JP2015066556A - Injection method for ladle molten steel in continuous casting - Google Patents

Injection method for ladle molten steel in continuous casting Download PDF

Info

Publication number
JP2015066556A
JP2015066556A JP2013200507A JP2013200507A JP2015066556A JP 2015066556 A JP2015066556 A JP 2015066556A JP 2013200507 A JP2013200507 A JP 2013200507A JP 2013200507 A JP2013200507 A JP 2013200507A JP 2015066556 A JP2015066556 A JP 2015066556A
Authority
JP
Japan
Prior art keywords
ladle
molten steel
tundish
slag
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013200507A
Other languages
Japanese (ja)
Inventor
隆智 遠藤
Takatomo Endo
隆智 遠藤
熊倉 誠治
Seiji Kumakura
誠治 熊倉
元信 時松
Motonobu Tokimatsu
元信 時松
稔 梶山
Minoru Kajiyama
稔 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2013200507A priority Critical patent/JP2015066556A/en
Publication of JP2015066556A publication Critical patent/JP2015066556A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an injection method for ladle molten steel in continuous casting that enables a significant improvement in molten steel yield while retaining the quality of a continuous casting piece at a higher order with no increase in outflow of ladle slag from a ladle into a tundish.SOLUTION: When ladle molten steel 2 is to be injected from a ladle 1 installed on the ladle turret or the ladle car of a continuous casting machine into a tundish 3, when a predetermined time elapses after a method for determining an end of injection of the molten steel 2 by using an electromagnetic slag outflow detection device 7 provided in an injection nozzle part of the ladle 1 is used to end the injection of the molten steel 2 once, the sliding nozzle 6 of the ladle 1 is moved again in an opening direction, thereby injecting the ladle molten steel 2 remaining in the ladle 1.

Description

本発明は、連続鋳造機のレードルターレットまたはレードルカー上に設置された取鍋から取鍋に収容された溶鋼(本明細書では「取鍋溶鋼」という)をタンディッシュへ注入する連続鋳造における取鍋溶鋼の注入方法に関する。   The present invention relates to a ladle in continuous casting in which molten steel contained in a ladle (hereinafter referred to as “ladder molten steel”) is poured into a tundish from a ladle installed on a ladle turret or ladle car of a continuous casting machine. The present invention relates to a method for injecting hot pot molten steel.

図1は、鋼の連続鋳造法において、取鍋1に収容された取鍋溶鋼2の溶鋼流により形成された渦流2aに取鍋スラグ5が巻き込まれてタンディッシュ3へ流出する現象を模式的に示す説明図である。   FIG. 1 schematically shows a phenomenon in which ladle slag 5 is caught in a vortex 2a formed by a molten steel flow of ladle molten steel 2 accommodated in ladle 1 and flows out to tundish 3 in a continuous casting method of steel. It is explanatory drawing shown in.

図1に示すように、通常、取鍋溶鋼2の上部には、取鍋溶鋼2の保温および空気による酸化防止のため取鍋スラグ5が浮遊して存在する。取鍋溶鋼2をタンディッシュ3へ注入する工程では、鋳造の進行とともに取鍋溶鋼2は減少するために溶鋼面は取鍋底面に近づいていき、これに伴って、取鍋スラグ面も同様に取鍋底面に近づいていく。このため、タンディッシュ3への取鍋溶鋼2の注入の終了直前においては、溶鋼流により形成された渦流2aに取鍋スラグ5が巻き込まれ、タンディッシュ3へ流出する。タンディッシュ3へ流出した取鍋スラグ5によって、溶鋼中介在物の増加や取鍋スラグ5の鋳型内流出といった鋳片品質の劣化につながる現象が発生する。   As shown in FIG. 1, a ladle slag 5 usually floats above the ladle molten steel 2 to keep the ladle molten steel 2 warm and to prevent oxidation by air. In the process of pouring the ladle molten steel 2 into the tundish 3, the ladle molten steel 2 decreases with the progress of casting, so the molten steel surface approaches the bottom of the ladle. Approach the bottom of the ladle. For this reason, immediately before the end of pouring the ladle molten steel 2 into the tundish 3, the ladle slag 5 is caught in the vortex 2 a formed by the molten steel flow and flows out to the tundish 3. The ladle slag 5 flowing out to the tundish 3 causes a phenomenon that leads to deterioration of slab quality such as an increase in inclusions in the molten steel and an outflow of the ladle slag 5 in the mold.

鋳片品質の劣化を防止するため、取鍋1からタンディッシュ3へ取鍋溶鋼2を注入する際には、取鍋スラグ5の巻き込みが発生する位置まで溶鋼面が低下した時点で取鍋1の注入ノズル(スライディングノズル)6を閉塞してタンディッシュ3への取鍋溶鋼2の注入を終了していた。しかし、取鍋溶鋼2の注入のこの終了方法では、取鍋溶鋼2の残存量が多く、溶鋼歩留りの大幅な低下は否めなかった。   When pouring the ladle molten steel 2 from the ladle 1 to the tundish 3 to prevent deterioration of the slab quality, the ladle 1 is lowered when the molten steel surface is lowered to the position where the ladle slag 5 is caught. The injection nozzle (sliding nozzle) 6 was closed and injection of the ladle molten steel 2 into the tundish 3 was completed. However, in this method of terminating the ladle molten steel 2 injection, the remaining amount of the ladle molten steel 2 is large, and a significant decrease in the molten steel yield cannot be denied.

取鍋スラグの従来の流出防止方法として、特許文献1,2には、取鍋溶鋼2の重量を測定し、この重量が所定値まで減少した時点で取鍋1を注入ノズルが配置された側へ傾動させる方法および装置が開示されている。特許文献1,2により開示された方法および装置は、取鍋1からタンディッシュ3への取鍋溶鋼2の注入末期に、取鍋1を傾動させることにより取鍋溶鋼2の湯面位置を高め、巻き込みによる取鍋スラグの流出を抑制するものであるものの、取鍋スラグ5の流出の原因である渦流2aそのものを抑制するものではない。このため、特許文献1,2により開示された方法による取鍋スラグ5の流出抑制や取鍋溶鋼2の歩留りの向上には一定の限界がある。   As a conventional method for preventing the ladle slag from flowing out, Patent Documents 1 and 2 disclose that the weight of the ladle molten steel 2 is measured, and when the weight is reduced to a predetermined value, the ladle 1 is disposed on the side where the injection nozzle is disposed. A method and apparatus for tilting is disclosed. The method and apparatus disclosed in Patent Literatures 1 and 2 increase the position of the molten metal surface of the ladle molten steel 2 by tilting the ladle 1 at the end of pouring of the ladle molten steel 2 from the ladle 1 to the tundish 3. Although it suppresses the outflow of the ladle slag due to entrainment, it does not suppress the vortex 2a itself that is the cause of the outflow of the ladle slag 5. For this reason, there is a certain limit to the outflow suppression of the ladle slag 5 and the improvement of the yield of the ladle molten steel 2 by the methods disclosed in Patent Documents 1 and 2.

特許文献3には、電磁式スラグ流出検知装置7を用いて取鍋スラグ5の流出を判定し、鋳造時の溶鋼供給量に応じて流出判定タイミングから取鍋1のスライディングノズル6の閉塞までの時間の最適値を設定することにより、取鍋溶鋼2の歩留りを向上させる方法が開示されている。しかし、特許文献3により開示された方法も、特許文献1,2により開示された方法と同様に、渦流2aそのものを抑制するものではないため、取鍋スラグ5の流出抑制や取鍋溶鋼2の歩留りの向上には限界がある。   In Patent Document 3, the outflow of the ladle slag 5 is determined using the electromagnetic slag outflow detection device 7, and from the outflow determination timing to the blockage of the sliding nozzle 6 of the ladle 1 according to the molten steel supply amount at the time of casting. The method of improving the yield of the ladle molten steel 2 by setting the optimal value of time is disclosed. However, since the method disclosed in Patent Document 3 does not suppress the vortex 2a itself as in the methods disclosed in Patent Documents 1 and 2, the ladle slag 5 outflow suppression and ladle molten steel 2 There is a limit to improving the yield.

一方、取鍋1からの取鍋溶鋼2の排出末期に発生する渦流2aの抑制方法として、特許文献4により開示された方法等が知られている。しかし、特許文献4により開示された方法等を実施するには、取鍋1の溶鋼排出孔の周りに突起物を設置したり、ガスを吹き込むための耐火物プラグを配置する必要があるが、これらの突起物や耐火物プラグの耐用性に課題があり、実用性で問題がある。   On the other hand, the method etc. which were indicated by patent documents 4 etc. are known as a control method of eddy current 2a generated at the end of discharge of ladle molten steel 2 from ladle 1. However, in order to carry out the method disclosed by Patent Document 4, it is necessary to install a protrusion around the molten steel discharge hole of the ladle 1 or to arrange a refractory plug for blowing gas, There is a problem in the durability of these protrusions and refractory plugs, and there is a problem in practicality.

特開昭61−52968号公報JP-A 61-52968 実開昭61−58949号公報Japanese Utility Model Publication No. 61-58949 特開平9−150251号公報Japanese Patent Laid-Open No. 9-15251 特開2007−314836号公報JP 2007-314836 A

本発明の目的は、取鍋からタンデュッシュへの取鍋スラグの流出量を増加させることなく、連続鋳造鋳片の品質を高位に保ちながら、溶鋼歩留を大幅に向上させることが可能な、連続鋳造における取鍋溶鋼の注入方法を提供することである。   The object of the present invention is to continuously improve the yield of molten steel while keeping the quality of continuous cast slabs high without increasing the outflow amount of ladle slag from the ladle to the tundush. It is to provide a method of pouring ladle molten steel in casting.

本発明者らは、上記課題を解決するために鋭意検討を重ね、取鍋スラグの流出の主な要因である溶鋼注入の末期に発生する渦流を弱めることに着目し、取鍋からタンディッシュへの取鍋溶鋼の供給を一定時間以上停止して渦流を弱めた後、望ましくは渦流を消失させた後に、再度スライディングノズルを開いて取鍋溶鋼の注入を再開すると、渦流が再度形成されるまでにある程度の時間を要するため、この間に、取鍋スラグ面が取鍋の底面近くまで低下しても取鍋スラグを流出させることなく取鍋からタンディッシュへ取鍋溶鋼を供給することが可能になることを知見し、本発明を完成した。   The inventors of the present invention have made extensive studies to solve the above-mentioned problems, and pay attention to weakening the eddy current generated at the end of molten steel injection, which is the main cause of ladle slag outflow, from ladle to tundish. After the supply of ladle molten steel is stopped for a certain period of time and the vortex flow is weakened, preferably after the vortex flow disappears, when the sliding nozzle is opened again and ladle injection is resumed, until the vortex flow is formed again Therefore, even if the ladle slag surface drops to near the bottom of the ladle, it is possible to supply the ladle from the ladle to the tundish without causing the ladle slag to flow out. As a result, the present invention has been completed.

本発明は以下に列記の通りである。
(1)連続鋳造機のレードルターレットまたはレードルカー上に設置された取鍋から取鍋溶鋼を、スライディングノズルを通じてタンディッシュへ注入する際に、
該取鍋のスライディングノズル部に電磁式スラグ流出検知装置を設けて前記取鍋溶鋼の注入の終了を判定し、
該判定方法により該取鍋のスライディングノズルを閉じて該取鍋溶鋼の注入を一旦終了させた後、
さらに所定時間経過した時に、前記取鍋のスライディングノズルを開方向へ再度移動させて該取鍋内に残存する取鍋溶鋼の前記タンディッシュへの注入を行うこと
を特徴とする連続鋳造における取鍋溶鋼の注入方法。
The present invention is listed below.
(1) When pouring ladle molten steel from a ladle turret of a continuous casting machine or ladle car into a tundish through a sliding nozzle,
Determine the end of pouring of the ladle molten steel by providing an electromagnetic slag outflow detection device in the sliding nozzle portion of the ladle,
After closing the sliding nozzle of the ladle by the determination method and once injecting the ladle molten steel,
Further, when a predetermined time elapses, the ladle sliding nozzle is moved again in the opening direction to inject the ladle molten steel remaining in the ladle into the tundish, and the ladle in continuous casting Molten steel injection method.

(2)前記取鍋から前記タンディッシュへの平均溶鋼供給量が6t/分間未満または10t/分間超である場合を除き、
前記所定の時間を、前記平均溶鋼供給量が6t/分間以上8t/分間未満の場合には3〜6秒間とし、前記平均溶鋼供給量が8t/分間以上10t/分間以下の場合には4〜6秒間とすること
を特徴とする(1)項に記載された取鍋溶鋼の注入方法。
(2) Except when the average molten steel supply rate from the ladle to the tundish is less than 6 t / min or more than 10 t / min,
The predetermined time is 3 to 6 seconds when the average molten steel supply rate is 6 t / min or more and less than 8 t / min, and 4 to 4 when the average molten steel supply rate is 8 t / min or more and 10 t / min or less. The method for pouring ladle molten steel as described in item (1), characterized in that it is 6 seconds.

本発明によれば、取鍋からタンデュッシュへの取鍋スラグの流出量を増加させることなく、連続鋳造鋳片の品質を高位に保ちながら、溶鋼歩留を大幅に向上させることが可能である。   According to the present invention, it is possible to significantly improve the molten steel yield while keeping the quality of the continuous cast slab high without increasing the outflow amount of the ladle slag from the ladle to the tundush.

図1は、連続鋳造法において、取鍋内の溶鋼流により形成された渦流に取鍋スラグが巻き込まれてタンディッシュへ流出する現象を模式的に示す説明図である。FIG. 1 is an explanatory view schematically showing a phenomenon in which ladle slag is caught in a vortex formed by a molten steel flow in a ladle and flows out to a tundish in a continuous casting method. 図2は、平均溶鋼供給量が6t/分間である場合における溶鋼注入の停止時間とタンディッシュスラグの厚みとの関係の一例を示すグラフである。FIG. 2 is a graph showing an example of the relationship between the stop time of molten steel injection and the thickness of the tundish slag when the average molten steel supply rate is 6 t / min. 図3は、平均溶鋼供給量が8t/分間,10t/分間である場合における溶鋼注入の停止時間とタンディッシュスラグ厚みとの関係の一例を示すグラフである。FIG. 3 is a graph showing an example of the relationship between the molten steel injection stop time and the tundish slag thickness when the average molten steel supply rate is 8 t / min and 10 t / min. 図4は、従来法,本発明法における溶鋼歩留りを比較して示すグラフである。FIG. 4 is a graph showing a comparison of molten steel yield in the conventional method and the method of the present invention. 図5は、従来法,本発明法におけるタンディッシュスラグ厚みを比較して示すグラフである。FIG. 5 is a graph showing a comparison of tundish slag thickness between the conventional method and the present invention method. 図6は、従来法,本発明法におけるスラブ介在物指数を比較して示すグラフである。FIG. 6 is a graph showing a comparison of slab inclusion indexes in the conventional method and the present invention method. 図7は、従来法,本発明法における平均溶鋼供給量と溶鋼歩留りとの関係の一例を示すグラフである。FIG. 7 is a graph showing an example of the relationship between the average molten steel supply amount and the molten steel yield in the conventional method and the present invention method.

本発明を、添付図面を参照しながら、説明する。
図1に示すように、本発明では、連続鋳造機のレードルターレットまたはレードルカー(いずれも図示しない)上に設置された取鍋1から取鍋溶鋼2を、タンディッシュ3へ注入する際に、注入の末期に、タンディッシュ3への取鍋溶鋼2の注入を一旦終了させて所定時間経過した後に、再度取鍋1のスライディングノズル6を開方向へ移動させて取鍋溶鋼2のタンディッシュ3への再注入を行い、その後スライディングノズル6を閉じて溶鋼の注入を終了する。
The present invention will be described with reference to the accompanying drawings.
As shown in FIG. 1, in the present invention, when pouring ladle molten steel 2 from a ladle 1 installed on a ladle turret or a ladle car (both not shown) of a continuous casting machine into a tundish 3, At the end of the pouring, the pouring of the ladle molten steel 2 into the tundish 3 is temporarily terminated and after a predetermined time has elapsed, the sliding nozzle 6 of the ladle 1 is moved again in the opening direction to make the tundish 3 of the ladle molten steel 2 Then, the sliding nozzle 6 is closed to finish the molten steel injection.

取鍋1からタンディッシュ3への取鍋溶鋼2の供給を所定時間停止して渦流2aを弱めるかあるいは消失した後に、取鍋1からタンディッシュ3への取鍋溶鋼2の供給を再度行うことにより、渦流2aが再度形成されるまでにある程度の時間を要する。このため、取鍋スラグ面が取鍋1の底面近くまで低下した状態であっても、発生する渦流2aが弱い状態であるため、取鍋スラグ5をタンディッシュ3に流出させることなく取鍋1からタンディッシュ3へ取鍋溶鋼2を供給することが可能になる。   Supplying the ladle molten steel 2 from the ladle 1 to the tundish 3 after the supply of the ladle molten steel 2 from the ladle 1 to the tundish 3 is stopped for a predetermined time to weaken or disappear the vortex 2a Therefore, a certain amount of time is required until the vortex 2a is formed again. For this reason, even if the ladle slag surface is lowered to the vicinity of the bottom surface of the ladle 1, since the generated eddy current 2 a is weak, the ladle 1 does not flow out to the tundish 3. It becomes possible to supply the ladle molten steel 2 to the tundish 3.

取鍋1からの取鍋溶鋼2の注入終了タイミングは、例えば特許文献3により開示された公知の方法、すなわち、注入ノズル部に配置した電磁式スラグ流出検知装置7を用いて、判定することが好ましい。具体的には、電磁式スラグ流出検知装置7を用いて取鍋スラグ5の流出を判定し、鋳造時の溶鋼供給量に応じて流出判定タイミングからスライディングノズル6の閉塞までの時間、すなわち取鍋1からの溶鋼注入終了タイミングの最適値を設定することが好ましい。   The end timing of pouring the ladle molten steel 2 from the ladle 1 can be determined using, for example, a known method disclosed in Patent Document 3, that is, the electromagnetic slag outflow detection device 7 arranged in the pouring nozzle portion. preferable. Specifically, the ladle slag 5 is determined to flow out using the electromagnetic slag outflow detection device 7, and the time from the outflow determination timing to the closing of the sliding nozzle 6 according to the molten steel supply amount during casting, that is, the ladle It is preferable to set the optimum value of the molten steel pouring end timing from 1.

上記所定時間は、短過ぎると慣性により十分には弱くなっていない渦流2aによりタンディッシュ3へ取鍋スラグ5が流出することがあり、長過ぎると取鍋溶鋼2の温度温度低下によりタンディッシュ3へ取鍋溶鋼2を供給できなくなることがある。このような観点から、所定時間は、取鍋1からタンディッシュ3への平均溶鋼供給量が6t/分間以上8t/分間未満の場合には3秒間以上6秒間以下であり、平均溶鋼供給量が8t/分間以上10t/分間以下の場合には4秒間以上6秒間以下であることが好ましい。この所定時間を、平均溶鋼供給量が6t/分間未満の場合には3秒間以上6秒間以下、平均溶鋼供給量が10t/分間を超える場合には4秒間以上6秒間以下として取鍋溶鋼2の供給を停止してもよいが、これらの場合における供給停止効果は、前記好ましい場合における供給停止効果ほどには目立たない。   If the predetermined time is too short, the ladle slag 5 may flow out to the tundish 3 due to the vortex 2a that is not sufficiently weak due to inertia. If the predetermined time is too long, the temperature of the ladle molten steel 2 decreases due to the temperature temperature drop of the tundish 3 The ladle molten steel 2 may not be supplied. From such a viewpoint, the predetermined time is 3 seconds or more and 6 seconds or less when the average molten steel supply amount from the ladle 1 to the tundish 3 is 6 t / min or more and less than 8 t / min, and the average molten steel supply amount is In the case of 8 t / min or more and 10 t / min or less, it is preferably 4 seconds or more and 6 seconds or less. When the average molten steel supply rate is less than 6 t / min, the predetermined time is set to 3 seconds or more and 6 seconds or less. When the average molten steel supply rate exceeds 10 t / min, the predetermined time is set to 4 seconds or more and 6 seconds or less. Supply may be stopped, but the supply stop effect in these cases is not as noticeable as the supply stop effect in the preferred case.

なお、平均溶鋼供給量は「スラグ流出検知時の鋳片製造速度(当該タンディッシュから溶鋼を供給される全鋳型に関する、鋳片幅×鋳片厚×鋳造速度×溶鋼密度の和)」により定まる数値であるが、当該取鍋内溶鋼量の70〜80(%)の鋳造が完了した時点の鋳片幅×鋳片厚×鋳造速度×溶鋼密度の和を用いてよい。   The average molten steel supply amount is determined by “slab manufacturing speed at the time of slag outflow detection (sum of slab width × slab thickness × casting speed × molten steel density for all molds supplied with molten steel from the tundish)” Although it is a numerical value, you may use the sum of slab width x slab thickness x casting speed x molten steel density at the time when casting of 70 to 80 (%) of the molten steel amount in the ladle is completed.

本発明は、タンデュッシュから鋳型への平均溶鋼供給量が8.0t/分間以上の連続鋳造で実施することが、溶鋼平均供給量が6t/分間以上8t/分間未満の連続鋳造で実施するよりも、発生する渦流が強いためにより効果的である。   In the present invention, the continuous molten steel supply rate from the tundush to the mold is 8.0 t / min or more continuous casting than the continuous casting of the molten steel average supply rate of 6 t / min or more and less than 8 t / min. It is more effective because the generated vortex is strong.

2ストランド連続鋳造機を用いた溶鋼の連続鋳造において、レードルターレットに設置した300t取鍋から80tタンディッシュへ溶鋼を注入するに際し、取鍋の注入ノズル部に配置した電磁式スラグ流出検知装置によりスラグ流出が検知された時点で一旦注入を終了した後、3秒間経過後に再び取鍋スライディングノズルを開方向へ移動させ注入を再開し、6秒間経過後にスライディングノズルを閉塞し注入を終了した。   In continuous casting of molten steel using a two-strand continuous casting machine, when injecting molten steel from a 300-t ladle installed in a ladle turret into an 80-t tundish, a slag is detected by an electromagnetic slag outflow detection device arranged at the injection nozzle of the ladle. Once the outflow was detected, the injection was temporarily stopped, and after 3 seconds, the ladle sliding nozzle was moved again in the opening direction to restart the injection. After 6 seconds, the sliding nozzle was closed to complete the injection.

溶鋼の注入を終了した時から再度注入を開始する時までの時間(以下、「溶鋼注入停止時間」という)と、タンディッシュスラグ厚みとの関係を調査し、最適時間を決定した。   The optimum time was determined by investigating the relationship between the time from the end of the molten steel injection to the time when the injection was started again (hereinafter referred to as “molten steel injection stop time”) and the tundish slag thickness.

図2に、平均溶鋼供給量が6t/分間である鋳造における溶鋼注入停止時間とタンディッシュスラグ厚みの関係をグラフで示し、図3には、平均溶鋼供給量が8t/分間,10t/分間である場合における溶鋼注入停止時間とタンディッシュスラグ厚みの関係をグラフで示す。   FIG. 2 is a graph showing the relationship between the molten steel pouring stop time and the tundish slag thickness in casting where the average molten steel supply rate is 6 t / min. In FIG. 3, the average molten steel supply rate is 8 t / min and 10 t / min. The relationship between the molten steel pouring stop time and the tundish slag thickness in a certain case is shown in a graph.

図2に示すグラフより、平均溶鋼供給量が6t/分間である場合は、溶鋼注入停止時間が3秒間以上であればタンデュッシュスラグ厚みがほぼ最小値となる。また、図3に示すグラフより、溶鋼供給量が8t/分間,10t/分間である場合には、溶鋼注入停止時間が4秒間以上であればタンデッシュスラグ厚みがほぼ最小値となる。   From the graph shown in FIG. 2, when the average molten steel supply rate is 6 t / min, the tundush slag thickness is almost the minimum value when the molten steel injection stop time is 3 seconds or more. Further, from the graph shown in FIG. 3, when the molten steel supply rate is 8 t / min and 10 t / min, the tundish slag thickness is almost the minimum value if the molten steel injection stop time is 4 seconds or more.

これらの調査結果より、溶鋼注入停止時間は、平均溶鋼供給量の増加に応じてより長くすることにより、安定してタンディッシュスラグ厚みを最小値とすることができる。   From these investigation results, it is possible to stably make the tundish slag thickness the minimum value by making the molten steel injection stop time longer as the average molten steel supply amount increases.

しかし、溶鋼注入停止時間を過剰に長くすると、取鍋溶鋼の温度が低下して取鍋溶鋼の凝固が進み、再注入のために取鍋のスライディングノズルを開いても、ノズル内で溶鋼が凝固し再注入ができなくなるおそれがある。   However, if the molten steel pouring stop time is excessively increased, the ladle molten steel temperature decreases and the ladle molten steel solidifies, and even if the ladle sliding nozzle is opened for reinjection, the molten steel solidifies within the nozzle. However, reinjection may not be possible.

このような観点から、溶鋼注入停止時間は、平均溶鋼供給量が6t/分間以上8t/分間未満である場合には3秒間以上6秒間以下であることが望ましく、平均溶鋼供給量が8t/分間以上10t/分間以下である場合には4秒間以上6秒間以下であることが好ましい。   From such a viewpoint, the molten steel injection stop time is desirably 3 seconds or more and 6 seconds or less when the average molten steel supply amount is 6 t / min or more and less than 8 t / min, and the average molten steel supply amount is 8 t / min. When it is 10 t / min or less, it is preferably 4 seconds or more and 6 seconds or less.

本発明に係る方法と、注入終了後に再注入を行わない従来方法のそれぞれについて、平均溶鋼供給量:9.0t/分間の条件で取鍋溶鋼をタンディッシュに注入し、溶鋼歩留り,タンディッシュ内スラグ厚み,連続鋳造鋳片の介在物指数を比較調査した。従来法および本発明法それぞれの代表鋳造条件を表1に示す。なお、溶鋼歩留りは、以下の計算式から求めた。
溶鋼歩留り(%)=連続鋳造で製造された鋼塊重量(t)÷鋳造前の取鍋溶鋼の重量(t)×100
About each of the method which concerns on this invention, and the conventional method which does not reinject after completion | finish of injection | pouring, ladle molten steel is inject | poured into a tundish on condition of average molten steel supply amount: 9.0t / min, molten steel yield, in tundish The slag thickness and inclusion index of continuous cast slab were comparatively investigated. Table 1 shows typical casting conditions for the conventional method and the present invention method. The molten steel yield was obtained from the following calculation formula.
Molten steel yield (%) = weight of steel ingot manufactured by continuous casting (t) ÷ weight of ladle molten steel before casting (t) × 100

調査結果を図4〜6にグラフで示す。
また、本発明に係る方法では、電磁式スラグ流出検知装置によりスラグ流出が検知された時点で一旦注入を終了した後4秒間経過後に再び取鍋スライディングノズルを開方向へ移動させ注入を再開し(溶鋼注入停止時間:4秒間)、6秒間経過後にスライディングノズルを閉塞し注入を終了させた。
The survey results are shown in graphs in FIGS.
Further, in the method according to the present invention, when the slag outflow is detected by the electromagnetic slag outflow detection device, once the injection is finished, the ladle sliding nozzle is moved again in the opening direction after 4 seconds and the injection is resumed ( Molten steel injection stop time: 4 seconds) After 6 seconds, the sliding nozzle was closed to finish the injection.

図4のグラフに示すように、本発明に係る方法によれば、従来方法よりも溶鋼歩留りが大幅に向上することが確認された。また、図5,6のグラフに示すように、タンディッシュ内スラグ厚みや連続鋳造鋳片の介在物指数は、スラグ面が取鍋底部に近くスラグ巻き込みが発生し易い状況で取鍋溶鋼の再注入を行った本発明法でも、従来法とほぼ同等であり、スラグ流出量は増加しなかった。   As shown in the graph of FIG. 4, according to the method according to the present invention, it was confirmed that the molten steel yield was significantly improved as compared with the conventional method. In addition, as shown in the graphs of FIGS. 5 and 6, the slag thickness in the tundish and the inclusion index of the continuous cast slab are the same as those of the ladle molten steel when the slag surface is close to the bottom of the ladle and slag is likely to be caught. The method of the present invention in which injection was performed was almost the same as the conventional method, and the slag outflow amount did not increase.

図7は、従来法,本発明法における平均溶鋼供給量と溶鋼歩留りとの関係の一例を示すグラフである。   FIG. 7 is a graph showing an example of the relationship between the average molten steel supply amount and the molten steel yield in the conventional method and the present invention method.

図7のグラフに示すように、平均溶鋼供給量が8〜10t/分間である場合には、平均溶鋼供給量が6〜8t/分間である場合に比べて、溶鋼歩留りの向上量が多く、この条件における本発明の効果が大きいことが分かる。これは、溶鋼供給量が多いほうが、発生する渦流が強いために、渦流を抑制するという技術思想に基づく本発明の効果がより明確になるためと考えられる。   As shown in the graph of FIG. 7, when the average molten steel supply amount is 8 to 10 t / min, the improvement amount of the molten steel yield is larger than when the average molten steel supply amount is 6 to 8 t / min. It can be seen that the effect of the present invention under these conditions is great. This is presumably because the effect of the present invention based on the technical idea of suppressing eddy current becomes clearer because the vortex generated is stronger when the molten steel supply amount is larger.

1 取鍋
2 取鍋溶鋼
2a 渦流
3 タンディッシュ
4 連続鋳造鋳型
5 取鍋スラグ
6 スライディングノズル
7 電磁式スラグ流出検知装置
DESCRIPTION OF SYMBOLS 1 Ladle 2 Ladle molten steel 2a Eddy current 3 Tundish 4 Continuous casting mold 5 Ladle slag 6 Sliding nozzle 7 Electromagnetic slag outflow detection device

Claims (2)

連続鋳造機のレードルターレットまたはレードルカー上に設置された取鍋から取鍋溶鋼を、スライディングノズルを通じてタンディッシュへ注入する際に、
該取鍋のスライディングノズル部に電磁式スラグ流出検知装置を設けて前記取鍋溶鋼の注入の終了を判定し、
該判定方法により該取鍋のスライディングノズルを閉じて該取鍋溶鋼の注入を一旦終了させた後、
さらに所定時間経過した時に、前記取鍋のスライディングノズルを開方向へ再度移動させて該取鍋内に残存する取鍋溶鋼の前記タンディッシュへの注入を行うこと
を特徴とする連続鋳造における取鍋溶鋼の注入方法。
When pouring ladle molten steel from a ladle installed on a ladle turret or ladle car of a continuous casting machine into a tundish through a sliding nozzle,
Determine the end of pouring of the ladle molten steel by providing an electromagnetic slag outflow detection device in the sliding nozzle portion of the ladle,
After closing the sliding nozzle of the ladle by the determination method and once injecting the ladle molten steel,
Further, when a predetermined time elapses, the ladle sliding nozzle is moved again in the opening direction to inject the ladle molten steel remaining in the ladle into the tundish, and the ladle in continuous casting Molten steel injection method.
前記取鍋から前記タンディッシュへの平均溶鋼供給量が6t/分間未満または10t/分間超である場合を除き、
前記所定の時間を、前記平均溶鋼供給量が6t/分間以上8t/分間未満の場合には3〜6秒間とし、前記平均溶鋼供給量が8t/分間以上10t/分間以下の場合には4〜6秒間とすること
を特徴とする請求項1に記載された取鍋溶鋼の注入方法。
Except when the average molten steel supply rate from the ladle to the tundish is less than 6 t / min or more than 10 t / min,
The predetermined time is 3 to 6 seconds when the average molten steel supply rate is 6 t / min or more and less than 8 t / min, and 4 to 4 when the average molten steel supply rate is 8 t / min or more and 10 t / min or less. The method for pouring ladle molten steel according to claim 1, wherein the method is 6 seconds.
JP2013200507A 2013-09-26 2013-09-26 Injection method for ladle molten steel in continuous casting Pending JP2015066556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013200507A JP2015066556A (en) 2013-09-26 2013-09-26 Injection method for ladle molten steel in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013200507A JP2015066556A (en) 2013-09-26 2013-09-26 Injection method for ladle molten steel in continuous casting

Publications (1)

Publication Number Publication Date
JP2015066556A true JP2015066556A (en) 2015-04-13

Family

ID=52833863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013200507A Pending JP2015066556A (en) 2013-09-26 2013-09-26 Injection method for ladle molten steel in continuous casting

Country Status (1)

Country Link
JP (1) JP2015066556A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05277686A (en) * 1992-03-30 1993-10-26 Nippon Steel Corp Method for restraining flow-out quantity of slag from molten metal vessel
JPH0890215A (en) * 1994-09-16 1996-04-09 Nippon Steel Corp Method for improving yield of molten metal at the time of flowing out of molten metal
JPH08267219A (en) * 1995-03-30 1996-10-15 Nippon Steel Corp Method for detecting and controlling outflow of slag from molten metal vessel
JPH0947861A (en) * 1995-08-04 1997-02-18 Sumitomo Metal Ind Ltd Method for pouring molten metal in ladle
JPH09150251A (en) * 1995-11-27 1997-06-10 Nippon Steel Corp Method for completing pouring of molten steel in ladle
JPH09253815A (en) * 1996-03-22 1997-09-30 Sumitomo Metal Ind Ltd Device for adjusting molten metal quantity in ladle in continuous caster
JPH1076355A (en) * 1996-09-04 1998-03-24 Sumitomo Metal Ind Ltd Ladle pouring control method in continuous casting equipment
JP2000317592A (en) * 1999-05-07 2000-11-21 Nippon Steel Corp Production of continuously cast slab having high cleanliness in ladle exchange section
US20080246195A1 (en) * 2007-04-05 2008-10-09 Klimas Albert J Method and apparatus for testing the integrity of a shroud seal on a ladle for a continuous casting installation

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05277686A (en) * 1992-03-30 1993-10-26 Nippon Steel Corp Method for restraining flow-out quantity of slag from molten metal vessel
JPH0890215A (en) * 1994-09-16 1996-04-09 Nippon Steel Corp Method for improving yield of molten metal at the time of flowing out of molten metal
JPH08267219A (en) * 1995-03-30 1996-10-15 Nippon Steel Corp Method for detecting and controlling outflow of slag from molten metal vessel
JPH0947861A (en) * 1995-08-04 1997-02-18 Sumitomo Metal Ind Ltd Method for pouring molten metal in ladle
JPH09150251A (en) * 1995-11-27 1997-06-10 Nippon Steel Corp Method for completing pouring of molten steel in ladle
JPH09253815A (en) * 1996-03-22 1997-09-30 Sumitomo Metal Ind Ltd Device for adjusting molten metal quantity in ladle in continuous caster
JPH1076355A (en) * 1996-09-04 1998-03-24 Sumitomo Metal Ind Ltd Ladle pouring control method in continuous casting equipment
JP2000317592A (en) * 1999-05-07 2000-11-21 Nippon Steel Corp Production of continuously cast slab having high cleanliness in ladle exchange section
US20080246195A1 (en) * 2007-04-05 2008-10-09 Klimas Albert J Method and apparatus for testing the integrity of a shroud seal on a ladle for a continuous casting installation

Similar Documents

Publication Publication Date Title
TW200900181A (en) Continuous casting method for molten metal
JP2012020294A (en) Method for changing immersion depth of immersion nozzle
TWI617377B (en) Continuous casting method
JP2012016720A (en) Opening/closing nozzle device
JP2015066556A (en) Injection method for ladle molten steel in continuous casting
KR101267340B1 (en) Device for preventing crack of strand in continuous casting process and method therefor
JP5867531B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP5958810B2 (en) Ingot casting method
JP2012020293A (en) Method for changing immersion depth of immersion nozzle
JP6331757B2 (en) Equipment for continuous casting of steel
JP4113967B2 (en) Metal ingot casting apparatus and casting method
JP2018051598A (en) Bottom pouring ingot-making equipment
KR101277701B1 (en) Device for controlling level of molten steel in mold and method therefor
JP2744439B2 (en) Nozzle clogging prevention method in continuous casting of molten steel
JP5471771B2 (en) Casting start method with continuous casting machine
KR102456462B1 (en) Method of predicting naked molten metal and operation method of continuous casting using the same
KR101481602B1 (en) Continuous casting tundish and continuous casting apparatus
JP4851248B2 (en) Continuous casting method of medium carbon steel using a dipping nozzle
JP4289476B2 (en) High cleanliness steel casting method
JP2008246534A (en) Continuous casting method for steel
JP6606611B2 (en) End operation processing apparatus and end operation processing method for continuous casting machine
KR101377484B1 (en) Method for estimating carbon-increasing of molten steel
JP2004283850A (en) Continuous casting method
JPS62252649A (en) Divagating flow control method in mold for molten steel continuous casting
JP3147824B2 (en) Continuous casting method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20151016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170808