JP2015065139A - Conductive paste - Google Patents

Conductive paste Download PDF

Info

Publication number
JP2015065139A
JP2015065139A JP2013237635A JP2013237635A JP2015065139A JP 2015065139 A JP2015065139 A JP 2015065139A JP 2013237635 A JP2013237635 A JP 2013237635A JP 2013237635 A JP2013237635 A JP 2013237635A JP 2015065139 A JP2015065139 A JP 2015065139A
Authority
JP
Japan
Prior art keywords
conductive
conductive paste
double bond
dopant
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013237635A
Other languages
Japanese (ja)
Inventor
今橋 聰
Satoshi Imahashi
聰 今橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2013237635A priority Critical patent/JP2015065139A/en
Publication of JP2015065139A publication Critical patent/JP2015065139A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a conductive paste that can be applied or printed and can give a stretchable conductive film having a high conductivity.SOLUTION: The conductive paste includes a conductive filler (B) uniformly dispersed in a resin (A). The resin (A) is a water dispersion (A1) of a conjugate double bond polymer including a polyanion as a dopant derived from sulfonated or sulfated rubber. The conductive filler (B) is a metal power (B1) having an average particle diameter of 0.5 to 10 μm. The compounded amounts of the resin (A) and the conductive filler (B) in a solid content of the conductive paste are 50 to 80 vol% and 20 to 50 vol.%, respectively.

Description

本発明は、伸縮可能な電極や配線に好適な導電性膜を作製するための導電性ペーストに関する。   The present invention relates to a conductive paste for producing a conductive film suitable for stretchable electrodes and wiring.

高性能エレクトロニクスのほとんどは、基本的に剛直で平面の形態で、シリコンやガリウム砒素などの単結晶無機材料を使用している。一方、フレキシブルな基板を用いた場合、配線の耐屈曲性が要求される。さらに、アクチュエーター電極や皮膚センサーなどの用途では、高い伸縮性を示す導電材料が望まれる。例えば、伸縮性の導電材料の膜を用いることによって、柔軟で曲線状である人体に密着して適合できるデバイスを開発することが可能となる。これらのデバイスの用途は、電気生理学的信号の測定から、先進治療のデリバリや、人と機械のインターフェースにまで及ぶ。伸縮性の導電材料の開発における解決方法の一つは、有機導電材料の使用であるが、これまでの材料はフレキシブルであるが、伸縮可能とは言えず、曲線状の表面を覆うことができない。そのために、性能や、複雑な集積回路への集積化に対する信頼性に欠ける。他の材料、例えば金属ナノワイヤやカーボンナノチューブなどの膜はある程度有望であるが、信頼性に欠け、かつ高価であるために開発は難しい。   Most high-performance electronics are basically rigid and planar, and use single crystal inorganic materials such as silicon and gallium arsenide. On the other hand, when a flexible substrate is used, the wiring must be bent. Furthermore, for applications such as actuator electrodes and skin sensors, a conductive material exhibiting high stretchability is desired. For example, by using a film of a stretchable conductive material, it is possible to develop a device that can be fitted in close contact with a flexible and curved human body. Applications of these devices range from measuring electrophysiological signals to delivering advanced therapies and human-machine interfaces. One solution in the development of stretchable conductive materials is the use of organic conductive materials, but conventional materials are flexible but cannot be stretched and cannot cover curved surfaces. . Therefore, it lacks performance and reliability for integration into a complicated integrated circuit. Other materials, such as films of metal nanowires and carbon nanotubes, are promising to some extent, but are difficult to develop because they are unreliable and expensive.

伸縮可能なフレキシブル配線を開発するアプローチとして、主として2つの方法が報告されている。   Two approaches have been reported as an approach for developing a flexible wiring that can be stretched.

1つは、波状構造を構築して、脆い材料でも伸縮性を持たせる方法である(非特許文献1参照)。この方法では、蒸着やメッキ、フォトレジスト処理などを行ってシリコーンゴム上に金属薄膜を作製する。金属薄膜は数%の伸縮しか示さないが、形状をジグザグ状または連続馬蹄状、波状の金属薄膜、または予め伸長したシリコーンゴム上に金属薄膜を形成することにより得られる皺状の金属薄膜などが伸縮性を示す。しかし、いずれも数10%伸長させると導電率が2桁以上低下する。また、シリコーンゴムは表面エネルギーが低いために、配線と基板との密着性が弱いので、伸長時に剥離し易いという欠点がある。従って、この方法では、安定した高い導電率と高い伸長性を両立するのが困難である。しかも、製造コストが高いという問題もある。   One is a method of constructing a wave-like structure to give stretchability even to a brittle material (see Non-Patent Document 1). In this method, a metal thin film is formed on silicone rubber by vapor deposition, plating, photoresist treatment, or the like. Although the metal thin film shows only a few percent of expansion / contraction, there are zigzag or continuous horseshoe-like shapes, corrugated metal thin films, or saddle-shaped metal thin films obtained by forming metal thin films on pre-stretched silicone rubber, etc. Shows elasticity. However, in any case, when the elongation is several tens of percent, the conductivity decreases by two orders of magnitude or more. In addition, since silicone rubber has a low surface energy, it has a drawback that it is easily peeled when stretched because the adhesion between the wiring and the substrate is weak. Therefore, with this method, it is difficult to achieve both stable high conductivity and high extensibility. Moreover, there is a problem that the manufacturing cost is high.

もう一つは、導電材料とエラストマーの複合材料である。この材料の有利な点は、優れた印刷性と伸縮性である。電極や配線に使われている市販の銀ペーストは、高弾性率のバインダー樹脂に銀粉末が高充填配合されており、柔軟性に乏しく高弾性率である。伸長すると、クラックが発生し、著しく導電率が低下してしまう。そこで柔軟性を付与するために、バインダーとしてのゴムやエラストマーの検討、導電材料の充填度を下げるために、導電材料としてのアスペクト比が大きくて導電率の高い銀フレーク、カーボンナノチューブ、金属ナノワイヤなどの検討がなされている。銀粒子とシリコ−ンゴムの組合せ(特許文献1参照)、銀粒子とポリウレタンの組合せ(特許文献2参照)、カーボンナノチューブとイオン液体とフッ化ビニリデンの組合せ(特許文献3、4参照)などが報告されている。しかし、これらの組合せでも高導電率と高伸縮性の両立は難しいのが現状である。一方、ミクロンサイズの銀粉と、自己組織化した銀ナノ粒子で表面修飾したカーボンナノチューブおよびポリフッ化ビニリデンの組合せにより、印刷可能で高導電性でかつ伸縮可能な複合材料が報告されている(非特許文献2参照)。しかし、カーボンナノチューブの銀ナノ粒子による表面修飾は、製造が煩雑で、コストアップの要因となり好ましくない。   The other is a composite material of a conductive material and an elastomer. The advantage of this material is excellent printability and stretchability. Commercially available silver pastes used for electrodes and wiring have a high elastic modulus binder resin with a high elastic modulus because of high filling and silver powder blended in a high elastic modulus binder resin. When it elongates, cracks are generated and the electrical conductivity is significantly reduced. Therefore, in order to give flexibility, study of rubber and elastomer as binders, silver flakes with high aspect ratio and high conductivity as conductive materials, carbon nanotubes, metal nanowires, etc. to reduce the filling degree of conductive materials Is being studied. Reported is a combination of silver particles and silicone rubber (see Patent Document 1), a combination of silver particles and polyurethane (see Patent Document 2), a combination of carbon nanotubes, ionic liquid, and vinylidene fluoride (see Patent Documents 3 and 4). Has been. However, even in these combinations, it is difficult to achieve both high conductivity and high stretchability. On the other hand, a printable, highly conductive and stretchable composite material has been reported using a combination of micron-sized silver powder, carbon nanotubes surface-modified with self-assembled silver nanoparticles, and polyvinylidene fluoride (non-patented) Reference 2). However, surface modification of carbon nanotubes with silver nanoparticles is not preferable because it is complicated to manufacture and causes cost increase.

特開2007−173226号公報JP 2007-173226 A 特開2012−54192号公報JP 2012-54192 A WO2009/102077号公報WO2009 / 102077 特開2011−216562号公報JP 2011-216562 A

Jong−Hyun Ahn and Jung Ho Je,“Stretchable electronics:materials,architectures and integrations“J.Phys.D:Appl.Phys.45(2012)103001Jong-Hyun Ahn and Jung Ho Je, “Stretchable electronics: materials, architectures and integrations“ J. Phys. D: Appl. Phys. 45 (2012) 103001 Kyoung−Yong Chun,Youngseok Oh,Jonghyun Rho,Jong−Hyun Ahn,Young−Jin Kim,Hyoung Ryeol Choi and Seunghyun Baik,“Highly conductive,printable and stretchable composite films of carbon nanotubes and silver”Nature Nanotechnology,5,853(2010)Kyoung-Yong Chun, Youngseok Oh, Jonghyun Rho, Jong-Hyun Ahn, Young-Jin Kim, Hyoung Ryeol Choi and Seunghyun Baik, "Highly conductive, printable and stretchable composite films of carbon nanotubes and silver" Nature Nanotechnology, 5,853 ( 2010)

本発明は、かかる従来技術の課題を背景になされたものであり、その目的は、塗布または印刷可能であり、さらに伸縮可能で、しかも高導電率の導電性膜を実現することができる優れた導電性ペーストを提供することにある。   The present invention has been made against the background of the problems of the prior art, and the object thereof is excellent in that it can be applied or printed, can be expanded and contracted, and can realize a highly conductive film. It is to provide a conductive paste.

本発明者は、かかる目的を達成するために鋭意検討した結果、以下の手段により上記課題を解決できることを見出し、本発明に到達した。
すなわち、本発明は以下の(1)〜(9)の構成からなる。
(1)樹脂(A)中に導電性フィラー(B)が均一に分散された導電性ペーストであって、樹脂(A)が、スルホン化または硫酸化したゴムに基づくポリアニオンをドーパントとして含む共役二重結合高分子の水分散体(A1)であり、導電性フィラー(B)が、平均粒径0.5〜10μmの金属粉(B1)であること、及び導電性ペーストの固形分中の樹脂(A)及び導電性フィラー(B)の各配合量がそれぞれ50〜80体積%及び20〜50体積%であることを特徴とする導電性ペースト。
(2)樹脂(A)として、芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子の水分散体(A2)をさらに含むことを特徴とする(1)に記載の導電性ペースト。
(3)金属粉(B1)が、フレーク状金属粉、球状金属粉または凝集状金属粉であることを特徴とする(1)または(2)に記載の導電性ペースト。
(4)導電性フィラー(B)として、芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子を表面に有し、かつアスペクト比が10〜10000である導電材料(B2)をさらに含むことを特徴とする(1)〜(3)のいずれかに記載の導電性ペースト。
(5)導電材料(B2)が、芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子で表面処理されたカーボンナノチューブであることを特徴とする(4)に記載の導電性ペースト。
(6)芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子が、メルカプト基またはニトリル基を含むことを特徴とする(5)に記載の導電性ペースト。
(7)導電性フィラーとして、平均粒径2〜100nmの金属ナノ粒子(B3)をさらに含むことを特徴とする(1)〜(6)のいずれかに記載の導電性ペースト。
(8)金属粉(B1)および金属ナノ粒子(B3)が、主成分として銀および/または銅を含むことを特徴とする(7)に記載の導電性ペースト。
(9)(1)〜(8)のいずれかに記載の導電性ペーストを用いて得られることを特徴とする導電性膜または導電性パターン。
As a result of intensive studies to achieve this object, the present inventor has found that the above-mentioned problems can be solved by the following means, and has reached the present invention.
That is, the present invention comprises the following configurations (1) to (9).
(1) A conductive paste in which a conductive filler (B) is uniformly dispersed in a resin (A), wherein the resin (A) contains a polyanion based on a sulfonated or sulfated rubber as a dopant. It is an aqueous dispersion (A1) of a heavy bond polymer, the conductive filler (B) is a metal powder (B1) having an average particle size of 0.5 to 10 μm, and the resin in the solid content of the conductive paste The electrically conductive paste characterized by each compounding quantity of (A) and an electroconductive filler (B) being 50-80 volume% and 20-50 volume%, respectively.
(2) The conductive material according to (1), further comprising, as the resin (A), an aqueous dispersion (A2) of a conjugated double bond polymer containing a polymer polyanion containing an aromatic group as a dopant. Sex paste.
(3) The conductive paste according to (1) or (2), wherein the metal powder (B1) is flaky metal powder, spherical metal powder or aggregated metal powder.
(4) Conductive material (B2) having a conjugated double bond polymer containing a polymer polyanion containing an aromatic group as a dopant as the conductive filler (B) and having an aspect ratio of 10 to 10,000 The conductive paste according to any one of (1) to (3), further comprising:
(5) The conductive material according to (4), wherein the conductive material (B2) is a carbon nanotube surface-treated with a conjugated double bond polymer containing a polymer polyanion containing an aromatic group as a dopant. Sex paste.
(6) The conductive paste according to (5), wherein the conjugated double bond polymer containing a polymer polyanion containing an aromatic group as a dopant contains a mercapto group or a nitrile group.
(7) The conductive paste according to any one of (1) to (6), further including metal nanoparticles (B3) having an average particle diameter of 2 to 100 nm as a conductive filler.
(8) The conductive paste according to (7), wherein the metal powder (B1) and the metal nanoparticles (B3) contain silver and / or copper as a main component.
(9) A conductive film or a conductive pattern obtained using the conductive paste according to any one of (1) to (8).

本発明の導電性ペーストによれば、金属粉(B1)及び所望により導電材料(B2)が伸縮性で導電性の樹脂(A)中に均一に分散している。従って、本発明の導電性ペーストによって形成された導電性膜は、有効な導電性のネットワークを形成するために高導電性であり、伸長時でもその高導電性を保持できる。   According to the conductive paste of the present invention, the metal powder (B1) and optionally the conductive material (B2) are uniformly dispersed in the stretchable and conductive resin (A). Therefore, the conductive film formed by the conductive paste of the present invention is highly conductive in order to form an effective conductive network, and can maintain the high conductivity even when stretched.

以下、本発明の実施形態の導電性ペーストについて説明する。
本発明の導電性ペーストは、樹脂(A)中に導電性フィラー(B)が均一に分散された導電性ペーストであって、樹脂(A)が、スルホン化または硫酸化したゴムに基づくポリアニオンをドーパントとして含む共役二重結合高分子の水分散体(A1)および所望により芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子の水分散体(A2)であり、導電性フィラー(B)が、金属粉(B1)、および所望により芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子を表面に有し、かつアスペクト比が10〜10000である導電材料(B2)であることを特徴とする。
Hereinafter, the conductive paste of the embodiment of the present invention will be described.
The conductive paste of the present invention is a conductive paste in which the conductive filler (B) is uniformly dispersed in the resin (A), and the resin (A) contains a polyanion based on a sulfonated or sulfated rubber. An aqueous dispersion (A1) of a conjugated double bond polymer containing as a dopant and an aqueous dispersion (A2) of a conjugated double bond polymer containing an aromatic group-containing polymer polyanion as a dopant, if desired. Conductor having a conjugated double bond polymer on the surface of which filler (B) contains metal powder (B1) and optionally a polymer polyanion containing an aromatic group as a dopant, and an aspect ratio of 10 to 10,000 It is a material (B2).

樹脂(A)は、導電性フィラー(B)の均一な分散を実現するために、導電性フィラー(B)(金属粉(B1)および導電材料(B2))との良好な親和性が求められる。硫黄は、軌道相互作用が強い柔らかい塩基に相当し、柔らかい酸に分類される金属類との相性が良く、強い親和性を示す。また、ニトリル基も金属との高い親和性が知られている。導電材料(B2)自体は、凝集力が強く、高アスペクト比であるために分散し難いが、芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子を表面に吸着させることにより、分散性が向上する。また、メルカプト基またはニトリル基を含む場合には、これらの基の金属への強い親和性のために、金属粉(B1)とも親和性が増して、金属粉(B1)とともに有効な導電性ネットワークを形成できる。また、樹脂(A)自体も高い伸長性と高い導電性を有している。その結果、本発明の導電性ペーストは、樹脂(A)自体の高い伸長性と導電性、さらには導電材料(B2)の高アスペクト比に起因して、伸長時にも高導電率をある程度保持できる。樹脂(A)として、伸長性を損なわない範囲で高い導電性を示す芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子の水分散体(A2)もさらに含有することができる。金属粉(B1)は、平均粒径0.5μm〜10μmであり、フレーク状金属粉、球状金属粉または凝集状金属粉から選ばれることができる。それに加えて、さらに平均粒径100nm以下の金属ナノ粒子(B3)を含むことができる。また、本発明の組成物の成分は溶剤に溶解または分散することができるので、塗布や印刷などのプロセスを用いて導電性膜や導電性パターンを形成できる。   Resin (A) is required to have good affinity with conductive filler (B) (metal powder (B1) and conductive material (B2)) in order to achieve uniform dispersion of conductive filler (B). . Sulfur corresponds to a soft base having a strong orbital interaction, has a good affinity with metals classified as soft acids, and shows a strong affinity. Nitrile groups are also known to have high affinity with metals. The conductive material (B2) itself has strong cohesive force and is difficult to disperse because of its high aspect ratio, but adsorbs a conjugated double bond polymer containing an aromatic group-containing polymer polyanion as a dopant on the surface. Thereby, dispersibility improves. In addition, when a mercapto group or a nitrile group is included, the affinity of the group to the metal is increased, so that the affinity with the metal powder (B1) is increased, and an effective conductive network together with the metal powder (B1). Can be formed. In addition, the resin (A) itself has high extensibility and high conductivity. As a result, the conductive paste of the present invention can retain a certain degree of high conductivity even when stretched due to the high stretchability and conductivity of the resin (A) itself, and the high aspect ratio of the conductive material (B2). . The resin (A) may further contain an aqueous dispersion (A2) of a conjugated double bond polymer containing, as a dopant, a polymer polyanion containing an aromatic group exhibiting high conductivity within a range that does not impair extensibility. it can. The metal powder (B1) has an average particle size of 0.5 μm to 10 μm, and can be selected from flaky metal powder, spherical metal powder or aggregated metal powder. In addition, metal nanoparticles (B3) having an average particle size of 100 nm or less can be further included. Moreover, since the component of the composition of this invention can be melt | dissolved or disperse | distributed to a solvent, a conductive film and a conductive pattern can be formed using processes, such as application | coating and printing.

スルホン化または硫酸化したゴムに基づくポリアニオンをドーパントとして含む共役二重結合高分子の水分散体(A1)において、スルホン化または硫酸化したゴムと共役二重結合高分子の種類は、得られる膜の伸長性と導電性が満足されれば特に限定されない。スルホン化または硫酸化ゴムとしては、例えば、スルホン化ポリスチレン−b−(エチレン−co−ブチレン)−b−スチレントリブロック共重合体、スルホン化ポリスチレン−b−エチレンジブロック共重合体、スルホン化ポリt−ブチルスチレン−b−(エチレン−co−プロピレン)−b−スチレントリブロック共重合体、ナフィオン(デュポン社製)などのポリ(パーフルオロスルホン酸)、硫酸化ポリブタジエン、硫酸化ポリ(β―ヒドロキシエーテル)、1,3−ビス(4−t−ブチルフェノキシ)―2−ポリサルフェートが挙げられる。   In aqueous dispersion (A1) of conjugated double bond polymer containing polyanion based on sulfonated or sulfated rubber as a dopant, the kind of sulfonated or sulfated rubber and conjugated double bond polymer is obtained membrane There is no particular limitation as long as the extensibility and conductivity are satisfied. Examples of the sulfonated or sulfated rubber include sulfonated polystyrene-b- (ethylene-co-butylene) -b-styrene triblock copolymer, sulfonated polystyrene-b-ethylene diblock copolymer, and sulfonated poly. t-butylstyrene-b- (ethylene-co-propylene) -b-styrene triblock copolymer, poly (perfluorosulfonic acid) such as Nafion (manufactured by DuPont), sulfated polybutadiene, sulfated poly (β- Hydroxy ether) and 1,3-bis (4-t-butylphenoxy) -2-polysulfate.

共役二重結合高分子としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリ(3−ヘキシルチオフェン)、ポリ(3,4−エチレンジオキシチオフェン)などが挙げられる。この中で、ポリ(3,4−エチレンジオキシチオフェン)が高導電率の発現のために好ましい。   Examples of the conjugated double bond polymer include polyaniline, polypyrrole, polythiophene, poly (3-hexylthiophene), poly (3,4-ethylenedioxythiophene), and the like. Among these, poly (3,4-ethylenedioxythiophene) is preferable for the expression of high conductivity.

スルホン化または硫酸化したゴムに基づくポリアニオンをドーパントとして含む共役二重結合高分子の水分散体(A1)としては、例えば、ポリアニリン:硫酸化ポリ(β―ヒドロキシエーテル)、ポリピロール:硫酸化ポリ(β―ヒドロキシエーテル)、ポリ(3,4−エチレンジオキシチオフェン):硫酸化ポリ(β―ヒドロキシエーテル)、ポリ(3,4−エチレンジオキシチオフェン):ポリ(パーフルオロスルホン酸)、ポリ(3,4−エチレンジオキシチオフェン):スルホン化ポリスチレン−b−(エチレン−co−ブチレン)−b−スチレントリブロック共重合体、ポリ(3,4−エチレンジオキシチオフェン):スルホン化ポリスチレン−b−エチレンジブロック共重合体、ポリ(3,4−エチレンジオキシチオフェン):硫酸化ポリブタジエンなどが挙げられる。   Examples of the aqueous dispersion (A1) of a conjugated double bond polymer containing a polyanion based on a sulfonated or sulfated rubber as a dopant include polyaniline: sulfated poly (β-hydroxyether), polypyrrole: sulfated poly ( β-hydroxyether), poly (3,4-ethylenedioxythiophene): sulfated poly (β-hydroxyether), poly (3,4-ethylenedioxythiophene): poly (perfluorosulfonic acid), poly ( 3,4-ethylenedioxythiophene): sulfonated polystyrene-b- (ethylene-co-butylene) -b-styrene triblock copolymer, poly (3,4-ethylenedioxythiophene): sulfonated polystyrene-b -Ethylene diblock copolymer, poly (3,4-ethylenedioxythiophene): Such as oxidation polybutadiene.

芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子の水分散体(A2)としては、ポリアニリン:ポリスチレンスルホン酸、ポリピロール:ポリスチレンスルホン酸、ポリ(3−ヘキシルチオフェン):ポリスチレンスルホン酸、ポリ(3,4−エチレンジオキシチオフェン):ポリスチレンスルホン酸(PEDOT:PSS)、ポリ(3,4−エチレンジオキシチオフェン):硫酸エステル化フェノキシ樹脂などが挙げられる。この中で、ポリ(3,4−エチレンジオキシチオフェン):ポリスチレンスルホン酸(PEDOT:PSS)が高導電率のために好ましい。   As an aqueous dispersion (A2) of a conjugated double bond polymer containing a polymer polyanion containing an aromatic group as a dopant, polyaniline: polystyrene sulfonic acid, polypyrrole: polystyrene sulfonic acid, poly (3-hexylthiophene): polystyrene Examples include sulfonic acid, poly (3,4-ethylenedioxythiophene): polystyrene sulfonic acid (PEDOT: PSS), poly (3,4-ethylenedioxythiophene): sulfate esterified phenoxy resin, and the like. Of these, poly (3,4-ethylenedioxythiophene): polystyrene sulfonic acid (PEDOT: PSS) is preferred because of its high conductivity.

前述の共役二重結合高分子の水分散体(A1)または(A2)は、従来公知の方法で合成することができ、例えばポリ(3,4−エチレンジオキシチオフェン):ポリスチレンスルホン酸の水分散体の場合、水、3,4−エチレンジオキシチオフェン、およびポリスチレンスルホン酸を混合してモノマー分散液を得、次いで、モノマー分散液に硫酸第二鉄と過硫酸アンモニウムを室温下に添加して、数時間攪拌することによって得られることができる。   The aqueous dispersion (A1) or (A2) of the conjugated double bond polymer described above can be synthesized by a conventionally known method. For example, poly (3,4-ethylenedioxythiophene): polystyrenesulfonic acid water In the case of a dispersion, water, 3,4-ethylenedioxythiophene, and polystyrene sulfonic acid are mixed to obtain a monomer dispersion, and then ferric sulfate and ammonium persulfate are added to the monomer dispersion at room temperature. Can be obtained by stirring for several hours.

導電性ペースト中の樹脂(A)の配合量において、固形分中の体積%が小さいと、導電率は高くなるが、伸縮性が悪くなる。一方、体積%が大きいと、伸縮性は良くなるが、導電率は低下する。従って、導電性ペーストの固形分中の樹脂(A)の配合量は50〜80体積%であり、60〜75体積%が好ましい。なお、該固形分中の体積%は、ペーストに含まれる各成分の各固形分の質量を計測し、(各固形分の質量÷各固形分の比重)を計算して各成分の固形分の体積を算出することによって求めることができる。   In the compounding quantity of resin (A) in an electrically conductive paste, when the volume% in solid content is small, electrical conductivity will become high, but a stretching property will worsen. On the other hand, when the volume% is large, the stretchability is improved, but the conductivity is lowered. Therefore, the compounding amount of the resin (A) in the solid content of the conductive paste is 50 to 80% by volume, and preferably 60 to 75% by volume. In addition, the volume% in this solid content measures the mass of each solid content of each component contained in the paste, and calculates (the mass of each solid content / the specific gravity of each solid content) to calculate the solid content of each component. It can be determined by calculating the volume.

なお、本発明の導電性ペーストには、伸縮可能な導電性膜としての性能や塗布性や印刷性を損なわない範囲で他の樹脂が配合されていても良い。   In addition, other resin may be mix | blended with the electrically conductive paste of this invention in the range which does not impair the performance as a stretchable conductive film, applicability | paintability, or printability.

導電性フィラー(B)は金属粉(B1)及び所望により導電材料(B2)である。導電性ペーストの固形分中の導電性フィラー(B)の配合量は20〜50体積%である。金属粉(B1)は、形成される導電性膜や導電性パターンにおいて導電性を付与するために用いられる。   The conductive filler (B) is a metal powder (B1) and optionally a conductive material (B2). The compounding quantity of the electroconductive filler (B) in solid content of an electroconductive paste is 20-50 volume%. The metal powder (B1) is used for imparting conductivity in the conductive film or conductive pattern to be formed.

金属粉(B1)としては、銀粉、金粉、白金粉、パラジウム粉等の貴金属粉、銅粉、ニッケル粉、アルミ粉、真鍮粉等の卑金属粉が好ましい。また、卑金属やシリカ等の無機物からなる異種粒子を銀等の貴金属でめっきしためっき粉、銀等の貴金属で合金化した卑金属粉等が挙げられる。これらの金属粉は、単独で用いてもよく、また、併用してもよい。これらの中で、銀粉および/または銅粉を主成分(50重量%以上)とするものが、高い導電性を示す塗膜を得やすい点および価格の点で特に好ましい。   As the metal powder (B1), noble metal powders such as silver powder, gold powder, platinum powder and palladium powder, and base metal powders such as copper powder, nickel powder, aluminum powder and brass powder are preferable. Further, a plating powder obtained by plating different kinds of particles made of an inorganic material such as a base metal or silica with a noble metal such as silver, a base metal powder obtained by alloying with a noble metal such as silver, or the like can be given. These metal powders may be used alone or in combination. Among these, those containing silver powder and / or copper powder as the main component (50% by weight or more) are particularly preferable from the viewpoint of easily obtaining a coating film exhibiting high conductivity and price.

金属粉(B1)の好ましい形状の例としては、公知のフレーク状(リン片状)、球状、樹枝状(デンドライト状)、凝集状(球状の1次粒子が3次元状に凝集した形状)などを挙げることができる。これらの中で、フレーク状、球状、凝集状の金属粉が好ましい。   Examples of preferable shapes of the metal powder (B1) include known flaky shapes (flaky shapes), spherical shapes, dendritic shapes (dendritic shapes), aggregated shapes (shapes in which spherical primary particles are aggregated three-dimensionally), and the like. Can be mentioned. Of these, flaky, spherical, and aggregated metal powders are preferred.

金属粉(B1)の粒子径は、微細パターン性を付与するという観点から、平均径が0.5〜10μmである。平均径が10μmより大きい金属粉を用いた場合には、形成されたパターンの形状が悪く、パターン化した細線の解像力が低下する可能性がある。平均径が0.5μmより小さくなると、大量配合すると、金属粉の凝集力が増加して印刷性が悪くなる場合があり、また高価であるためにコスト的に好ましくない。   The average particle diameter of the metal powder (B1) is 0.5 to 10 μm from the viewpoint of imparting fine pattern properties. When metal powder having an average diameter larger than 10 μm is used, the shape of the formed pattern is poor, and the resolution of the patterned fine line may be reduced. When the average diameter is smaller than 0.5 μm, when blended in a large amount, the cohesive force of the metal powder may increase and printability may be deteriorated, and it is expensive, which is not preferable in terms of cost.

導電性ペースト中の金属粉(B1)の配合量は、導電率と伸縮性を考慮して決定される。固形分中の体積%が大きいと、導電率は高くなるが、ゴムの量が少なくなって伸縮性が悪くなる。体積%が小さいと、伸縮性は良くなるが、導電性ネットワークが形成し難くなって導電率は低下する。従って、導電性ペーストの固形分中の金属粉(B1)の配合量は19〜49体積%が好ましく、25〜40体積%が特に好ましい。   The amount of the metal powder (B1) in the conductive paste is determined in consideration of conductivity and stretchability. When the volume% in the solid content is large, the electrical conductivity increases, but the amount of rubber decreases and the stretchability deteriorates. When the volume% is small, the stretchability is improved, but it is difficult to form a conductive network and the conductivity is lowered. Therefore, the blending amount of the metal powder (B1) in the solid content of the conductive paste is preferably 19 to 49% by volume, particularly preferably 25 to 40% by volume.

導電材料(B2)は、芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子を表面に有し、アスペクト比が10〜10000である。導電材料(B2)としては、カーボンナノチューブが好ましい。芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子を表面に有するカーボンナノチューブは、カーボンナノチューブの表面処理により製造される。処理すべきカーボンナノチューブは、上記範囲のアスペクト比を満たす限り特に限定されない。   The conductive material (B2) has on its surface a conjugated double bond polymer containing a polymer polyanion containing an aromatic group as a dopant, and has an aspect ratio of 10 to 10,000. As the conductive material (B2), carbon nanotubes are preferable. Carbon nanotubes having a conjugated double bond polymer having a polymer polyanion containing an aromatic group as a dopant on the surface are produced by surface treatment of the carbon nanotubes. The carbon nanotube to be treated is not particularly limited as long as the aspect ratio in the above range is satisfied.

カーボンナノチューブは、2次元のグラフェンシートを筒状に巻いた構造を有し、層の数や先端部の形状によって、多層型、単層型、ホーン型に分けられる。また、グラフェンシートの巻き方によって、アームチェア型構造、ジグザグ型構造、カイラル型構造の3種に分けられる。本発明においては、多層型、単層型、ホーン型のいずれでも使用でき、どの層構造であっても良い。   The carbon nanotube has a structure in which a two-dimensional graphene sheet is wound in a cylindrical shape, and is divided into a multilayer type, a single layer type, and a horn type depending on the number of layers and the shape of the tip. Also, depending on how the graphene sheet is wound, it can be divided into three types: an armchair structure, a zigzag structure, and a chiral structure. In the present invention, any of a multilayer type, a single layer type, and a horn type can be used, and any layer structure may be used.

カーボンナノチューブの直径は0.5〜200nmであることが好ましい。カーボンナノチューブを使用する場合は、アスペクト比は20〜10000が好ましく、50〜1000が特に好ましい。   The diameter of the carbon nanotube is preferably 0.5 to 200 nm. When carbon nanotubes are used, the aspect ratio is preferably 20 to 10,000, particularly preferably 50 to 1,000.

カーボンナノチューブの表面に官能基を有する化合物やポリマーを付着させて分散処理する方法は従来から知られている。例えば、反応させて共有結合で導入する方法、疎水相互作用・水素結合を利用する方法、π―スタッキングを利用する方法、静電気相互作用を利用する方法が報告されている。この中で、π―スタッキングを利用する方法では、芳香族化合物はカーボンナノチューブ中のグラファイト構造とπ―スタッキングを生じて、カーボンナノチューブ表面に選択的に付着する。従って、芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子は、芳香環がカーボンナノチューブ表面のグラファイト構造と有効にπ―スタッキングするために、選択的にカーボンナノチューブ表面に付着し、かつアニオン同士の反発により、カーボンナノチューブが水中で効率良く分散される。ポリ(3,4−ジオキシエチレンチオフェン):ポリスチレンスルホン酸(PEDOT:PSS)が、水中でカーボンナノチューブの分散剤として有効であることが報告されている(非特許文献3)。このようにして、芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子を表面に有するカーボンナノチューブが作製できる。   A method for dispersing a compound or polymer having a functional group on the surface of a carbon nanotube has been conventionally known. For example, a method of introducing by covalent bond after reaction, a method of utilizing hydrophobic interaction / hydrogen bond, a method of utilizing π-stacking, and a method of utilizing electrostatic interaction have been reported. Among them, in the method using π-stacking, the aromatic compound selectively adheres to the surface of the carbon nanotube by generating π-stacking with the graphite structure in the carbon nanotube. Therefore, a conjugated double bond polymer containing a polymer polyanion containing an aromatic group as a dopant selectively adheres to the carbon nanotube surface because the aromatic ring effectively π-stacks with the graphite structure of the carbon nanotube surface. In addition, carbon nanotubes are efficiently dispersed in water by repulsion between anions. Poly (3,4-dioxyethylenethiophene): polystyrene sulfonic acid (PEDOT: PSS) has been reported to be effective as a carbon nanotube dispersant in water (Non-patent Document 3). In this way, a carbon nanotube having a conjugated double bond polymer containing a polymer polyanion containing an aromatic group as a dopant can be produced.

芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子としては、ポリアニリン:ポリスチレンスルホン酸、ポリ(3−ヘキシルチオフェン):ポリスチレンスルホン酸、ポリ(3,4−エチレンジオキシチオフェン):ポリスチレンスルホン酸(PEDOT:PSS)、ポリ(3,4−エチレンジオキシチオフェン):硫酸エステル化フェノキシ樹脂などが挙げられる。この中で、ポリ(3,4−エチレンジオキシチオフェン):ポリスチレンスルホン酸(PEDOT:PSS)が高導電率のために好ましい。   As the conjugated double bond polymer containing a polymer polyanion containing an aromatic group as a dopant, polyaniline: polystyrene sulfonic acid, poly (3-hexylthiophene): polystyrene sulfonic acid, poly (3,4-ethylenedioxythiophene) ): Polystyrene sulfonic acid (PEDOT: PSS), poly (3,4-ethylenedioxythiophene): sulfated phenoxy resin, and the like. Of these, poly (3,4-ethylenedioxythiophene): polystyrene sulfonic acid (PEDOT: PSS) is preferred because of its high conductivity.

金属粉(B1)との親和性を良くするために、硫黄またはニトリル基を含有する共役二重結合高分子を用いるか、またはドーパントとして芳香族基を含有する高分子ポリアニオンの他にさらにメルカプト基を含有するスルホン酸化合物を含ませることができる。メルカプト基を含有するスルホン酸化合物として、3−メルカプトー1−プロパンスルホン酸、5−メルカプトー1H−テトラゾールー1−メタンスルホン酸が挙げられる。   In order to improve the affinity with the metal powder (B1), a conjugated double bond polymer containing a sulfur or nitrile group is used, or a mercapto group in addition to a polymer polyanion containing an aromatic group as a dopant. A sulfonic acid compound containing can be included. Examples of the sulfonic acid compound containing a mercapto group include 3-mercapto-1-propanesulfonic acid and 5-mercapto-1H-tetrazole-1-methanesulfonic acid.

具体的には、芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子の水分散液(A2)中で、超音波処理機などを用いてカーボンナノチューブを分散させると、分散したカーボンナノチューブ表面に芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子が付着し、所望のカーボンナノチューブの分散液が作製される。   Specifically, when carbon nanotubes are dispersed using an ultrasonic treatment machine or the like in an aqueous dispersion (A2) of a conjugated double bond polymer containing a polymer polyanion containing an aromatic group as a dopant, A conjugated double bond polymer containing a polymer polyanion containing an aromatic group as a dopant adheres to the surface of the carbon nanotube thus produced, and a desired carbon nanotube dispersion is produced.

芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子を表面に有するカーボンナノチューブ(B2)は、水中での分散処理により良好な分散液となり、スルホン化または硫酸化したゴムに基づくポリアニオンをドーパントとして含む共役二重結合高分子の水分散体(A1)と混合することにより、水分散体(A1)の粒子中に均一に分散できる。また、硫黄またはニトリル基を含ませることにより、金属粉(B1)との親和性が良いために金属粒子とともに有効で高い導電性のネットワークを形成する。しかも、伸長時においても、その高いアスペクト比に起因して導電性ネットワークの破断を抑制できるために高い導電性を保持することができる。   The carbon nanotube (B2) having a conjugated double bond polymer having a polymer polyanion containing an aromatic group as a dopant on its surface becomes a good dispersion by dispersion treatment in water, and becomes a sulfonated or sulfated rubber. By mixing with an aqueous dispersion (A1) of a conjugated double bond polymer containing a polyanion based on it as a dopant, it can be uniformly dispersed in the particles of the aqueous dispersion (A1). Further, by including sulfur or a nitrile group, an effective and highly conductive network is formed together with the metal particles because of good affinity with the metal powder (B1). In addition, even when stretched, high conductivity can be maintained because breakage of the conductive network can be suppressed due to the high aspect ratio.

芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子を表面に有し、かつアスペクト比が10〜10000の導電材料(B2)は、一般に高価であり、かつ多く配合しすぎると分散処理が困難になる。そのため、導電性ペースト中の固形分中の導電材料(B2)の配合量は1〜10体積%が好ましく、2〜5体積%が特に好ましい。   The conductive material (B2) having a conjugated double bond polymer containing a polymer polyanion containing an aromatic group as a dopant on the surface and having an aspect ratio of 10 to 10,000 is generally expensive and contains too much. And distributed processing becomes difficult. Therefore, the blending amount of the conductive material (B2) in the solid content in the conductive paste is preferably 1 to 10% by volume, particularly preferably 2 to 5% by volume.

本発明における導電性ペーストには、導電率の向上や印刷性の改良などの目的で、導電性フィラーとして金属ナノ粒子(B3)をさらに配合することができる。金属ナノ粒子(B3)は、導電性ネットワーク間での導電性付与の機能があるために導電率の向上が期待できる。また、印刷性改良のための導電性ペーストのレオロジー調節の目的にも配合することができる。金属ナノ粒子(B3)の平均粒径は2〜100nmが好ましい。具体的には、銀、ビスマス、白金、金、ニッケル、スズ、銅、亜鉛が挙げられ、導電性の観点から、銅、銀、白金、金が好ましく、銀及び/又は銅を主成分(50重量%以上)とするものが特に好ましい。   In the conductive paste of the present invention, metal nanoparticles (B3) can be further blended as a conductive filler for the purpose of improving conductivity and improving printability. Since the metal nanoparticles (B3) have a function of imparting conductivity between the conductive networks, an improvement in conductivity can be expected. Moreover, it can mix | blend also for the purpose of the rheology adjustment of the electrically conductive paste for printability improvement. The average particle diameter of the metal nanoparticles (B3) is preferably 2 to 100 nm. Specific examples include silver, bismuth, platinum, gold, nickel, tin, copper, and zinc. From the viewpoint of conductivity, copper, silver, platinum, and gold are preferable, and silver and / or copper is the main component (50 (% By weight or more) is particularly preferable.

金属ナノ粒子(B3)も一般に高価であるために、できるだけ少量であることが好ましい。導電性ペーストの固形分中の金属ナノ粒子(B3)の配合量は0.5〜5体積%が好ましい。   Since the metal nanoparticles (B3) are also generally expensive, they are preferably as small as possible. As for the compounding quantity of the metal nanoparticle (B3) in solid content of an electrically conductive paste, 0.5-5 volume% is preferable.

本発明の導電性ペーストには、導電性および伸縮性を損なわない範囲で無機物を添加することができる。無機物としては、炭化ケイ素、炭化ホウ素、炭化チタン、炭化ジルコニウム、炭化ハフニウム、炭化バナジウム、炭化タンタル、炭化ニオブ、炭化タングステン、炭化クロム、炭化モリブテン、炭化カルシウム、ダイヤモンドカーボンラクタム等の各種炭化物;窒化ホウ素、窒化チタン、窒化ジルコニウム等の各種窒化物、ホウ化ジルコニウム等の各種ホウ化物;酸化チタン(チタニア)、酸化カルシウム、酸化マグネシウム、酸化亜鉛、酸化銅、酸化アルミニウム、シリカ、コロイダルシリカ等の各種酸化物;チタン酸カルシウム、チタン酸マグネシウム、チタン酸ストロンチウム等の各種チタン酸化合物;二硫化モリブデン等の硫化物;フッ化マグネシウム、フッ化炭素等の各種フッ化物;ステアリン酸アルミニウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム等の各種金属石鹸;その他、滑石、ベントナイト、タルク、炭酸カルシウム、ベントナイト、カオリン、ガラス繊維、雲母等を用いることができる。これらの無機物を添加することによって、印刷性や耐熱性、さらには機械的特性や長期耐久性を向上させることが可能となる場合がある。   An inorganic substance can be added to the conductive paste of the present invention as long as the conductivity and stretchability are not impaired. Examples of inorganic substances include silicon carbide, boron carbide, titanium carbide, zirconium carbide, hafnium carbide, vanadium carbide, tantalum carbide, niobium carbide, tungsten carbide, chromium carbide, molybdenum carbide, calcium carbide, diamond carbon lactam, and other carbides; boron nitride Various nitrides such as titanium nitride and zirconium nitride, various borides such as zirconium boride; various oxidations such as titanium oxide (titania), calcium oxide, magnesium oxide, zinc oxide, copper oxide, aluminum oxide, silica and colloidal silica Products: various titanate compounds such as calcium titanate, magnesium titanate, strontium titanate; sulfides such as molybdenum disulfide; various fluorides such as magnesium fluoride and carbon fluoride; aluminum stearate, calcium stearate Um, zinc stearate, various metal soaps such as magnesium stearate and the like; may be used talc, bentonite, talc, calcium carbonate, bentonite, kaolin, glass fiber, mica or the like. By adding these inorganic substances, it may be possible to improve printability and heat resistance, as well as mechanical properties and long-term durability.

また、チキソ性付与剤、消泡剤、難燃剤、粘着付与剤、加水分解防止剤、レベリング剤、可塑剤、酸化防止剤、紫外線吸収剤、難燃剤、顔料、染料を配合することができる。   Further, a thixotropic agent, an antifoaming agent, a flame retardant, a tackifier, a hydrolysis inhibitor, a leveling agent, a plasticizer, an antioxidant, an ultraviolet absorber, a flame retardant, a pigment, and a dye can be blended.

本発明の導電性ペーストに使用する溶媒は、水が主体であるが、ペーストや乾燥膜の性能を損なわない範囲で水混和性の有機溶剤を含有することができる。水を含む溶媒の含有量としては、金属フィラーの分散方法や、導電性膜形成方法に適合する導電性ペーストの粘度や乾燥方法などによって決められる。本発明の導電性ペーストは、粉体を液体に分散させる従来公知の方法を用いることによって樹脂中に導電性フィラーを均一に分散することができる。例えば、金属粉、高アスペクト比の導電材料の分散液、樹脂溶液を混合した後、超音波法、ミキサー法、3本ロールミル法、ボールミル法などで均一に分散することができる。これらの手段は、複数を組み合わせて使用することも可能である。   The solvent used in the conductive paste of the present invention is mainly water, but can contain a water-miscible organic solvent as long as the performance of the paste and dry film is not impaired. The content of the solvent containing water is determined by the dispersion method of the metal filler, the viscosity of the conductive paste suitable for the conductive film forming method, the drying method, and the like. The electrically conductive paste of this invention can disperse | distribute a conductive filler uniformly in resin by using the conventionally well-known method to disperse | distribute powder to a liquid. For example, after mixing a metal powder, a dispersion of a conductive material having a high aspect ratio, and a resin solution, it can be uniformly dispersed by an ultrasonic method, a mixer method, a three-roll mill method, a ball mill method, or the like. These means can be used in combination.

本発明の導電性ペーストを基材上に塗布または印刷して塗膜を形成し、次いで塗膜に含まれる水や有機溶剤を揮散させ乾燥させることにより、導電性膜または導電性パターンを形成することができる。   A conductive film or a conductive pattern is formed by applying or printing the conductive paste of the present invention on a substrate to form a coating film, and then volatilizing and drying water and an organic solvent contained in the coating film. be able to.

導電性ペーストが塗布される基材は特に限定されないが、導電膜の伸縮性を生かすために、用途によって、可とう性または伸縮性のある基材が好ましい。可とう性基材の例として、紙、布、ポリエチレンテレフタレート、ポリ塩化ビニル、ポリエチレン、ポリイミドなどが挙げられる。伸縮性の基材としては、ポリウレタン、ポリジメチルシロキサン(PDMS)、ニトリルゴム、ブタジエンゴム、SBSエラストマー、SEBSエラストマーなどが挙げられる。これらの基材は、折り目を付けることが可能で、面方向に伸縮可能であることが好ましい。その点でゴムやエラストマーからなる基材が好ましい。   The substrate to which the conductive paste is applied is not particularly limited, but a flexible or stretchable substrate is preferable depending on the application in order to make use of the stretchability of the conductive film. Examples of flexible substrates include paper, cloth, polyethylene terephthalate, polyvinyl chloride, polyethylene, polyimide, and the like. Examples of the stretchable base material include polyurethane, polydimethylsiloxane (PDMS), nitrile rubber, butadiene rubber, SBS elastomer, SEBS elastomer, and the like. These base materials can be creased and are preferably stretchable in the surface direction. In this respect, a base material made of rubber or elastomer is preferable.

導電性ペーストを基材上に塗布する工程は、特に限定されないが、例えば、コーティング法、印刷法などによって行うことができる。印刷法としては、スクリーン印刷法、平版オフセット印刷法、インクジェット法、フレキソ印刷法、グラビア印刷法、グラビアオフセット印刷法、スタンピング法、ディスペンス法、スキージ印刷などが挙げられる。   Although the process of apply | coating an electrically conductive paste on a base material is not specifically limited, For example, it can carry out by the coating method, the printing method, etc. Examples of the printing method include screen printing method, planographic offset printing method, ink jet method, flexographic printing method, gravure printing method, gravure offset printing method, stamping method, dispensing method, squeegee printing and the like.

導電性ペーストを塗布された基材を加熱する工程は、大気下、真空雰囲気下、不活性ガス雰囲気下、還元性ガス雰囲気下などで行うことができる。加熱温度は20〜200℃の範囲で行い、要求される導電率や基材の耐熱性などを考慮して選択される。水を含む溶媒が揮散され、場合により加熱下で硬化反応が進行し、乾燥後の導電性膜の導電性や密着性、表面硬度が良好となる。   The step of heating the substrate coated with the conductive paste can be performed in the air, in a vacuum atmosphere, in an inert gas atmosphere, in a reducing gas atmosphere, or the like. The heating temperature is in the range of 20 to 200 ° C., and is selected in consideration of the required conductivity and the heat resistance of the substrate. The solvent containing water is volatilized, the curing reaction proceeds under heating in some cases, and the conductivity, adhesion, and surface hardness of the conductive film after drying become good.

伸縮可能な導電性膜に必要な伸長率は、使われる用途によって異なり、特に限定されるものではない。想定されるヘルスケア、ディスプレイ、太陽電池、PFIDなどの分野での配線、アンテナ、電極などの用途では、5%から80%程度の伸長率が望まれている。本発明の導電性ペーストを塗布または印刷して得られる伸縮可能な導電性膜において、例えば、80%伸長時での比抵抗は、自然状態(0%伸長時)の比抵抗に比べて10倍以下が望まれ、好ましくは5倍以下、さらに好ましくは2倍以下が望まれる。また、導電性膜を所定の割合だけ伸長させて、次に応力ゼロの状態に戻す操作を繰り返した場合の導電率の変化も重要である。例えば、10%伸長を1000回繰り返した後の比抵抗は、自然状態(0%伸長時)の比抵抗に比べて、10倍以下が好ましく、5倍以下が特に好ましい。   The elongation required for the stretchable conductive film varies depending on the application used and is not particularly limited. For applications such as wiring, antennas, and electrodes in the fields of assumed healthcare, displays, solar cells, PFID, etc., a growth rate of about 5% to 80% is desired. In the stretchable conductive film obtained by applying or printing the conductive paste of the present invention, for example, the specific resistance at 80% elongation is 10 times the specific resistance at the natural state (at 0% elongation). The following is desired, preferably 5 times or less, more preferably 2 times or less. It is also important to change the conductivity when the operation of extending the conductive film by a predetermined ratio and then returning it to the state of zero stress is repeated. For example, the specific resistance after repeating 10% elongation 1000 times is preferably 10 times or less, and particularly preferably 5 times or less, as compared to the specific resistance in the natural state (at 0% elongation).

以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

[ポリ(3,4−エチレンジオキシチオフェン):硫酸化ポリ(β―ヒドロキシエーテル)(PEDOT:PAー1)の合成]
硫酸化ポリ(β―ヒドロキシエーテル)(ビスフェノールAとビスフェノールAのグルシジルエーテルから得られ、100モル%硫酸化、重量平均分子量25000)2gと3,4−エチレンジオキシチオフェン(EDT)1gを100gの水/メタノール(50/50重量比)混合液に溶解した。続いて、酸化剤としての過硫酸アンモニウムの40%水溶液を、0.5ml滴下し、以降10分間隔で6回に分けて滴下した後、室温で60時間攪拌して化学重合を行い分散液を得た。
[Poly (3,4-ethylenedioxythiophene): Synthesis of sulfated poly (β-hydroxyether) (PEDOT: PA-1)]
2 g of sulfated poly (β-hydroxyether) (obtained from glycidyl ether of bisphenol A and bisphenol A, 100 mol% sulfated, weight average molecular weight 25000) and 100 g of 3,4-ethylenedioxythiophene (EDT) 1 g Of water / methanol (50/50 weight ratio). Subsequently, 0.5 ml of a 40% aqueous solution of ammonium persulfate as an oxidizing agent was dropped, and thereafter dropped in 6 portions at 10 minute intervals, and then stirred for 60 hours at room temperature to perform chemical polymerization to obtain a dispersion. It was.

[ポリ(3,4−エチレンジオキシチオフェン):スルホン化ポリスチレン−b−(エチレン−co−ブチレン)−b−スチレントリブロック共重合体(PEDOT:PAー2)の合成]
硫酸化ポリ(β―ヒドロキシエーテル)の代わりに、スルホン化ポリスチレン−b−(エチレン−co−ブチレン)−b−スチレントリブロック共重合体(DAIS−Analytical Corporation社製)を用いる他は、PEDOT:PAー1と同様に操作して、分散液を得た。
[Poly (3,4-ethylenedioxythiophene): Synthesis of sulfonated polystyrene-b- (ethylene-co-butylene) -b-styrene triblock copolymer (PEDOT: PA-2)]
PEDOT is used except that a sulfonated polystyrene-b- (ethylene-co-butylene) -b-styrene triblock copolymer (manufactured by DAIS-Analytical Corporation) is used instead of the sulfated poly (β-hydroxy ether). A dispersion was obtained in the same manner as PA-1.

[ポリ(3,4−エチレンジオキシチオフェン):ポリ(パーフルオロスルホン酸)(PEDOT:PA−3)の合成]
硫酸化ポリ(β―ヒドロキシエーテル)の代わりに、ポリ(パーフルオロスルホン酸(ナフィオンPFSA D520 デュポン社製)を用いる他は、PEDOT:PAー1と同様に操作して、分散液を得た。
[Poly (3,4-ethylenedioxythiophene): Synthesis of poly (perfluorosulfonic acid) (PEDOT: PA-3)]
A dispersion was obtained in the same manner as PEDOT: PA-1, except that poly (perfluorosulfonic acid (Nafion PFSA D520 manufactured by DuPont)) was used instead of sulfated poly (β-hydroxyether).

[ポリ(3,4−エチレンジオキシチオフェン):ポリスチレンスルホン酸(PEDOT:PSS−1)の合成]
ポリスチレンスルホン酸(重量平均分子量:14000)の20重量%水溶液10gと3,4−エチレンジオキシチオフェン(EDT)1gを100gの水に投入して30分間攪拌した。続いて、酸化剤としての過硫酸アンモニウムの40重量%水溶液を0.5ml滴下し、以降10分間隔で6回に分けて滴下した後、室温で60時間攪拌して化学重合を行った。この時、溶液は薄黄色から濃紺色へと変化した。
[Poly (3,4-ethylenedioxythiophene): Synthesis of polystyrene sulfonic acid (PEDOT: PSS-1)]
10 g of a 20 wt% aqueous solution of polystyrene sulfonic acid (weight average molecular weight: 14000) and 1 g of 3,4-ethylenedioxythiophene (EDT) were added to 100 g of water and stirred for 30 minutes. Subsequently, 0.5 ml of a 40% by weight aqueous solution of ammonium persulfate as an oxidizing agent was dropped, and thereafter dropped 6 times at 10 minute intervals, followed by chemical polymerization by stirring at room temperature for 60 hours. At this time, the solution changed from light yellow to dark blue.

[ポリ(3,4−エチレンジオキシチオフェン):ポリスチレンスルホン酸(PEDOT:PSS−2)の合成]
ポリスチレンスルホン酸(重量平均分子量:14000)の20重量%水溶液10g、3−メルカプトー1−プロパンスルホン酸0.5g、3,4−エチレンジオキシチオフェン(EDT)1gを100gの水に投入して30分間攪拌した。続いて、酸化剤としての過硫酸アンモニウムの40重量%水溶液を0.5ml滴下し、以降10分間隔で6回に分けて滴下した後、室温で60時間攪拌して化学重合を行った。この時、溶液は薄黄色から濃紺色へと変化した。
[Poly (3,4-ethylenedioxythiophene): Synthesis of polystyrene sulfonic acid (PEDOT: PSS-2)]
10 g of a 20 wt% aqueous solution of polystyrene sulfonic acid (weight average molecular weight: 14000), 0.5 g of 3-mercapto-1-propanesulfonic acid, and 1 g of 3,4-ethylenedioxythiophene (EDT) were added to 100 g of water and added to 30 g. Stir for minutes. Subsequently, 0.5 ml of a 40% by weight aqueous solution of ammonium persulfate as an oxidizing agent was dropped, and thereafter dropped 6 times at 10 minute intervals, followed by chemical polymerization by stirring at room temperature for 60 hours. At this time, the solution changed from light yellow to dark blue.

[表面に芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子を有するカーボンナノチューブA(CNT−A)の分散液の作製]
1.2重量%のPEDOT:PSS−1水分散液の中に、多層カーボンナノチューブ(SWeNT MW100、SouthWest Nano Technologies社製)を多層カーボンナノチューブ:(PEDOT:PSS−1)=1:4(重量比)となるように配合し、超音波処理機を用いて多層カーボンナノチューブの水分散液を作製した。
[Preparation of dispersion of carbon nanotube A (CNT-A) having a conjugated double bond polymer containing a polymer polyanion containing an aromatic group on the surface as a dopant]
In a 1.2 wt% PEDOT: PSS-1 aqueous dispersion, multi-walled carbon nanotubes (SWENT MW100, manufactured by Southwest Nano Technologies) were added to multi-walled carbon nanotubes: (PEDOT: PSS-1) = 1: 4 (weight ratio). And an aqueous dispersion of multi-walled carbon nanotubes was prepared using an ultrasonic treatment machine.

[表面に芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子を有するカーボンナノチューブB(CNT−B)の分散液の作製]
PEDOT:PSS−1水分散液の代わりに、PEDOT:PSS−2分散液を用いる他は、CNT−Aと同様の操作で表面にアミノ基を有するカーボンナノチューブを作製した。
[Preparation of dispersion of carbon nanotube B (CNT-B) having a conjugated double bond polymer containing a polymer polyanion containing an aromatic group on the surface as a dopant]
Carbon nanotubes having amino groups on the surface were prepared in the same manner as CNT-A, except that the PEDOT: PSS-2 dispersion was used instead of the PEDOT: PSS-1 aqueous dispersion.

実施例1〜12、比較例1〜4
銀粒子(及び必要により銀ナノ粒子)と、PEDOT分散液および無処理のカーボンナノチューブ(無処理CNT)または芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子で表面処理したカーボンナノチューブ(CNT−A〜B)の均一分散液を、各成分が表1,2に記載の固形分中の体積%となるように配合し、自転公転真空ミキサー(THYNKY社製、ARV−310)を用いて、真空下2000rpmで3分間混練して導電性ペーストを得た。導電ペーストをガラス板の上にドロップキャスト法にて製膜し、150℃で30分間乾燥して、厚み100μmのシート状の導電性膜を作製した。導電性膜は、後述する方法で伸長率0%、20%、50%、80%時の比抵抗を評価した。また、10%伸長を1000回繰り返した後の導電性膜の比抵抗変化率を評価した。実施例1〜12、比較例1〜4の導電性ペーストの組成とその評価結果を表1及び表2に示す。
Examples 1-12, Comparative Examples 1-4
Surface treatment with silver particles (and silver nanoparticles if necessary) and a conjugated double bond polymer containing PEDOT dispersion and untreated carbon nanotubes (untreated CNT) or a polymer polyanion containing an aromatic group as a dopant A uniform dispersion of carbon nanotubes (CNT-A to B) was blended so that each component was a volume% in the solid content described in Tables 1 and 2, and a rotating / revolving vacuum mixer (manufactured by THYNKY, ARV-310). ) And kneaded at 2000 rpm for 3 minutes under vacuum to obtain a conductive paste. A conductive paste was formed on a glass plate by a drop cast method and dried at 150 ° C. for 30 minutes to produce a sheet-like conductive film having a thickness of 100 μm. The conductive film was evaluated for specific resistance at an elongation rate of 0%, 20%, 50%, and 80% by a method described later. Moreover, the specific resistance change rate of the electroconductive film after repeating 10% elongation 1000 times was evaluated. Tables 1 and 2 show the compositions of the conductive pastes of Examples 1 to 12 and Comparative Examples 1 to 4 and the evaluation results thereof.

Figure 2015065139
Figure 2015065139

Figure 2015065139
Figure 2015065139

表中の1)〜5)の詳細は以下の通りである。
1)銀粒子:凝集銀粉G−35(平均粒径5.9μm、DOWAエレクトロニクス社製)2)表面に芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子を有するカーボンナノチューブA
3)表面に芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子を有するカーボンナノチューブB
4)無処理CNT:SWeNT MW100(多層カーボンナノチューブ、直径6〜9nm、長さ5μm、アスペクト比556〜833,SouthWest Nano Technologies社製)
5)銀ナノ粒子:銀ナノ粒子乾粉2(平均粒径60nm、DOWAエレクトロニクス社製)
Details of 1) to 5) in the table are as follows.
1) Silver particles: Aggregated silver powder G-35 (average particle size 5.9 μm, manufactured by DOWA Electronics Co., Ltd.) 2) Carbon nanotubes having a conjugated double bond polymer containing a polymer polyanion containing an aromatic group as a dopant on the surface A
3) Carbon nanotube B having a conjugated double bond polymer containing a polymer polyanion containing an aromatic group on the surface as a dopant
4) Untreated CNT: SWeNT MW100 (multi-walled carbon nanotube, diameter 6-9 nm, length 5 μm, aspect ratio 556-833, manufactured by Southwest Nano Technologies)
5) Silver nanoparticles: Silver nanoparticle dry powder 2 (average particle size 60 nm, manufactured by DOWA Electronics)

実施例1〜12及び比較例1〜4の導電性膜の評価方法は以下の通りである。
[比抵抗の評価]
自然状態(伸長率0%)の導電性膜試験片のシート抵抗と膜厚を測定し、比抵抗を算出した。膜厚はシックネスゲージ SMD−565L(TECLOCK社製)を用い、シート抵抗はLoresta−GP MCP−T610(三菱化学アナリテック社製)を用いて試験片4枚について測定し、その平均値を用いた。
そして自然状態(伸長率0%)と同様にして、伸長率20%、50%、80%時の比抵抗を測定した。伸長率は以下の式により算出した。
伸長率(%)=(ΔL0/L0)×100
ここで、L0は試験片の標線間距離、ΔL0は試験片の標線韓距離の増加分を示す。
また、10%伸長を1000回繰り返した後の導電性膜の比抵抗変化率を以下の式により算出した。
比抵抗変化率=(R1000―R)/R×100(%)
ここで、R1000は10%繰り返し伸長(1000回)後の比抵抗、Rは自然状態の比抵抗を示す。
The evaluation methods of the conductive films of Examples 1 to 12 and Comparative Examples 1 to 4 are as follows.
[Evaluation of resistivity]
The sheet resistance and film thickness of the conductive film test piece in the natural state (elongation rate 0%) were measured, and the specific resistance was calculated. The film thickness was measured for four test pieces using a thickness gauge SMD-565L (manufactured by TECLOCK) and the sheet resistance was Loresta-GP MCP-T610 (manufactured by Mitsubishi Chemical Analytech), and the average value was used. .
Then, in the same manner as in the natural state (elongation rate 0%), the specific resistance at the elongation rate of 20%, 50%, and 80% was measured. The elongation rate was calculated by the following formula.
Elongation rate (%) = (ΔL0 / L0) × 100
Here, L0 represents the distance between the marked lines of the test piece, and ΔL0 represents the increment of the marked line Korean distance of the test piece.
Moreover, the specific resistance change rate of the electroconductive film after repeating 10% elongation 1000 times was computed by the following formula | equation.
Specific resistance change rate = (R 1000 −R 0 ) / R 0 × 100 (%)
Here, R 1000 represents the specific resistance after 10% repeated elongation (1000 times), and R 0 represents the specific resistance in the natural state.

表1および表2の結果から明らかなように、実施例1〜12の導電性ペーストは、自然状態の良好な導電性だけでなく伸長時でも高い導電性を維持することができ、繰り返し伸縮後も導電性の低下が小さい。一方、比較例1〜4の導電性ペーストは、実施例1〜12に比べて比抵抗が高いか、又は伸長により破断を招いていており、繰り返し伸縮により導電性が低下する。   As is clear from the results of Tables 1 and 2, the conductive pastes of Examples 1 to 12 can maintain high conductivity not only in the natural state but also in extension, after repeated expansion and contraction. However, the decrease in conductivity is small. On the other hand, the conductive pastes of Comparative Examples 1 to 4 have higher specific resistance than those of Examples 1 to 12, or have been broken by elongation, and the conductivity is lowered by repeated expansion and contraction.

本発明の導電性ペーストは、高い導電率と伸縮性を有することから、ゴムやエラストマー材料を利用した折り曲げ可能なディスプレイ、伸縮性LEDアレイ、伸縮性太陽電池、伸縮性アンテナ、伸縮性バッテリ、アクチュエーター、ヘルスケアデバイスや医療用センサー、ウエアラブルコンピュータなどの電極や配線などに好適に利用することができる。   Since the conductive paste of the present invention has high conductivity and stretchability, it can be folded using rubber or an elastomer material, a stretchable LED array, a stretchable solar cell, a stretchable antenna, a stretchable battery, an actuator. It can be suitably used for electrodes and wiring of health care devices, medical sensors, wearable computers and the like.

Claims (9)

樹脂(A)中に導電性フィラー(B)が均一に分散された導電性ペーストであって、樹脂(A)が、スルホン化または硫酸化したゴムに基づくポリアニオンをドーパントとして含む共役二重結合高分子の水分散体(A1)であり、導電性フィラー(B)が、平均粒径0.5〜10μmの金属粉(B1)であること、及び導電性ペーストの固形分中の樹脂(A)及び導電性フィラー(B)の各配合量がそれぞれ50〜80体積%及び20〜50体積%であることを特徴とする導電性ペースト。   A conductive paste in which a conductive filler (B) is uniformly dispersed in a resin (A), wherein the resin (A) includes a conjugated double bond having a polyanion based on a sulfonated or sulfated rubber as a dopant. It is an aqueous dispersion of molecules (A1), and the conductive filler (B) is a metal powder (B1) having an average particle size of 0.5 to 10 μm, and the resin (A) in the solid content of the conductive paste And the conductive filler (B) are blended in amounts of 50 to 80% by volume and 20 to 50% by volume, respectively. 樹脂(A)として、芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子の水分散体(A2)をさらに含むことを特徴とする請求項1に記載の導電性ペースト。   The conductive paste according to claim 1, further comprising an aqueous dispersion (A2) of a conjugated double bond polymer containing, as a dopant, a polymer polyanion containing an aromatic group as a resin (A). 金属粉(B1)が、フレーク状金属粉、球状金属粉または凝集状金属粉であることを特徴とする請求項1または2に記載の導電性ペースト。   The conductive paste according to claim 1 or 2, wherein the metal powder (B1) is a flaky metal powder, a spherical metal powder or an agglomerated metal powder. 導電性フィラー(B)として、芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子を表面に有し、かつアスペクト比が10〜10000である導電材料(B2)をさらに含むことを特徴とする請求項1〜3のいずれかに記載の導電性ペースト。   The conductive filler (B) further includes a conductive material (B2) having a conjugated double bond polymer having a polymer polyanion containing an aromatic group as a dopant on the surface and having an aspect ratio of 10 to 10,000. The electrically conductive paste in any one of Claims 1-3 characterized by the above-mentioned. 導電材料(B2)が、芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子で表面処理されたカーボンナノチューブであることを特徴とする請求項4に記載の導電性ペースト。   The conductive paste according to claim 4, wherein the conductive material (B2) is a carbon nanotube surface-treated with a conjugated double bond polymer containing a polymer polyanion containing an aromatic group as a dopant. 芳香族基を含有する高分子ポリアニオンをドーパントとして含む共役二重結合高分子が、メルカプト基またはニトリル基を含むことを特徴とする請求項5に記載の導電性ペースト。   6. The conductive paste according to claim 5, wherein the conjugated double bond polymer containing a polymer polyanion containing an aromatic group as a dopant contains a mercapto group or a nitrile group. 導電性フィラーとして、平均粒径2〜100nmの金属ナノ粒子(B3)をさらに含むことを特徴とする請求項1〜6のいずれかに記載の導電性ペースト。   The conductive paste according to claim 1, further comprising metal nanoparticles (B3) having an average particle diameter of 2 to 100 nm as the conductive filler. 金属粉(B1)および金属ナノ粒子(B3)が、主成分として銀および/または銅を含むことを特徴とする請求項7に記載の導電性ペースト。   The conductive paste according to claim 7, wherein the metal powder (B1) and the metal nanoparticles (B3) contain silver and / or copper as a main component. 請求項1〜8のいずれかに記載の導電性ペーストを用いて得られることを特徴とする導電性膜または導電性パターン。   A conductive film or a conductive pattern obtained by using the conductive paste according to claim 1.
JP2013237635A 2013-08-28 2013-11-18 Conductive paste Pending JP2015065139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013237635A JP2015065139A (en) 2013-08-28 2013-11-18 Conductive paste

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013176201 2013-08-28
JP2013176201 2013-08-28
JP2013237635A JP2015065139A (en) 2013-08-28 2013-11-18 Conductive paste

Publications (1)

Publication Number Publication Date
JP2015065139A true JP2015065139A (en) 2015-04-09

Family

ID=52832849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013237635A Pending JP2015065139A (en) 2013-08-28 2013-11-18 Conductive paste

Country Status (1)

Country Link
JP (1) JP2015065139A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110679011A (en) * 2017-04-12 2020-01-10 E-7***技术管理有限公司 Contact element with composite material
US10573425B2 (en) 2016-02-19 2020-02-25 Mitsubishi Materials Corporation Electrically conductive paste and electrically conductive film formed by using same
WO2022059608A1 (en) * 2020-09-18 2022-03-24 ナミックス株式会社 Stretchable conductive paste and film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10573425B2 (en) 2016-02-19 2020-02-25 Mitsubishi Materials Corporation Electrically conductive paste and electrically conductive film formed by using same
CN110679011A (en) * 2017-04-12 2020-01-10 E-7***技术管理有限公司 Contact element with composite material
JP2020517069A (en) * 2017-04-12 2020-06-11 イーセブン システムズ テクノロジー マネジメント リミテッドE−Seven Systems Technology Management Ltd Contact points using composite materials
WO2022059608A1 (en) * 2020-09-18 2022-03-24 ナミックス株式会社 Stretchable conductive paste and film
US11932771B2 (en) 2020-09-18 2024-03-19 Namics Corporation Stretchable conductive paste and film

Similar Documents

Publication Publication Date Title
JP6319085B2 (en) Conductive paste
TWI682405B (en) Conductive silver paste
Zhang et al. Self-healing Ti3C2 MXene/PDMS supramolecular elastomers based on small biomolecules modification for wearable sensors
Li et al. Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets
JP2015079724A (en) Conductive paste
Pan et al. A highly stretchable strain sensor based on CNT/graphene/fullerene-SEBS
JP6690528B2 (en) Conductive film
Hao et al. Silver-nanoparticle-decorated multiwalled carbon nanotubes prepared by poly (dopamine) functionalization and ultraviolet irradiation
Franco et al. Water-based graphene inks for all-printed temperature and deformation sensors
Aakyiir et al. Combining hydrophilic MXene nanosheets and hydrophobic carbon nanotubes for mechanically resilient and electrically conductive elastomer nanocomposites
Chen et al. Ultra high permittivity and significantly enhanced electric field induced strain in PEDOT: PSS–RGO@ PU intelligent shape-changing electro-active polymers
Sureshkumar et al. Conductive nanocomposites based on polystyrene microspheres and silver nanowires by latex blending
JP6321894B2 (en) Conductive film and manufacturing method thereof
Cui et al. High-concentration self-cross-linkable graphene dispersion
Wang et al. Flexible electrothermal laminate films based on tannic acid-modified carbon nanotube/thermoplastic polyurethane composite
Cao et al. High-performance conductive polymer composites by incorporation of polyaniline-wrapped halloysite nanotubes and silver microflakes
JP2015079725A (en) Conductive paste
Kwon et al. Scalable electrically conductive spray coating based on block copolymer nanocomposites
JP2015065139A (en) Conductive paste
Hu et al. Silver flake/polyaniline composite ink for electrohydrodynamic printing of flexible heaters
Huang et al. Binder-free graphene/silver nanowire gel-like composite with tunable properties and multifunctional applications
KR20160125035A (en) Method of fabricating carbon/metal/polymer nanocomposites and method of fabricating highly stretchable/highly conductive film comprising the nanocomposites
Kim et al. Electrically conductive silicone-based nanocomposites incorporated with carbon nanotubes and silver nanowires for stretchable electrodes
Patil et al. Surface modification of aligned carbon nanotube arrays for electron emitting applications
Das et al. Pressure Sensors Painted on Flexible Cellulose Substrates from Polyaniline-Based Conductive Ink