JP2015067894A - Atomization device, method and powder - Google Patents

Atomization device, method and powder Download PDF

Info

Publication number
JP2015067894A
JP2015067894A JP2013206053A JP2013206053A JP2015067894A JP 2015067894 A JP2015067894 A JP 2015067894A JP 2013206053 A JP2013206053 A JP 2013206053A JP 2013206053 A JP2013206053 A JP 2013206053A JP 2015067894 A JP2015067894 A JP 2015067894A
Authority
JP
Japan
Prior art keywords
molten metal
sheet
nozzle
stopper
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013206053A
Other languages
Japanese (ja)
Other versions
JP6230862B2 (en
Inventor
広信 澤渡
Hironobu Sawato
広信 澤渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013206053A priority Critical patent/JP6230862B2/en
Publication of JP2015067894A publication Critical patent/JP2015067894A/en
Application granted granted Critical
Publication of JP6230862B2 publication Critical patent/JP6230862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for producing high-purity metal powder while preventing molten metal leakage from a nozzle in melting when powder is produced by atomization.SOLUTION: A seat having flexibility (compression stability) and having a melting point higher than that of a molten metal is provided in the surroundings of a molten metal nozzle projecting upward of a tap hole disposed on a melting pot bottom part. A molten metal stopper is pressed on a top part of the seat for preventing leakage of molten metal, and atomization powder can be stably produced.

Description

本発明は、アトマイズによる粉末作製において、溶解中にノズルからの溶湯漏れを防止でき、且つ、高純度の金属材料の粉末を製造する方法に関する。   The present invention relates to a method for producing a high-purity metal material powder that can prevent molten metal leakage from a nozzle during melting in powder production by atomization.

近年、IT機器の小型化や高性能化に伴い、それらに使用される機能材料についてもますますの高性能化が求められている。この要求に応えるべく多くの金属系機能材料が研究されている。その1つがアトマイズ粉末を用いる粉末冶金法であり、この方法は金属溶湯を不活性ガスなどで噴霧・冷却することにより数ミクロン〜数10ミクロンのオーダーの高純度の粉末を作製できる特徴を有する。   In recent years, with the miniaturization and high performance of IT equipment, there has been a demand for higher performance of functional materials used for them. Many metal-based functional materials have been studied to meet this demand. One of them is a powder metallurgy method using atomized powder, and this method has a feature that a high-purity powder of the order of several microns to several tens of microns can be produced by spraying and cooling a molten metal with an inert gas or the like.

アトマイズ装置の概略図を図1に示す。溶解坩堝の周囲にある誘導加熱により原料は溶解される。溶解中は坩堝から溶湯が漏れ出さないように溶解坩堝底部にある出湯孔の上部から溶湯ストッパーで押さえておき、原料全体が溶解されたことを確認した後、溶湯ストッパーを引き上げ、出湯孔から溶湯を滴下させる。滴下された溶湯は、出湯孔の下部にある噴射ノズルから噴出された高圧不活性ガスにより急冷・凝固し、微細な金属材料の粉末を得ることができる。   A schematic diagram of the atomizing apparatus is shown in FIG. The raw material is melted by induction heating around the melting crucible. During melting, hold down the molten metal stopper from the top of the outlet hole at the bottom of the melting crucible so that the molten metal does not leak from the crucible.After confirming that the entire raw material has been melted, lift the molten metal stopper, Is dripped. The dropped molten metal can be rapidly cooled and solidified by a high-pressure inert gas ejected from a spray nozzle at the bottom of the outlet hole, and a fine metal material powder can be obtained.

ここで、溶湯ストッパー先端と坩堝底部の出湯孔とのすり合わせが悪いと、そのすり合わせ部分の微細な隙間から溶湯が漏洩するため正常なアトマイズができない場合がある。坩堝もしくが溶湯ストッパーと溶湯との濡れ性が悪い原料をアトマイズする場合は、若干の摺合せの隙間があっても溶湯漏れは発生しないが、濡れ性が良く流動性が高い材料をアトマイズする場合は、微小な摺合せの隙間でも溶湯漏れが起き、安定した製造ができなくなるという問題が発生する。   Here, if the molten metal stopper tip and the outlet hole at the bottom of the crucible are poorly bonded, the molten metal leaks from a fine gap at the bonded portion, and normal atomization may not be possible. When a crucible or a raw material with poor wettability between the molten metal stopper and molten metal is atomized, molten metal does not leak even if there is a slight gap between the slides, but a material with good wettability and high fluidity is atomized. In such a case, there is a problem that molten metal leaks even in a minute gap between the slides, and stable production cannot be performed.

特許文献1では、高融点金属が解け始めた時点で低融点金属を添加し、溶融合金化することで炉内での溶湯保持時間を短縮し、注湯ノズルからの湯漏れを無くすことが述べられているが、この方法では原料の純度を低下させてしまうので、高純度用途のアトマイズ粉の製造に適用できない。他の溶湯漏れを防止する方策として、溶湯ストッパーと出湯孔の間に一部の接着剤を微量に塗布する方法があるが、この方法では溶湯漏れ防止はできても、接着剤成分が溶湯中に溶け出すため、溶湯の純度を低下させる問題が発生する。   Patent Document 1 states that when a high melting point metal starts to melt, a low melting point metal is added and melted to shorten the molten metal holding time in the furnace and eliminate the leakage of molten metal from the pouring nozzle. However, since this method reduces the purity of the raw material, it cannot be applied to the production of atomized powder for high-purity use. Another measure to prevent molten metal leakage is to apply a small amount of adhesive between the molten metal stopper and the outlet hole, but this method can prevent molten metal leakage, but the adhesive component is in the molten metal. Therefore, the problem of lowering the purity of the molten metal occurs.

特開2006−161135JP 2006-161135 A

本発明は、アトマイズによる高純度粉末の作製において、溶解中にノズルからの溶湯の漏れを防止し、且つ、高純度の金属粉末を製造する方法を提供することを課題とする。   An object of the present invention is to provide a method for producing a high-purity metal powder by preventing leakage of molten metal from a nozzle during melting in the production of a high-purity powder by atomization.

上記の課題を解決するために、本発明者は鋭意研究を行った結果、坩堝底部に設置されている溶湯ノズルが坩堝内部に貫通するように、溶湯ノズルを坩堝底部に設けた出湯孔より上方向に突き出し、その溶湯ノズルの周囲に柔軟性(圧縮復元性)が有り、かつ溶湯の融点より高い融点を有するシートで囲むように設置し、そのシートの上から溶湯ストッパーを押さえつけることで、溶湯漏れを防止することが可能であるとの知見を得た。
本発明において、柔軟性(圧縮復元性)とは、圧縮率が22〜48%程度、復元率が8〜18%程度の材料をいい、好ましい材料としては、黒鉛製シートが利用できる。すなわち、圧縮率と復元率が上記の範囲にある黒鉛製の材料を任意に選択して、シート材とすることができる。耐熱性と、前記圧縮率と復元率の範囲にある材料であれば、黒鉛製シート以外の材料を使用できることは言うまでもない。
In order to solve the above problems, the present inventor has conducted intensive research. It is installed in a way that is surrounded by a sheet that has a melting point higher than the melting point of the molten metal and presses the molten metal stopper. The knowledge that it was possible to prevent leakage was obtained.
In the present invention, flexibility (compression recovery) refers to a material having a compression rate of about 22 to 48% and a recovery rate of about 8 to 18%. As a preferred material, a graphite sheet can be used. That is, a graphite material having a compression rate and a restoration rate in the above ranges can be arbitrarily selected to form a sheet material. Needless to say, any material other than the graphite sheet can be used as long as the material is in the range of heat resistance and the compression rate and restoration rate.

このような知見に基づき、本発明は、次の発明を提供する。
1)溶解坩堝内の原料を誘導加熱により溶解し、前記溶解坩堝の底部に設けた出湯孔を介して滴下させた溶湯に、ガスノズルから高圧ガスを噴射し急冷・凝固させて、微粉を得るアトマイズ装置において、前記出湯孔を塞ぐ溶湯ストッパーと出湯孔の間に、溶湯の漏れを防止するための耐熱性の円環状シートを設けたことを特徴とするアトマイズ装置。
2)前記円環状のシートは、柔軟性(圧縮復元性)を有し、且つ、溶解する原料の融点よりも高い融点を有し、さらにシートの寸法は溶解坩堝底部の表面粗さの1.5倍以上の厚さと、溶湯ストッパーの外径より1.0mm以上大きい外径を有することを特徴とする前記1)に記載のアトマイズ装置。
3)前記溶湯ノズルの外周部に前記シートを挿入し、挿入後の溶湯ノズル頂部高さを前記シートの頂部高さより1.0mm以上高いことを特徴とする前記1)又は2)に記載のアトマイズ装置。
4)溶湯ノズル外径よりも大きな内径を有する前記溶湯ストッパーを溶湯ノズルの上に配置することを特徴とする前記1)〜3)のいずれか一項に記載のアトマイズ装置。
5)前記溶湯ストッパーの内径に対して、前記シートの中央部に形成された孔部の径が、0.2mm以上小さいことを特徴とする前記1)〜4)のいずれか一項に記載のアトマイズ装置。
Based on such knowledge, the present invention provides the following inventions.
1) Atomizing to obtain fine powder by melting raw material in melting crucible by induction heating and injecting high pressure gas from a gas nozzle into the molten metal dripped through a tapping hole provided at the bottom of the melting crucible to quench and solidify In the apparatus, an atomizing apparatus is provided, wherein a heat-resistant annular sheet for preventing leakage of the molten metal is provided between the molten metal stopper for closing the molten metal hole and the molten metal hole.
2) The annular sheet has flexibility (compression restoring property) and has a melting point higher than the melting point of the raw material to be melted, and the size of the sheet is 1. the surface roughness of the bottom of the melting crucible. The atomizing device according to 1), which has a thickness of 5 times or more and an outer diameter that is 1.0 mm or more larger than the outer diameter of the molten metal stopper.
3) The atomization according to 1) or 2), wherein the sheet is inserted into an outer peripheral portion of the melt nozzle, and the height of the melt nozzle top after insertion is 1.0 mm or more higher than the height of the top of the sheet. apparatus.
4) The atomizing device according to any one of 1) to 3), wherein the molten metal stopper having an inner diameter larger than an outer diameter of the molten metal nozzle is disposed on the molten metal nozzle.
5) The diameter of the hole part formed in the center part of the said sheet | seat is 0.2 mm or more small with respect to the internal diameter of the said molten metal stopper, Said 1) ~ 4) characterized by the above-mentioned. Atomizing device.

6)溶解坩堝内の原料を誘導加熱により溶解し、前記溶解坩堝の底部に設けた出湯孔を介して滴下させた溶湯に、ガスノズルから高圧ガスを噴射し急冷・凝固させて、微粉を得るアトマイズ方法であって、前記出湯孔を塞ぐ溶湯ストッパーと出湯孔の間に、耐熱性の円環状シートを配置し、原料の溶解中に、該円環状シートを介して出湯孔若しくは溶湯ノズルを押さえ付け、出湯前に溶湯の漏れを防止することを特徴とするアトマイズ方法。
7)前記シート材料として、柔軟性(圧縮復元性)と溶解する原料の融点よりも高い融点を有し、さらにシートの寸法は溶解坩堝底部の表面粗さの1.5倍以上の厚さと、溶湯ストッパーの外径より1.0mm以上大きい外径を有する円環状のシートを用いることを特徴とする前記6)に記載のアトマイズ方法。
8)前記溶湯ノズルの外周部に前記シートを挿入し、挿入後の溶湯ノズル頂部高さを前記シートの頂部高さより1.0mm以上高くすることを特徴とする前記6)又は7)に記載のアトマイズ方法。
9)溶湯ノズル外径よりも大きな内径を有する前記溶湯ストッパーを溶湯ノズルの上に配置して、溶湯ストッパー先端で前記シートを上部から押付けることを特徴とする前記6)〜8)のいずれか一項に記載のアトマイズ方法。
10)前記溶湯ストッパーの内径に対して、前記シートの中央部に形成された孔部の径を、0.2mm以上小さくすることを特徴とする前記6)〜9)のいずれか一項に記載のアトマイズ方法。
6) Atomizing to obtain fine powder by melting the raw material in the melting crucible by induction heating and injecting high-pressure gas from the gas nozzle into the molten metal dripped through the outlet hole provided at the bottom of the melting crucible to quench and solidify A heat-resistant annular sheet is disposed between the molten metal stopper and the molten metal hole that closes the molten metal hole, and the molten metal nozzle or the molten metal nozzle is pressed through the circular sheet during melting of the raw material. An atomizing method characterized by preventing the leakage of molten metal before hot water.
7) The sheet material has flexibility (compression recovery) and a melting point higher than the melting point of the raw material to be melted, and the sheet has a thickness of 1.5 times the surface roughness of the melting crucible bottom, 6. The atomizing method as described in 6) above, wherein an annular sheet having an outer diameter that is 1.0 mm or more larger than the outer diameter of the molten metal stopper is used.
8) The sheet described above in 6) or 7), wherein the sheet is inserted into an outer peripheral portion of the melt nozzle, and the height of the melt nozzle top after insertion is set to be 1.0 mm or more higher than the height of the top of the sheet. Atomizing method.
9) Any of the above 6) to 8), wherein the molten metal stopper having an inner diameter larger than the molten metal nozzle outer diameter is disposed on the molten metal nozzle, and the sheet is pressed from above by the molten metal stopper tip. The atomizing method according to one item.
10) The diameter of the hole part formed in the center part of the said sheet | seat is made 0.2 mm or more small with respect to the internal diameter of the said molten metal stopper, Said 6) -9 characterized by the above-mentioned. How to atomize.

本発明は、溶湯原料の溶湯ストッパー材、もしくは坩堝材との濡れ性の大小に係ることなく、坩堝からの溶湯漏れを防止することができるので、アトマイズの生産性向上に寄与できる優れた効果を有する。   The present invention can prevent the molten metal from leaking from the crucible without affecting the wettability with the molten metal stopper material or the crucible material. Have.

アトマイズ装置の概略説明図である。It is a schematic explanatory drawing of an atomizer. アトマイズ装置の各パーツの寸法と位置関係の一例を示す説明図である。It is explanatory drawing which shows an example of the dimension of each part of an atomizing apparatus, and a positional relationship. 本願発明のアトマイズ装置の具体例を示す説明図である。It is explanatory drawing which shows the specific example of the atomizing apparatus of this invention. アトマイズ後に、溶解坩堝内に残留したカーボンシートの図(写真)である。It is a figure (photograph) of the carbon sheet which remained in the melting crucible after atomization. 比較例の説明図である。It is explanatory drawing of a comparative example.

溶解坩堝からの溶湯漏れの原因は、溶湯ストッパー先端と坩堝底部の出湯孔とのすり合わせ部分の構造にある。すなわち、従来のすり合わせ部分では、溶湯ストッパーの先端には曲率Rがついており、出湯孔の縁部と線接触しており、坩堝底部の表面粗さRz(10点平均粗さ)は0.5mm〜0.8mmと溶湯ストッパーの表面粗さに比べて粗いために、濡れ性が大きく流動性が良い溶湯と接する場合、摺合せ部分の隙間を浸透し、溶湯が漏れやすくなる。   The cause of the molten metal leakage from the melting crucible lies in the structure of the portion where the molten metal stopper tip and the outlet hole at the bottom of the crucible meet. That is, in the conventional rubbing portion, the tip of the molten metal stopper has a curvature R, is in line contact with the edge of the hot water outlet, and the surface roughness Rz (10-point average roughness) of the crucible bottom is 0.5 mm. Since it is rough compared to the surface roughness of the molten metal stopper of ~ 0.8 mm, when it comes into contact with the molten metal having high wettability and good fluidity, it penetrates through the gap in the sliding portion, and the molten metal tends to leak.

今回、改善を図った溶湯ストッパー、溶湯ノズル、シートの位置関係を図2に示す。
中央部に孔を空けた柔軟性のあるシートを坩堝底部から上部に突き出した溶湯ノズルの外周部を囲むように設置する。次に、その溶湯ノズルの上から先端をフラットにした中空構造の溶湯ストッパーを挿入し、シート全体を均一に押し付ける。押し付け力は溶湯ストッパー上部に装着したバネにより制御を行う。
Fig. 2 shows the positional relationship between the molten metal stopper, molten metal nozzle, and sheet that have been improved this time.
A flexible sheet with a hole in the center is placed so as to surround the outer periphery of the molten metal nozzle protruding upward from the bottom of the crucible. Next, a molten metal stopper having a flat tip is inserted from above the molten metal nozzle, and the entire sheet is uniformly pressed. The pressing force is controlled by a spring attached to the upper part of the molten metal stopper.

溶湯ストッパーの材質としては、溶解する原料との濡れ性を考慮して選択すべきであるが、一般的には高温でも硬度の高いアルミナ製等が望ましい。   The material for the molten metal stopper should be selected in consideration of the wettability with the raw material to be melted, but in general, it is desirable to use alumina having high hardness even at high temperatures.

溶湯ノズルは、上述したように、坩堝底部から上部に突き出す構造とする。これは、溶湯ストッパーを溶湯ノズルに挿入することで、溶湯ストッパーの中心位置合わせを容易かつ正確に行うことを目的とする。溶湯ノズル頂部の高さはシート上部から1.0mm以上あればよい。溶湯ノズルの材質としては高温でも硬度の高いアルミナ製等が望ましい。   As described above, the molten metal nozzle has a structure that protrudes upward from the bottom of the crucible. The purpose of this is to easily and accurately align the center of the molten metal stopper by inserting the molten metal stopper into the molten metal nozzle. The height of the melt nozzle top may be 1.0 mm or more from the top of the sheet. The material of the molten metal nozzle is preferably made of alumina having high hardness even at high temperatures.

シートについては、溶湯ストッパー先端と出湯孔とのすり合わせ部からの溶湯が漏れないように、坩堝底面の表面粗さを吸収できる柔軟性(圧縮復元性)のある材質が有効である。ここで、シート厚さは坩堝底部の表面粗さRz(10点平均粗さ)の1.5倍以上とすれば良いと判断した。また、シートは高温の溶湯に曝されるので、シートが原料溶解中に溶け出さないように原料の融点よりも高い材料を選択することが重要である。これらの条件を満足するシートの候補材としては融点が3000℃以上のカーボン製が好適である。   For the sheet, a material having flexibility (compression recovery) that can absorb the surface roughness of the bottom of the crucible is effective so that the molten metal from the joint portion between the molten metal stopper tip and the molten metal hole does not leak. Here, it was determined that the sheet thickness should be 1.5 times or more the surface roughness Rz (10-point average roughness) of the crucible bottom. Further, since the sheet is exposed to a high-temperature molten metal, it is important to select a material higher than the melting point of the raw material so that the sheet does not melt during melting of the raw material. A candidate material for the sheet that satisfies these conditions is preferably made of carbon having a melting point of 3000 ° C. or higher.

シートの孔径と外径については、溶湯ストッパー先端部からはみ出す寸法とすべきである。具体的には、シート内の孔部の径は溶湯ストッパー内径より0.2mm以上小さく、シート外径は溶湯ストッパー外径より1.0mm以上大きくすれば良い。このような構造とすることにより、溶湯ストッパー先端の外径部のエッジ部位でシートが大きく変形し、シートと溶湯ストッパーとの密着性を上げることができる。
溶湯ストッパー、溶湯ノズル、シートを以上で述べた位置関係にセットすることにより、溶湯ノズルからの溶湯漏れのないアトマイズを行うことができる。
About the hole diameter and outer diameter of a sheet | seat, it should be a dimension which protrudes from a molten metal stopper front-end | tip part. Specifically, the diameter of the hole in the sheet may be 0.2 mm or more smaller than the inner diameter of the molten stopper, and the outer diameter of the sheet may be 1.0 mm or larger larger than the outer diameter of the molten stopper. By setting it as such a structure, a sheet | seat deform | transforms large in the edge part of the outer diameter part of a molten metal stopper front-end | tip, and can improve the adhesiveness of a sheet | seat and a molten metal stopper.
By setting the molten metal stopper, the molten metal nozzle, and the sheet in the positional relationship described above, atomization without molten metal leakage from the molten metal nozzle can be performed.

以下、実施例1および比較例1に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。   Hereinafter, description will be given based on Example 1 and Comparative Example 1. In addition, a present Example is an example to the last, and is not restrict | limited at all by this example. In other words, the present invention is limited only by the scope of the claims, and includes various modifications other than the examples included in the present invention.

原料は、純度6Nのボロン、純度6Nのアンチモン、純度6Nのテルルとした。その後、Bi0.5Sb1.5Te3.0の組成となるように秤量を行い、Bi−Sb−Te合金のアトマイズ粉末の製造準備をした。この原料をスカル炉に投入した後、密閉し、真空に引き、純度が4N5のアルゴンガスで炉内のガスを置換し、約200Torr、630℃で、10分間保持した。
その後、温度勾配10℃/分にて冷却し、所定の組成を有するBi0.5Sb1.5Te3.0の熱電材料インゴットを得た。インゴットの純度をグロー放電質量分析法(Glow Discharge Mass Spectrometry :GDMS)により測定を行った。
この結果を表1に示す。スカル炉で合成したBi−Sb−Teの純度は5N3であった。この表1には、実施例1と比較例2におけるBiSbTeガスアトマイズ粉の主要不純物濃度を示す。比較例1については、溶湯漏れが発生し、正常な製造条件ではないため、GDMSの分析は行わなかった。
The raw materials were boron having a purity of 6N, antimony having a purity of 6N, and tellurium having a purity of 6N. Then, it weighed so that it might become a composition of Bi0.5Sb1.5Te3.0, and preparation of manufacture of the atomized powder of a Bi-Sb-Te alloy was performed. After this raw material was put into a skull furnace, it was sealed and evacuated, and the gas in the furnace was replaced with argon gas having a purity of 4N5 and held at about 200 Torr and 630 ° C. for 10 minutes.
Then, it cooled at the temperature gradient of 10 degree-C / min, and obtained the thermoelectric material ingot of Bi0.5Sb1.5Te3.0 which has a predetermined composition. The purity of the ingot was measured by glow discharge mass spectrometry (GDMS).
The results are shown in Table 1. The purity of Bi-Sb-Te synthesized in the skull furnace was 5N3. Table 1 shows main impurity concentrations of BiSbTe gas atomized powder in Example 1 and Comparative Example 2. In Comparative Example 1, since a molten metal leak occurred and the manufacturing conditions were not normal, GDMS was not analyzed.

このインゴットから約1.2kgの原料を切り出し、硝酸エタノールでエッチングを行い、ガスアトマイズ用の原料とした。
坩堝内部の構造を図1に示す。溶解坩堝の底部の表面粗さRz(10点平均粗さ)は約0.66mmなので、シート材の厚さは底部表面粗さの1.5倍以上の厚さに相当する厚さ1.0mmとし、シート材質はカーボン製とした。溶湯ノズルは円筒形アルミナ材とし、内径φ3.0mm、外径φ4.8mmとした。
About 1.2 kg of raw material was cut out from this ingot and etched with nitric acid ethanol to obtain a raw material for gas atomization.
The structure inside the crucible is shown in FIG. Since the surface roughness Rz (10-point average roughness) of the bottom of the melting crucible is about 0.66 mm, the thickness of the sheet material is 1.0 mm corresponding to a thickness of 1.5 times or more of the bottom surface roughness. The sheet material was made of carbon. The molten metal nozzle was a cylindrical alumina material having an inner diameter of φ3.0 mm and an outer diameter of φ4.8 mm.

溶湯ストッパーは、同様に円筒形アルミナ材とし、内径φ5.0mm、外径φ8.0mmとした。カーボンシートは溶湯ノズルの周囲にセットするため内径をφ4.8mmとし、外径は溶湯ストッパーの外径より1.0mm以上大きい径とするためφ9.0mmとした。ノズル頂部の高さは、1mm以上の厚さを加えて2.0mmとした。   Similarly, the molten metal stopper was made of a cylindrical alumina material having an inner diameter of φ5.0 mm and an outer diameter of φ8.0 mm. Since the carbon sheet is set around the molten metal nozzle, the inner diameter is set to φ4.8 mm, and the outer diameter is set to φ9.0 mm so as to be 1.0 mm or more larger than the outer diameter of the molten metal stopper. The height of the nozzle top was set to 2.0 mm by adding a thickness of 1 mm or more.

図3に示すように、溶湯ストッパーを溶湯ノズルの外側に被せ、溶湯ストッパーの上部につけたバネでカーボンシートを押さえつけた。この状態で溶解坩堝に原料を投入して真空に引いた後、純度が4N5のアルゴンガスを導入してアルゴン雰囲気とし、620℃、10分間、保持しながら溶解を行った。原料の溶解工程において、坩堝からの溶湯の漏れは起こらなかった。   As shown in FIG. 3, the molten metal stopper was put on the outer side of the molten metal nozzle, and the carbon sheet was pressed by a spring attached to the upper part of the molten metal stopper. In this state, the raw material was put into the melting crucible and evacuated, and then argon gas having a purity of 4N5 was introduced to form an argon atmosphere, and melting was carried out while maintaining at 620 ° C. for 10 minutes. In the raw material melting step, no molten metal leaked from the crucible.

その後、溶湯ストッパーを引き上げ、溶湯ノズルから滴下した溶湯に圧力1.5MPaの高圧ガスを噴射し、凝固・冷却を行い、平均結晶粒径17μmの微粉を得た。アトマイズ終了後に溶解坩堝内に残留したカーボンシートの写真を図4に示す。
溶湯ノズルに挿入されたカーボンシートがアトマイズ前と同じ状態で残留しているのが確認できる。アトマイズ粉末の純度をグロー放電質量分析法(Glow Discharge Mass Spectrometry :GDMS)により測定を行い、純度は5N1であった。
Thereafter, the molten metal stopper was pulled up, high pressure gas with a pressure of 1.5 MPa was injected into the molten metal dropped from the molten metal nozzle, solidified and cooled, and fine powder with an average crystal grain size of 17 μm was obtained. A photograph of the carbon sheet remaining in the melting crucible after the atomization is shown in FIG.
It can be confirmed that the carbon sheet inserted into the molten metal nozzle remains in the same state as before atomization. The purity of the atomized powder was measured by glow discharge mass spectrometry (GDMS), and the purity was 5N1.

(比較例1)
実施例で述べたスカル溶解の方法で作製した純度5NのBi0.5Sb1.5Te3.0インゴットの一部を切り出し、ガスアトマイズの原料とした。坩堝内部の構造を図1に示す。
溶湯ストッパー先端のR部を溶解用坩堝の底部の出湯孔上部に設置した。溶湯ストッパーと出湯孔の間に、溶湯の漏れを防止するための耐熱性の円環状シートを設けていない点で、本願発明と相異する。
この状態で溶解坩堝に原料を投入し、炉内を真空に引いた後、アルゴンガスを導入してアルゴン雰囲気とし、620℃で保持しながら溶解を行った。
この原料の溶解中において、溶湯は溶湯ストッパー先端の隙間を介して坩堝の底部の出湯孔から漏れ始め、溶湯ストッパーを引き上げる前に坩堝中の溶湯が全てチャンバー内に落下したためガスアトマイズを行うことはできなかった。
(Comparative Example 1)
A part of a Bi0.5Sb1.5Te3.0 ingot having a purity of 5N 3 produced by the skull dissolution method described in the examples was cut out and used as a raw material for gas atomization. The structure inside the crucible is shown in FIG.
The R portion at the tip of the molten metal stopper was placed at the top of the hot water outlet hole at the bottom of the melting crucible. It differs from the present invention in that a heat-resistant annular sheet for preventing leakage of the molten metal is not provided between the molten metal stopper and the outlet hole.
In this state, the raw material was put into the melting crucible and the inside of the furnace was evacuated. Then, argon gas was introduced to make an argon atmosphere, and melting was performed while maintaining at 620 ° C.
During the melting of this raw material, the molten metal begins to leak from the outlet hole at the bottom of the crucible through the gap at the tip of the molten metal stopper, and all the molten metal in the crucible falls into the chamber before the molten metal stopper is pulled up, so gas atomization can not be performed. There wasn't.

(比較例2)
実施例1で述べたスカル溶解の方法で作製した純度5N3のBi0.5Sb1.5Te3.0インゴットの一部を切り出し、ガスアトマイズの原料とした。坩堝内部の構造を図5に示す。
溶湯ストッパー先端のR部に接着剤を微量に塗布し、この溶湯ストッパーを溶解用坩堝の底部の出湯孔上部に設置した。溶湯ストッパーと出湯孔の間に、溶湯の漏れを防止するために溶湯ストッパー先端のR部に接着剤を塗布し、耐熱性の円環状シートを設けていない点で、本願発明と相異する。
この状態で溶解坩堝に原料を投入し、炉内を真空に引いた後、アルゴンガスを導入してアルゴン雰囲気とし、620℃、10分間、保持しながら溶解を行った。この原料の溶解工程において、溶湯は、坩堝の底部から微量に漏れ始め、一部が数mm径程度の固体物として、落下した。
(Comparative Example 2)
A part of a Bi0.5Sb1.5Te3.0 ingot having a purity of 5N3 produced by the skull melting method described in Example 1 was cut out and used as a raw material for gas atomization. The structure inside the crucible is shown in FIG.
A small amount of adhesive was applied to the R portion at the tip of the molten metal stopper, and this molten metal stopper was placed at the top of the outlet hole at the bottom of the melting crucible. It differs from the present invention in that an adhesive is applied to the R portion at the tip of the molten metal stopper to prevent leakage of the molten metal between the molten metal stopper and the outlet hole, and no heat-resistant annular sheet is provided.
In this state, the raw material was put into the melting crucible, and the inside of the furnace was evacuated. Then, argon gas was introduced to make an argon atmosphere, and melting was performed while holding at 620 ° C. for 10 minutes. In this raw material melting step, the molten metal began to leak in a trace amount from the bottom of the crucible, and a part of the molten metal dropped as a solid material having a diameter of several millimeters.

その後、溶湯ストッパーを引き上げ、溶湯ノズルから溶湯を滴下し、圧力1.5MPaの高圧ガスを噴射し、凝固・冷却を行い、平均結晶粒径30μmの微粉が得られた。比較例2で製造された微粉について、グロー放電質量分析法(Glow Discharge Mass Spectrometry :GDMS)により微粉の純度を測定した得られた主要不純物濃度の結果を表1に示す。   Thereafter, the molten metal stopper was pulled up, the molten metal was dropped from the molten metal nozzle, high pressure gas with a pressure of 1.5 MPa was injected, solidified and cooled, and fine powder with an average crystal grain size of 30 μm was obtained. Table 1 shows the results of the main impurity concentrations obtained by measuring the purity of the fine powder produced in Comparative Example 2 by glow discharge mass spectrometry (GDMS).

比較例2の条件で作製されたBi0.5Sb1.5Te3.0粉末の純度は3N7であり、実施例で得られたBi0.5Sb1.5Te3.0粉末より純度が低く、また、粉末体中には、粒径数mm程度の固体物が含まれていた。検出された主要な不純物は、Al、Fe,Siであり、接着剤に含有されている不純物がアトマイズ粉末中に混入していることがわかった。   The purity of the Bi0.5Sb1.5Te3.0 powder produced under the conditions of Comparative Example 2 is 3N7, which is lower than that of the Bi0.5Sb1.5Te3.0 powder obtained in the example, and in the powder body In addition, a solid material having a particle size of about several mm was included. The main impurities detected were Al, Fe, and Si, and it was found that the impurities contained in the adhesive were mixed in the atomized powder.

本発明の方法は、溶湯漏れが無く、アトマイズ法による金属粉末が製造できるため、安定した製造を可能とし、微細で、均一な粒径を有し、純度の高い金属粉末体が得ることができ、焼結品を用いる電子機器分野などに適用できる。   Since the method of the present invention does not leak molten metal and can produce metal powder by the atomization method, stable production is possible, and a metal powder body having a fine, uniform particle size and high purity can be obtained. It can be applied to the field of electronic equipment using sintered products.

原料は、純度6Nのビスマス、純度6Nのアンチモン、純度6Nのテルルとした。その後、Bi0.5Sb1.5Te3.0の組成となるように秤量を行い、Bi−Sb−Te合金のアトマイズ粉末の製造準備をした。この原料をスカル炉に投入した後、密閉し、真空に引き、純度が4N5のアルゴンガスで炉内のガスを置換し、約200Torr、630℃で、10分間保持した。
その後、温度勾配10℃/分にて冷却し、所定の組成を有するBi0.5Sb1.5Te3.0の熱電材料インゴットを得た。インゴットの純度をグロー放電質量分析法(Glow Discharge Mass Spectrometry :GDMS)により測定を行った。
この結果を表1に示す。スカル炉で合成したBi−Sb−Teの純度は5N3であった。この表1には、実施例1と比較例2におけるBiSbTeガスアトマイズ粉の主要不純物濃度を示す。比較例1については、溶湯漏れが発生し、正常な製造条件ではないため、GDMSの分析は行わなかった。
The raw materials were bismuth with a purity of 6N, antimony with a purity of 6N, and tellurium with a purity of 6N. Then, it weighed so that it might become a composition of Bi0.5Sb1.5Te3.0, and preparation of manufacture of the atomized powder of a Bi-Sb-Te alloy was performed. After this raw material was put into a skull furnace, it was sealed and evacuated, and the gas in the furnace was replaced with argon gas having a purity of 4N5 and held at about 200 Torr and 630 ° C. for 10 minutes.
Then, it cooled at the temperature gradient of 10 degree-C / min, and obtained the thermoelectric material ingot of Bi0.5Sb1.5Te3.0 which has a predetermined composition. The purity of the ingot was measured by glow discharge mass spectrometry (GDMS).
The results are shown in Table 1. The purity of Bi-Sb-Te synthesized in the skull furnace was 5N3. Table 1 shows main impurity concentrations of BiSbTe gas atomized powder in Example 1 and Comparative Example 2. In Comparative Example 1, since a molten metal leak occurred and the manufacturing conditions were not normal, GDMS was not analyzed.

Claims (10)

溶解坩堝内の原料を誘導加熱により溶解し、前記溶解坩堝の底部に設けた出湯孔を介して滴下させた溶湯に、ガスノズルから高圧ガスを噴射し急冷・凝固させて、微粉を得るアトマイズ装置において、前記出湯孔を塞ぐ溶湯ストッパーと出湯孔の間に、溶湯の漏れを防止するための耐熱性の円環状シートを設けたことを特徴とするアトマイズ装置。   In an atomizing device that melts raw materials in a melting crucible by induction heating and injects high-pressure gas from a gas nozzle into a molten metal dripped through a tapping hole provided at the bottom of the melting crucible to rapidly cool and solidify it. An atomizing device, wherein a heat-resistant annular sheet for preventing leakage of molten metal is provided between a molten metal stopper for closing the molten metal hole and the molten metal hole. 前記円環状のシートは、柔軟性(圧縮復元性)を有し、且つ、溶解する原料の融点よりも高い融点を有し、さらにシートの寸法は溶解坩堝底部の表面粗さの1.5倍以上の厚さと、溶湯ストッパーの外径より1.0mm以上大きい外径を有することを特徴とする請求項1に記載のアトマイズ装置。   The annular sheet has flexibility (compression recovery) and a melting point higher than the melting point of the raw material to be melted, and the sheet size is 1.5 times the surface roughness of the melting crucible bottom. The atomizing device according to claim 1, wherein the atomizing device has the above thickness and an outer diameter that is 1.0 mm or more larger than the outer diameter of the molten metal stopper. 前記溶湯ノズルの外周部に前記シートを挿入し、挿入後の溶湯ノズル頂部高さを前記シートの頂部高さより1.0mm以上高いことを特徴とする請求項1又は2に記載のアトマイズ装置。   The atomizing apparatus according to claim 1 or 2, wherein the sheet is inserted into an outer peripheral portion of the molten metal nozzle, and a height of the molten metal nozzle top after insertion is 1.0 mm or more higher than a height of the top of the sheet. 溶湯ノズル外径よりも大きな内径を有する前記溶湯ストッパーを溶湯ノズルの上に配置することを特徴とする請求項1〜3のいずれか一項に記載のアトマイズ装置。   The atomizing apparatus according to any one of claims 1 to 3, wherein the molten metal stopper having an inner diameter larger than a molten metal outer diameter is disposed on the molten metal nozzle. 前記溶湯ストッパーの内径に対して、前記シートの中央部に形成された孔部の径が、0.2mm以上小さいことを特徴とする請求項1〜4のいずれか一項に記載のアトマイズ装置。   The atomizing device according to any one of claims 1 to 4, wherein a diameter of a hole formed in a central portion of the sheet is smaller by 0.2 mm or more than an inner diameter of the molten metal stopper. 溶解坩堝内の原料を誘導加熱により溶解し、前記溶解坩堝の底部に設けた出湯孔を介して滴下させた溶湯に、ガスノズルから高圧ガスを噴射し急冷・凝固させて、微粉を得るアトマイズ方法であって、前記出湯孔を塞ぐ溶湯ストッパーと出湯孔の間に、耐熱性の円環状シートを配置し、原料の溶解中に、該円環状シートを介して出湯孔若しくは溶湯ノズルを押さえ付け、出湯前に溶湯の漏れを防止することを特徴とするアトマイズ方法。   An atomizing method in which the raw material in the melting crucible is melted by induction heating, and a high pressure gas is injected from a gas nozzle into the molten metal dripped through the outlet hole provided at the bottom of the melting crucible to rapidly cool and solidify it. In addition, a heat-resistant annular sheet is disposed between the molten metal stopper and the molten metal hole that closes the molten metal hole, and during the melting of the raw material, the molten metal hole or the molten metal nozzle is pressed through the circular sheet, and the An atomizing method characterized by preventing molten metal from leaking before hot water. 前記シート材料として、柔軟性(圧縮復元性)を有し、且つ、溶解する原料の融点よりも高い融点を有し、さらにシートの寸法は溶解坩堝底部の表面粗さの1.5倍以上の厚さと、溶湯ストッパーの外径より1.0mm以上大きい外径を有する円環状のシートを用いることを特徴とする請求項6に記載のアトマイズ方法。   The sheet material has flexibility (compression recovery) and a melting point higher than the melting point of the raw material to be melted. The atomizing method according to claim 6, wherein an annular sheet having a thickness and an outer diameter larger by 1.0 mm or more than an outer diameter of the molten metal stopper is used. 前記溶湯ノズルの外周部に前記シートを挿入し、挿入後の溶湯ノズル頂部高さを前記シートの頂部高さより1.0mm以上高くすることを特徴とする請求項6又は7に記載のアトマイズ方法。   The atomizing method according to claim 6 or 7, wherein the sheet is inserted into an outer peripheral portion of the melt nozzle, and a height of the melt nozzle top after insertion is set to be 1.0 mm or more higher than a height of the top of the sheet. 溶湯ノズル外径よりも大きな内径を有する前記溶湯ストッパーを溶湯ノズルの上に配置して、溶湯ストッパー先端で前記シートを上部から押付けることを特徴とする請求項6〜8のいずれか一項に記載のアトマイズ方法。   The melt stopper having an inner diameter larger than the outer diameter of the melt nozzle is disposed on the melt nozzle, and the sheet is pressed from above by the tip of the melt stopper. The atomizing method described. 前記溶湯ストッパーの内径に対して、前記シートの中央部に形成された孔部の径を、0.2mm以上小さくすることを特徴とする請求項6〜9のいずれか一項に記載のアトマイズ方法。
The atomizing method according to any one of claims 6 to 9, wherein a diameter of a hole formed in a central portion of the sheet is reduced by 0.2 mm or more with respect to an inner diameter of the molten metal stopper. .
JP2013206053A 2013-10-01 2013-10-01 Atomizing device, atomizing method and atomized powder Active JP6230862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013206053A JP6230862B2 (en) 2013-10-01 2013-10-01 Atomizing device, atomizing method and atomized powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013206053A JP6230862B2 (en) 2013-10-01 2013-10-01 Atomizing device, atomizing method and atomized powder

Publications (2)

Publication Number Publication Date
JP2015067894A true JP2015067894A (en) 2015-04-13
JP6230862B2 JP6230862B2 (en) 2017-11-15

Family

ID=52834892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013206053A Active JP6230862B2 (en) 2013-10-01 2013-10-01 Atomizing device, atomizing method and atomized powder

Country Status (1)

Country Link
JP (1) JP6230862B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111195731A (en) * 2020-01-10 2020-05-26 上海电气集团股份有限公司 Bottom hole type crucible induction melting gas atomization powder making device and method
WO2020161884A1 (en) * 2019-02-08 2020-08-13 三菱日立パワーシステムズ株式会社 Metal powder manufacturing device, and crucible apparatus and molten metal nozzle for same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259152A (en) * 1988-08-25 1990-02-28 Nippon Steel Corp Method for supplying molten metal into strip continuous casting apparatus
JPH06346114A (en) * 1993-06-03 1994-12-20 Mitsubishi Materials Corp Metal powder producing device and its usage
JPH11277193A (en) * 1998-03-26 1999-10-12 Kawasaki Steel Corp Hot reuse method for tundish for continuous casting
JP2002324921A (en) * 2001-04-25 2002-11-08 Yamaha Corp Thermoelectric material and method of manufacturing the same
JP2003012308A (en) * 2001-06-20 2003-01-15 Heizen Sen Production method of thermoelectric semiconductor material by rapid solidification processing and/or hot compression processing and production apparatus for the same
JP2003347849A (en) * 2002-05-23 2003-12-05 Kyocera Corp High-frequency apparatus, its manufacturing method and millimeter-wave transceiver
JP2004221464A (en) * 2003-01-17 2004-08-05 Sony Corp Method of manufacturing thermoelectric semiconductor, method of manufacturing thermoelectric converter or conversion device, and apparatus for implementation thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259152A (en) * 1988-08-25 1990-02-28 Nippon Steel Corp Method for supplying molten metal into strip continuous casting apparatus
JPH06346114A (en) * 1993-06-03 1994-12-20 Mitsubishi Materials Corp Metal powder producing device and its usage
JPH11277193A (en) * 1998-03-26 1999-10-12 Kawasaki Steel Corp Hot reuse method for tundish for continuous casting
JP2002324921A (en) * 2001-04-25 2002-11-08 Yamaha Corp Thermoelectric material and method of manufacturing the same
JP2003012308A (en) * 2001-06-20 2003-01-15 Heizen Sen Production method of thermoelectric semiconductor material by rapid solidification processing and/or hot compression processing and production apparatus for the same
JP2003347849A (en) * 2002-05-23 2003-12-05 Kyocera Corp High-frequency apparatus, its manufacturing method and millimeter-wave transceiver
JP2004221464A (en) * 2003-01-17 2004-08-05 Sony Corp Method of manufacturing thermoelectric semiconductor, method of manufacturing thermoelectric converter or conversion device, and apparatus for implementation thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020161884A1 (en) * 2019-02-08 2020-08-13 三菱日立パワーシステムズ株式会社 Metal powder manufacturing device, and crucible apparatus and molten metal nozzle for same
KR20210021037A (en) * 2019-02-08 2021-02-24 미츠비시 파워 가부시키가이샤 Metal powder manufacturing apparatus, its crucible and molten metal nozzle
CN112533711A (en) * 2019-02-08 2021-03-19 三菱动力株式会社 Metal powder manufacturing apparatus, crucible container and melt nozzle thereof
JPWO2020161884A1 (en) * 2019-02-08 2021-09-09 三菱パワー株式会社 Metal powder manufacturing equipment, its crucible and molten metal nozzle
JP6996010B2 (en) 2019-02-08 2022-01-17 三菱パワー株式会社 Metal powder manufacturing equipment, its crucible and molten metal nozzle
KR102378432B1 (en) * 2019-02-08 2022-03-25 미츠비시 파워 가부시키가이샤 Metal powder manufacturing equipment, its crucible and molten metal nozzle
US11925987B2 (en) 2019-02-08 2024-03-12 Mitsubishi Heavy Industries, Ltd. Metal powder manufacturing device, and crucible apparatus and molten metal nozzle for metal powder manufacturing device
CN111195731A (en) * 2020-01-10 2020-05-26 上海电气集团股份有限公司 Bottom hole type crucible induction melting gas atomization powder making device and method

Also Published As

Publication number Publication date
JP6230862B2 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
JP6215329B2 (en) Production method of rare earth powder or sputtering target mainly composed of neodymium, iron and boron, thin film for rare earth magnet mainly composed of neodymium, iron and boron, or production method thereof
JP5078167B2 (en) AuGe alloy balls for soldering
US20070183922A1 (en) Au-sn alloy powder for solder paste
WO2008091825A3 (en) High temperature solder materials
CN102114584B (en) Preparation method for AuSn20 alloy brazing filler metal used for packaging integrated circuit and usage thereof
CN105026607B (en) Rare-earth magnet sputtering target and its manufacture method
CN110625127A (en) Preparation method of cobalt-chromium-nickel-tungsten alloy brazing filler metal powder
JP6230862B2 (en) Atomizing device, atomizing method and atomized powder
TW201604289A (en) Soft magnetic alloy for magnetic recording, sputtering target material and magnetic recording medium
CN102534316B (en) Al-Mo-W-Ti intermediate alloy and preparing method thereof
TWI682038B (en) Magnesium alloy, production method thereof, and electronic equipment
CN103192203B (en) Process method for preparing silver solder
JP2019183268A (en) Silver powder and manufacturing method therefor
JP6037422B2 (en) Method for producing sputtering target made of Ni-P alloy or Ni-Pt-P alloy
CN102560213B (en) Aluminum-niobium interalloy and preparation method thereof
CN107012345A (en) A kind of preparation method of Al-Si-Cu alloy
TWI551704B (en) Copper gallium alloy composite sodium element target manufacturing method
Zhu et al. Interfacial reactions between Sn-Zn alloys and Ni substrates
JP5748991B2 (en) Powder production disc
TWI665317B (en) Cu-ga alloy sputtering target, and method for producing cu-ga alloy sputtering target
CN101871054A (en) Method for producing titanium silicon alloy
JP2008038209A (en) Method for manufacturing functional member
JP7078933B2 (en) Seed crystal for growing single crystal of iron gallium alloy
US20180221995A1 (en) Au-BASED SOLDERING BALL, CERAMIC ELECTRONIC COMPONENT SEALED OR BONDED THEREWITH, AND METHOD FOR EVALUATING BONDING RELIABILITY OF SAID Au-BASED SOLDERING BALL
TW201619399A (en) Au-sn-ag-based solder alloy, electronic device sealed or joined using the same, and electronic apparatus equipped with the electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171018

R150 Certificate of patent or registration of utility model

Ref document number: 6230862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250