JP2015065139A - 導電性ペースト - Google Patents

導電性ペースト Download PDF

Info

Publication number
JP2015065139A
JP2015065139A JP2013237635A JP2013237635A JP2015065139A JP 2015065139 A JP2015065139 A JP 2015065139A JP 2013237635 A JP2013237635 A JP 2013237635A JP 2013237635 A JP2013237635 A JP 2013237635A JP 2015065139 A JP2015065139 A JP 2015065139A
Authority
JP
Japan
Prior art keywords
conductive
conductive paste
double bond
dopant
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013237635A
Other languages
English (en)
Inventor
今橋 聰
Satoshi Imahashi
聰 今橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2013237635A priority Critical patent/JP2015065139A/ja
Publication of JP2015065139A publication Critical patent/JP2015065139A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Conductive Materials (AREA)

Abstract

【課題】塗布または印刷可能であり、伸縮可能で、しかも高導電率の導電性膜を実現することができる優れた導電性ペーストを提供する。
【解決手段】樹脂(A)中に導電性フィラー(B)が均一に分散された導電性ペーストであって、樹脂(A)が、スルホン化または硫酸化したゴムに基づくポリアニオンをドーパントとして含む共役二重結合高分子の水分散体(A1)であり、導電性フィラー(B)が、平均粒径0.5〜10μmの金属粉(B1)であること、及び導電性ペーストの固形分中の樹脂(A)及び導電性フィラー(B)の各配合量がそれぞれ50〜80体積%及び20〜50体積%であることを特徴とする。
【選択図】なし

Description

本発明は、伸縮可能な電極や配線に好適な導電性膜を作製するための導電性ペーストに関する。
高性能エレクトロニクスのほとんどは、基本的に剛直で平面の形態で、シリコンやガリウム砒素などの単結晶無機材料を使用している。一方、フレキシブルな基板を用いた場合、配線の耐屈曲性が要求される。さらに、アクチュエーター電極や皮膚センサーなどの用途では、高い伸縮性を示す導電材料が望まれる。例えば、伸縮性の導電材料の膜を用いることによって、柔軟で曲線状である人体に密着して適合できるデバイスを開発することが可能となる。これらのデバイスの用途は、電気生理学的信号の測定から、先進治療のデリバリや、人と機械のインターフェースにまで及ぶ。伸縮性の導電材料の開発における解決方法の一つは、有機導電材料の使用であるが、これまでの材料はフレキシブルであるが、伸縮可能とは言えず、曲線状の表面を覆うことができない。そのために、性能や、複雑な集積回路への集積化に対する信頼性に欠ける。他の材料、例えば金属ナノワイヤやカーボンナノチューブなどの膜はある程度有望であるが、信頼性に欠け、かつ高価であるために開発は難しい。
伸縮可能なフレキシブル配線を開発するアプローチとして、主として2つの方法が報告されている。
1つは、波状構造を構築して、脆い材料でも伸縮性を持たせる方法である(非特許文献1参照)。この方法では、蒸着やメッキ、フォトレジスト処理などを行ってシリコーンゴム上に金属薄膜を作製する。金属薄膜は数%の伸縮しか示さないが、形状をジグザグ状または連続馬蹄状、波状の金属薄膜、または予め伸長したシリコーンゴム上に金属薄膜を形成することにより得られる皺状の金属薄膜などが伸縮性を示す。しかし、いずれも数10%伸長させると導電率が2桁以上低下する。また、シリコーンゴムは表面エネルギーが低いために、配線と基板との密着性が弱いので、伸長時に剥離し易いという欠点がある。従って、この方法では、安定した高い導電率と高い伸長性を両立するのが困難である。しかも、製造コストが高いという問題もある。
もう一つは、導電材料とエラストマーの複合材料である。この材料の有利な点は、優れた印刷性と伸縮性である。電極や配線に使われている市販の銀ペーストは、高弾性率のバインダー樹脂に銀粉末が高充填配合されており、柔軟性に乏しく高弾性率である。伸長すると、クラックが発生し、著しく導電率が低下してしまう。そこで柔軟性を付与するために、バインダーとしてのゴムやエラストマーの検討、導電材料の充填度を下げるために、導電材料としてのアスペクト比が大きくて導電率の高い銀フレーク、カーボンナノチューブ、金属ナノワイヤなどの検討がなされている。銀粒子とシリコ−ンゴムの組合せ(特許文献1参照)、銀粒子とポリウレタンの組合せ(特許文献2参照)、カーボンナノチューブとイオン液体とフッ化ビニリデンの組合せ(特許文献3、4参照)などが報告されている。しかし、これらの組合せでも高導電率と高伸縮性の両立は難しいのが現状である。一方、ミクロンサイズの銀粉と、自己組織化した銀ナノ粒子で表面修飾したカーボンナノチューブおよびポリフッ化ビニリデンの組合せにより、印刷可能で高導電性でかつ伸縮可能な複合材料が報告されている(非特許文献2参照)。しかし、カーボンナノチューブの銀ナノ粒子による表面修飾は、製造が煩雑で、コストアップの要因となり好ましくない。
特開2007−173226号公報 特開2012−54192号公報 WO2009/102077号公報 特開2011−216562号公報
Jong−Hyun Ahn and Jung Ho Je,"Stretchable electronics:materials,architectures and integrations"J.Phys.D:Appl.Phys.45(2012)103001 Kyoung−Yong Chun,Youngseok Oh,Jonghyun Rho,Jong−Hyun Ahn,Young−Jin Kim,Hyoung Ryeol Choi and Seunghyun Baik,"Highly conductive,printable and stretchable composite films of carbon nanotubes and silver"Nature Nanotechnology,5,853(2010)
本発明は、かかる従来技術の課題を背景になされたものであり、その目的は、塗布または印刷可能であり、さらに伸縮可能で、しかも高導電率の導電性膜を実現することができる優れた導電性ペーストを提供することにある。
本発明者は、かかる目的を達成するために鋭意検討した結果、以下の手段により上記課題を解決できることを見出し、本発明に到達した。
すなわち、本発明は以下の(1)〜(9)の構成からなる。
(1)樹脂(A)中に導電性フィラー(B)が均一に分散された導電性ペーストであって、樹脂(A)が、スルホン化または硫酸化したゴムに基づくポリアニオンをドーパントとして含む共役二重結合高分子の水分散体(A1)であり、導電性フィラー(B)が、平均粒径0.5〜10μmの金属粉(B1)であること、及び導電性ペーストの固形分中の樹脂(A)及び導電性フィラー(B)の各配合量がそれぞれ50〜80体積%及び20〜50体積%であることを特徴とする導電性ペースト。
(2)樹脂(A)として、芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子の水分散体(A2)をさらに含むことを特徴とする(1)に記載の導電性ペースト。
(3)金属粉(B1)が、フレーク状金属粉、球状金属粉または凝集状金属粉であることを特徴とする(1)または(2)に記載の導電性ペースト。
(4)導電性フィラー(B)として、芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子を表面に有し、かつアスペクト比が10〜10000である導電材料(B2)をさらに含むことを特徴とする(1)〜(3)のいずれかに記載の導電性ペースト。
(5)導電材料(B2)が、芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子で表面処理されたカーボンナノチューブであることを特徴とする(4)に記載の導電性ペースト。
(6)芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子が、メルカプト基またはニトリル基を含むことを特徴とする(5)に記載の導電性ペースト。
(7)導電性フィラーとして、平均粒径2〜100nmの金属ナノ粒子(B3)をさらに含むことを特徴とする(1)〜(6)のいずれかに記載の導電性ペースト。
(8)金属粉(B1)および金属ナノ粒子(B3)が、主成分として銀および/または銅を含むことを特徴とする(7)に記載の導電性ペースト。
(9)(1)〜(8)のいずれかに記載の導電性ペーストを用いて得られることを特徴とする導電性膜または導電性パターン。
本発明の導電性ペーストによれば、金属粉(B1)及び所望により導電材料(B2)が伸縮性で導電性の樹脂(A)中に均一に分散している。従って、本発明の導電性ペーストによって形成された導電性膜は、有効な導電性のネットワークを形成するために高導電性であり、伸長時でもその高導電性を保持できる。
以下、本発明の実施形態の導電性ペーストについて説明する。
本発明の導電性ペーストは、樹脂(A)中に導電性フィラー(B)が均一に分散された導電性ペーストであって、樹脂(A)が、スルホン化または硫酸化したゴムに基づくポリアニオンをドーパントとして含む共役二重結合高分子の水分散体(A1)および所望により芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子の水分散体(A2)であり、導電性フィラー(B)が、金属粉(B1)、および所望により芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子を表面に有し、かつアスペクト比が10〜10000である導電材料(B2)であることを特徴とする。
樹脂(A)は、導電性フィラー(B)の均一な分散を実現するために、導電性フィラー(B)(金属粉(B1)および導電材料(B2))との良好な親和性が求められる。硫黄は、軌道相互作用が強い柔らかい塩基に相当し、柔らかい酸に分類される金属類との相性が良く、強い親和性を示す。また、ニトリル基も金属との高い親和性が知られている。導電材料(B2)自体は、凝集力が強く、高アスペクト比であるために分散し難いが、芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子を表面に吸着させることにより、分散性が向上する。また、メルカプト基またはニトリル基を含む場合には、これらの基の金属への強い親和性のために、金属粉(B1)とも親和性が増して、金属粉(B1)とともに有効な導電性ネットワークを形成できる。また、樹脂(A)自体も高い伸長性と高い導電性を有している。その結果、本発明の導電性ペーストは、樹脂(A)自体の高い伸長性と導電性、さらには導電材料(B2)の高アスペクト比に起因して、伸長時にも高導電率をある程度保持できる。樹脂(A)として、伸長性を損なわない範囲で高い導電性を示す芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子の水分散体(A2)もさらに含有することができる。金属粉(B1)は、平均粒径0.5μm〜10μmであり、フレーク状金属粉、球状金属粉または凝集状金属粉から選ばれることができる。それに加えて、さらに平均粒径100nm以下の金属ナノ粒子(B3)を含むことができる。また、本発明の組成物の成分は溶剤に溶解または分散することができるので、塗布や印刷などのプロセスを用いて導電性膜や導電性パターンを形成できる。
スルホン化または硫酸化したゴムに基づくポリアニオンをドーパントとして含む共役二重結合高分子の水分散体(A1)において、スルホン化または硫酸化したゴムと共役二重結合高分子の種類は、得られる膜の伸長性と導電性が満足されれば特に限定されない。スルホン化または硫酸化ゴムとしては、例えば、スルホン化ポリスチレン−b−(エチレン−co−ブチレン)−b−スチレントリブロック共重合体、スルホン化ポリスチレン−b−エチレンジブロック共重合体、スルホン化ポリt−ブチルスチレン−b−(エチレン−co−プロピレン)−b−スチレントリブロック共重合体、ナフィオン(デュポン社製)などのポリ(パーフルオロスルホン酸)、硫酸化ポリブタジエン、硫酸化ポリ(β―ヒドロキシエーテル)、1,3−ビス(4−t−ブチルフェノキシ)―2−ポリサルフェートが挙げられる。
共役二重結合高分子としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリ(3−ヘキシルチオフェン)、ポリ(3,4−エチレンジオキシチオフェン)などが挙げられる。この中で、ポリ(3,4−エチレンジオキシチオフェン)が高導電率の発現のために好ましい。
スルホン化または硫酸化したゴムに基づくポリアニオンをドーパントとして含む共役二重結合高分子の水分散体(A1)としては、例えば、ポリアニリン:硫酸化ポリ(β―ヒドロキシエーテル)、ポリピロール:硫酸化ポリ(β―ヒドロキシエーテル)、ポリ(3,4−エチレンジオキシチオフェン):硫酸化ポリ(β―ヒドロキシエーテル)、ポリ(3,4−エチレンジオキシチオフェン):ポリ(パーフルオロスルホン酸)、ポリ(3,4−エチレンジオキシチオフェン):スルホン化ポリスチレン−b−(エチレン−co−ブチレン)−b−スチレントリブロック共重合体、ポリ(3,4−エチレンジオキシチオフェン):スルホン化ポリスチレン−b−エチレンジブロック共重合体、ポリ(3,4−エチレンジオキシチオフェン):硫酸化ポリブタジエンなどが挙げられる。
芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子の水分散体(A2)としては、ポリアニリン:ポリスチレンスルホン酸、ポリピロール:ポリスチレンスルホン酸、ポリ(3−ヘキシルチオフェン):ポリスチレンスルホン酸、ポリ(3,4−エチレンジオキシチオフェン):ポリスチレンスルホン酸(PEDOT:PSS)、ポリ(3,4−エチレンジオキシチオフェン):硫酸エステル化フェノキシ樹脂などが挙げられる。この中で、ポリ(3,4−エチレンジオキシチオフェン):ポリスチレンスルホン酸(PEDOT:PSS)が高導電率のために好ましい。
前述の共役二重結合高分子の水分散体(A1)または(A2)は、従来公知の方法で合成することができ、例えばポリ(3,4−エチレンジオキシチオフェン):ポリスチレンスルホン酸の水分散体の場合、水、3,4−エチレンジオキシチオフェン、およびポリスチレンスルホン酸を混合してモノマー分散液を得、次いで、モノマー分散液に硫酸第二鉄と過硫酸アンモニウムを室温下に添加して、数時間攪拌することによって得られることができる。
導電性ペースト中の樹脂(A)の配合量において、固形分中の体積%が小さいと、導電率は高くなるが、伸縮性が悪くなる。一方、体積%が大きいと、伸縮性は良くなるが、導電率は低下する。従って、導電性ペーストの固形分中の樹脂(A)の配合量は50〜80体積%であり、60〜75体積%が好ましい。なお、該固形分中の体積%は、ペーストに含まれる各成分の各固形分の質量を計測し、(各固形分の質量÷各固形分の比重)を計算して各成分の固形分の体積を算出することによって求めることができる。
なお、本発明の導電性ペーストには、伸縮可能な導電性膜としての性能や塗布性や印刷性を損なわない範囲で他の樹脂が配合されていても良い。
導電性フィラー(B)は金属粉(B1)及び所望により導電材料(B2)である。導電性ペーストの固形分中の導電性フィラー(B)の配合量は20〜50体積%である。金属粉(B1)は、形成される導電性膜や導電性パターンにおいて導電性を付与するために用いられる。
金属粉(B1)としては、銀粉、金粉、白金粉、パラジウム粉等の貴金属粉、銅粉、ニッケル粉、アルミ粉、真鍮粉等の卑金属粉が好ましい。また、卑金属やシリカ等の無機物からなる異種粒子を銀等の貴金属でめっきしためっき粉、銀等の貴金属で合金化した卑金属粉等が挙げられる。これらの金属粉は、単独で用いてもよく、また、併用してもよい。これらの中で、銀粉および/または銅粉を主成分(50重量%以上)とするものが、高い導電性を示す塗膜を得やすい点および価格の点で特に好ましい。
金属粉(B1)の好ましい形状の例としては、公知のフレーク状(リン片状)、球状、樹枝状(デンドライト状)、凝集状(球状の1次粒子が3次元状に凝集した形状)などを挙げることができる。これらの中で、フレーク状、球状、凝集状の金属粉が好ましい。
金属粉(B1)の粒子径は、微細パターン性を付与するという観点から、平均径が0.5〜10μmである。平均径が10μmより大きい金属粉を用いた場合には、形成されたパターンの形状が悪く、パターン化した細線の解像力が低下する可能性がある。平均径が0.5μmより小さくなると、大量配合すると、金属粉の凝集力が増加して印刷性が悪くなる場合があり、また高価であるためにコスト的に好ましくない。
導電性ペースト中の金属粉(B1)の配合量は、導電率と伸縮性を考慮して決定される。固形分中の体積%が大きいと、導電率は高くなるが、ゴムの量が少なくなって伸縮性が悪くなる。体積%が小さいと、伸縮性は良くなるが、導電性ネットワークが形成し難くなって導電率は低下する。従って、導電性ペーストの固形分中の金属粉(B1)の配合量は19〜49体積%が好ましく、25〜40体積%が特に好ましい。
導電材料(B2)は、芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子を表面に有し、アスペクト比が10〜10000である。導電材料(B2)としては、カーボンナノチューブが好ましい。芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子を表面に有するカーボンナノチューブは、カーボンナノチューブの表面処理により製造される。処理すべきカーボンナノチューブは、上記範囲のアスペクト比を満たす限り特に限定されない。
カーボンナノチューブは、2次元のグラフェンシートを筒状に巻いた構造を有し、層の数や先端部の形状によって、多層型、単層型、ホーン型に分けられる。また、グラフェンシートの巻き方によって、アームチェア型構造、ジグザグ型構造、カイラル型構造の3種に分けられる。本発明においては、多層型、単層型、ホーン型のいずれでも使用でき、どの層構造であっても良い。
カーボンナノチューブの直径は0.5〜200nmであることが好ましい。カーボンナノチューブを使用する場合は、アスペクト比は20〜10000が好ましく、50〜1000が特に好ましい。
カーボンナノチューブの表面に官能基を有する化合物やポリマーを付着させて分散処理する方法は従来から知られている。例えば、反応させて共有結合で導入する方法、疎水相互作用・水素結合を利用する方法、π―スタッキングを利用する方法、静電気相互作用を利用する方法が報告されている。この中で、π―スタッキングを利用する方法では、芳香族化合物はカーボンナノチューブ中のグラファイト構造とπ―スタッキングを生じて、カーボンナノチューブ表面に選択的に付着する。従って、芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子は、芳香環がカーボンナノチューブ表面のグラファイト構造と有効にπ―スタッキングするために、選択的にカーボンナノチューブ表面に付着し、かつアニオン同士の反発により、カーボンナノチューブが水中で効率良く分散される。ポリ(3,4−ジオキシエチレンチオフェン):ポリスチレンスルホン酸(PEDOT:PSS)が、水中でカーボンナノチューブの分散剤として有効であることが報告されている(非特許文献3)。このようにして、芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子を表面に有するカーボンナノチューブが作製できる。
芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子としては、ポリアニリン:ポリスチレンスルホン酸、ポリ(3−ヘキシルチオフェン):ポリスチレンスルホン酸、ポリ(3,4−エチレンジオキシチオフェン):ポリスチレンスルホン酸(PEDOT:PSS)、ポリ(3,4−エチレンジオキシチオフェン):硫酸エステル化フェノキシ樹脂などが挙げられる。この中で、ポリ(3,4−エチレンジオキシチオフェン):ポリスチレンスルホン酸(PEDOT:PSS)が高導電率のために好ましい。
金属粉(B1)との親和性を良くするために、硫黄またはニトリル基を含有する共役二重結合高分子を用いるか、またはドーパントとして芳香族基を含有する高分子ポリアニオンの他にさらにメルカプト基を含有するスルホン酸化合物を含ませることができる。メルカプト基を含有するスルホン酸化合物として、3−メルカプトー1−プロパンスルホン酸、5−メルカプトー1H−テトラゾールー1−メタンスルホン酸が挙げられる。
具体的には、芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子の水分散液(A2)中で、超音波処理機などを用いてカーボンナノチューブを分散させると、分散したカーボンナノチューブ表面に芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子が付着し、所望のカーボンナノチューブの分散液が作製される。
芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子を表面に有するカーボンナノチューブ(B2)は、水中での分散処理により良好な分散液となり、スルホン化または硫酸化したゴムに基づくポリアニオンをドーパントとして含む共役二重結合高分子の水分散体(A1)と混合することにより、水分散体(A1)の粒子中に均一に分散できる。また、硫黄またはニトリル基を含ませることにより、金属粉(B1)との親和性が良いために金属粒子とともに有効で高い導電性のネットワークを形成する。しかも、伸長時においても、その高いアスペクト比に起因して導電性ネットワークの破断を抑制できるために高い導電性を保持することができる。
芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子を表面に有し、かつアスペクト比が10〜10000の導電材料(B2)は、一般に高価であり、かつ多く配合しすぎると分散処理が困難になる。そのため、導電性ペースト中の固形分中の導電材料(B2)の配合量は1〜10体積%が好ましく、2〜5体積%が特に好ましい。
本発明における導電性ペーストには、導電率の向上や印刷性の改良などの目的で、導電性フィラーとして金属ナノ粒子(B3)をさらに配合することができる。金属ナノ粒子(B3)は、導電性ネットワーク間での導電性付与の機能があるために導電率の向上が期待できる。また、印刷性改良のための導電性ペーストのレオロジー調節の目的にも配合することができる。金属ナノ粒子(B3)の平均粒径は2〜100nmが好ましい。具体的には、銀、ビスマス、白金、金、ニッケル、スズ、銅、亜鉛が挙げられ、導電性の観点から、銅、銀、白金、金が好ましく、銀及び/又は銅を主成分(50重量%以上)とするものが特に好ましい。
金属ナノ粒子(B3)も一般に高価であるために、できるだけ少量であることが好ましい。導電性ペーストの固形分中の金属ナノ粒子(B3)の配合量は0.5〜5体積%が好ましい。
本発明の導電性ペーストには、導電性および伸縮性を損なわない範囲で無機物を添加することができる。無機物としては、炭化ケイ素、炭化ホウ素、炭化チタン、炭化ジルコニウム、炭化ハフニウム、炭化バナジウム、炭化タンタル、炭化ニオブ、炭化タングステン、炭化クロム、炭化モリブテン、炭化カルシウム、ダイヤモンドカーボンラクタム等の各種炭化物;窒化ホウ素、窒化チタン、窒化ジルコニウム等の各種窒化物、ホウ化ジルコニウム等の各種ホウ化物;酸化チタン(チタニア)、酸化カルシウム、酸化マグネシウム、酸化亜鉛、酸化銅、酸化アルミニウム、シリカ、コロイダルシリカ等の各種酸化物;チタン酸カルシウム、チタン酸マグネシウム、チタン酸ストロンチウム等の各種チタン酸化合物;二硫化モリブデン等の硫化物;フッ化マグネシウム、フッ化炭素等の各種フッ化物;ステアリン酸アルミニウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム等の各種金属石鹸;その他、滑石、ベントナイト、タルク、炭酸カルシウム、ベントナイト、カオリン、ガラス繊維、雲母等を用いることができる。これらの無機物を添加することによって、印刷性や耐熱性、さらには機械的特性や長期耐久性を向上させることが可能となる場合がある。
また、チキソ性付与剤、消泡剤、難燃剤、粘着付与剤、加水分解防止剤、レベリング剤、可塑剤、酸化防止剤、紫外線吸収剤、難燃剤、顔料、染料を配合することができる。
本発明の導電性ペーストに使用する溶媒は、水が主体であるが、ペーストや乾燥膜の性能を損なわない範囲で水混和性の有機溶剤を含有することができる。水を含む溶媒の含有量としては、金属フィラーの分散方法や、導電性膜形成方法に適合する導電性ペーストの粘度や乾燥方法などによって決められる。本発明の導電性ペーストは、粉体を液体に分散させる従来公知の方法を用いることによって樹脂中に導電性フィラーを均一に分散することができる。例えば、金属粉、高アスペクト比の導電材料の分散液、樹脂溶液を混合した後、超音波法、ミキサー法、3本ロールミル法、ボールミル法などで均一に分散することができる。これらの手段は、複数を組み合わせて使用することも可能である。
本発明の導電性ペーストを基材上に塗布または印刷して塗膜を形成し、次いで塗膜に含まれる水や有機溶剤を揮散させ乾燥させることにより、導電性膜または導電性パターンを形成することができる。
導電性ペーストが塗布される基材は特に限定されないが、導電膜の伸縮性を生かすために、用途によって、可とう性または伸縮性のある基材が好ましい。可とう性基材の例として、紙、布、ポリエチレンテレフタレート、ポリ塩化ビニル、ポリエチレン、ポリイミドなどが挙げられる。伸縮性の基材としては、ポリウレタン、ポリジメチルシロキサン(PDMS)、ニトリルゴム、ブタジエンゴム、SBSエラストマー、SEBSエラストマーなどが挙げられる。これらの基材は、折り目を付けることが可能で、面方向に伸縮可能であることが好ましい。その点でゴムやエラストマーからなる基材が好ましい。
導電性ペーストを基材上に塗布する工程は、特に限定されないが、例えば、コーティング法、印刷法などによって行うことができる。印刷法としては、スクリーン印刷法、平版オフセット印刷法、インクジェット法、フレキソ印刷法、グラビア印刷法、グラビアオフセット印刷法、スタンピング法、ディスペンス法、スキージ印刷などが挙げられる。
導電性ペーストを塗布された基材を加熱する工程は、大気下、真空雰囲気下、不活性ガス雰囲気下、還元性ガス雰囲気下などで行うことができる。加熱温度は20〜200℃の範囲で行い、要求される導電率や基材の耐熱性などを考慮して選択される。水を含む溶媒が揮散され、場合により加熱下で硬化反応が進行し、乾燥後の導電性膜の導電性や密着性、表面硬度が良好となる。
伸縮可能な導電性膜に必要な伸長率は、使われる用途によって異なり、特に限定されるものではない。想定されるヘルスケア、ディスプレイ、太陽電池、PFIDなどの分野での配線、アンテナ、電極などの用途では、5%から80%程度の伸長率が望まれている。本発明の導電性ペーストを塗布または印刷して得られる伸縮可能な導電性膜において、例えば、80%伸長時での比抵抗は、自然状態(0%伸長時)の比抵抗に比べて10倍以下が望まれ、好ましくは5倍以下、さらに好ましくは2倍以下が望まれる。また、導電性膜を所定の割合だけ伸長させて、次に応力ゼロの状態に戻す操作を繰り返した場合の導電率の変化も重要である。例えば、10%伸長を1000回繰り返した後の比抵抗は、自然状態(0%伸長時)の比抵抗に比べて、10倍以下が好ましく、5倍以下が特に好ましい。
以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
[ポリ(3,4−エチレンジオキシチオフェン):硫酸化ポリ(β―ヒドロキシエーテル)(PEDOT:PAー1)の合成]
硫酸化ポリ(β―ヒドロキシエーテル)(ビスフェノールAとビスフェノールAのグルシジルエーテルから得られ、100モル%硫酸化、重量平均分子量25000)2gと3,4−エチレンジオキシチオフェン(EDT)1gを100gの水/メタノール(50/50重量比)混合液に溶解した。続いて、酸化剤としての過硫酸アンモニウムの40%水溶液を、0.5ml滴下し、以降10分間隔で6回に分けて滴下した後、室温で60時間攪拌して化学重合を行い分散液を得た。
[ポリ(3,4−エチレンジオキシチオフェン):スルホン化ポリスチレン−b−(エチレン−co−ブチレン)−b−スチレントリブロック共重合体(PEDOT:PAー2)の合成]
硫酸化ポリ(β―ヒドロキシエーテル)の代わりに、スルホン化ポリスチレン−b−(エチレン−co−ブチレン)−b−スチレントリブロック共重合体(DAIS−Analytical Corporation社製)を用いる他は、PEDOT:PAー1と同様に操作して、分散液を得た。
[ポリ(3,4−エチレンジオキシチオフェン):ポリ(パーフルオロスルホン酸)(PEDOT:PA−3)の合成]
硫酸化ポリ(β―ヒドロキシエーテル)の代わりに、ポリ(パーフルオロスルホン酸(ナフィオンPFSA D520 デュポン社製)を用いる他は、PEDOT:PAー1と同様に操作して、分散液を得た。
[ポリ(3,4−エチレンジオキシチオフェン):ポリスチレンスルホン酸(PEDOT:PSS−1)の合成]
ポリスチレンスルホン酸(重量平均分子量:14000)の20重量%水溶液10gと3,4−エチレンジオキシチオフェン(EDT)1gを100gの水に投入して30分間攪拌した。続いて、酸化剤としての過硫酸アンモニウムの40重量%水溶液を0.5ml滴下し、以降10分間隔で6回に分けて滴下した後、室温で60時間攪拌して化学重合を行った。この時、溶液は薄黄色から濃紺色へと変化した。
[ポリ(3,4−エチレンジオキシチオフェン):ポリスチレンスルホン酸(PEDOT:PSS−2)の合成]
ポリスチレンスルホン酸(重量平均分子量:14000)の20重量%水溶液10g、3−メルカプトー1−プロパンスルホン酸0.5g、3,4−エチレンジオキシチオフェン(EDT)1gを100gの水に投入して30分間攪拌した。続いて、酸化剤としての過硫酸アンモニウムの40重量%水溶液を0.5ml滴下し、以降10分間隔で6回に分けて滴下した後、室温で60時間攪拌して化学重合を行った。この時、溶液は薄黄色から濃紺色へと変化した。
[表面に芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子を有するカーボンナノチューブA(CNT−A)の分散液の作製]
1.2重量%のPEDOT:PSS−1水分散液の中に、多層カーボンナノチューブ(SWeNT MW100、SouthWest Nano Technologies社製)を多層カーボンナノチューブ:(PEDOT:PSS−1)=1:4(重量比)となるように配合し、超音波処理機を用いて多層カーボンナノチューブの水分散液を作製した。
[表面に芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子を有するカーボンナノチューブB(CNT−B)の分散液の作製]
PEDOT:PSS−1水分散液の代わりに、PEDOT:PSS−2分散液を用いる他は、CNT−Aと同様の操作で表面にアミノ基を有するカーボンナノチューブを作製した。
実施例1〜12、比較例1〜4
銀粒子(及び必要により銀ナノ粒子)と、PEDOT分散液および無処理のカーボンナノチューブ(無処理CNT)または芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子で表面処理したカーボンナノチューブ(CNT−A〜B)の均一分散液を、各成分が表1,2に記載の固形分中の体積%となるように配合し、自転公転真空ミキサー(THYNKY社製、ARV−310)を用いて、真空下2000rpmで3分間混練して導電性ペーストを得た。導電ペーストをガラス板の上にドロップキャスト法にて製膜し、150℃で30分間乾燥して、厚み100μmのシート状の導電性膜を作製した。導電性膜は、後述する方法で伸長率0%、20%、50%、80%時の比抵抗を評価した。また、10%伸長を1000回繰り返した後の導電性膜の比抵抗変化率を評価した。実施例1〜12、比較例1〜4の導電性ペーストの組成とその評価結果を表1及び表2に示す。
Figure 2015065139
Figure 2015065139
表中の1)〜5)の詳細は以下の通りである。
1)銀粒子:凝集銀粉G−35(平均粒径5.9μm、DOWAエレクトロニクス社製)2)表面に芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子を有するカーボンナノチューブA
3)表面に芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子を有するカーボンナノチューブB
4)無処理CNT:SWeNT MW100(多層カーボンナノチューブ、直径6〜9nm、長さ5μm、アスペクト比556〜833,SouthWest Nano Technologies社製)
5)銀ナノ粒子:銀ナノ粒子乾粉2(平均粒径60nm、DOWAエレクトロニクス社製)
実施例1〜12及び比較例1〜4の導電性膜の評価方法は以下の通りである。
[比抵抗の評価]
自然状態(伸長率0%)の導電性膜試験片のシート抵抗と膜厚を測定し、比抵抗を算出した。膜厚はシックネスゲージ SMD−565L(TECLOCK社製)を用い、シート抵抗はLoresta−GP MCP−T610(三菱化学アナリテック社製)を用いて試験片4枚について測定し、その平均値を用いた。
そして自然状態(伸長率0%)と同様にして、伸長率20%、50%、80%時の比抵抗を測定した。伸長率は以下の式により算出した。
伸長率(%)=(ΔL0/L0)×100
ここで、L0は試験片の標線間距離、ΔL0は試験片の標線韓距離の増加分を示す。
また、10%伸長を1000回繰り返した後の導電性膜の比抵抗変化率を以下の式により算出した。
比抵抗変化率=(R1000―R)/R×100(%)
ここで、R1000は10%繰り返し伸長(1000回)後の比抵抗、Rは自然状態の比抵抗を示す。
表1および表2の結果から明らかなように、実施例1〜12の導電性ペーストは、自然状態の良好な導電性だけでなく伸長時でも高い導電性を維持することができ、繰り返し伸縮後も導電性の低下が小さい。一方、比較例1〜4の導電性ペーストは、実施例1〜12に比べて比抵抗が高いか、又は伸長により破断を招いていており、繰り返し伸縮により導電性が低下する。
本発明の導電性ペーストは、高い導電率と伸縮性を有することから、ゴムやエラストマー材料を利用した折り曲げ可能なディスプレイ、伸縮性LEDアレイ、伸縮性太陽電池、伸縮性アンテナ、伸縮性バッテリ、アクチュエーター、ヘルスケアデバイスや医療用センサー、ウエアラブルコンピュータなどの電極や配線などに好適に利用することができる。

Claims (9)

  1. 樹脂(A)中に導電性フィラー(B)が均一に分散された導電性ペーストであって、樹脂(A)が、スルホン化または硫酸化したゴムに基づくポリアニオンをドーパントとして含む共役二重結合高分子の水分散体(A1)であり、導電性フィラー(B)が、平均粒径0.5〜10μmの金属粉(B1)であること、及び導電性ペーストの固形分中の樹脂(A)及び導電性フィラー(B)の各配合量がそれぞれ50〜80体積%及び20〜50体積%であることを特徴とする導電性ペースト。
  2. 樹脂(A)として、芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子の水分散体(A2)をさらに含むことを特徴とする請求項1に記載の導電性ペースト。
  3. 金属粉(B1)が、フレーク状金属粉、球状金属粉または凝集状金属粉であることを特徴とする請求項1または2に記載の導電性ペースト。
  4. 導電性フィラー(B)として、芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子を表面に有し、かつアスペクト比が10〜10000である導電材料(B2)をさらに含むことを特徴とする請求項1〜3のいずれかに記載の導電性ペースト。
  5. 導電材料(B2)が、芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子で表面処理されたカーボンナノチューブであることを特徴とする請求項4に記載の導電性ペースト。
  6. 芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子が、メルカプト基またはニトリル基を含むことを特徴とする請求項5に記載の導電性ペースト。
  7. 導電性フィラーとして、平均粒径2〜100nmの金属ナノ粒子(B3)をさらに含むことを特徴とする請求項1〜6のいずれかに記載の導電性ペースト。
  8. 金属粉(B1)および金属ナノ粒子(B3)が、主成分として銀および/または銅を含むことを特徴とする請求項7に記載の導電性ペースト。
  9. 請求項1〜8のいずれかに記載の導電性ペーストを用いて得られることを特徴とする導電性膜または導電性パターン。
JP2013237635A 2013-08-28 2013-11-18 導電性ペースト Pending JP2015065139A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013237635A JP2015065139A (ja) 2013-08-28 2013-11-18 導電性ペースト

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013176201 2013-08-28
JP2013176201 2013-08-28
JP2013237635A JP2015065139A (ja) 2013-08-28 2013-11-18 導電性ペースト

Publications (1)

Publication Number Publication Date
JP2015065139A true JP2015065139A (ja) 2015-04-09

Family

ID=52832849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013237635A Pending JP2015065139A (ja) 2013-08-28 2013-11-18 導電性ペースト

Country Status (1)

Country Link
JP (1) JP2015065139A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110679011A (zh) * 2017-04-12 2020-01-10 E-7***技术管理有限公司 具有复合材料的接触件
US10573425B2 (en) 2016-02-19 2020-02-25 Mitsubishi Materials Corporation Electrically conductive paste and electrically conductive film formed by using same
WO2022059608A1 (ja) * 2020-09-18 2022-03-24 ナミックス株式会社 ストレッチャブル導電性ペースト及びフィルム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10573425B2 (en) 2016-02-19 2020-02-25 Mitsubishi Materials Corporation Electrically conductive paste and electrically conductive film formed by using same
CN110679011A (zh) * 2017-04-12 2020-01-10 E-7***技术管理有限公司 具有复合材料的接触件
JP2020517069A (ja) * 2017-04-12 2020-06-11 イーセブン システムズ テクノロジー マネジメント リミテッドE−Seven Systems Technology Management Ltd 複合材料を用いた接点
WO2022059608A1 (ja) * 2020-09-18 2022-03-24 ナミックス株式会社 ストレッチャブル導電性ペースト及びフィルム
US11932771B2 (en) 2020-09-18 2024-03-19 Namics Corporation Stretchable conductive paste and film

Similar Documents

Publication Publication Date Title
JP6319085B2 (ja) 導電性ペースト
TWI682405B (zh) 導電性銀糊劑
Zhang et al. Self-healing Ti3C2 MXene/PDMS supramolecular elastomers based on small biomolecules modification for wearable sensors
Li et al. Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets
JP2015079724A (ja) 導電性ペースト
Pan et al. A highly stretchable strain sensor based on CNT/graphene/fullerene-SEBS
JP6690528B2 (ja) 導電性膜
Franco et al. Water-based graphene inks for all-printed temperature and deformation sensors
Hao et al. Silver-nanoparticle-decorated multiwalled carbon nanotubes prepared by poly (dopamine) functionalization and ultraviolet irradiation
Chen et al. Ultra high permittivity and significantly enhanced electric field induced strain in PEDOT: PSS–RGO@ PU intelligent shape-changing electro-active polymers
Sureshkumar et al. Conductive nanocomposites based on polystyrene microspheres and silver nanowires by latex blending
JP6321894B2 (ja) 導電性膜およびその製造方法
Wang et al. Flexible electrothermal laminate films based on tannic acid-modified carbon nanotube/thermoplastic polyurethane composite
Chae et al. 3D-stacked carbon composites employing networked electrical intra-pathways for direct-printable, extremely stretchable conductors
Cui et al. High-concentration self-cross-linkable graphene dispersion
Cao et al. High-performance conductive polymer composites by incorporation of polyaniline-wrapped halloysite nanotubes and silver microflakes
JP2015079725A (ja) 導電性ペースト
Kwon et al. Scalable electrically conductive spray coating based on block copolymer nanocomposites
JP2015065139A (ja) 導電性ペースト
Hu et al. Silver flake/polyaniline composite ink for electrohydrodynamic printing of flexible heaters
Huang et al. Binder-free graphene/silver nanowire gel-like composite with tunable properties and multifunctional applications
WO2017145940A1 (ja) 複合材料、導電性材料、導電性粒子及び導電性フィルム
KR20160125035A (ko) 탄소/금속/고분자 나노복합체의 제조방법 및 이를 포함하는 고신축성/고전도성 필름의 제조방법
Patil et al. Surface modification of aligned carbon nanotube arrays for electron emitting applications
Das et al. Pressure Sensors Painted on Flexible Cellulose Substrates from Polyaniline-Based Conductive Ink