点を結ぶ方向を径方向と称する。言い換えれば、測定する円筒面の直径が異なる場合でも、アーム124、検出器ホルダ126及び検出器128は、測定平面に沿って径方向に移動され、測定子130は、測定平面と円筒面の交差する線上で円筒面に接触し、測定平面上で変位する。   FIG. 13 is a top view of the roundness measuring apparatus of FIG. As shown in FIG. 13, the column 120 is provided on the right side of the table 116. The arm 124, the detector holder 126, and the detector 128 are arranged in a straight line, and the rotation axis of the stage 116 is positioned on the extension. The probe 130 is provided at the tip of the detector 128 and is displaced in a plane formed by this straight line and the rotation axis of the stage 116. Therefore, when the diameter of the cylindrical surface to be measured of the workpiece 114 is different, the arm 124 is moved so that the measuring element 130 contacts the cylindrical surface to be measured. Here, the plane formed by the measurement point in contact with the cylindrical surface measured by the probe 130 and the rotation axis of the mounting table 116 is referred to as a measurement plane, and the direction connecting the rotation axis of the mounting table 116 and the measurement point is the radial direction. Called. In other words, even when the diameter of the cylindrical surface to be measured is different, the arm 124, the detector holder 126, and the detector 128 are moved in the radial direction along the measurement plane, and the measuring element 130 intersects the measurement plane and the cylindrical surface. It touches the cylindrical surface on the line to be moved and is displaced on the measurement plane.

このように、従来の真円度測定装置においては、載物台116の側方(右側又は左側)にコラム120が設けられる構成が一般的である。その理由としては、アーム124を測定平面上で移動させるためである。また、異なる円筒面を測定する場合に、円筒面の半径(直径)の差を、アーム124の移動量を検出することにより検出できるためである。   As described above, the conventional roundness measuring apparatus generally has a configuration in which the column 120 is provided on the side (right side or left side) of the mounting table 116. This is because the arm 124 is moved on the measurement plane. Further, when different cylindrical surfaces are measured, a difference in radius (diameter) between the cylindrical surfaces can be detected by detecting the movement amount of the arm 124.

しかしながら、従来の真円度測定装置では、コラム120が固定されるベース112は径方向に長い長方形である。さらに、アーム124は、測定する円筒面の半径に応じて径方向に移動されるため、アーム124が右方向に最大限移動した場合を考慮して、設置スペースを決定する必要がある。このため、径方向に長い長方形の設置スペースを必要とし、設置に必要な空間が大きくなるという問題がある。   However, in the conventional roundness measuring device, the base 112 to which the column 120 is fixed is a rectangle that is long in the radial direction. Furthermore, since the arm 124 is moved in the radial direction according to the radius of the cylindrical surface to be measured, it is necessary to determine the installation space in consideration of the case where the arm 124 has moved to the right as much as possible. For this reason, there is a problem that a rectangular installation space that is long in the radial direction is required, and the space required for the installation becomes large.

また、従来の真円度測定装置は、ベース112は径方向に長いため、図14に示すように、ワーク114の重量によりベース112が撓む等の変形が生じやすい。そして、コラム120が載物台116の回転軸に対して平行がずれて傾いてしまうと、検出器128の位置ずれに起因する測定誤差が大きくなるという問題がある。なお、図14では、ベース112が撓む様子を誇張して示したが、ベース112が撓む等の変形によって測定面内で検出器128に僅かでも位置ずれが生じると測定誤差が大きくなりやすい。   Further, in the conventional roundness measuring apparatus, since the base 112 is long in the radial direction, as shown in FIG. If the column 120 is tilted in parallel with the rotation axis of the mounting table 116, there is a problem that a measurement error due to the positional deviation of the detector 128 increases. In FIG. 14, the state in which the base 112 is bent is exaggerated, but if the position of the detector 128 slightly shifts within the measurement surface due to deformation such as the base 112 being bent, the measurement error tends to increase. .

また、従来の真円度測定装置では、検出器128は、コラム120から測定平面に沿って延びるアーム124及び検出器ホルダ126に取り付けられる。そのため、温度変化によりアーム124が伸縮すると、伸縮量が直接測定値に影響する。アーム124が長い場合には、測定中の短時間での温度変化でもアーム124の伸縮量は無視できない大きさになり、測定誤差となる。   Further, in the conventional roundness measuring apparatus, the detector 128 is attached to the arm 124 and the detector holder 126 extending from the column 120 along the measurement plane. Therefore, when the arm 124 expands and contracts due to a temperature change, the expansion / contraction amount directly affects the measured value. When the arm 124 is long, the expansion / contraction amount of the arm 124 becomes a non-negligible magnitude even if the temperature changes in a short time during measurement, resulting in a measurement error.

そこで、本出願人は、これらの問題を改善した真円度測定装置を提案している(特許文献4参照)。   Therefore, the present applicant has proposed a roundness measuring apparatus that improves these problems (see Patent Document 4).

図15〜図17は、特許文献4に開示された真円度測定装置の構成を示す図であり、図15は正面側から見た外観図、図16は背面側から見た外観図、図17は上面図である。なお、図15〜図17において、図1の構成要素と同一又は対応する構成要素には同一の符号を付している。これらの図に示すように、特許文献4に開示された真円度測定装置においては、コラム120は、載物台116の背面側に、測定平面と平行に移動可能に設けられる。検出器ホルダ126は、キャリッジ122から測定平面に垂直な方向に伸び、検出器128は、測定子130が測定平面上で変位するように取り付けられる。ワーク114の測定する円筒面の直径が異なる場合には、コラム120を測定平面と平行に移動するので、検出器ホルダ126及び検出器128は、測定平面に沿って径方向に移動され、測定子130は、測定平面と円筒面の交差する線上で円筒面に接触し、測定平面上で変位する。   15 to 17 are diagrams showing the configuration of the roundness measuring device disclosed in Patent Document 4, FIG. 15 is an external view as viewed from the front side, and FIG. 16 is an external view as viewed from the back side. 17 is a top view. 15 to 17, the same or corresponding components as those in FIG. 1 are denoted by the same reference numerals. As shown in these drawings, in the roundness measuring apparatus disclosed in Patent Document 4, the column 120 is provided on the back side of the stage 116 so as to be movable in parallel with the measurement plane. The detector holder 126 extends from the carriage 122 in a direction perpendicular to the measurement plane, and the detector 128 is mounted so that the probe 130 is displaced on the measurement plane. When the diameter of the cylindrical surface to be measured by the workpiece 114 is different, the column 120 is moved in parallel with the measurement plane, so that the detector holder 126 and the detector 128 are moved in the radial direction along the measurement plane. Reference numeral 130 contacts the cylindrical surface on a line intersecting the measurement plane and the cylindrical surface, and is displaced on the measurement plane.

このように構成される真円度測定装置によれば、従来の真円度測定装置に比べて、ベースの径方向の長さが大幅に短縮され、アームが側方に突き出すこともないので、設置スペース(設置に必要な空間)を大幅に小さくできる。また、ベースの径方向の長さが短縮されたのでベースが撓みにくい。さらにベースに撓む等の変形が生じた場合でも、検出器ホルダは測定平面に垂直な方向に伸びるため、従来の真円度測定装置に比べて測定誤差が小さくなる。さらに、長いアームを使用しない上、検出器ホルダは測定平面に垂直な方向に伸びるため、温度変化により検出器ホルダが伸縮しても、伸縮量は直接測定値に影響しないため、温度変化の測定誤差への影響を低減できる。   According to the roundness measuring device configured in this way, the length in the radial direction of the base is greatly shortened compared to the conventional roundness measuring device, and the arm does not protrude sideways. Installation space (space required for installation) can be greatly reduced. Moreover, since the length of the base in the radial direction is shortened, the base is not easily bent. Furthermore, even when deformation such as bending occurs in the base, the detector holder extends in a direction perpendicular to the measurement plane, so that the measurement error is smaller than that of a conventional roundness measuring device. In addition, since a long arm is not used and the detector holder extends in a direction perpendicular to the measurement plane, even if the detector holder expands or contracts due to a temperature change, the amount of expansion or contraction does not directly affect the measured value. The influence on the error can be reduced.

特開平8−313247号公報JP-A-8-313247 特開2003−302218号公報JP 2003-302218 A 特開2006−145344号公報JP 2006-145344 A 特開2013−108757号公報JP 2013-108757 A

真円度測定装置においては、コラムを、載物台の側方(右側又は左側)ではなく、背面側に配置したことにより、設置に必要な空間を大幅に小さくしたり、ベースが撓む等の変形や温度変化に起因する測定誤差を小さくすることが可能となったものの、次のような課題が残る。   In the roundness measuring device, the column is arranged not on the side (right side or left side) but on the back side, so that the space required for installation is greatly reduced, the base is bent, etc. Although it has become possible to reduce the measurement error due to deformation and temperature change, the following problems remain.

すなわち、ワークの円筒面の直径(半径)を測定する場合には、リニアスケール等の位置検出機構で検出器ホルダの位置を検出して、その検出値から測定点の位置を求めることが必要となる。しなしながら、検出器ホルダは測定平面に垂直な方向に伸びるため、検出ホルダの取付精度が低いと、検出器ホルダの測定平面に対する垂直精度が低くなり、検出器ホルダの傾きに応じて測定点の位置に誤差が生じてしまう問題がある。   That is, when measuring the diameter (radius) of the cylindrical surface of the workpiece, it is necessary to detect the position of the detector holder by a position detection mechanism such as a linear scale and obtain the position of the measurement point from the detected value. Become. However, since the detector holder extends in the direction perpendicular to the measurement plane, if the mounting accuracy of the detection holder is low, the vertical accuracy of the detector holder with respect to the measurement plane will be low, and the measurement point will be in accordance with the inclination of the detector holder. There is a problem that an error occurs in the position of.

本発明は、このような事情に鑑みてなされたもので、ワークの円筒面の直径(半径)を精度良く求めることができ、高精度な真円度測定が可能な真円度測定装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a roundness measuring apparatus capable of accurately obtaining the diameter (radius) of a cylindrical surface of a workpiece and capable of measuring roundness with high accuracy. The purpose is to do.

上記目的を達成するために、本発明の一態様に係る真円度測定装置は、ベースと、ベースに固定され、載置されたワークを回転する回転台と、回転台の回転軸に対して平行に伸びるコラムと、コラムに沿って移動可能に支持されたキャリッジと、キャリッジに取り付けられるホルダ支持部材と、検出器ホルダが取り付けられるホルダ固定部とを有し、ホルダ固定部を回転台の回転軸とワークの測定点を含む測定平面に平行に移動可能な検出器ホルダ移動機構と、測定子が測定平面で変位可能なように、検出器ホルダに取り付けられた検出器と、検出器ホルダ移動機構に設けられ、検出器ホルダの測定平面に平行な方向の位置を検出する第1及び第2の位置検出手段と、第1及び第2の位置検出手段の検出結果に基づいて、検出器の測定子がワークに接触する測定点の位置を算出する測定点算出手段と、を備える。   In order to achieve the above object, a roundness measuring apparatus according to an aspect of the present invention includes a base, a turntable fixed to the base and rotating a mounted work, and a rotation axis of the turntable. It has a column extending in parallel, a carriage supported so as to be movable along the column, a holder support member attached to the carriage, and a holder fixing part to which the detector holder is attached. The holder fixing part is rotated by the turntable. A detector holder moving mechanism that can move parallel to the measurement plane including the measurement point of the axis and workpiece, a detector attached to the detector holder so that the probe can be displaced on the measurement plane, and detector holder movement Based on the detection results of the first and second position detection means provided in the mechanism and detecting the position of the detector holder in the direction parallel to the measurement plane, and the detection results of the first and second position detection means The probe is Comprising a measuring point calculation means for calculating the position of the measuring point in contact with the click, the.

本発明の一態様において、第1の位置検出手段は、ホルダ支持部材に設けられ、測定平面に対して平行に配設された第1のリニアスケールと、ホルダ固定部に設けられ、第1のリニアスケールに対向する第1の読み取りヘッドと、を有し、第2の位置検出手段は、ホルダ支持部材に設けられ、測定平面に対して平行であり、且つ第1のリニアスケールに対して測定平面に対して垂直な方向の異なる位置に配設された第2のリニアスケールと、ホルダ固定部に設けられ、第2のリニアスケールに対向する第2の読み取りヘッドと、を有することが好ましい。   In one aspect of the present invention, the first position detection means is provided in the holder support member, provided in the first linear scale disposed in parallel to the measurement plane, and in the holder fixing portion. A first reading head facing the linear scale, and the second position detection means is provided on the holder support member, is parallel to the measurement plane, and measures with respect to the first linear scale. It is preferable to have a second linear scale disposed at a different position in a direction perpendicular to the plane, and a second reading head provided in the holder fixing portion and facing the second linear scale.

また、本発明の一態様において、第1及び第2のリニアスケールの基準点は、測定平面に対して垂直に投影した場合に、回転台の回転軸と一致するように構成されることが好ましい。   In the aspect of the invention, it is preferable that the reference points of the first and second linear scales are configured to coincide with the rotation axis of the turntable when projected perpendicularly to the measurement plane. .

本発明によれば、第1及び第2の位置検出手段によって検出器ホルダの測定平面に平行な方向の位置を検出し、これらの検出結果に基づいて、検出器の測定子がワークに接触する測定点の位置を算出する。これにより、検出器ホルダの測定平面に対する垂直精度に左右されることなく測定点の位置を正確に求めることができる。したがって、ワークの円筒面の直径(半径)を精度良く求めることができ、高精度な真円度測定が可能となる。   According to the present invention, the position of the detector holder in the direction parallel to the measurement plane is detected by the first and second position detection means, and based on these detection results, the detector probe contacts the workpiece. Calculate the position of the measurement point. Thereby, the position of the measurement point can be accurately obtained without being affected by the vertical accuracy of the detector holder with respect to the measurement plane. Therefore, the diameter (radius) of the cylindrical surface of the workpiece can be obtained with high accuracy, and high-precision roundness measurement can be performed.

本発明の一実施形態に係る真円度測定装置の正面側から見た外観図The external view seen from the front side of the roundness measuring apparatus which concerns on one Embodiment of this invention 本発明の一実施形態に係る真円度測定装置の背面側から見た外観図The external view seen from the back side of the roundness measuring apparatus which concerns on one Embodiment of this invention 本発明の一実施形態に係る真円度測定装置の上面図The top view of the roundness measuring device concerning one embodiment of the present invention. 検出ホルダがホルダ支持部材に対して垂直な状態と斜めに傾いた状態を示した図The figure which showed the state where the detection holder was perpendicular to the holder support member, and the state inclined 第1及び第2のリニアスケールと測定点の位置関係を示した図The figure which showed the positional relationship of the 1st and 2nd linear scale and a measurement point 図1の真円度測定装置の制御系の構成を示すブロック図The block diagram which shows the structure of the control system of the roundness measuring apparatus of FIG. X方向の各位置において検出器ホルダに傾きが生じたときの様子を示した図The figure which showed the mode when the detector holder inclines in each position of a X direction 図7において本発明が適用されない場合の測定結果を示すグラフFIG. 7 is a graph showing measurement results when the present invention is not applied. 図7において本発明が適用される場合の測定結果を示すグラフFIG. 7 is a graph showing measurement results when the present invention is applied. 本実施形態と図1に示した従来例における温度変化による測定子の変位の影響の違いを説明する図である。It is a figure explaining the difference of the influence of the displacement of a measuring element by the temperature change in this example and the prior art example shown in FIG. アライメント誤差の影響を示した図Diagram showing the effect of alignment error 従来の真円度測定装置の外観図External view of a conventional roundness measuring device 図12の真円度測定装置の上面図12 is a top view of the roundness measuring apparatus in FIG. 従来の真円度測定装置の問題点を説明するための図Diagram for explaining problems of conventional roundness measuring device 特許文献4に開示された真円度測定装置の正面側から見た外観図External view seen from the front side of the roundness measuring device disclosed in Patent Document 4 特許文献4に開示された真円度測定装置の背面側から見た外観図External view of the roundness measuring device disclosed in Patent Document 4 as seen from the back side 特許文献4に開示された真円度測定装置の上面図Top view of roundness measuring device disclosed in Patent Document 4

以下、添付図面に従って本発明の好ましい実施形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

図1〜図3は、本発明の一実施形態に係る真円度測定装置の構成を示す図であり、図1は正面側から見た外観図、図2は背面側から見た外観図、図3は上面図である。これらの図に示すように、本実施形態の真円度測定装置10は、台状のベース12と、ベース12上に回転可能に設けられ、ワーク14を載置する載物台(回転台)16と、載物台16を回転駆動するためのモータ等を有する回転駆動部18と、ベース12の背面に設けられたコラム20と、コラム20に沿って上下方向(Z方向)に移動可能なキャリッジ22と、キャリッジ22に取り付けられた検出器ホルダ移動機構24と、検出器ホルダ移動機構24に水平方向(X方向)に移動可能に取り付けられた検出器ホルダ26と、検出器ホルダ26に取り付けられた検出器28と、を備える。   1-3 is a figure which shows the structure of the roundness measuring apparatus based on one Embodiment of this invention, FIG. 1 is the external view seen from the front side, FIG. 2 is the external view seen from the back side, FIG. 3 is a top view. As shown in these drawings, the roundness measuring apparatus 10 of the present embodiment is provided with a base 12 and a table (rotary table) on which a work 14 is placed so as to be rotatable on the base 12. 16, a rotary drive unit 18 having a motor or the like for rotationally driving the mounting table 16, a column 20 provided on the back surface of the base 12, and a vertical movement (Z direction) along the column 20. A carriage 22, a detector holder moving mechanism 24 attached to the carriage 22, a detector holder 26 attached to the detector holder moving mechanism 24 so as to be movable in the horizontal direction (X direction), and attached to the detector holder 26 And a detected detector 28.

載物台16は、ワーク14を載置して回転させるものであり、載物台16の回転角は、回転駆動部18の駆動軸に連結されたエンコーダ54(図6参照)で検出される。   The mounting table 16 is for mounting and rotating the workpiece 14, and the rotation angle of the mounting table 16 is detected by an encoder 54 (see FIG. 6) connected to the drive shaft of the rotation driving unit 18. .

コラム20は、載物台16の回転軸に対して平行に伸びる柱であり、その下端部はベース12の背面に固定される。すなわち、載物台16の背面側にコラム20が配置される。   The column 20 is a column extending in parallel with the rotation axis of the mounting table 16, and a lower end portion thereof is fixed to the back surface of the base 12. That is, the column 20 is disposed on the back side of the mounting table 16.

コラム20には、キャリッジ22がZ方向に移動可能に取り付けられる。キャリッジ22を移動させるための駆動手段(不図示)としては特に限定されるものではないが、例えば、モータ、ボールネジ、ガイドレール等の組み合わせで構成される。   A carriage 22 is attached to the column 20 so as to be movable in the Z direction. The driving means (not shown) for moving the carriage 22 is not particularly limited, and for example, is configured by a combination of a motor, a ball screw, a guide rail, and the like.

検出器ホルダ移動機構24は、キャリッジ22に取り付けられ、キャリッジ22と一体となってZ方向に移動可能なホルダ支持部材34と、検出器ホルダ26を取り付けるためのホルダ固定部36と、を備える。   The detector holder moving mechanism 24 includes a holder support member 34 that is attached to the carriage 22 and is movable in the Z direction integrally with the carriage 22, and a holder fixing portion 36 for attaching the detector holder 26.

ホルダ固定部36は、ホルダ支持部材34に対してX方向に移動可能に構成される。ホルダ固定部36をX方向に移動させるための駆動手段(不図示)としては特に限定されるものではないが、例えば、モータ、ボールネジ、ガイドレール等の組み合わせで構成される。これにより、ホルダ固定部36に取り付けられた検出器ホルダ26は、ホルダ固定部36と一体となってX方向に移動する。   The holder fixing portion 36 is configured to be movable in the X direction with respect to the holder support member 34. The driving means (not shown) for moving the holder fixing portion 36 in the X direction is not particularly limited, and is configured by a combination of a motor, a ball screw, a guide rail, and the like, for example. Thereby, the detector holder 26 attached to the holder fixing part 36 moves in the X direction integrally with the holder fixing part 36.

検出器ホルダ26は、L字型の部材で、一方の端がホルダ固定部36に取り付けられ、他方の端に検出器28が取り付けられる。   The detector holder 26 is an L-shaped member, and has one end attached to the holder fixing portion 36 and the detector 28 attached to the other end.

検出器28は、測定子30と、差動トランス等の変位検出部と、を有し、測定子30の変位を示す電気信号を出力する。   The detector 28 has a probe 30 and a displacement detector such as a differential transformer, and outputs an electrical signal indicating the displacement of the probe 30.

ワーク14のつば部分の高さ位置(Z方向位置)の変化を検出するため、検出器ホルダ26は、取り付ける方向を90度ずつ異なる3方向にすることが可能であることが望ましい。また、検出器28は、測定する円筒面の方向を180度変えるために、検出器ホルダ26に対して方向を変えて取り付け可能であることが望ましい。   In order to detect a change in the height position (Z-direction position) of the collar portion of the work 14, it is desirable that the detector holder 26 can be attached in three directions that differ by 90 degrees. Further, it is desirable that the detector 28 can be attached to the detector holder 26 while changing the direction in order to change the direction of the cylindrical surface to be measured by 180 degrees.

本実施形態においては、図3に示すように、コラム20は、載物台16の背面に設けられる。検出器ホルダ26は、ホルダ支持部材34から測定平面に垂直な方向に伸び、検出器28は、測定子30が測定平面上で変位するように取り付けられる。ワーク14の測定する円筒面の直径が異なる場合には、ホルダ固定部36が測定平面と平行に移動するので、検出器ホルダ26及び検出器28は、測定平面に沿ってX方向に移動され、測定子30は、測定平面と円筒面の交差する線上で円筒面に接触し、測定平面上で変位する。   In the present embodiment, as shown in FIG. 3, the column 20 is provided on the back surface of the mounting table 16. The detector holder 26 extends from the holder support member 34 in a direction perpendicular to the measurement plane, and the detector 28 is attached so that the probe 30 is displaced on the measurement plane. When the diameter of the cylindrical surface to be measured by the workpiece 14 is different, the holder fixing portion 36 moves in parallel with the measurement plane, so that the detector holder 26 and the detector 28 are moved in the X direction along the measurement plane, The measuring element 30 contacts the cylindrical surface on a line where the measuring plane and the cylindrical surface intersect, and is displaced on the measuring plane.

さらに本実施形態においては、コラム20を測定平面に対して垂直に投影した場合に、投影されたコラム20の中心軸が載物台16の回転軸と一致するように構成される。すなわち、コラム20の中心軸と載物台16の回転軸はX方向位置が同一位置となっている。   Furthermore, in this embodiment, when the column 20 is projected perpendicularly to the measurement plane, the center axis of the projected column 20 is configured to coincide with the rotation axis of the mounting table 16. That is, the central axis of the column 20 and the rotation axis of the mounting table 16 are in the same position in the X direction.

このように本実施形態においては、検出器ホルダ26及び検出器28は、測定平面に平行なZ方向に移動可能であるとともに、測定平面に平行且つ載物台16の回転軸に垂直なX方向に沿って移動することが可能である。つまり、検出器ホルダ26及び検出器28は、測定平面に平行な面内(XZ面内)で2次元的に移動可能に構成される。したがって、検出器ホルダ26及び検出器28は、Z方向に移動しても、姿勢は変化せず、Z方向の位置(高さ)のみが変化する。また、検出器ホルダ26及び検出器28をX方向に移動しても、姿勢は変化せず、X方向の位置のみが変化する。言い換えれば、異なる半径の円筒面の真円度を測定するため、検出器ホルダ26及び検出器28をX方向と平行に移動しても、検出器28の測定子30は、測定平面でワーク14と接触する。   As described above, in this embodiment, the detector holder 26 and the detector 28 are movable in the Z direction parallel to the measurement plane, and are parallel to the measurement plane and perpendicular to the rotation axis of the mounting table 16. It is possible to move along. That is, the detector holder 26 and the detector 28 are configured to be movable two-dimensionally in a plane parallel to the measurement plane (in the XZ plane). Therefore, even if the detector holder 26 and the detector 28 move in the Z direction, the posture does not change, and only the position (height) in the Z direction changes. Further, even if the detector holder 26 and the detector 28 are moved in the X direction, the posture does not change, and only the position in the X direction changes. In other words, even if the detector holder 26 and the detector 28 are moved in parallel to the X direction in order to measure the roundness of the cylindrical surfaces having different radii, the probe 30 of the detector 28 can be moved on the workpiece 14 in the measurement plane. Contact with.

測定を行う場合には、ワーク14は、載物台16上に、ワーク14の円筒面の中心軸が載物台16の回転軸にほぼ一致するように載置する。測定子30がワーク14の測定する位置に接触するように、キャリッジ22を移動してZ方向の位置を調整し、検出器ホルダ26を移動してX方向の位置を調整する。この状態で、ワーク14の真円度を測定する。   When performing measurement, the work 14 is placed on the stage 16 so that the central axis of the cylindrical surface of the work 14 substantially coincides with the rotation axis of the stage 16. The carriage 22 is moved to adjust the position in the Z direction so that the probe 30 contacts the position to be measured by the workpiece 14, and the detector holder 26 is moved to adjust the position in the X direction. In this state, the roundness of the workpiece 14 is measured.

高精度の測定を行う場合には、ワーク14を回転して、ワーク14の円筒面の中心軸と載物台16の回転軸との偏心を測定し、載物台16に設けられたXY移動機構で、ワーク14の円筒面の中心軸が載物台16の回転軸により正確に一致するように調整した後に測定を行う。このとき、測定子30は、変位範囲の中心付近であることが望ましい。   When measuring with high accuracy, the workpiece 14 is rotated, the eccentricity between the center axis of the cylindrical surface of the workpiece 14 and the rotation axis of the mounting table 16 is measured, and the XY movement provided on the mounting table 16 is measured. The measurement is performed after the mechanism is adjusted so that the central axis of the cylindrical surface of the workpiece 14 matches the rotational axis of the mounting table 16 accurately. At this time, it is desirable that the probe 30 is near the center of the displacement range.

以上のように構成された本実施形態の真円度測定装置10において、図3に示すように、ホルダ支持部材34の上面には、リニアスケール板40が取り付けられている。リニアスケール板40は熱膨張率の低い部材からなり、温度変化で変形しないように構成されている。リニアスケール板40の上面には、第1のリニアスケール42と第2のリニアスケール44とが、X方向に沿って互いに平行であり、且つY方向(すなわち、測定平面に対して垂直な方向)に互いにずれた位置に設けられている。各リニアスケール42、44は、測定平面に対して垂直に投影した場合に、各リニアスケール42、44の原点位置(基準点)42a、44aが載物台16の回転軸と一致するように構成される。すなわち、各リニアスケール42、44の原点位置42a、44aと載物台16の回転軸はX方向位置が同一位置となっている。   In the roundness measuring apparatus 10 of the present embodiment configured as described above, a linear scale plate 40 is attached to the upper surface of the holder support member 34 as shown in FIG. The linear scale plate 40 is made of a member having a low coefficient of thermal expansion, and is configured not to be deformed by a temperature change. On the upper surface of the linear scale plate 40, the first linear scale 42 and the second linear scale 44 are parallel to each other along the X direction and are in the Y direction (that is, a direction perpendicular to the measurement plane). Are provided at positions shifted from each other. The linear scales 42 and 44 are configured such that the origin positions (reference points) 42a and 44a of the linear scales 42 and 44 coincide with the rotation axis of the mounting table 16 when projected perpendicularly to the measurement plane. Is done. That is, the origin positions 42a and 44a of the linear scales 42 and 44 and the rotation axis of the mounting table 16 are in the same position in the X direction.

さらに本実施形態の真円度測定装置10においては、ホルダ固定部36には、各リニアスケール42、44にそれぞれ対向する第1及び第2の読み取りヘッド46、48を備えたヘッド支持部材50が設けられている。ヘッド支持部材50は、ホルダ固定部36と一体的に移動可能であり、ホルダ固定部36に取り付けられた検出器ホルダ26及び検出器28とともにX方向に沿って移動する。このとき、各読み取りヘッド46、48はそれぞれリニアスケール42、44に対向する位置をX方向に沿って移動しながら、各リニアスケール42、44の目盛りを光学的、磁気的に読み取る。したがって、ホルダ固定部36がX方向に沿って移動すると、各読み取りヘッド46、48がそれぞれ対応するリニアスケール42、44の目盛りを同時に読み取ることができる。   Furthermore, in the roundness measuring apparatus 10 of the present embodiment, the holder fixing portion 36 includes a head support member 50 including first and second reading heads 46 and 48 that face the linear scales 42 and 44, respectively. Is provided. The head support member 50 can move integrally with the holder fixing portion 36 and moves along the X direction together with the detector holder 26 and the detector 28 attached to the holder fixing portion 36. At this time, the reading heads 46 and 48 read the scales of the linear scales 42 and 44 optically and magnetically while moving the positions facing the linear scales 42 and 44 along the X direction. Therefore, when the holder fixing portion 36 moves along the X direction, the reading heads 46 and 48 can simultaneously read the scales of the corresponding linear scales 42 and 44, respectively.

なお、本発明の第1の位置検出手段は、第1のリニアスケール42及び第1の読み取りヘッド46で構成される。また、本発明の第2の位置検出手段は、第2のリニアスケール44及び第2の読み取りヘッド48で構成される。   Note that the first position detecting means of the present invention includes the first linear scale 42 and the first reading head 46. The second position detecting means of the present invention includes a second linear scale 44 and a second reading head 48.

図4は、検出器ホルダ26がホルダ支持部材34に対して垂直な状態(実線)と斜めに傾いた状態(破線)を示した図である。   FIG. 4 is a diagram illustrating a state in which the detector holder 26 is perpendicular to the holder support member 34 (solid line) and a state in which the detector holder 26 is inclined obliquely (broken line).

まず、図4において実線で示すように、検出器ホルダ26がホルダ支持部材34に対して垂直な状態の場合(すなわち、検出器ホルダ26が測定平面に対して垂直な状態である場合)、第1の読み取りヘッド46による第1のリニアスケール42の読取値と、第2の読み取りヘッド48による第2のリニアスケール44の読取値は同じである。したがって、第1の読み取りヘッド46又は第2の読み取りヘッド48の読取値を測定点32の位置とすることができる。   First, as shown by a solid line in FIG. 4, when the detector holder 26 is in a state perpendicular to the holder support member 34 (that is, when the detector holder 26 is in a state perpendicular to the measurement plane), The read value of the first linear scale 42 by the first read head 46 and the read value of the second linear scale 44 by the second read head 48 are the same. Therefore, the reading value of the first reading head 46 or the second reading head 48 can be set as the position of the measurement point 32.

これに対し、図4において破線で示すように、検出器ホルダ26がホルダ支持部材34に対して斜めに傾いた状態の場合(すなわち、検出器ホルダ26が測定平面に対して垂直な状態でない場合)、第1の読み取りヘッド46による第1のリニアスケール42の読取値と、第2の読み取りヘッド48による第2のリニアスケール44の読取値に差が生じる。   On the other hand, as shown by a broken line in FIG. 4, when the detector holder 26 is inclined with respect to the holder support member 34 (that is, when the detector holder 26 is not perpendicular to the measurement plane). ), There is a difference between the reading value of the first linear scale 42 by the first reading head 46 and the reading value of the second linear scale 44 by the second reading head 48.

この場合の測定点32の位置は、次のようにして求めることができる。図5は、第1及び第2のリニアスケール42、44と測定点32の位置関係を示した図である。なお、各リニアスケール42、44と検出器ホルダ26と測定点32の位置関係を分かりやすくするため、検出器ホルダ26を簡略的に示している。   In this case, the position of the measurement point 32 can be obtained as follows. FIG. 5 is a diagram showing the positional relationship between the first and second linear scales 42 and 44 and the measurement point 32. In addition, in order to make the positional relationship among the linear scales 42 and 44, the detector holder 26, and the measurement point 32 easy to understand, the detector holder 26 is simply shown.

図5において、第1のリニアスケール42から載物台16の回転軸16aまでの距離をA、第1のリニアスケール42と第2のリニアスケール44との間隔をB、第1のリニアスケール42に対向する第1の読み取りヘッド46の読取値をa、第2のリニアスケール44に対向する第2の読み取りヘッド48の読取値をb、測定点32の位置(載物台16の回転軸16aからの距離)をcとすると、次式の関係が成り立つ。   In FIG. 5, the distance from the first linear scale 42 to the rotating shaft 16 a of the mounting table 16 is A, the distance between the first linear scale 42 and the second linear scale 44 is B, and the first linear scale 42. The reading value of the first reading head 46 that faces the second linear scale 44 is b, the reading value of the second reading head 48 that faces the second linear scale 44 is the position of the measurement point 32 (the rotation axis 16a of the table 16). If the distance from () is c, the following relationship is established.

c=(A/B)×(b−a)+a ・・・(1)
したがって、A、Bは既知であるため、読み取りヘッド46による第1のリニアスケール42の読取値aと、読み取りヘッド48による第2のリニアスケール44の読取値bとを用いて、式(1)により測定点32の位置cを求めることができる。
c = (A / B) × (b−a) + a (1)
Therefore, since A and B are known, the read value a of the first linear scale 42 by the read head 46 and the read value b of the second linear scale 44 by the read head 48 are used to obtain the equation (1). Thus, the position c of the measurement point 32 can be obtained.

図6は、本実施形態の真円度測定装置の制御系の構成を示すブロック図である。図6に示すように、各読み取りヘッド46、48の読取値は制御部52に出力される。制御部52(本発明の測定点算出手段に相当)は、各読み取りヘッド46、48の読取値を用いて、式(1)により測定点32の位置を算出する。このようにして算出された測定点32の位置は、載物台16の回転軸16aから測定点32までの距離(すなわち、ワーク14の円筒面の中心軸から外周部までの距離)に相当する。したがって、測定点32の位置を求めることにより、ワーク14の円筒面の半径(直径)を得ることができる。   FIG. 6 is a block diagram showing the configuration of the control system of the roundness measuring apparatus of this embodiment. As shown in FIG. 6, the reading values of the reading heads 46 and 48 are output to the control unit 52. The control unit 52 (corresponding to the measurement point calculation means of the present invention) calculates the position of the measurement point 32 according to the equation (1) using the reading values of the reading heads 46 and 48. The position of the measurement point 32 calculated in this way corresponds to the distance from the rotation axis 16a of the mounting table 16 to the measurement point 32 (that is, the distance from the central axis of the cylindrical surface of the workpiece 14 to the outer peripheral portion). . Therefore, the radius (diameter) of the cylindrical surface of the workpiece 14 can be obtained by obtaining the position of the measurement point 32.

また、制御部52は、各読み取りヘッド46、48の読取値から求めた測定点32の位置とともに、エンコーダ54で検出された載物台16の回転角度データや検出器28で検出された変位データからワーク14の真円度を演算し、演算結果を出力部56に出力する。   The control unit 52 also includes the position of the measurement point 32 obtained from the reading values of the reading heads 46 and 48, the rotation angle data of the mounting table 16 detected by the encoder 54, and the displacement data detected by the detector 28. Then, the roundness of the work 14 is calculated, and the calculation result is output to the output unit 56.

ここで、図7の(A)から(F)に示すように、X方向の各位置において検出器ホルダ26に傾きが生じた場合について考える。   Here, as shown in FIGS. 7A to 7F, consider a case where the detector holder 26 is inclined at each position in the X direction.

図8は、読み取りヘッド46による第1のリニアスケール42の読取値を測定点32の位置としたときの測定結果(本発明が適用されない場合)である。この場合、検出器ホルダ26の傾きに応じて、測定点32の位置(測定値)には真値との誤差が発生する。すなわち、第1のリニアスケール42の読取値だけでは測定点32の位置を正確に求めることはできない。   FIG. 8 shows a measurement result when the reading value of the first linear scale 42 by the reading head 46 is set to the position of the measurement point 32 (when the present invention is not applied). In this case, according to the inclination of the detector holder 26, an error from the true value occurs at the position (measurement value) of the measurement point 32. That is, the position of the measurement point 32 cannot be accurately obtained only by the reading value of the first linear scale 42.

これに対し、図9は、第1のリニアスケール42の読取値と第2のリニアスケール44の読取値を用いて、式(1)により測定点32の位置を求めたときの測定結果(本発明が適用される場合)である。この場合、検出器ホルダ26の傾きに関係なく、測定点32の位置(測定値)には真値との誤差がなく、測定点32の位置を正確に求めることができる。   On the other hand, FIG. 9 shows a measurement result when the position of the measurement point 32 is obtained by the equation (1) using the read value of the first linear scale 42 and the read value of the second linear scale 44 (this book). The invention is applied). In this case, regardless of the inclination of the detector holder 26, the position of the measurement point 32 (measurement value) has no error from the true value, and the position of the measurement point 32 can be obtained accurately.

以上のとおり、本実施形態の真円度測定装置10においては、第1及び第2の読み取りヘッド46、48による各リニアスケール42、44の読取値から測定点32の位置を算出する。これにより、検出器ホルダ26の測定平面に対する垂直精度に左右されることなく、測定点32の位置を正確に求めることができる。したがって、ワーク14の円筒面の直径(半径)を精度良く求めることができ、ワーク14の真円度を高精度に測定することが可能となる。   As described above, in the roundness measuring apparatus 10 according to the present embodiment, the position of the measurement point 32 is calculated from the reading values of the linear scales 42 and 44 by the first and second reading heads 46 and 48. Thereby, the position of the measurement point 32 can be accurately obtained without being affected by the vertical accuracy of the detector holder 26 with respect to the measurement plane. Therefore, the diameter (radius) of the cylindrical surface of the workpiece 14 can be obtained with high accuracy, and the roundness of the workpiece 14 can be measured with high accuracy.

また、本実施形態の真円度測定装置10は、図15〜図17に示した真円度測定装置と同様に、従来の真円度測定装置に比べて、ベース12の径方向(X方向)の長さが大幅に短縮され、アームが側方に突き出すこともないので、設置スペースが大幅に小さくなっている。   Further, the roundness measuring device 10 of the present embodiment is similar to the roundness measuring device shown in FIGS. 15 to 17 in comparison with the conventional roundness measuring device in the radial direction (X direction). ) Is greatly shortened and the arm does not protrude sideways, so the installation space is greatly reduced.

また、本実施形態の真円度測定装置10は、ベース12の径方向の長さが短縮されたので、ベース12が撓みにくい。さらに、ワーク14の重量によりベース12が撓む等の変形を起こした場合でも、検出器ホルダ26は測定平面に垂直な方向に伸びるため、測定点32の径方向の位置ずれはほとんどなく、測定誤差の発生を効果的に抑えることが可能となる。   Further, in the roundness measuring device 10 of the present embodiment, the base 12 is less likely to bend because the radial length of the base 12 is shortened. Further, even when the base 12 is deformed due to the weight of the workpiece 14, the detector holder 26 extends in a direction perpendicular to the measurement plane, so that there is almost no displacement in the radial direction of the measurement point 32. Generation of errors can be effectively suppressed.

図10は、本実施形態と図12に示した従来例における温度変化による測定子の変位の影響の違いを説明する図である。   FIG. 10 is a diagram for explaining the difference in the influence of the displacement of the probe due to the temperature change between the present embodiment and the conventional example shown in FIG.

温度変化が発生すると、各部が伸縮するが、ベースやコラムは熱容量が大きく、1回の測定時間というような短時間であれば比較的温度変化は小さく、それに起因する伸縮量も小さい。これに対して、アームや検出器ホルダは熱容量が小さく、短時間であっても温度変化により伸縮する。例えば、鋼製の100mmのアームであれば、0.1℃の温度変化でも伸縮量は約1μmになる。   When a temperature change occurs, each part expands and contracts. However, the heat capacity of the base and column is large, and if the time is short, such as one measurement time, the temperature change is relatively small, and the amount of expansion and contraction resulting from the change is small. On the other hand, the arm and the detector holder have a small heat capacity and expand and contract due to temperature changes even in a short time. For example, in the case of a steel 100 mm arm, the amount of expansion and contraction is about 1 μm even with a temperature change of 0.1 ° C.

図12に示した従来例では、アーム124及び検出器ホルダ126が温度変化により伸縮した場合、図10の(A)に示すように、測定子の先端の変位dは、測定平面内で発生し、正しい位置60から60aで示す位置に変位する。そのため、この変位dは、そのままワークの表面位置のずれ、すなわち測定誤差となる。真円度測定装置では、1μmの測定誤差は無視できないレベルである。   In the conventional example shown in FIG. 12, when the arm 124 and the detector holder 126 expand and contract due to temperature change, the displacement d of the tip of the probe occurs in the measurement plane as shown in FIG. The correct position 60 is displaced to the position indicated by 60a. Therefore, this displacement d becomes a deviation of the surface position of the workpiece, that is, a measurement error as it is. In the roundness measuring apparatus, a measurement error of 1 μm is a level that cannot be ignored.

一方、本実施形態では、長いアームを使用しないため、そもそも測定子の変位が小さい。さらに、本実施形態では、検出器ホルダ26が温度変化により伸縮した場合、図10の(A)に示すように、測定子の先端の変位dは、測定平面に垂直な面内で発生し、正しい位置60から60bに示す位置に変位する。この変位により、測定子は測定平面からずれるが、ワークに対して接触する圧力が印加されており、図10の(B)に示すように、円筒状のワークの表面に接触する。この時の測定方向のずれΔ(測定誤差)は、測定平面に垂直な方向の変位d(アライメント誤差)が小さく、θが小さい範囲では、非常に小さい。具体的には、ワークの半径をRとすると、θ=sin(d/R)、Δ=R(1−cosθ)である。   On the other hand, in this embodiment, since the long arm is not used, the displacement of the probe is small in the first place. Furthermore, in this embodiment, when the detector holder 26 expands and contracts due to a temperature change, as shown in FIG. 10A, the displacement d of the tip of the probe occurs in a plane perpendicular to the measurement plane, The correct position 60 is displaced to the position indicated by 60b. Due to this displacement, the probe is displaced from the measurement plane, but a pressure that makes contact with the workpiece is applied, and as shown in FIG. 10 (B), it contacts the surface of the cylindrical workpiece. The deviation Δ (measurement error) in the measurement direction at this time is very small when the displacement d (alignment error) in the direction perpendicular to the measurement plane is small and θ is small. Specifically, assuming that the radius of the workpiece is R, θ = sin (d / R) and Δ = R (1−cos θ).

例えば、測定子の先端が、正しい位置60から60bに示す位置に変位したときの測定直径(測定値)と測定誤差との関係は図11に示すようになる。なお、アライメント誤差とは、図10の(A)において、測定子の先端の測定平面に垂直な方向の変位dに相当するものである。図11から分かるように、アライメント誤差が0.01mmであっても、測定直径が20mm以上では誤差は0.01μm以下となり十分に小さい(すなわち、ワーク直径に対して誤差は1/1000以下である)。   For example, the relationship between the measurement diameter (measurement value) and the measurement error when the tip of the probe is displaced from the correct position 60 to the position shown in 60b is as shown in FIG. The alignment error corresponds to the displacement d in the direction perpendicular to the measurement plane at the tip of the measuring element in FIG. As can be seen from FIG. 11, even when the alignment error is 0.01 mm, the error is 0.01 μm or less when the measured diameter is 20 mm or more (that is, the error is 1/1000 or less with respect to the workpiece diameter). ).

したがって、本実施形態では、温度変化があっても測定誤差への影響は小さく、高精度な測定を行うことが可能となっている。   Therefore, in this embodiment, even if there is a temperature change, the influence on the measurement error is small, and high-accuracy measurement can be performed.

以上、本発明の真円度測定装置について詳細に説明したが、本発明は、以上の例には限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはもちろんである。   The roundness measuring device of the present invention has been described in detail above, but the present invention is not limited to the above examples, and various improvements and modifications may be made without departing from the scope of the present invention. Of course.

12…ベース、14…ワーク、16…載物台、20…コラム、22…キャリッジ、24…検出器ホルダ移動機構、26…検出器ホルダ、28…検出器、30…測定子、32…測定点、34…ホルダ支持部材、36…ホルダ固定部、40…リニアスケール板、42…第1のリニアスケール、44…第2のリニアスケール、46…読み取りヘッド、48…読み取りヘッド、50…ヘッド支持部材、52…制御部   DESCRIPTION OF SYMBOLS 12 ... Base, 14 ... Workpiece, 16 ... Loading table, 20 ... Column, 22 ... Carriage, 24 ... Detector holder moving mechanism, 26 ... Detector holder, 28 ... Detector, 30 ... Measuring element, 32 ... Measuring point 34 ... Holder support member 36 ... Holder fixing part 40 ... Linear scale plate 42 ... First linear scale 44 ... Second linear scale 46 ... Reading head 48 ... Reading head 50 ... Head supporting member 52 control unit

Claims (3)

ベースと、
前記ベースに固定され、載置されたワークを回転する回転台と、
前記回転台の回転軸に対して平行に伸びるコラムと、
前記コラムに沿って移動可能に支持されたキャリッジと、
前記キャリッジに取り付けられるホルダ支持部材と、検出器ホルダが取り付けられるホルダ固定部とを有し、前記ホルダ固定部を前記回転台の回転軸と前記ワークの測定点を含む測定平面に平行に移動可能な検出器ホルダ移動機構と、
測定子が前記測定平面で変位可能なように、前記検出器ホルダに取り付けられた検出器と、
前記検出器ホルダ移動機構に設けられ、前記検出器ホルダの前記測定平面に平行な方向の位置を検出する第1及び第2の位置検出手段と、
前記第1及び第2の位置検出手段の検出結果に基づいて、前記検出器の測定子が前記ワークに接触する測定点の位置を算出する測定点算出手段と、
を備える真円度測定装置。
Base and
A turntable that is fixed to the base and rotates the mounted workpiece;
A column extending parallel to the rotation axis of the turntable;
A carriage supported movably along the column;
It has a holder support member attached to the carriage and a holder fixing part to which the detector holder is attached, and the holder fixing part can be moved in parallel to the measurement plane including the rotation axis of the turntable and the measurement point of the workpiece. A simple detector holder moving mechanism;
A detector attached to the detector holder so that the probe can be displaced in the measurement plane;
First and second position detecting means provided in the detector holder moving mechanism for detecting a position of the detector holder in a direction parallel to the measurement plane;
Measurement point calculation means for calculating the position of the measurement point at which the probe of the detector contacts the workpiece, based on the detection results of the first and second position detection means;
A roundness measuring device.
前記第1の位置検出手段は、前記ホルダ支持部材に設けられ、前記測定平面に対して平行に配設された第1のリニアスケールと、前記ホルダ固定部に設けられ、前記第1のリニアスケールに対向する第1の読み取りヘッドと、を有し、
前記第2の位置検出手段は、前記ホルダ支持部材に設けられ、前記測定平面に対して平行であり、且つ前記第1のリニアスケールに対して前記測定平面に対して垂直な方向の異なる位置に配設された第2のリニアスケールと、前記ホルダ固定部に設けられ、前記第2のリニアスケールに対向する第2の読み取りヘッドと、を有する請求項1に記載の真円度測定装置。
The first position detecting means is provided in the holder support member, and is provided in a first linear scale disposed in parallel to the measurement plane, and provided in the holder fixing portion, and the first linear scale. A first read head opposite to
The second position detection means is provided on the holder support member, is parallel to the measurement plane, and is at different positions in a direction perpendicular to the measurement plane with respect to the first linear scale. The roundness measuring apparatus according to claim 1, further comprising: a second linear scale disposed; and a second reading head provided on the holder fixing portion and facing the second linear scale.
前記第1及び第2のリニアスケールの基準点は、前記測定平面に対して垂直に投影した場合に、前記回転台の回転軸と一致するように構成される請求項2に記載の真円度測定装置。   3. The roundness according to claim 2, wherein the reference points of the first and second linear scales are configured to coincide with a rotation axis of the turntable when projected perpendicularly to the measurement plane. measuring device.
JP2013200288A 2013-09-26 2013-09-26 Roundness measuring device Active JP6137544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013200288A JP6137544B2 (en) 2013-09-26 2013-09-26 Roundness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013200288A JP6137544B2 (en) 2013-09-26 2013-09-26 Roundness measuring device

Publications (2)

Publication Number Publication Date
JP2015068648A true JP2015068648A (en) 2015-04-13
JP6137544B2 JP6137544B2 (en) 2017-05-31

Family

ID=52835471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013200288A Active JP6137544B2 (en) 2013-09-26 2013-09-26 Roundness measuring device

Country Status (1)

Country Link
JP (1) JP6137544B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180047369A (en) * 2016-10-31 2018-05-10 창원대학교 산학협력단 A compound profile meter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142510A (en) * 1981-02-27 1982-09-03 Mitsutoyo Mfg Co Ltd Measuring device for inner and outer diameters
JPH04297817A (en) * 1991-03-27 1992-10-21 Mitsutoyo Corp Absolute encoder
JPH06126597A (en) * 1992-10-12 1994-05-10 Okuma Mach Works Ltd Calculating method for detector attaching error of cylindrical coordinate type three dimensional measuring instrument and correcting method for measuring error
JPH09152302A (en) * 1995-12-01 1997-06-10 Tokyo Seimitsu Co Ltd Method and apparatus for automatic recognition of object, to be measured, at circularity measuring machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142510A (en) * 1981-02-27 1982-09-03 Mitsutoyo Mfg Co Ltd Measuring device for inner and outer diameters
JPH04297817A (en) * 1991-03-27 1992-10-21 Mitsutoyo Corp Absolute encoder
JPH06126597A (en) * 1992-10-12 1994-05-10 Okuma Mach Works Ltd Calculating method for detector attaching error of cylindrical coordinate type three dimensional measuring instrument and correcting method for measuring error
JPH09152302A (en) * 1995-12-01 1997-06-10 Tokyo Seimitsu Co Ltd Method and apparatus for automatic recognition of object, to be measured, at circularity measuring machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180047369A (en) * 2016-10-31 2018-05-10 창원대학교 산학협력단 A compound profile meter
KR101915948B1 (en) * 2016-10-31 2019-01-30 창원대학교 산학협력단 A compound profile meter

Also Published As

Publication number Publication date
JP6137544B2 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
JP4611403B2 (en) Shape measuring apparatus and shape measuring method
JP6149337B1 (en) Surface shape measuring device
JP4968600B1 (en) Roundness measuring device and method of correcting misalignment
WO2015147095A1 (en) Dimension measurement device and dimension measurement method
JP6657552B2 (en) Flatness measurement method
JP5652631B2 (en) Method of calculating the amount of misalignment in a roundness measuring device
JP2016053577A (en) Shape measurement/calibration device
JP5705188B2 (en) Roundness measuring device
JP5705092B2 (en) Roundness measuring device
JP4570437B2 (en) Surface roughness / contour shape measuring device
CN103884270A (en) Device for measuring two-dimensional micro angle generated in installation of circular grating and method thereof
JP6137544B2 (en) Roundness measuring device
JP5489017B2 (en) Method of calculating the amount of misalignment in a roundness measuring device
JP6743351B2 (en) Method for calculating misalignment of roundness measuring machine and roundness measuring machine
JP2012163366A (en) Circularity measuring apparatus and center shift amount correction method therefor
JP4980818B2 (en) Variation detection method of zero error of multi-point probe
JP5246952B2 (en) Measuring method
JP2015068740A (en) Roundness measurement device
JP2002107142A (en) Gear-measuring machine
JP5752313B2 (en) Roundness measuring device
CN107238353B (en) A kind of rotation angle measuring method based on primary standard of curved surface part
JP4072265B2 (en) Rotation axis tilt measurement method
JP4909562B2 (en) Surface texture measuring device
JP2010085341A (en) Spherical shape measuring device and spherical shape measuring method
JP4980817B2 (en) Multipoint probe zero error related value recording device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170419

R150 Certificate of patent or registration of utility model

Ref document number: 6137544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250