JP2015067890A - Method of manufacturing composite conductive particle - Google Patents

Method of manufacturing composite conductive particle Download PDF

Info

Publication number
JP2015067890A
JP2015067890A JP2013205511A JP2013205511A JP2015067890A JP 2015067890 A JP2015067890 A JP 2015067890A JP 2013205511 A JP2013205511 A JP 2013205511A JP 2013205511 A JP2013205511 A JP 2013205511A JP 2015067890 A JP2015067890 A JP 2015067890A
Authority
JP
Japan
Prior art keywords
particles
container
composite conductive
film formation
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013205511A
Other languages
Japanese (ja)
Other versions
JP6199145B2 (en
Inventor
博之 熊倉
Hiroyuki Kumakura
博之 熊倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2013205511A priority Critical patent/JP6199145B2/en
Publication of JP2015067890A publication Critical patent/JP2015067890A/en
Application granted granted Critical
Publication of JP6199145B2 publication Critical patent/JP6199145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing conductive particles having metal layers uniformly formed on the surfaces of particles to be deposited by a spattering method without generating aggregation or film peeling.SOLUTION: A method of manufacturing composite conductive particles comprises sputtering a sputtering target 13 to form metal layers on the surfaces of particles 21 to be deposited while vibrating a vessel 14 arranging the mixture of the particles 21 to be deposited and agitation balls 22. The thickness A of the laminate layer 19 of the mixture and the diameter B of the agitation ball 22 satisfy the formula of 0.1≤A/B≤1, and the diameter B is 1 mm or more and 10 mm or less. One or more ground layers of metal selected a group consisting of Ni, Cu, Ag, Au, Pt, Pa and Ru are formed on the surface of a particle body consisting of the resin particle.

Description

本発明は、導電粒子を製造する技術に係り、特に、粒子の表面に金属薄膜を形成する技術に関する。   The present invention relates to a technique for producing conductive particles, and more particularly to a technique for forming a metal thin film on the surface of particles.

多数の電極を有する電子部品を、基板等に接続するための接続材料として、異方導電性接着剤(ACA)が使用されている。ACAはプリント配線基板、LCD用ガラス基板、フレキシブルプリント基板等の基板に、IC、LSI等の半導体素子やパッケージ等の被接続体を接続する際に、相対面する基板表面の基板側電極と半導体素子やパッケージの素子側電極との間を導通させ、その状態を維持しながら、隣接する電極間の絶縁を維持する電気的接続と、基板と被接続体との間の機械的固着を行う接続材料である。   An anisotropic conductive adhesive (ACA) is used as a connection material for connecting an electronic component having a large number of electrodes to a substrate or the like. ACA is a circuit board-side electrode and a semiconductor on the surface of the substrate facing each other when connecting a semiconductor element such as an IC or LSI or a connected body such as a package to a substrate such as a printed circuit board, a glass substrate for LCD, or a flexible printed circuit board. An electrical connection that maintains electrical insulation between adjacent electrodes while maintaining electrical continuity between the device and the device side electrode of the package, and a connection that provides mechanical fixation between the substrate and the connected body Material.

ACAに配合される導電粒子については、接続信頼性の向上および接続箇所の低抵抗化の観点から、様々な粒子が提案され、使用されている。例えば、錫、鉛、銀、アルミニウム、ニッケル等の金属粒子や、ガラス、セラミック等の無機微粒子や熱硬化性樹脂等の樹脂粒子に金属薄膜を被覆した粒子が文献に開示されている。   Regarding conductive particles blended in ACA, various particles have been proposed and used from the viewpoint of improving connection reliability and reducing the resistance of connection points. For example, metal particles such as tin, lead, silver, aluminum, and nickel, inorganic particles such as glass and ceramic, and particles obtained by coating a metal thin film on resin particles such as a thermosetting resin are disclosed in the literature.

特に粒度分布が狭く、ファインピッチ回路に対応できる事から、樹脂粒子の表面に無電解メッキ法によってNiメッキ層を形成し、更に、Niメッキ層の表面に、メッキ法によって、Auメッキ層を形成したものが多く使用されている。   In particular, since the particle size distribution is narrow and compatible with fine pitch circuits, an Ni plating layer is formed on the surface of the resin particles by the electroless plating method, and further, an Au plating layer is formed on the surface of the Ni plating layer by the plating method. Many of them have been used.

一方で、無電解メッキ法の問題点として、作業工程が煩雑、不純物の混入が不可避、めっき廃液の処理が必要等の欠点があり、それらの欠点を解決できる方法として、スパッタリングなどの真空蒸着法により粒子表面に金属を被覆させた導電粒子も検討されている。   On the other hand, the problems of the electroless plating method are that the work process is complicated, impurities are inevitable, and the treatment of the plating waste liquid is necessary. Conductive particles in which the surface of the particles is coated with metal have also been studied.

スパッタリング法による導電粒子の製造方法としては、金属薄膜を成膜する対象の粒子を「振動増幅手段」と同一容器に入れ、容器ごと粒子を振動させながらスパッタリングを行う方法(特開2004−321973号公報)や、円筒形の真空容器の中に多角形バレルを内蔵し、そのバレル内に粒子を導入し、バレルを回転させながらスパッタリングを行う方法(特開2004−250771号公報)などが提案されている。   As a method for producing conductive particles by a sputtering method, a method is used in which particles to form a metal thin film are placed in the same container as the “vibration amplification means” and sputtering is performed while vibrating the particles together with the container (Japanese Patent Laid-Open No. 2004-321973). And a method in which a polygonal barrel is built in a cylindrical vacuum vessel, particles are introduced into the barrel, and sputtering is performed while rotating the barrel (Japanese Patent Laid-Open No. 2004-250771). ing.

特開2004−321973号公報JP 2004-321973 A 特開2004−250771号公報JP 2004-250771 A

しかしながら、これらの先行例に示された方法では、ACAに使用されるような10μm以下の樹脂粒子の表面に、金、白金、銀等の接続信頼性に優れる金属層を形成しようとした場合には、スパッタリング処理中に粒子同士が凝集してしまい、粒子表面に均一な処理を行う事は非常に困難であった。   However, in the methods shown in these preceding examples, when a metal layer having excellent connection reliability such as gold, platinum, silver or the like is formed on the surface of resin particles of 10 μm or less as used in ACA. However, the particles aggregated during the sputtering process, and it was very difficult to perform a uniform process on the particle surface.

また、スパッタ法によって金属層が表面に形成された粒子をACAに使用した場合は、前述の凝集部分が原因となってショートが多発してしまい、導電粒子の実用性に問題があった。また、スパッタ処理の際に凝集が発生しない場合であっても、粒子表面に形成された金属層の剥離が発生してしまい、導電性が低下するという問題点もあった。
本発明は、これらの問題点を解決するために、スパッタリング法によって粒子表面に均一に金属層を形成する事ができる導電粒子の製造方法に関するものである。
In addition, when particles having a metal layer formed on the surface by sputtering are used for ACA, shorts frequently occur due to the agglomerated portion described above, and there is a problem in practicality of conductive particles. Further, even when aggregation does not occur during the sputtering process, peeling of the metal layer formed on the particle surface occurs, and there is a problem that conductivity is lowered.
In order to solve these problems, the present invention relates to a method for producing conductive particles capable of uniformly forming a metal layer on the particle surface by a sputtering method.

上記課題を解決するために本発明は、成膜対象粒子と補助振動材とが配置された容器を振動させ、スパッタリングターゲットをスパッタし、前記成膜対象粒子の表面に表面金属層を形成して複合型導電粒子を製造する複合型導電粒子の製造方法であって、前記補助振動材には、直径Bが1mm以上10mm以下の攪拌球体を用い、前記容器の底面上に均一に積層された前記成膜対象粒子の積層層の層厚Aと前記攪拌球体の直径Bとの比の値は、0.1以上1.0以下(0.1≦A/B≦1)にする複合型導電粒子の製造方法である。
また、本発明は、前記成膜対象粒子は、樹脂粒子から成る粒子本体の表面に、ニッケル、銅、銀、金、白金、パラジウム、ルテニウムからなる群から選択される金属の下地層が一層以上形成された複合型導電粒子の製造方法である。
また、本発明は、前記容器を振動させる周波数は、15Hz以上65Hz以下の範囲にし、振幅は、±(0.5mm〜10mm)にする複合型導電粒子の製造方法である。
また、本発明は、前記攪拌球体の比重は、3.0以上10.0以下にする複合型導電粒子の製造方法である。
また、本発明は、前記容器の底面の面積Cに対する、前記容器に配置された前記攪拌球体の中心を通る平面で切断したときの断面積の合計値である専有面積Eの比(E/C)は、70%以上である複合型導電粒子の製造方法である。
In order to solve the above problems, the present invention vibrates a container in which film formation target particles and an auxiliary vibration material are arranged, sputters a sputtering target, and forms a surface metal layer on the surface of the film formation target particles. A composite conductive particle manufacturing method for manufacturing composite conductive particles, wherein the auxiliary vibration member is a stirring sphere having a diameter B of 1 mm or more and 10 mm or less, and is uniformly laminated on a bottom surface of the container. Composite type conductive particles in which the value of the ratio of the layer thickness A of the laminated layer of film formation target particles to the diameter B of the stirring sphere is 0.1 or more and 1.0 or less (0.1 ≦ A / B ≦ 1) It is a manufacturing method.
Further, in the present invention, the film formation target particle has one or more metal base layers selected from the group consisting of nickel, copper, silver, gold, platinum, palladium, and ruthenium on the surface of the particle main body made of resin particles. It is a manufacturing method of the formed composite conductive particles.
In addition, the present invention is a method for producing composite conductive particles in which the frequency for vibrating the container is in the range of 15 Hz to 65 Hz and the amplitude is ± (0.5 mm to 10 mm).
Moreover, this invention is a manufacturing method of the composite-type electroconductive particle which makes specific gravity of the said stirring sphere 3.0 or more and 10.0 or less.
Further, the present invention provides a ratio (E / C) of the exclusive area E, which is the total value of the cross-sectional areas when cut along a plane passing through the center of the stirring sphere disposed in the container, with respect to the area C of the bottom surface of the container. ) Is a method for producing composite conductive particles of 70% or more.

本発明は、成膜対象粒子と補助振動材としての攪拌球体の混合条件を規定する事で、従来の方法では困難であった成膜対象粒子の表面に均一に金属膜を形成させた導電粒子を得る事が可能になった。   The present invention provides a conductive particle in which a metal film is uniformly formed on the surface of a film formation target particle, which has been difficult by the conventional method, by defining the mixing conditions of the film formation target particle and the stirring sphere as an auxiliary vibration material. It became possible to get.

また、本発明は成膜対象粒子は容器内で振動されて十分に攪拌され、かつスパッタリング処理中に生成されてしまう凝集体も解砕する事ができるので、導電粒子を安定に製造することができる。   In addition, the present invention can stably produce conductive particles because the particles to be deposited are vibrated in the container and sufficiently stirred, and aggregates formed during the sputtering process can also be crushed. it can.

また、容器内の成膜対象粒子の積層層の厚さを薄くさせる事になるので、容器の開口面積当たりのスパッタリング処理速度を増加させることができ、リードタイム面やコスト面でもメリットを出す事が可能になった。   In addition, since the thickness of the laminated layer of film formation target particles in the container is reduced, the sputtering processing speed per opening area of the container can be increased, and there are advantages in terms of lead time and cost. Became possible.

本発明に用いることができるスパッタリング装置の一例An example of a sputtering apparatus that can be used in the present invention 容器内の成膜対象粒子と攪拌球体の様子を説明するための図The figure for demonstrating the state of the film-forming object particle | grains and stirring sphere in a container 複合型導電粒子の構造を説明するための断面図Sectional drawing for demonstrating the structure of composite-type electroconductive particle

図1の符号10は、本発明に用いることが出来るスパッタリング装置を示している。
このスパッタリング装置10は、真空槽11を有しており、真空槽11の内部の上方には、アノード電極12に取り付けられたスパッタリングターゲット13が配置されている。真空槽11には、真空排気装置16が接続されており、真空排気装置16によって真空槽11内を真空排気して真空雰囲気にした後、スパッタリングガス導入装置17から真空槽11内にスパッタリングガスを導入し、電源18を起動して、スパッタリングターゲット13に電圧を印加すると、スパッタリングターゲット13がスパッタリングされ、スパッタリングターゲット13を構成する物質から成るスパッタリング粒子がスパッタリングターゲット13から飛び出す。図1の符号28は、スパッタリング粒子を示している。
Reference numeral 10 in FIG. 1 indicates a sputtering apparatus that can be used in the present invention.
The sputtering apparatus 10 includes a vacuum chamber 11, and a sputtering target 13 attached to the anode electrode 12 is disposed above the inside of the vacuum chamber 11. A vacuum evacuation device 16 is connected to the vacuum chamber 11. After the vacuum evacuation device 16 evacuates the vacuum chamber 11 to create a vacuum atmosphere, a sputtering gas is introduced into the vacuum chamber 11 from the sputtering gas introduction device 17. When a voltage is applied to the sputtering target 13 by introducing the power source 18 and applying a voltage to the sputtering target 13, the sputtering target 13 is sputtered, and sputtered particles made of a material constituting the sputtering target 13 jump out of the sputtering target 13. Reference numeral 28 in FIG. 1 indicates sputtered particles.

スパッタリングターゲット13の下方位置には、容器14が配置されており、容器14の内部には、成膜対象粒子21と、補助振動材とが配置されている。
補助振動材は、直径が1mm以上10mm以下の球形の攪拌球体(ボール)22であり、攪拌球体22は容器14内に、容器14の平坦な底面と接触して複数個が互いに離間して配置できる大きさである。
A container 14 is disposed below the sputtering target 13, and film formation target particles 21 and an auxiliary vibration material are disposed inside the container 14.
The auxiliary vibration member is a spherical stirring sphere (ball) 22 having a diameter of 1 mm or more and 10 mm or less, and the stirring sphere 22 is disposed in the container 14 so as to be in contact with the flat bottom surface of the container 14 and spaced apart from each other. It is a size that can be done.

また、攪拌球体22は、金属又はセラミックスの材料が、内部稠密にして球体に成形されて構成されているのに対し、成膜対象粒子21は、その平均直径が1μm以上20μm以下の例えば樹脂粒子であり、表面に樹脂が露出されている他、表面に金属膜から成る下地層が形成された樹脂粒子等も含まれる。従って、攪拌球体22は成膜対象粒子21よりも大きさが大きい。   In addition, the stirring sphere 22 is formed by forming a metal or ceramic material into a sphere with a dense internal shape, whereas the film formation target particle 21 is, for example, a resin particle having an average diameter of 1 μm to 20 μm. In addition to the resin being exposed on the surface, resin particles having a base layer made of a metal film on the surface are also included. Therefore, the stirring sphere 22 is larger than the film formation target particle 21.

攪拌球体22と成膜対象粒子21とを容器14の底面上に配置すると、攪拌球体22は底面と接触して配置され、成膜対象粒子21は、一層又は二層以上に積層され、積層層19を形成して配置される。   When the stirring sphere 22 and the film formation target particle 21 are disposed on the bottom surface of the container 14, the stirring sphere 22 is disposed in contact with the bottom surface, and the film formation target particle 21 is laminated in one layer or two or more layers. 19 is arranged.

攪拌球体22と成膜対象粒子21とを容器14の底面上に配置し、容器14の底面から成膜対象粒子21の積層層19の表面までの高さを均一にしたとき、即ち、積層層19の厚さを均一にしたときの積層層19の厚さである層厚Aと、底面から攪拌球体22の頂上までの距離、即ち攪拌球体22の直径Bとの間には、下記(1)式、
0.1≦層厚A/直径B≦1 ……(1)
が成立するように、成膜対象粒子21と攪拌球体22との混合量の比を決めて、両方を容器14に配置する。
When the stirring sphere 22 and the deposition target particle 21 are arranged on the bottom surface of the container 14 and the height from the bottom surface of the container 14 to the surface of the stacked layer 19 of the deposition target particle 21 is made uniform, that is, the stacked layer Between the layer thickness A, which is the thickness of the laminated layer 19 when the thickness 19 is made uniform, and the distance from the bottom surface to the top of the stirring sphere 22, that is, the diameter B of the stirring sphere 22, the following (1 )formula,
0.1 ≦ layer thickness A / diameter B ≦ 1 (1)
The ratio of the mixing amounts of the film formation target particles 21 and the stirring spheres 22 is determined so that both are arranged in the container 14.

攪拌球体22は、成膜対象粒子21と混合して容器14の底面上に配置したときに、攪拌球体22同士は離間して位置することができる量が配置されており、且つ、(1)式が成立する比率で配置されているので、成膜対象粒子21は、攪拌球体22の間に位置している。その様子を、図2に示す。攪拌球体22は下端を底面と接触させ、頂上を積層層19から露出させている。   When the stirring spheres 22 are mixed with the film forming target particles 21 and disposed on the bottom surface of the container 14, the stirring spheres 22 are disposed in such an amount that the stirring spheres 22 can be spaced apart from each other, and (1) The film forming target particles 21 are located between the stirring spheres 22 because they are arranged at a ratio that satisfies the equation. This is shown in FIG. The stirring sphere 22 has the lower end in contact with the bottom surface and the top is exposed from the laminated layer 19.

容器14の開口部分はスパッタリングターゲット13に向けられており、スパッタリング粒子28は、容器14の内部に入り、成膜対象粒子21と攪拌球体22とに入射する。
容器14は、振動装置15に取り付けられており、振動装置15が動作すると、容器14が上下に振動するようにされており、容器14の上下振動に伴い、成膜対象粒子21と攪拌球体22とはスパッタリングガスが導入された真空雰囲気中で上下に振動する。
The opening of the container 14 is directed to the sputtering target 13, and the sputtered particles 28 enter the container 14 and enter the film formation target particles 21 and the stirring spheres 22.
The container 14 is attached to the vibration device 15. When the vibration device 15 operates, the container 14 vibrates up and down, and the film formation target particles 21 and the stirring spheres 22 are accompanied by the vertical vibration of the container 14. Vibrates up and down in a vacuum atmosphere into which a sputtering gas is introduced.

攪拌球体22は、セラミックスや金属の中から、その比重が3以上10以下の材料を選択しておき、また、その直径は1mm以上10mm以下で選択しておき、成膜対象粒子21が攪拌球体22に衝突すると弾かれるようにする。   For the stirring sphere 22, a material having a specific gravity of 3 or more and 10 or less is selected from ceramics or metal, and the diameter thereof is selected from 1 mm or more and 10 mm or less. It will be played when it hits 22.

振動の周波数を15Hz以上65Hz以下の設定周波数範囲に含まれる一定値に固定した周波数、または、設定周波数範囲の中で変化させる周波数にし、振動の振幅は±(0.5〜10)mmにし、容器14の底面を水平にし、積層層19の層厚Aに対して攪拌球体22の直径Bは(1)式を満たす値にして成膜対象粒子21と攪拌球体22とを容器14と一緒に上下に振動させると、成膜対象粒子21は攪拌球体22に衝突して、攪拌球体22が成膜対象粒子21を横方向に移動させ、成膜対象粒子21を攪拌するので、成膜対象粒子21と攪拌球体22とは混合される。   The frequency of vibration is fixed to a fixed value included in the set frequency range of 15 Hz to 65 Hz, or the frequency is changed within the set frequency range, and the amplitude of vibration is ± (0.5 to 10) mm, The bottom surface of the container 14 is leveled, the diameter B of the stirring sphere 22 is set to a value satisfying the expression (1) with respect to the layer thickness A of the laminated layer 19, and the film formation target particles 21 and the stirring sphere 22 are brought together with the container 14 together. When the film is vibrated up and down, the film formation target particle 21 collides with the stirring sphere 22, and the stirring sphere 22 moves the film formation target particle 21 in the lateral direction to stir the film formation target particle 21. 21 and the stirring sphere 22 are mixed.

また、上下方向の振動により、横方向の成分を持つ力が印加される攪拌球体22は、上下に振動しながら不規則に横方向に移動するので、成膜対象粒子21は攪拌球体22によって攪拌され、積層層19の表面に位置する成膜対象粒子21は交代される。   Further, since the stirring sphere 22 to which a force having a lateral component is applied due to the vibration in the vertical direction moves irregularly in the horizontal direction while vibrating in the vertical direction, the film formation target particles 21 are stirred by the stirring sphere 22. Then, the film formation target particles 21 located on the surface of the stacked layer 19 are changed.

また、成膜対象粒子21は、振動によって回転し、スパッタリングターゲット13に向く面が変わり、その結果、各成膜対象粒子21の表面にスパッタリング粒子28が到達できるようになり、各成膜対象粒子21の表面に、均一な薄膜が形成される。   Further, the film formation target particle 21 is rotated by vibration, and the surface facing the sputtering target 13 is changed. As a result, the sputtering particle 28 can reach the surface of each film formation target particle 21. A uniform thin film is formed on the surface 21.

攪拌球体22が少なすぎると、十分な攪拌が行えないので、本発明では、攪拌球体22を、その中心を通る平面で切断したときに得られる円形の切断面の面積の合計値を、攪拌球体22が底面上で占有する攪拌球体面積Eとすると、攪拌球体面積E(m2)は、容器14の底面積C(m2)の70%以上(E/C≧70%)になるようにしている。残りの面積(=C−E)は、成膜対象粒子21が占有する面積であると考えることができる。 If the stirring sphere 22 is too small, sufficient stirring cannot be performed. Therefore, in the present invention, the total value of the areas of the circular cut surfaces obtained when the stirring sphere 22 is cut by a plane passing through the center thereof is determined as the stirring sphere. Assuming that the stirring sphere area E 22 occupies on the bottom surface, the stirring sphere area E (m 2 ) is 70% or more (E / C ≧ 70%) of the bottom area C (m 2 ) of the container 14. ing. The remaining area (= CE) can be considered to be an area occupied by the film formation target particles 21.

ここでは、スパッタリングターゲット13は金属であり、金属のスパッタリング粒子28により、成膜対象粒子21の表面に、所定膜厚の表面金属層が形成された複合型導電粒子が得られる。   Here, the sputtering target 13 is a metal, and composite conductive particles in which a surface metal layer having a predetermined thickness is formed on the surface of the film formation target particle 21 by the metal sputtering particles 28 are obtained.

図3は、複合型導電粒子20の断面図であり、樹脂粒子である粒子本体26の表面に、金属薄膜である下地層27が形成された成膜対象粒子21の表面に、金属薄膜である表面金属層24が形成されている。   FIG. 3 is a cross-sectional view of the composite-type conductive particle 20. The metal thin film is formed on the surface of the film formation target particle 21 in which the base layer 27, which is a metal thin film, is formed on the surface of the particle main body 26, which is a resin particle. A surface metal layer 24 is formed.

複合型導電粒子20が形成されると、スパッタリングターゲット13に対する電圧印加と、振動装置15の動作とが停止され、複合型導電粒子20が配置された容器14は、真空槽11の外部に搬出される。   When the composite conductive particles 20 are formed, the voltage application to the sputtering target 13 and the operation of the vibration device 15 are stopped, and the container 14 in which the composite conductive particles 20 are arranged is carried out of the vacuum chamber 11. The

上記スパッタリング装置10に、銀のスパッタリングターゲット13を配置し、容器14に、樹脂粒子である粒子本体(φ5μm)26の表面に、無電解Niメッキ層から成る下地層27が露出する成膜対象粒子21と、攪拌球体22とを配置し、振幅±2mm、振動数30Hzで容器14を振動させながら、スパッタリングガスとしてArを導入し、排気バルブを調整して圧力を2.0Paとした。スパッタリングターゲット13に直流電圧を印加し、300Wの電力でスパッタリングし、成膜対象粒子21の表面に、0.1μmの厚みの銀薄膜から成る表面金属層24を形成し、複合型導電粒子20を作成し、倍率1000倍のSEM観察により「凝集」と「被膜剥離」の評価を行った。   The sputtering target 10 is provided with a silver sputtering target 13, and a film formation target particle in which a base layer 27 made of an electroless Ni plating layer is exposed on the surface of a particle main body (φ5 μm) 26 that is a resin particle in a container 14. 21 and a stirring sphere 22 were arranged, Ar was introduced as a sputtering gas while vibrating the container 14 with an amplitude of ± 2 mm and a vibration frequency of 30 Hz, and the exhaust valve was adjusted to adjust the pressure to 2.0 Pa. A direct current voltage is applied to the sputtering target 13 and sputtering is performed with a power of 300 W, a surface metal layer 24 made of a silver thin film having a thickness of 0.1 μm is formed on the surface of the film formation target particle 21, and the composite conductive particles 20 are formed. It was prepared, and “aggregation” and “coating peeling” were evaluated by SEM observation at a magnification of 1000 times.

用いた攪拌球体22を替えて、実施例1〜14と、比較例1〜5の表面金属層24を形成し、評価を行った。
攪拌球体22の直径、材質(ステンレス、アルミナ、又はジルコニア)、比重、比率(層厚A/直径B)、面積比率と、評価結果を下記表1〜3に記載する。
The stirring sphere 22 used was changed, and the surface metal layers 24 of Examples 1 to 14 and Comparative Examples 1 to 5 were formed and evaluated.
The diameter, material (stainless steel, alumina, or zirconia), specific gravity, ratio (layer thickness A / diameter B), area ratio, and evaluation results of the stirring sphere 22 are shown in Tables 1 to 3 below.

Figure 2015067890
Figure 2015067890

Figure 2015067890
Figure 2015067890

Figure 2015067890
Figure 2015067890

表中、「凝集」の評価は、粒子中に20μm以上の凝集体がある場合は×とし、20μm以上の凝集体が無い場合を○とした。「被膜剥離」は、金属被膜の剥離した粒子が粒子数の5%より少ない場合を○とし、5%以上の場合を×とした。   In the table, “aggregation” was evaluated as “x” when there was an aggregate of 20 μm or more in the particle, and “◯” when there was no aggregate of 20 μm or more. “Coating peeling” was marked with ○ when the number of particles peeled off from the metal coating was less than 5% of the number of particles, and x when the number was 5% or more.

実施例1〜6と比較例1〜2より、0.1≦層厚A/直径B≦1(A:成膜対象粒子の積層層の厚さである層厚、B:攪拌球体の直径)を満たす条件では、「凝集」と「被膜剥離」が少ない良好な処理粒子が得られる事が判る。満たさない条件では、「凝集」または「被膜剥離」が多くなってしまう。   From Examples 1 to 6 and Comparative Examples 1 and 2, 0.1 ≦ layer thickness A / diameter B ≦ 1 (A: layer thickness which is the thickness of the layer of particles to be deposited, B: diameter of stirring sphere) It can be seen that good treated particles with less “aggregation” and “coating peeling” can be obtained under the conditions satisfying the above conditions. If the conditions are not satisfied, “aggregation” or “film peeling” increases.

実施例7〜9と比較例3〜4より、攪拌球体22は直径1mm以上10mm以下の条件が良い事が判る。実施例1〜14より、攪拌球体22の材質は比重3〜10のセラミックまたは金属が良い事が判る。
実施例12〜14と比較例5より、粒子の分布領域(容器内)に対するボールの面積比率が70%以上の条件が良い事が判る。
From Examples 7 to 9 and Comparative Examples 3 to 4, it can be seen that the stirring sphere 22 has good conditions of a diameter of 1 mm or more and 10 mm or less. From Examples 1 to 14, it can be seen that the material of the stirring sphere 22 is preferably a ceramic or metal having a specific gravity of 3 to 10.
From Examples 12 to 14 and Comparative Example 5, it can be seen that the condition that the area ratio of the ball to the particle distribution region (inside the container) is 70% or more is good.

なお、上記例では、容器14を上下方向に振動させたが、上下方向の振動成分に加え、横方向振動成分を有する振動で容器14を振動させてもよい。
また、上記例では、成膜対象粒子21は、樹脂粒子である粒子本体26に、Ni薄膜から成る下地層27が形成されていて、銀薄膜である表面金属層24を形成した。本発明では、下地層27と表面金属層24とが異なる金属であっても同じ金属であってもよい。
また、下地層27を有さず、粒子本体26の表面が露出する成膜対象粒子21も本発明に用いることができる。粒子本体26は、樹脂粒子に限定されず、金属粒子やセラミックス粒子も含まれる。
In the above example, the container 14 is vibrated in the vertical direction, but the container 14 may be vibrated by vibration having a lateral vibration component in addition to the vertical vibration component.
Further, in the above example, the film formation target particle 21 has the base layer 27 made of a Ni thin film formed on the particle main body 26 that is a resin particle, and the surface metal layer 24 that is a silver thin film is formed. In the present invention, the underlayer 27 and the surface metal layer 24 may be different metals or the same metal.
In addition, the film formation target particle 21 that does not have the base layer 27 and the surface of the particle body 26 is exposed can also be used in the present invention. The particle body 26 is not limited to resin particles, and includes metal particles and ceramic particles.

また、上記スパッタリングターゲット13には銀を用いて銀薄膜から成る表面金属層24を形成したが、ニッケル、銅、金、白金、パラジウム、又は、ルテニウム等の金属のスパッタリングターゲットを用い、ニッケル薄膜、銅薄膜、金薄膜、白金薄膜、パラジウム薄膜、又は、ルテニウム薄膜等の金属薄膜から成る表面金属層24を形成することができる。
また、スパッタリングターゲット13と表面金属層24は、ニッケル、銅、銀、金、白金、パラジウム、又は、ルテニウムである主金属を50%よりも多く含有していれば、主金属とは異なる添加物を含有してあってもよい。
Moreover, although the surface metal layer 24 which consists of a silver thin film was formed in the said sputtering target 13 using silver, using a sputtering target of metals, such as nickel, copper, gold | metal | money, platinum, palladium, or ruthenium, a nickel thin film, A surface metal layer 24 made of a metal thin film such as a copper thin film, a gold thin film, a platinum thin film, a palladium thin film, or a ruthenium thin film can be formed.
Moreover, if the sputtering target 13 and the surface metal layer 24 contain more than 50% of the main metal that is nickel, copper, silver, gold, platinum, palladium, or ruthenium, the additive is different from the main metal. May be contained.

14……容器
21……成膜対象粒子
22……攪拌球体
24……表面金属層
14 ... Container 21 ... Deposition target particle 22 ... Stirring sphere 24 ... Surface metal layer

Claims (5)

成膜対象粒子と補助振動材とが配置された容器を振動させ、スパッタリングターゲットをスパッタし、前記成膜対象粒子の表面に表面金属層を形成して複合型導電粒子を製造する複合型導電粒子の製造方法であって、
前記補助振動材には、直径Bが1mm以上10mm以下の攪拌球体を用い、
前記容器の底面上に均一に積層された前記成膜対象粒子の積層層の層厚Aと前記攪拌球体の直径Bとの比の値は、0.1以上1.0以下(0.1≦A/B≦1)にする複合型導電粒子の製造方法。
Composite conductive particles for producing composite conductive particles by vibrating a container in which film formation target particles and an auxiliary vibration material are arranged, sputtering a sputtering target, and forming a surface metal layer on the surface of the film formation target particles A manufacturing method of
For the auxiliary vibration material, a stirring sphere having a diameter B of 1 mm or more and 10 mm or less,
The ratio value of the layer thickness A of the layer of the film formation target particles uniformly stacked on the bottom surface of the container and the diameter B of the stirring sphere is 0.1 or more and 1.0 or less (0.1 ≦ A method for producing composite conductive particles satisfying A / B ≦ 1).
前記成膜対象粒子は、樹脂粒子から成る粒子本体の表面に、ニッケル、銅、銀、金、白金、パラジウム、ルテニウムからなる群から選択される金属の下地層が一層以上形成された請求項1記載の複合型導電粒子の製造方法。   The film formation target particles are formed by forming one or more underlayers of a metal selected from the group consisting of nickel, copper, silver, gold, platinum, palladium, and ruthenium on the surface of a particle body made of resin particles. A method for producing the composite conductive particle as described. 前記容器を振動させる周波数は、15Hz以上65Hz以下の範囲にし、振幅は、±(0.5mm〜10mm)にする請求項1又は請求項2のいずれか1項記載の複合型導電粒子の製造方法。   3. The method for producing composite conductive particles according to claim 1, wherein a frequency for vibrating the container is in a range of 15 Hz to 65 Hz, and an amplitude is ± (0.5 mm to 10 mm). 4. . 前記攪拌球体の比重は、3.0以上10.0以下にする請求項1乃至請求項3のいずれか1項記載の複合型導電粒子の製造方法。   The method for producing composite conductive particles according to any one of claims 1 to 3, wherein a specific gravity of the stirring sphere is set to 3.0 or more and 10.0 or less. 前記容器の底面の面積Cに対する、前記容器に配置された前記攪拌球体の中心を通る平面で切断したときの断面積の合計値である専有面積Eの比(E/C)は、70%以上である請求項1乃至請求項4のいずれか1項記載の複合型導電粒子の製造方法。
The ratio (E / C) of the exclusive area E, which is the total value of the cross-sectional area when cut by a plane passing through the center of the stirring sphere arranged in the container, to the area C of the bottom surface of the container is 70% or more The method for producing composite conductive particles according to any one of claims 1 to 4, wherein:
JP2013205511A 2013-09-30 2013-09-30 Method for producing composite conductive particles Active JP6199145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013205511A JP6199145B2 (en) 2013-09-30 2013-09-30 Method for producing composite conductive particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013205511A JP6199145B2 (en) 2013-09-30 2013-09-30 Method for producing composite conductive particles

Publications (2)

Publication Number Publication Date
JP2015067890A true JP2015067890A (en) 2015-04-13
JP6199145B2 JP6199145B2 (en) 2017-09-20

Family

ID=52834888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013205511A Active JP6199145B2 (en) 2013-09-30 2013-09-30 Method for producing composite conductive particles

Country Status (1)

Country Link
JP (1) JP6199145B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016015312A (en) * 2014-06-11 2016-01-28 積水化学工業株式会社 Conductive particle, method of producing conductive particle, conductive material and connection structure
KR101856623B1 (en) * 2016-08-12 2018-05-10 주식회사 테토스 Sputtering method for a reflective particle
KR20210136479A (en) * 2020-05-07 2021-11-17 주식회사 소로나 Method of Coating for powder, and Apparatus adopting the method
KR20230014469A (en) 2021-07-21 2023-01-30 주식회사 소로나 Method of Coating for powder, and Apparatus adopting the method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033668A (en) * 2001-05-18 2003-02-04 Sony Corp Method of manufacturing conductive catalyst particle and method of manufacturing gas diffusive catalyst electrode, and apparatus and vibration device used for method of manufacturing conductive catalyst particle
JP2003080085A (en) * 2001-06-01 2003-03-18 Sony Corp Conductive catalyst particle and method for manufacturing the same, gas diffusive catalyst electrode and electrochemical device
JP2004321973A (en) * 2003-04-25 2004-11-18 Sony Corp Manufacture apparatus and vibration apparatus of conductive catalyst particle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033668A (en) * 2001-05-18 2003-02-04 Sony Corp Method of manufacturing conductive catalyst particle and method of manufacturing gas diffusive catalyst electrode, and apparatus and vibration device used for method of manufacturing conductive catalyst particle
JP2003080085A (en) * 2001-06-01 2003-03-18 Sony Corp Conductive catalyst particle and method for manufacturing the same, gas diffusive catalyst electrode and electrochemical device
JP2004321973A (en) * 2003-04-25 2004-11-18 Sony Corp Manufacture apparatus and vibration apparatus of conductive catalyst particle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016015312A (en) * 2014-06-11 2016-01-28 積水化学工業株式会社 Conductive particle, method of producing conductive particle, conductive material and connection structure
KR101856623B1 (en) * 2016-08-12 2018-05-10 주식회사 테토스 Sputtering method for a reflective particle
KR20210136479A (en) * 2020-05-07 2021-11-17 주식회사 소로나 Method of Coating for powder, and Apparatus adopting the method
KR102352842B1 (en) * 2020-05-07 2022-01-19 주식회사 소로나 Method of Coating for powder, and Apparatus adopting the method
KR20230014469A (en) 2021-07-21 2023-01-30 주식회사 소로나 Method of Coating for powder, and Apparatus adopting the method

Also Published As

Publication number Publication date
JP6199145B2 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
JP3764349B2 (en) Method of forming an alternative conductive metal film for plating using metal fine particle dispersion
JP6199145B2 (en) Method for producing composite conductive particles
KR101971746B1 (en) Electrically conductive composition
TW511099B (en) Conductive fine particles, method for plating fine particles, and substrate structural body
JP2012209148A (en) Conductive particle, conductive paste, and circuit board
JP7128115B2 (en) METAL-CONTAINING PARTICLES, CONNECTING MATERIAL, CONNECTED STRUCTURE, CONNECTED STRUCTURE MANUFACTURING METHOD, CONDUCTIVITY TESTING MEMBER, AND CONTINUITY TESTING DEVICE
WO2007037440A1 (en) Conductive powder and process for producing the same, conductive powder paste, and process for producing the conductive powder paste
JP2006225692A (en) Tin-coated copper powder and composite electrically conductive paste using the tin-coated copper powder
JP5622127B2 (en) Reduction precipitation type spherical NiP fine particles and method for producing the same
Arafat et al. Interfacial reaction and dissolution behavior of Cu substrate in molten Sn‐3.8 Ag‐0.7 Cu in the presence of Mo nanoparticles
WO2006126527A1 (en) Silver-coated ball and method for manufacturing same
JPWO2017057301A1 (en) Coating liquid for forming conductive layer and method for producing conductive layer
JP6340876B2 (en) Conductive particles
JP2015199994A (en) Manufacturing method of compound-type conductive particle
JP2016108649A (en) Silver-coated copper powder and method of producing the same
Kim et al. Electrochemical migration of Ag nanoink patterns controlled by atmospheric-pressure plasma
WO2016140326A1 (en) Method for manufacturing conductive particles, anisotropically conductive adhesive, and method for mounting component
JP5943019B2 (en) Conductive particles, conductive powder, conductive polymer composition and anisotropic conductive sheet
JP2013229240A (en) Conductive particle and method for producing the same
Roh et al. Cu filling of TSV using various current forms for three‐dimensional packaging application
WO2016152942A1 (en) Method for producing conductive particles
JPH0992026A (en) Complex conductive powder, conductive paste, manufacture of conductive paste, electric circuit, and manufacture of electric circuit
CN106941018A (en) Heat-curing type conductive paste
JP2016181511A (en) Conductive particle, anisotropic conductive adhesive, and connection structure
JPH10140325A (en) Very small metallic bump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170623

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170823

R150 Certificate of patent or registration of utility model

Ref document number: 6199145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250