JP2015064977A - Positive electrode for nonaqueous electrolyte secondary batteries, mixture material for positive electrodes of nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery - Google Patents

Positive electrode for nonaqueous electrolyte secondary batteries, mixture material for positive electrodes of nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2015064977A
JP2015064977A JP2013197301A JP2013197301A JP2015064977A JP 2015064977 A JP2015064977 A JP 2015064977A JP 2013197301 A JP2013197301 A JP 2013197301A JP 2013197301 A JP2013197301 A JP 2013197301A JP 2015064977 A JP2015064977 A JP 2015064977A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
weight
electrolyte secondary
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013197301A
Other languages
Japanese (ja)
Inventor
美優 根本
Miyu Nemoto
美優 根本
昌明 久保田
Masaaki Kubota
昌明 久保田
阿部 英俊
Hidetoshi Abe
英俊 阿部
祐一 田中
Yuichi Tanaka
祐一 田中
洋一 兒島
Yoichi Kojima
洋一 兒島
幸翁 本川
Sachio Motokawa
幸翁 本川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
UACJ Corp
Original Assignee
Furukawa Battery Co Ltd
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd, UACJ Corp filed Critical Furukawa Battery Co Ltd
Priority to JP2013197301A priority Critical patent/JP2015064977A/en
Publication of JP2015064977A publication Critical patent/JP2015064977A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide: a positive electrode for nonaqueous electrolyte secondary batteries which has an irreversible capacity and is suitable for increasing the energy density of a secondary battery; a mixture material for positive electrodes of nonaqueous electrolyte secondary batteries; and a nonaqueous electrolyte secondary battery.SOLUTION: A positive electrode for nonaqueous electrolyte secondary batteries comprises: a positive electrode active material; and an additive agent to the positive electrode active material. The positive electrode active material is any one of LiCoNiMnO(x+y+z=1), LiCoNiAlO, and LiNiMnOwhich are at least capable of occluding and releasing lithium. The additive agent includes at least silicon (Si); the content of the silicon is 0.1-15 pts.wt. to 100 pts.wt. of the positive electrode active material.

Description

本発明は、少なくともリチウムの吸蔵放出が可能な非水電解質二次電池用の正極、正極用合材および非水電解質二次電池に関する。   The present invention relates to a positive electrode for a non-aqueous electrolyte secondary battery capable of occluding and releasing lithium, a positive electrode composite, and a non-aqueous electrolyte secondary battery.

近年、非水電解質二次電池は、高エネルギー密度を有する等の理由から、広く普及している。このような非水電解質二次電池には、正極−負極間にリチウムイオンを移動させて充放電を行う原理が利用されている。
非水電解質二次電池に用いられる正極活物質として、コバルト酸リチウム(LiCoO2)およびニッケル酸リチウム(LiNiO2)などの層状岩塩構造を有する化合物や、マンガン酸リチウム(LiMn24)などのスピネル型構造を有する化合物などのリチウム遷移金属複合酸化物が知られている。また、これらの複合酸化物における遷移金属の一部を、他の金属で置換した化合物も提案されている。
In recent years, non-aqueous electrolyte secondary batteries have become widespread for reasons such as having a high energy density. Such a nonaqueous electrolyte secondary battery utilizes the principle of charging and discharging by moving lithium ions between the positive electrode and the negative electrode.
As a positive electrode active material used for a nonaqueous electrolyte secondary battery, a compound having a layered rock salt structure such as lithium cobaltate (LiCoO 2 ) and lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), etc. Lithium transition metal composite oxides such as compounds having a spinel structure are known. In addition, compounds in which part of the transition metal in these composite oxides is substituted with other metals have been proposed.

また、負極活物質として、グラファイトやハードカーボンなどの炭素材料が一般的に使用されている。また、最近では電池のエネルギー密度向上のために、ケイ素やスズなどの高容量を有する金属系材料が検討されている。
非水電解質二次電池は、一般的に正極と比べて負極の不可逆容量が大きい。そのため、初回の充電で正極から負極に挿入されたリチウムが、放電時に負極から放出されずに負極中に残存してしまうため、正極の容量低下、および、電池の容量低下が生じる。
不可逆容量を増加させて高エネルギー密度化を図る技術として、例えば、特許文献1〜4に記載の技術が提案されている。
Further, carbon materials such as graphite and hard carbon are generally used as the negative electrode active material. Recently, in order to improve the energy density of batteries, metal materials having a high capacity such as silicon and tin have been studied.
A nonaqueous electrolyte secondary battery generally has a larger irreversible capacity of a negative electrode than a positive electrode. Therefore, lithium inserted into the negative electrode from the positive electrode in the first charge remains in the negative electrode without being discharged from the negative electrode during discharge, resulting in a decrease in the capacity of the positive electrode and a decrease in the capacity of the battery.
For example, techniques described in Patent Documents 1 to 4 have been proposed as techniques for increasing the irreversible capacity to increase the energy density.

特許文献1には、正極層中に活物質とは別にLiyNi1xTix2(式中、0<x<0.7であり、1≦y≦1.1である)で表される化合物を添加剤として適量含有する正極を形成し、この正極を備えた非水電解液二次電池のカットオフ電位を4.2〜5.0Vに設定することにより、正極の不可逆容量を増加させることが記載されている。 In Patent Document 1, Li y Ni 1 -x Ti x O 2 (where 0 <x <0.7 and 1 ≦ y ≦ 1.1) is provided separately from the active material in the positive electrode layer. An irreversible capacity of the positive electrode is obtained by forming a positive electrode containing an appropriate amount of the represented compound as an additive and setting the cut-off potential of the non-aqueous electrolyte secondary battery equipped with the positive electrode to 4.2 to 5.0 V. Is described.

特許文献2には、負極と対向する正極表面上にリチウム金属膜を形成し、初回の充電で、負極の不可逆容量分のリチウムを負極に補填することが記載されている。特許文献3には、セパレータの表面に金属リチウムを設けて負極の不可逆容量分のリチウムを負極に補填することが記載されている。   Patent Document 2 describes that a lithium metal film is formed on the surface of the positive electrode facing the negative electrode, and lithium for the irreversible capacity of the negative electrode is filled in the negative electrode by the first charge. Patent Document 3 describes that metallic lithium is provided on the surface of a separator to supplement the negative electrode with lithium for the irreversible capacity of the negative electrode.

特許文献4には、リチウム付与源と、ケイ素やスズを活物質とした負極で少なくとも1サイクル充放電を行うことにより、負極の不可逆容量分のリチウムを負極に補填して、その後、不可逆容量分のリチウムを補填した負極と正極とでリチウムイオン二次電池を構築する方法が記載されている。   In Patent Document 4, at least one cycle of charge and discharge is performed with a lithium supply source and a negative electrode using silicon or tin as an active material, thereby supplementing the negative electrode with lithium for the irreversible capacity of the negative electrode. Describes a method of constructing a lithium ion secondary battery with a negative electrode and a positive electrode supplemented with lithium.

特開2010−129481号公報JP 2010-129481 A 特開2004−87251号公報Japanese Patent Laid-Open No. 2004-87251 特開2007−220452号公報JP 2007-220552 A 特開2008−4466号公報JP 2008-4466 Gazette

しかしながら、本発明者等が鋭意検討した結果、従来先行技術には以下の問題点があった。
特許文献1には、LiyNi1xTix2で表される化合物を添加剤として使用することが記載されているが、不可逆容量だけでなく、可逆容量も有するため、正極の不可逆容量を増加させるためには添加量が多くなり、電池のエネルギー密度の低下を招く。さらに、活物質としての機能も有することから、充放電を繰り返すことにより劣化が生じる場合がある。
However, as a result of intensive studies by the present inventors, the conventional prior art has the following problems.
Patent Document 1, Li y Ni 1 - x Ti x O 2 may be used as an additive a compound represented by the listed, but also irreversible capacity, since also have reversible capacity, irreversible positive In order to increase the capacity, the amount of addition increases, leading to a decrease in the energy density of the battery. Furthermore, since it also has a function as an active material, deterioration may occur due to repeated charge and discharge.

特許文献2には、正極表面上に形成したリチウム金属膜により負極の不可逆容量を補填すると記載され、また、特許文献3には、セパレータ表面上に形成したリチウム金属膜により負極の不可逆容量を補填すると記載されている。これらリチウム金属膜を正極やセパレータに形成する方法として蒸着が推奨されているが、耐熱性の低いバインダやポリオレフィンを正極やセパレ−タに使用しているため、劣化が生じる場合がある。さらに、リチウム金属膜形成のための製造設備の増加や、形成したリチウム金属と水分の反応を抑止するための設備が必要となる。   Patent Document 2 describes that the irreversible capacity of the negative electrode is compensated by the lithium metal film formed on the surface of the positive electrode, and Patent Document 3 describes that the irreversible capacity of the negative electrode is compensated by the lithium metal film formed on the surface of the separator. Then it is described. Vapor deposition is recommended as a method for forming these lithium metal films on the positive electrode and the separator, but deterioration may occur because a binder or polyolefin having low heat resistance is used for the positive electrode or the separator. Furthermore, an increase in manufacturing equipment for forming a lithium metal film and equipment for suppressing the reaction between the formed lithium metal and moisture are required.

特許文献4では、ケイ素やスズを活物質とした負極の不可逆容量を補填するための専用セルが必要であり、少なくとも1サイクルの充放電を行い、不可逆容量を補填した負極を専用セルから分離して電池を構築するとあるが、ケイ素やスズは充放電による体積変化が非常に大きいため、1サイクルでも充放電すると負極活物質の脱落が生じる場合がある。   In Patent Document 4, a dedicated cell for filling the irreversible capacity of the negative electrode using silicon or tin as an active material is necessary, and at least one cycle of charge / discharge is performed to separate the negative electrode supplemented with the irreversible capacity from the dedicated cell. However, since silicon and tin have a very large volume change due to charge / discharge, the negative electrode active material may fall off even if charge / discharge is performed even in one cycle.

本発明は、上述した事情を鑑みてなされたものであり、二次電池の高エネルギー密度化に好適な不可逆容量を有する非水電解質二次電池用の正極、非水電解質二次電池の正極用合材および非水電解質二次電池を提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and is a positive electrode for a nonaqueous electrolyte secondary battery having an irreversible capacity suitable for increasing the energy density of a secondary battery, and a positive electrode for a nonaqueous electrolyte secondary battery. An object is to provide a composite material and a non-aqueous electrolyte secondary battery.

上述した課題を解決するため、本発明の非水電解質二次電池の正極は、少なくともリチウムの吸蔵放出が可能な正極活物質を含み、前記正極活物質への添加剤として少なくともケイ素(Si)を含有し、前記ケイ素の含有量が、正極活物質100重量部に対して0.1重量部以上、15重量部以下であることを特徴とする。この構成によれば、ケイ素の含有量に応じた不可逆容量を得ることができ、ケイ素の含有量を、正極活物質100重量部に対して0.1質量部以上、15質量部以下にしたため、二次電池の高エネルギー密度化に好適な不可逆容量を有する正極を容易に得ることができる。さらに、この不可逆容量は4V付近で発現するので、電解液の分解やガスの発生、活物質の劣化などを抑制することができる。   In order to solve the above-described problems, the positive electrode of the nonaqueous electrolyte secondary battery of the present invention includes at least a positive electrode active material capable of occluding and releasing lithium, and at least silicon (Si) as an additive to the positive electrode active material. And the silicon content is 0.1 to 15 parts by weight with respect to 100 parts by weight of the positive electrode active material. According to this configuration, an irreversible capacity according to the silicon content can be obtained, and the silicon content is 0.1 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. A positive electrode having an irreversible capacity suitable for increasing the energy density of the secondary battery can be easily obtained. Furthermore, since this irreversible capacity appears in the vicinity of 4 V, it is possible to suppress decomposition of the electrolyte, generation of gas, deterioration of the active material, and the like.

上記構成において、前記正極活物質は、LiCoxNiyMnz2(x+y+z=1)、LiCo0.15Ni0.8Al0.052、もしくはLiNi0.5Mn1.54のいずれかであることを特徴とする。また、上記構成において、前記正極がさらに、導電材を含むことを特徴とする。この構成によれば、電子の伝導性を向上させることができる。また、前記正極がさらに、結着剤を含むことによって、活物質やSiなどの固着性を向上させることができる。 In the above configuration, the positive electrode active material is any one of LiCo x Ni y Mn z O 2 (x + y + z = 1), LiCo 0.15 Ni 0.8 Al 0.05 O 2 , or LiNi 0.5 Mn 1.5 O 4. . In the above structure, the positive electrode further includes a conductive material. According to this configuration, electron conductivity can be improved. Further, the positive electrode further includes a binder, thereby improving the adhesion of the active material and Si.

また、本発明の非水電解質二次電池の正極用合材は、少なくともリチウムの吸蔵放出が可能なLiCoxNiyMnz2(x+y+z=1)、LiCo0.15Ni0.8Al0.052、もしくはLiNi0.5Mn1.54のいずれかを含む正極活物質、ケイ素(Si)および結着剤を含有することを特徴とする。この正極用合材を用いることにより、二次電池の高エネルギー密度化に好適な不可逆容量を有する正極を容易に得ることができる。 The non-aqueous electrolyte secondary positive electrode mixture member of the battery of the present invention, capable of at least lithium storage and release LiCo x Ni y Mn z O 2 (x + y + z = 1), LiCo 0.15 Ni 0.8 Al 0.05 O 2, or It contains a positive electrode active material containing any of LiNi 0.5 Mn 1.5 O 4 , silicon (Si), and a binder. By using this positive electrode mixture, a positive electrode having an irreversible capacity suitable for increasing the energy density of the secondary battery can be easily obtained.

また、本発明の非水電解質二次電池は、上記した正極と、リチウムの吸蔵放出が可能な負極と、これら正負極間に配置されたセパレータと、非水電解質とを備えたことを特徴とする。この構成によれば、負極の不可逆容量と同等の不可逆容量の正極を有し、高エネルギー密度の二次電池を得ることができる。   The non-aqueous electrolyte secondary battery of the present invention includes the above-described positive electrode, a negative electrode capable of occluding and releasing lithium, a separator disposed between the positive and negative electrodes, and a non-aqueous electrolyte. To do. According to this configuration, a secondary battery having an irreversible capacity equivalent to the irreversible capacity of the negative electrode and having a high energy density can be obtained.

本発明の非水電解質二次電池の正極は、少なくともリチウムの吸蔵放出が可能な正極活物質を含み、前記正極活物質への添加剤として少なくともケイ素(Si)を含有し、前記ケイ素の含有量が、正極活物質100重量部に対して0.1重量部以上、15重量部以下であるため、非水電解質二次電池の高エネルギー密度化に好適な不可逆容量を有する正極を容易に得ることができる。   The positive electrode of the non-aqueous electrolyte secondary battery of the present invention contains at least a positive electrode active material capable of occluding and releasing lithium, contains at least silicon (Si) as an additive to the positive electrode active material, and the silicon content However, since it is 0.1 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the positive electrode active material, a positive electrode having an irreversible capacity suitable for increasing the energy density of the nonaqueous electrolyte secondary battery can be easily obtained. Can do.

不可逆容量の異なる正極と負極との組み合わせを模式的に示した図である。It is the figure which showed typically the combination of the positive electrode and negative electrode from which irreversible capacity | capacitance differs. 正極活物質を変化させたときの充放電曲線を示した図である。It is the figure which showed the charging / discharging curve when changing a positive electrode active material.

本発明者等は従来技術の問題点について鋭意検討した結果、所定の正極活物質層中に、正極活物質と、該活物質とは別に正極活物質への添加剤(正極添加剤とも言う)としてケイ素(Si)を含有した電極を、非水電解質二次電池用の正極(正極板とも言う)として用いることにより、正極の不可逆容量を容易に制御できることを見出した。   As a result of intensive studies on the problems of the prior art, the present inventors have found that in a predetermined positive electrode active material layer, a positive electrode active material and an additive to the positive electrode active material separately from the active material (also referred to as a positive electrode additive) It was found that the irreversible capacity of the positive electrode can be easily controlled by using an electrode containing silicon (Si) as a positive electrode for a nonaqueous electrolyte secondary battery (also referred to as a positive electrode plate).

本発明の実施形態に係る非水電解質二次電池用の正極について説明する。この正極は、正極活物質やSiなどを含有する正極用合材を集電体に塗布した後、乾燥により溶媒を蒸発、飛散させることにより作製される。
正極活物質は、非水電解質二次電池に使用できるものであれば特に制限されず、例えば、LiCoO2、LiNiO2、LiMn24、LiFePO4、LiCo1/3Ni1/3Mn1/32、LiCo0.15Ni0.8Al0.052、LiNi0.5Mn1.54などのリチウム金属酸化物を挙げることができる。特に、LiCoxNiyMnz2(x+y+z=1)、LiCo0.15Ni0.8Al0.052、もしくはLiNi0.5Mn1.54であることが好ましく、さらには粒子表面に数nmのカーボンがコーティングされていることが好ましい。
なお、前記正極活物質の添加量としては、正極合材全量中に75.0〜99.8質量%が好ましく、75.0質量%未満だと電池容量の増加が望めないことがある。また、99.8質量%を超えると必然的に導電材・結着剤量が減少し、内部抵抗の増大・結着性の低下から電池容量の減少を招くことがある。
A positive electrode for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention will be described. The positive electrode is produced by applying a positive electrode mixture containing a positive electrode active material or Si to a current collector and then evaporating and scattering the solvent by drying.
The positive electrode active material is not particularly limited as long as it can be used for a nonaqueous electrolyte secondary battery. For example, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFePO 4 , LiCo 1/3 Ni 1/3 Mn 1 / Examples thereof include lithium metal oxides such as 3 O 2 , LiCo 0.15 Ni 0.8 Al 0.05 O 2 , and LiNi 0.5 Mn 1.5 O 4 . In particular, LiCo x Ni y Mn z O 2 (x + y + z = 1), it is preferable that LiCo 0.15 Ni 0.8 Al 0.05 O 2 , or a LiNi 0.5 Mn 1.5 O 4, further be carbon coating of several nm on the particle surface It is preferable.
In addition, as addition amount of the said positive electrode active material, 75.0-99.8 mass% is preferable in the positive electrode compound material whole quantity, and when it is less than 75.0 mass%, an increase in battery capacity may not be expected. On the other hand, when the amount exceeds 99.8% by mass, the amount of the conductive material / binder is inevitably reduced, and the battery capacity may be reduced due to an increase in internal resistance and a decrease in binding properties.

なお、本発明で言うケイ素(Si)は、Si粉末、酸化Si(SiO、SiO2)、Siを含有する合金(例えば、Al−Si、Fe−Si)などを利用することができる。純度は、不純物の影響を避けるために95%以上であることが好ましく、99%以上であると特に好ましい。 As silicon (Si) in the present invention, Si powder, oxidized Si (SiO, SiO 2 ), an alloy containing Si (for example, Al—Si, Fe—Si), or the like can be used. The purity is preferably 95% or more in order to avoid the influence of impurities, and particularly preferably 99% or more.

正極活物質層には、正極活物質に加えて、Siが含有されており,粉末状の形態で用いられる。本発明において、Siの含有量は、正極活物質100重量部に対して0.1重量部以上、15重量部以下が好ましく、0.1重量部未満だと十分な負荷逆容量が得られず、15重量部を越えると初回放電容量の低下が激しくなる。また、Siの粒子径は、0.1μm〜50μmが好ましく、0.1μm未満では取り扱いが困難なことがある。また、Siの粒子径は、50μmを越えると均一に塗布することが難しいことがある。正極活物質層中のSiの含有量は、正極と組み合わせられる負極(負極板とも言う)の不可逆容量によって適宜調整される。   The positive electrode active material layer contains Si in addition to the positive electrode active material, and is used in a powder form. In the present invention, the content of Si is preferably 0.1 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the positive electrode active material. When the amount exceeds 15 parts by weight, the initial discharge capacity is drastically reduced. Moreover, the particle diameter of Si is preferably 0.1 μm to 50 μm, and if it is less than 0.1 μm, handling may be difficult. Further, when the particle diameter of Si exceeds 50 μm, it may be difficult to apply uniformly. The content of Si in the positive electrode active material layer is appropriately adjusted depending on the irreversible capacity of a negative electrode (also referred to as a negative electrode plate) combined with the positive electrode.

ここで、図1には、不可逆容量の異なる正極と負極との組み合わせを模式的に示した図である。図1中、正極Aは、従来の一般的な正極、つまり、負極と比べて不可逆容量が格段に小さい正極を示している。
また、図1中、正極Bは、本実施形態で用いる正極(例えば、LiCo1/3Ni1/3Mn1/32)を示している。なお、図1には、正極A、Bを、図1中の負極と各々組み合わせた場合の充放電の終了位置を模式的に示している。
図1に示すように、本実施形態では、正極Bを、負極の不可逆容量と同等の不可逆容量を有するようにSiの添加量を調整することによって、正極Aと比べて、負極の不可逆容量による電池の容量低下を抑制することができ、充放電できる電池容量、つまり、二次電池の容量を増やすことができる。
Here, FIG. 1 is a diagram schematically showing a combination of a positive electrode and a negative electrode having different irreversible capacities. In FIG. 1, a positive electrode A indicates a conventional general positive electrode, that is, a positive electrode having a remarkably small irreversible capacity compared to a negative electrode.
Further, in FIG. 1, a positive electrode B indicates a positive electrode (for example, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 ) used in the present embodiment. FIG. 1 schematically shows the end positions of charge and discharge when the positive electrodes A and B are combined with the negative electrode in FIG.
As shown in FIG. 1, in this embodiment, the positive electrode B has an irreversible capacity of the negative electrode as compared with the positive electrode A by adjusting the addition amount of Si so as to have an irreversible capacity equivalent to the irreversible capacity of the negative electrode. Battery capacity reduction can be suppressed, and the battery capacity that can be charged and discharged, that is, the capacity of the secondary battery can be increased.

詳細には、電池設計の負極容量/正極容量の比が値1を超えるため初充電時には、電池容量は正極容量制御となる。また、初充電時に負極容量の一部が副反応によって消費されるため電池の容量として使用できる負極容量が減少し、副反応によって消費された容量が負極の不可逆容量となる。放電時の電池容量は、負極の不可逆容量によって負極制御となるため、正極に可逆容量があっても電池容量として使用できない。しかし、本実施形態では正極の不可逆容量を増やすことによって電池容量で使用可能な正極の可逆容量が増えるので、電池の容量を増加させることができる。
これによって、高エネルギー密度の非水電解質二次電池を得ることが可能になる。
Specifically, since the ratio of negative electrode capacity / positive electrode capacity in the battery design exceeds the value 1, the battery capacity is positive electrode capacity control at the time of initial charge. In addition, since a part of the negative electrode capacity is consumed by the side reaction at the time of initial charge, the negative electrode capacity that can be used as the capacity of the battery is reduced, and the capacity consumed by the side reaction becomes the irreversible capacity of the negative electrode. Since the battery capacity at the time of discharge is controlled by the irreversible capacity of the negative electrode, the battery capacity cannot be used even if the positive electrode has a reversible capacity. However, in this embodiment, by increasing the irreversible capacity of the positive electrode, the reversible capacity of the positive electrode that can be used with the battery capacity increases, so that the capacity of the battery can be increased.
This makes it possible to obtain a non-aqueous electrolyte secondary battery with a high energy density.

正極用合材は、上述した正極活物質およびSiに加え、導電材や結着剤を更に含有することが好ましい。また、正極用合材は、更に増粘剤や分散剤を含有していても良い。   In addition to the positive electrode active material and Si described above, the positive electrode mixture preferably further contains a conductive material and a binder. Moreover, the positive electrode mixture may further contain a thickener or a dispersant.

導電材は、特に限定されるものではなく、公知または市販のものを使用することができる。例えば、アセチレンブラック、ケッチェンブラックなどのカーボンブラック、カーボンナノチューブ、炭素繊維、活性炭、黒鉛などが挙げられる。
なお、導電材の添加量としては、正極活物質100重量部に対して0.1〜15.0重量部が好ましく、0.1重量部未満だと内部抵抗が増加し、電池容量の増加が望めないことがある。また、15.0重量部を超えると必然的に活物質量が減少し、電池容量の減少を招くことがある。
The conductive material is not particularly limited, and a known or commercially available material can be used. Examples thereof include carbon black such as acetylene black and ketjen black, carbon nanotubes, carbon fibers, activated carbon, and graphite.
The addition amount of the conductive material is preferably 0.1 to 15.0 parts by weight with respect to 100 parts by weight of the positive electrode active material, and if it is less than 0.1 parts by weight, the internal resistance increases and the battery capacity increases. There are things I can't expect. On the other hand, when the amount exceeds 15.0 parts by weight, the amount of the active material is inevitably reduced, and the battery capacity may be reduced.

結着剤は、特に限定されるものではなく、公知または市販のものを使用することができる。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリビニルピロリドン(PVP)、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン−プロピレン共重合体、スチレンブタジエンゴム(SBR)、アクリル樹脂などが挙げられる。
なお、前記結着剤の添加量としては、正極活物質100重量部に対して0.1〜10.0重量部が好ましく、0.1重量部未満だと活物質層と集電体の結着性が落ち、活物質層の欠落に繋がることがある。また、10.0重量部を超えると必然的に活物質量が減少し、電池容量の減少を招くことがある。
A binder is not specifically limited, A well-known or commercially available thing can be used. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinylpyrrolidone (PVP), polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), ethylene-propylene copolymer, styrene butadiene rubber (SBR), acrylic resin, and the like.
The addition amount of the binder is preferably 0.1 to 10.0 parts by weight with respect to 100 parts by weight of the positive electrode active material. Wearability may drop, leading to loss of the active material layer. On the other hand, if the amount exceeds 10.0 parts by weight, the amount of the active material inevitably decreases, which may lead to a decrease in battery capacity.

溶媒は、特に限定されるものではなく、公知または市販のものを使用できる。例えば、N−メチル−2−ピロリドンが挙げられる。結着剤としてポリフッ化ビニリデンを用いる場合には、N−メチル−2−ピロリドンを溶媒に用いることが好ましい。   The solvent is not particularly limited, and known or commercially available solvents can be used. An example is N-methyl-2-pyrrolidone. When using polyvinylidene fluoride as a binder, it is preferable to use N-methyl-2-pyrrolidone as a solvent.

負極は、非水電解質二次電池に使用できるものであれば特に制限されるものではなく、リチウムの吸蔵放出が可能なグラファイト負極や金属・酸化物・合金系の負極を広く適用可能である。
負極活物質は、特に制限されるものではなく、例えば、天然黒鉛や人造黒鉛、メソカーボンマイクロビーズ(MCMB)、ハードカーボンやソフトカーボンなどの炭素材料、Al、Si、Snなどのリチウムを吸蔵放出することができる金属材料や合金材料、SiO、SiO2、チタン酸リチウム(Li4Ti512)などの酸化物材料などを用いることができる。
The negative electrode is not particularly limited as long as it can be used for a non-aqueous electrolyte secondary battery, and a graphite negative electrode capable of occluding and releasing lithium and a metal / oxide / alloy negative electrode are widely applicable.
The negative electrode active material is not particularly limited. For example, natural graphite, artificial graphite, mesocarbon microbeads (MCMB), carbon materials such as hard carbon and soft carbon, and lithium such as Al, Si, and Sn are occluded and released. Metal materials and alloy materials that can be used, oxide materials such as SiO, SiO 2 , and lithium titanate (Li 4 Ti 5 0 12 ) can be used.

結着剤は、特に制限されるものではなく、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、スチレンブタジエンゴム、コアシェルバインダー、ポリビニルアルコール、ポリイミドやポリアミドイミドなどのイミド系樹脂などを用いることができる。   The binder is not particularly limited, and examples thereof include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine rubber, styrene butadiene rubber, core shell binder, polyvinyl alcohol, polyimide, and polyamideimide. An imide resin or the like can be used.

導電助材は、正極に用いるものと同様のもの、例えば、アセチレンブラック、ケッチェンブラックなどのカーボンブラック、活性炭、黒鉛などが用いられる。
正極と負極のセパレータには、一般的に用いられているポリエチレン(PE)、ポリプロピレン(PP)などの高分子膜が用いられる。また、非水電解質には、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)などの有機溶媒に溶解させた六フッ化リン酸リチウム(LiPF6)、過塩素酸リチウム(LiClO4)が用いられる。
As the conductive additive, the same materials as those used for the positive electrode, for example, carbon black such as acetylene black and ketjen black, activated carbon, graphite and the like are used.
For the separator between the positive electrode and the negative electrode, generally used polymer films such as polyethylene (PE) and polypropylene (PP) are used. As the non-aqueous electrolyte, lithium hexafluorophosphate (LiPF 6 ) or lithium perchlorate (LiClO 4 ) dissolved in an organic solvent such as ethylene carbonate (EC) or diethyl carbonate (DEC) is used.

集電体は、特に限定されるものではなく、例えば、アルミニウム箔や銅箔などの金属箔、多孔質アルミニウムなどの多孔質金属などを用いることができる。   The current collector is not particularly limited, and for example, a metal foil such as an aluminum foil or a copper foil, a porous metal such as porous aluminum, or the like can be used.

以下に、実施例および比較例を挙げて本発明をより一層詳述する。なお、本発明は、以下の実施例に限定されるものではない。   Below, an Example and a comparative example are given and this invention is explained in full detail. The present invention is not limited to the following examples.

<実施例1>
(正極の作製)
正極活物質として、炭素被覆LiCo1/3Ni1/3Mn1/32(炭素含有量1.2±0.5重量部、炭素被覆厚さ2〜3nm)100重量部と、導電材としてアセチレンブラック3.5重量部とケッチェンブラック3.5重量部と、結着剤としてポリフッ化ビニリデン4.5重量部(固形分として)と、正極活物質への添加剤として、粒径が5μm、純度99.9%のSi粉末を正極活物質100重量部に対して5重量部とを含有する正極用合材を用意し、この正極用合材を、溶媒であるN−メチル−2−ピロリドンに分散して、スラリーを調製した。
このスラリーを、集電体である厚み20μmのアルミニウム箔に塗布し(塗工量;140g/m2)、70℃で10分間乾燥させた後、所定の電極密度(2.75g/cc)になるまでプレス処理により加圧し、正極1を作製した。
<Example 1>
(Preparation of positive electrode)
As a positive electrode active material, carbon coated LiCo 1/3 Ni 1/3 Mn 1/3 O 2 (carbon content 1.2 ± 0.5 parts by weight, carbon coating thickness 2 to 3 nm) 100 parts by weight, conductive material As a binder, 3.5 parts by weight of acetylene black and 3.5 parts by weight of ketjen black, 4.5 parts by weight of polyvinylidene fluoride (as solids) as a binder, and a particle size as an additive to the positive electrode active material A positive electrode mixture containing 5 μm of Si powder having a purity of 99.9% and 5 parts by weight with respect to 100 parts by weight of the positive electrode active material was prepared, and this positive electrode mixture was used as a solvent, N-methyl-2 -Dispersed in pyrrolidone to prepare slurry.
This slurry was applied to an aluminum foil having a thickness of 20 μm as a current collector (coating amount; 140 g / m 2 ), dried at 70 ° C. for 10 minutes, and then adjusted to a predetermined electrode density (2.75 g / cc). Pressurization was performed by pressing until the positive electrode 1 was produced.

(評価セルの作製)
正極1を作用極に用いた3極式評価セルを作製した。対極および参照極にはリチウム金属を用いた。電解液には、エチレンカーボネート、エチルメチルカーボネート、ジメチルカーボネートとの混合溶媒(体積比で2:5:3)にLiPF6を1.3mol/L溶解させた非水電解液を用い、セパレータには、微多孔質ポリエチレン膜を用いた。外装体には、ポリプロピレンブロックを加工した樹脂製容器を用い、作用極、対極及び参照極に設けた各端子の開放端部が外部露出するように電極群を収納封口した。
(Production of evaluation cell)
A tripolar evaluation cell using the positive electrode 1 as a working electrode was produced. Lithium metal was used for the counter electrode and the reference electrode. The electrolyte used was a non-aqueous electrolyte obtained by dissolving 1.3 mol / L of LiPF 6 in a mixed solvent (volume ratio 2: 5: 3) with ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate. A microporous polyethylene membrane was used. A resin container in which a polypropylene block was processed was used for the exterior body, and the electrode group was housed and sealed so that the open ends of the terminals provided on the working electrode, the counter electrode, and the reference electrode were exposed to the outside.

(電池試験)
上記電池を用いて、充放電特性の評価を行った。充放電試験は0.1Cで4.3Vまで充電し、0.1Cで2.75Vまで放電させた。このときの充電容量、放電容量、充電容量と放電容量の差である不可逆容量、充電容量に対する放電容量の割合である効率について調査した。
(Battery test)
The charge / discharge characteristics were evaluated using the battery. In the charge / discharge test, the battery was charged to 4.3 V at 0.1 C and discharged to 2.75 V at 0.1 C. The charging capacity, the discharging capacity, the irreversible capacity that is the difference between the charging capacity and the discharging capacity, and the efficiency that is the ratio of the discharging capacity to the charging capacity were investigated.

<実施例2>
LiCo0.2Ni0.5Mn0.32を正極活物質とした以外は実施例1と同様に正極2を作製した。次いで、当該正極2を試験極としたこと以外は実施例1と同様の評価セルを作製し、実施例1と同様の電池試験を実施した。
<Example 2>
A positive electrode 2 was produced in the same manner as in Example 1 except that LiCo 0.2 Ni 0.5 Mn 0.3 O 2 was used as the positive electrode active material. Next, an evaluation cell similar to that in Example 1 was prepared except that the positive electrode 2 was used as a test electrode, and a battery test similar to that in Example 1 was performed.

<実施例3>
LiCo0.15Ni0.8Al0.052を正極活物質とした以外は実施例1と同様に正極3を作製した。次いで、当該正極3を試験極としたこと以外は実施例1と同様の評価セルを作製し、実施例1と同様の電池試験を実施した。
<Example 3>
A positive electrode 3 was produced in the same manner as in Example 1 except that LiCo 0.15 Ni 0.8 Al 0.05 O 2 was used as the positive electrode active material. Next, an evaluation cell similar to that in Example 1 was prepared except that the positive electrode 3 was used as a test electrode, and a battery test similar to that in Example 1 was performed.

<実施例4>
LiNi0.5Mn1.54を正極活物質とした以外は実施例1と同様に正極4を作製した。次いで、当該正極4を試験極としたこと以外は実施例1と同様の評価セルを作製し、充放電試験を4.9Vまで充電し、3Vまで放電させた以外は実施例1と同様の電池試験を実施した。
<Example 4>
A positive electrode 4 was produced in the same manner as in Example 1 except that LiNi 0.5 Mn 1.5 O 4 was used as the positive electrode active material. Next, an evaluation cell similar to that in Example 1 was prepared except that the positive electrode 4 was used as a test electrode, and the same battery as in Example 1 was charged except that the charge / discharge test was charged to 4.9 V and discharged to 3 V. The test was conducted.

<比較例1>
正極活物質としてLiCo1/3Ni1/3Mn1/32を用い、Si粉末を添加しなかった以外は実施例1と同様に、正極5を作製した。
正極5を試験極としたこと以外は実施例1と同様の評価セルを作製し、実施例1と同様の電池試験を実施した。
<Comparative Example 1>
A positive electrode 5 was produced in the same manner as in Example 1 except that LiCo 1/3 Ni 1/3 Mn 1/3 O 2 was used as the positive electrode active material and no Si powder was added.
An evaluation cell similar to that in Example 1 was prepared except that the positive electrode 5 was used as a test electrode, and a battery test similar to that in Example 1 was performed.

<比較例2>
正極活物質としてLiCo0.2Ni0.5Mn0.32を用い、Si粉末を添加しなかった以外は比較例1と同様に正極6を作製した。次いで、当該正極6を試験極としたこと以外は実施例1と同様の評価セルを作製し、実施例1と同様の電池試験を実施した。
<Comparative Example 2>
A positive electrode 6 was produced in the same manner as in Comparative Example 1 except that LiCo 0.2 Ni 0.5 Mn 0.3 O 2 was used as the positive electrode active material and no Si powder was added. Next, an evaluation cell similar to that in Example 1 was prepared except that the positive electrode 6 was used as a test electrode, and a battery test similar to that in Example 1 was performed.

<比較例3>
正極活物質としてLiCo0.15Ni0.8Al0.052を用い、Si粉末を添加しなかった以外は比較例1と同様に正極7を作製した。次いで、当該正極7を試験極としたこと以外は実施例1と同様の評価セルを作製し、実施例1と同様の電池試験を実施した。
<Comparative Example 3>
A positive electrode 7 was produced in the same manner as in Comparative Example 1 except that LiCo 0.15 Ni 0.8 Al 0.05 O 2 was used as the positive electrode active material and no Si powder was added. Next, an evaluation cell similar to that in Example 1 was prepared except that the positive electrode 7 was used as a test electrode, and a battery test similar to that in Example 1 was performed.

<比較例4>
正極活物質としてLiNi0.5Mn1.54を用い、Siを添加しなかった以外は比較例1と同様に正極8を作製した。次いで、当該正極8を試験極としたこと以外は実施例1と同様の評価セルを作製し、実施例4と同様の電池試験を実施した。
<Comparative Example 4>
A positive electrode 8 was produced in the same manner as in Comparative Example 1 except that LiNi 0.5 Mn 1.5 O 4 was used as the positive electrode active material and Si was not added. Next, an evaluation cell similar to that in Example 1 was prepared except that the positive electrode 8 was used as a test electrode, and a battery test similar to that in Example 4 was performed.

夫々作製した正極1〜正極8を用いた評価セルの初回充電容量、初回放電容量、正極不可逆容量、充電容量に対する放電容量の割合である効率を表1に示す。また、正極1〜5の充放電曲線を図2に示す。   Table 1 shows the initial charge capacity, the initial discharge capacity, the positive electrode irreversible capacity, and the efficiency, which is the ratio of the discharge capacity to the charge capacity, of the evaluation cells using the positive electrode 1 to the positive electrode 8 respectively produced. Moreover, the charging / discharging curve of the positive electrodes 1-5 is shown in FIG.

Figure 2015064977
Figure 2015064977

表1、図2に示す結果から明らかなように、正極活物質100重量部に対して粒径が5μm、純度99.9%のSi粉末を5重量部添加した正極1〜正極4は、Si粉末を添加していない正極5〜正極8に比べて、初回充電容量と正極不可逆容量が大きく、さらに、初回放電容量はほぼ同等であるため、低い効率(39.9%〜76.2%)である。このような性能が得られる要因は、4V(対Li)付近に、Siに由来する酸化反応が生じるためと考えられる。   As is clear from the results shown in Table 1 and FIG. 2, the positive electrode 1 to the positive electrode 4 in which 5 parts by weight of Si powder having a particle size of 5 μm and a purity of 99.9% are added to 100 parts by weight of the positive electrode active material are Si Compared with the positive electrode 5 to the positive electrode 8 to which no powder is added, the initial charge capacity and the positive electrode irreversible capacity are large, and the initial discharge capacity is almost the same, so the efficiency is low (39.9% to 76.2%). It is. It is thought that the reason why such performance is obtained is that an oxidation reaction derived from Si occurs in the vicinity of 4 V (vs. Li).

<実施例5>
粒径が5μm、純度99.9%のSi粉末の添加量を正極活物質100重量部に対して0.1重量部とした以外は実施例1と同様に正極9を作製した。次いで、当該正極9を試験極としたこと以外は実施例1と同様の評価セルを作製し、実施例1と同様の電池試験を実施した。
<Example 5>
A positive electrode 9 was produced in the same manner as in Example 1 except that the amount of Si powder having a particle size of 5 μm and a purity of 99.9% was 0.1 part by weight with respect to 100 parts by weight of the positive electrode active material. Next, an evaluation cell similar to that in Example 1 was prepared except that the positive electrode 9 was used as a test electrode, and a battery test similar to that in Example 1 was performed.

<実施例6>
粒径が5μm、純度99.9%のSi粉末の添加量を正極活物質100重量部に対して1重量部とした以外は実施例1と同様に正極10を作製した。次いで、当該正極10を試験極としたこと以外は実施例1と同様の評価セルを作製し、実施例1と同様の電池試験を実施した。
<Example 6>
A positive electrode 10 was produced in the same manner as in Example 1, except that the amount of Si powder having a particle size of 5 μm and a purity of 99.9% was 1 part by weight with respect to 100 parts by weight of the positive electrode active material. Next, an evaluation cell similar to that in Example 1 was prepared except that the positive electrode 10 was used as a test electrode, and a battery test similar to that in Example 1 was performed.

<実施例7>
粒径が5μm、純度99.9%のSi粉末の添加量を正極活物質100重量部に対して2重量部とした以外は実施例1と同様に正極11を作製した。次いで、当該正極11を試験極としたこと以外は実施例1と同様の評価セルを作製し、実施例1と同様の電池試験を実施した。
<Example 7>
A positive electrode 11 was produced in the same manner as in Example 1 except that the amount of Si powder having a particle size of 5 μm and a purity of 99.9% was 2 parts by weight with respect to 100 parts by weight of the positive electrode active material. Next, an evaluation cell similar to that in Example 1 was prepared except that the positive electrode 11 was used as a test electrode, and a battery test similar to that in Example 1 was performed.

<実施例8>
粒径が5μm、純度99.9%のSi粉末の添加量を正極活物質100重量部に対して10重量部とした以外は実施例1と同様に正極12を作製した。次いで、当該正極12を試験極としたこと以外は実施例1と同様の評価セルを作製し、実施例1と同様の電池試験を実施した。
<Example 8>
A positive electrode 12 was produced in the same manner as in Example 1 except that the amount of Si powder having a particle size of 5 μm and a purity of 99.9% was changed to 10 parts by weight with respect to 100 parts by weight of the positive electrode active material. Next, an evaluation cell similar to that in Example 1 was prepared except that the positive electrode 12 was used as a test electrode, and a battery test similar to that in Example 1 was performed.

<実施例9>
粒径が5μm、純度99.9%のSi粉末の添加量を正極活物質100重量部に対して15重量部とした以外は実施例1と同様に正極13を作製した。次いで、当該正極13を試験極としたこと以外は実施例1と同様の評価セルを作製し、実施例1と同様の電池試験を実施した。
<Example 9>
A positive electrode 13 was produced in the same manner as in Example 1 except that the amount of Si powder having a particle size of 5 μm and a purity of 99.9% was changed to 15 parts by weight with respect to 100 parts by weight of the positive electrode active material. Next, an evaluation cell similar to that in Example 1 was prepared except that the positive electrode 13 was used as a test electrode, and a battery test similar to that in Example 1 was performed.

<比較例5>
粒径が5μm、純度99.9%のSi粉末の添加量を正極活物質100重量部に対して20重量部とした以外は実施例1と同様に正極14を作製した。次いで、当該正極14を試験極としたこと以外は実施例1と同様の評価セルを作製し、実施例1と同様の電池試験を実施した。
<Comparative Example 5>
A positive electrode 14 was produced in the same manner as in Example 1 except that the amount of Si powder having a particle size of 5 μm and a purity of 99.9% was 20 parts by weight with respect to 100 parts by weight of the positive electrode active material. Next, an evaluation cell similar to that in Example 1 was prepared except that the positive electrode 14 was used as a test electrode, and a battery test similar to that in Example 1 was performed.

正極1、正極9〜正極13のSi含有量、初回充電容量、初回放電容量、正極不可逆容量、充電容量に対する放電容量の割合である効率を表2に示す。Si粉末の添加量は、正極活物質100重量部に対しての重量部を示す。   Table 2 shows the efficiency, which is the ratio of the discharge capacity to the Si content, initial charge capacity, initial discharge capacity, positive electrode irreversible capacity, and charge capacity of the positive electrode 1 and the positive electrodes 9 to 13. The addition amount of Si powder shows the weight part with respect to 100 weight part of positive electrode active materials.

Figure 2015064977
Figure 2015064977

表2に示す結果から明らかなように、正極1と正極9〜13は、正極5に比べて、初回充電容量と不可逆容量が大きい。また、正極1と正極9〜13は、正極14に比べ放電容量の低下が少ない。これにより、Si粉末の含有量が正極活物質100重量部に対して0.1重量部未満だと十分な負荷逆容量が得られず、15重量部を超えると初回放電容量の低下が激しいことが分かる。   As is clear from the results shown in Table 2, the positive electrode 1 and the positive electrodes 9 to 13 have a larger initial charge capacity and irreversible capacity than the positive electrode 5. In addition, the positive electrode 1 and the positive electrodes 9 to 13 have less reduction in discharge capacity than the positive electrode 14. As a result, when the content of the Si powder is less than 0.1 parts by weight with respect to 100 parts by weight of the positive electrode active material, sufficient load reverse capacity cannot be obtained, and when it exceeds 15 parts by weight, the initial discharge capacity is drastically reduced. I understand.

<実施例10>
粒径が5μm、純度99.9%のSi粉末の添加量を正極活物質100重量部に対して0.1重量部とした以外は実施例2と同様に正極15を作製した。次いで、当該正極15を試験極としたこと以外は実施例2と同様の評価セルを作製し、実施例2と同様の電池試験を実施した。
<Example 10>
A positive electrode 15 was produced in the same manner as in Example 2, except that the amount of Si powder having a particle size of 5 μm and a purity of 99.9% was 0.1 part by weight with respect to 100 parts by weight of the positive electrode active material. Next, an evaluation cell similar to that of Example 2 was prepared except that the positive electrode 15 was used as a test electrode, and a battery test similar to that of Example 2 was performed.

<実施例11>
粒径が5μm、純度99.9%のSi粉末の添加量を正極活物質100重量部に対して1重量部とした以外は実施例2と同様に正極16を作製した。次いで、当該正極16を試験極としたこと以外は実施例2と同様の評価セルを作製し、実施例2と同様の電池試験を実施した。
<Example 11>
A positive electrode 16 was produced in the same manner as in Example 2, except that the amount of Si powder having a particle size of 5 μm and a purity of 99.9% was 1 part by weight with respect to 100 parts by weight of the positive electrode active material. Next, an evaluation cell similar to that of Example 2 was prepared except that the positive electrode 16 was used as a test electrode, and a battery test similar to that of Example 2 was performed.

<実施例12>
粒径が5μm、純度99.9%のSi粉末の添加量を正極活物質100重量部に対して2重量部とした以外は実施例2と同様に正極17を作製した。次いで、当該正極17を試験極としたこと以外は実施例2と同様の評価セルを作製し、実施例2と同様の電池試験を実施した。
<Example 12>
A positive electrode 17 was produced in the same manner as in Example 2, except that the amount of Si powder having a particle size of 5 μm and a purity of 99.9% was 2 parts by weight with respect to 100 parts by weight of the positive electrode active material. Next, an evaluation cell similar to that of Example 2 was prepared except that the positive electrode 17 was used as a test electrode, and a battery test similar to that of Example 2 was performed.

<実施例13>
粒径が5μm、純度99.9%のSi粉末の添加量を正極活物質100重量部に対して10重量部とした以外は実施例2と同様に正極18を作製した。次いで、当該正極18を試験極としたこと以外は実施例2と同様の評価セルを作製し、実施例2と同様の電池試験を実施した。
<Example 13>
A positive electrode 18 was produced in the same manner as in Example 2, except that the amount of Si powder having a particle size of 5 μm and a purity of 99.9% was changed to 10 parts by weight with respect to 100 parts by weight of the positive electrode active material. Next, an evaluation cell similar to that of Example 2 was prepared except that the positive electrode 18 was used as a test electrode, and a battery test similar to that of Example 2 was performed.

<実施例14>
粒径が5μm、純度99.9%のSi粉末の添加量を正極活物質100重量部に対して15重量部とした以外は実施例2と同様に正極19を作製した。次いで、当該正極19を試験極としたこと以外は実施例2と同様の評価セルを作製し、実施例2と同様の電池試験を実施した。
<Example 14>
A positive electrode 19 was produced in the same manner as in Example 2 except that the amount of Si powder having a particle size of 5 μm and a purity of 99.9% was changed to 15 parts by weight with respect to 100 parts by weight of the positive electrode active material. Next, an evaluation cell similar to that of Example 2 was prepared except that the positive electrode 19 was used as a test electrode, and a battery test similar to that of Example 2 was performed.

<比較例6>
粒径が5μm、純度99.9%のSi粉末の添加量を正極活物質100重量部に対して20重量部とした以外は実施例2と同様に正極20を作製した。次いで、当該正極20を試験極としたこと以外は実施例2と同様の評価セルを作製し、実施例2と同様の電池試験を実施した。
<Comparative Example 6>
A positive electrode 20 was produced in the same manner as in Example 2 except that the amount of Si powder having a particle size of 5 μm and a purity of 99.9% was 20 parts by weight with respect to 100 parts by weight of the positive electrode active material. Next, an evaluation cell similar to that of Example 2 was prepared except that the positive electrode 20 was used as a test electrode, and a battery test similar to that of Example 2 was performed.

正極2、正極6、正極15〜正極20のSi含有量、初回充電容量、初回放電容量、正極不可逆容量、充電容量に対する放電容量の割合である効率を表3に示す。Si粉末の添加量は、正極活物質100重量部に対しての重量部を示す。   Table 3 shows the Si content, the initial charge capacity, the initial discharge capacity, the positive electrode irreversible capacity, and the efficiency, which is the ratio of the discharge capacity to the charge capacity, of the positive electrode 2, the positive electrode 6, and the positive electrode 15 to the positive electrode 20. The addition amount of Si powder shows the weight part with respect to 100 weight part of positive electrode active materials.

Figure 2015064977
Figure 2015064977

表3に示す結果から明らかなように、正極2と正極15〜19は、正極6に比べて、初回充電容量と不可逆容量が大きい。また、正極2と正極15〜19は、正極20に比べ放電容量の低下が少ない。これにより、Si粉末の含有量が正極活物質100重量部に対して0.1重量部未満だと十分な負荷逆容量が得られず、20重量部を超えると初回放電容量の低下が激しいことが分かる。   As is clear from the results shown in Table 3, the positive electrode 2 and the positive electrodes 15 to 19 have a larger initial charge capacity and irreversible capacity than the positive electrode 6. In addition, the positive electrode 2 and the positive electrodes 15 to 19 have less reduction in discharge capacity than the positive electrode 20. As a result, when the content of the Si powder is less than 0.1 parts by weight with respect to 100 parts by weight of the positive electrode active material, sufficient load reverse capacity cannot be obtained, and when it exceeds 20 parts by weight, the initial discharge capacity is drastically reduced. I understand.

<実施例15>
粒径が5μm、純度99.9%のSi粉末の添加量を正極活物質100重量部に対して0.1重量部とした以外は実施例3と同様に正極21を作製した。次いで、当該正極21を試験極としたこと以外は実施例3と同様の評価セルを作製し、実施例3と同様の電池試験を実施した。
<Example 15>
A positive electrode 21 was produced in the same manner as in Example 3 except that the amount of Si powder having a particle size of 5 μm and a purity of 99.9% was 0.1 parts by weight with respect to 100 parts by weight of the positive electrode active material. Next, an evaluation cell similar to that in Example 3 was prepared except that the positive electrode 21 was used as a test electrode, and a battery test similar to that in Example 3 was performed.

<実施例16>
粒径が5μm、純度99.9%のSi粉末の添加量を正極活物質100重量部に対して1重量部とした以外は実施例3と同様に正極22を作製した。次いで、当該正極22を試験極としたこと以外は実施例3と同様の評価セルを作製し、実施例3と同様の電池試験を実施した。
<Example 16>
A positive electrode 22 was produced in the same manner as in Example 3, except that the amount of Si powder having a particle size of 5 μm and a purity of 99.9% was 1 part by weight with respect to 100 parts by weight of the positive electrode active material. Next, an evaluation cell similar to that in Example 3 was prepared except that the positive electrode 22 was used as a test electrode, and a battery test similar to that in Example 3 was performed.

<実施例17>
粒径が5μm、純度99.9%のSi粉末の添加量を正極活物質100重量部に対して2重量部とした以外は実施例3と同様に正極23を作製した。次いで、当該正極23を試験極としたこと以外は実施例3と同様の評価セルを作製し、実施例3と同様の電池試験を実施した。
<Example 17>
A positive electrode 23 was produced in the same manner as in Example 3 except that the amount of Si powder having a particle size of 5 μm and a purity of 99.9% was 2 parts by weight with respect to 100 parts by weight of the positive electrode active material. Next, an evaluation cell similar to that in Example 3 was prepared except that the positive electrode 23 was used as a test electrode, and a battery test similar to that in Example 3 was performed.

<実施例18>
粒径が5μm、純度99.9%のSi粉末の添加量を正極活物質100重量部に対して10重量部とした以外は実施例3と同様に正極24を作製した。次いで、当該正極24を試験極としたこと以外は実施例3と同様の評価セルを作製し、実施例3と同様の電池試験を実施した。
<Example 18>
A positive electrode 24 was produced in the same manner as in Example 3 except that the amount of Si powder having a particle size of 5 μm and a purity of 99.9% was changed to 10 parts by weight with respect to 100 parts by weight of the positive electrode active material. Next, an evaluation cell similar to that in Example 3 was prepared except that the positive electrode 24 was used as a test electrode, and a battery test similar to that in Example 3 was performed.

<実施例19>
粒径が5μm、純度99.9%のSi粉末の添加量を正極活物質100重量部に対して15重量部とした以外は実施例3と同様に正極25を作製した。次いで、当該正極25を試験極としたこと以外は実施例3と同様の評価セルを作製し、実施例3と同様の電池試験を実施した。
<Example 19>
A positive electrode 25 was produced in the same manner as in Example 3, except that the amount of Si powder having a particle size of 5 μm and a purity of 99.9% was changed to 15 parts by weight with respect to 100 parts by weight of the positive electrode active material. Next, an evaluation cell similar to that in Example 3 was prepared except that the positive electrode 25 was used as a test electrode, and a battery test similar to that in Example 3 was performed.

<比較例7>
粒径が5μm、純度99.9%のSi粉末の添加量を正極活物質100重量部に対して20重量部とした以外は実施例3と同様に正極26を作製した。次いで、当該正極26を試験極としたこと以外は実施例3と同様の評価セルを作製し、実施例3と同様の電池試験を実施した。
<Comparative Example 7>
A positive electrode 26 was produced in the same manner as in Example 3 except that the amount of Si powder having a particle diameter of 5 μm and a purity of 99.9% was 20 parts by weight with respect to 100 parts by weight of the positive electrode active material. Next, an evaluation cell similar to that in Example 3 was prepared except that the positive electrode 26 was used as a test electrode, and a battery test similar to that in Example 3 was performed.

正極3、正極7、正極21〜正極26のSi含有量、初回充電容量、初回放電容量、正極不可逆容量、充電容量に対する放電容量の割合である効率を表4に示す。Si粉末の添加量は、正極活物質100重量部に対しての重量部を示す。   Table 4 shows the Si content, the initial charge capacity, the initial discharge capacity, the positive electrode irreversible capacity, and the efficiency, which is the ratio of the discharge capacity to the charge capacity, of the positive electrode 3, the positive electrode 7, and the positive electrode 21 to the positive electrode 26. The addition amount of Si powder shows the weight part with respect to 100 weight part of positive electrode active materials.

Figure 2015064977
Figure 2015064977

表4に示す結果から明らかなように、正極3と正極21〜25は、正極7に比べて、初回充電容量と不可逆容量が大きい。また、正極3と正極21〜25は、正極26に比べ放電容量の低下が少ない。これにより、Si粉末の含有量が正極活物質100重量部に対して0.1重量部未満だと十分な負荷逆容量が得られず、20重量部を超えると初回放電容量の低下が激しいことが分かる。   As is clear from the results shown in Table 4, the positive electrode 3 and the positive electrodes 21 to 25 have a larger initial charge capacity and irreversible capacity than the positive electrode 7. In addition, the positive electrode 3 and the positive electrodes 21 to 25 have less reduction in discharge capacity than the positive electrode 26. As a result, when the content of the Si powder is less than 0.1 parts by weight with respect to 100 parts by weight of the positive electrode active material, sufficient load reverse capacity cannot be obtained, and when it exceeds 20 parts by weight, the initial discharge capacity is drastically reduced. I understand.

<実施例20>
粒径が5μm、純度99.9%のSi粉末の添加量を正極活物質100重量部に対して0.1重量部とした以外は実施例4と同様に正極26を作製した。次いで、当該正極26を試験極としたこと以外は実施例4と同様の評価セルを作製し、実施例4と同様の電池試験を実施した。
<Example 20>
A positive electrode 26 was produced in the same manner as in Example 4 except that the amount of Si powder having a particle size of 5 μm and a purity of 99.9% was 0.1 parts by weight with respect to 100 parts by weight of the positive electrode active material. Next, an evaluation cell similar to that in Example 4 was prepared except that the positive electrode 26 was used as a test electrode, and a battery test similar to that in Example 4 was performed.

<実施例21>
粒径が5μm、純度99.9%のSi粉末の添加量を正極活物質100重量部に対して1重量部とした以外は実施例4と同様に正極27を作製した。次いで、当該正極27を試験極としたこと以外は実施例4と同様の評価セルを作製し、実施例4と同様の電池試験を実施した。
<Example 21>
A positive electrode 27 was produced in the same manner as in Example 4 except that the amount of Si powder having a particle size of 5 μm and a purity of 99.9% was 1 part by weight with respect to 100 parts by weight of the positive electrode active material. Next, an evaluation cell similar to that of Example 4 was prepared except that the positive electrode 27 was used as a test electrode, and a battery test similar to that of Example 4 was performed.

<実施例22>
粒径が5μm、純度99.9%のSi粉末の添加量を正極活物質100重量部に対して2重量部とした以外は実施例4と同様に正極28を作製した。次いで、当該正極28を試験極としたこと以外は実施例4と同様の評価セルを作製し、実施例4と同様の電池試験を実施した。
<Example 22>
A positive electrode 28 was produced in the same manner as in Example 4 except that the amount of Si powder having a particle size of 5 μm and a purity of 99.9% was 2 parts by weight with respect to 100 parts by weight of the positive electrode active material. Next, an evaluation cell similar to that of Example 4 was prepared except that the positive electrode 28 was used as a test electrode, and a battery test similar to that of Example 4 was performed.

<実施例23>
粒径が5μm、純度99.9%のSi粉末の添加量を正極活物質100重量部に対して10重量部とした以外は実施例4と同様に正極29を作製した。次いで、当該正極29を試験極としたこと以外は実施例4と同様の評価セルを作製し、実施例4と同様の電池試験を実施した。
<Example 23>
A positive electrode 29 was produced in the same manner as in Example 4 except that the amount of Si powder having a particle size of 5 μm and a purity of 99.9% was changed to 10 parts by weight with respect to 100 parts by weight of the positive electrode active material. Next, an evaluation cell similar to that in Example 4 was prepared except that the positive electrode 29 was used as a test electrode, and a battery test similar to that in Example 4 was performed.

<実施例24>
粒径が5μm、純度99.9%のSi粉末の添加量を正極活物質100重量部に対して15重量部とした以外は実施例4と同様に正極30を作製した。次いで、当該正極30を試験極としたこと以外は実施例4と同様の評価セルを作製し、実施例4と同様の電池試験を実施した。
<Example 24>
A positive electrode 30 was produced in the same manner as in Example 4, except that the amount of Si powder having a particle size of 5 μm and a purity of 99.9% was 15 parts by weight with respect to 100 parts by weight of the positive electrode active material. Next, an evaluation cell similar to that in Example 4 was prepared except that the positive electrode 30 was used as a test electrode, and a battery test similar to that in Example 4 was performed.

<比較例8>
粒径が5μm、純度99.9%のSi粉末の添加量を正極活物質100重量部に対して20重量部とした以外は実施例4と同様に正極31を作製した。次いで、当該正極31を試験極としたこと以外は実施例4と同様の評価セルを作製し、実施例4と同様の電池試験を実施した。
<Comparative Example 8>
A positive electrode 31 was produced in the same manner as in Example 4 except that the amount of Si powder having a particle size of 5 μm and a purity of 99.9% was 20 parts by weight with respect to 100 parts by weight of the positive electrode active material. Next, an evaluation cell similar to that of Example 4 was prepared except that the positive electrode 31 was used as a test electrode, and a battery test similar to that of Example 4 was performed.

正極4、正極8、正極26〜正極31のSi含有量、初回充電容量、初回放電容量、正極不可逆容量、充電容量に対する放電容量の割合である効率を表5に示す。Si粉末の添加量は、正極活物質100重量部に対しての重量部を示す。   Table 5 shows the Si content, the initial charge capacity, the initial discharge capacity, the positive electrode irreversible capacity, and the efficiency, which is the ratio of the discharge capacity to the charge capacity, of the positive electrode 4, the positive electrode 8, and the positive electrode 26 to the positive electrode 31. The addition amount of Si powder shows the weight part with respect to 100 weight part of positive electrode active materials.

Figure 2015064977
Figure 2015064977

表5に示す結果から明らかなように、正極4と正極26〜30は、正極7に比べて、初回充電容量と不可逆容量が大きい。また、正極4と正極26〜30は、正極31に比べ放電容量の低下が少ない。これにより、Si粉末の含有量が正極活物質100重量部に対して0.1重量部未満だと十分な負荷逆容量が得られず、15重量部を超えると初回放電容量の低下が激しいことが分かる。   As is clear from the results shown in Table 5, the positive electrode 4 and the positive electrodes 26 to 30 have larger initial charge capacity and irreversible capacity than the positive electrode 7. Further, the positive electrode 4 and the positive electrodes 26 to 30 have less reduction in discharge capacity than the positive electrode 31. As a result, when the content of the Si powder is less than 0.1 parts by weight with respect to 100 parts by weight of the positive electrode active material, sufficient load reverse capacity cannot be obtained, and when it exceeds 15 parts by weight, the initial discharge capacity is drastically reduced. I understand.

以上説明したように、本実施の形態によれば、少なくともリチウムの吸蔵放出が可能なLiCoxNiyMnz2(x+y+z=1)、LiCo0.15Ni0.8Al0.052、もしくはLiNi0.5Mn1.54のいずれかを正極活物質として含み、正極活物質への添加剤として少なくともケイ素(Si)を含有するようにしたため、正極の不可逆容量を容易に制御できる。また、この不可逆容量は4V付近で発現するので、電解液の分解やガスの発生、活物質の劣化などの問題がない。
本構成では、Siの含有量を、正極活物質100重量部に対して0.1重量部以上にしたため、十分な正極不可逆容量を得ることができる。さらに、Siの含有量を、正極活物質に対して0.1重量部以上、15重量部以下にしたため、非水電解質二次電池の高エネルギー密度化に好適な不可逆容量を有する正極を容易に得ることができる。
As described above, according to this embodiment, which can at least lithium storage and release LiCo x Ni y Mn z O 2 (x + y + z = 1), LiCo 0.15 Ni 0.8 Al 0.05 O 2, or LiNi 0.5 Mn 1.5 Since any of O 4 is included as a positive electrode active material and at least silicon (Si) is contained as an additive to the positive electrode active material, the irreversible capacity of the positive electrode can be easily controlled. In addition, since this irreversible capacity appears in the vicinity of 4 V, there are no problems such as decomposition of the electrolyte, generation of gas, and deterioration of the active material.
In this configuration, since the Si content is 0.1 parts by weight or more with respect to 100 parts by weight of the positive electrode active material, a sufficient positive electrode irreversible capacity can be obtained. Furthermore, since the Si content is 0.1 parts by weight or more and 15 parts by weight or less with respect to the positive electrode active material, a positive electrode having an irreversible capacity suitable for increasing the energy density of the nonaqueous electrolyte secondary battery can be easily obtained. Can be obtained.

また、本構成は、前述した特許文献1と比べて、高電圧充電を行う必要がなく、電解液の分解、ガス発生、活物質の劣化などを抑制することができる。また、特許文献2および3と比べて、正極表面上などにリチウム金属膜を蒸着する必要がないため、金属膜の劣化や金属膜形成のための設備追加などが不要である。また、特許文献4と比べて、専用セルが不要であるなどの効果も得られる。
また、正極が更に導電材を含むため、電子の伝導性を向上させることができる。また、正極が更に結着剤を含むことによって、活物質やSiなどの固着性を向上させることができる。
Further, this configuration does not require high-voltage charging as compared with Patent Document 1 described above, and can suppress decomposition of the electrolytic solution, gas generation, deterioration of the active material, and the like. Further, as compared with Patent Documents 2 and 3, it is not necessary to deposit a lithium metal film on the surface of the positive electrode, so that it is not necessary to deteriorate the metal film or add equipment for forming the metal film. Further, as compared with Patent Document 4, there is an effect that a dedicated cell is unnecessary.
In addition, since the positive electrode further includes a conductive material, the conductivity of electrons can be improved. Further, when the positive electrode further contains a binder, it is possible to improve the adhesion of the active material, Si, and the like.

Claims (5)

少なくともリチウムの吸蔵放出が可能な正極活物質を含み、前記正極活物質への添加剤として少なくともケイ素(Si)を含有し、
前記ケイ素の含有量が、正極活物質100重量部に対して0.1重量部以上、15重量部以下であることを特徴とする非水電解質二次電池用の正極。
Including at least a positive electrode active material capable of occluding and releasing lithium, and containing at least silicon (Si) as an additive to the positive electrode active material;
The positive electrode for a non-aqueous electrolyte secondary battery, wherein the silicon content is 0.1 to 15 parts by weight with respect to 100 parts by weight of the positive electrode active material.
前記正極活物質は、LiCoxNiyMnz2(x+y+z=1)、LiCo0.15Ni0.8Al0.052、もしくはLiNi0.5Mn1.54のいずれかであることを特徴とする請求項1に記載の非水電解質二次電池用の正極。 2. The positive electrode active material according to claim 1, wherein the positive electrode active material is any one of LiCo x Ni y Mn z O 2 (x + y + z = 1), LiCo 0.15 Ni 0.8 Al 0.05 O 2 , or LiNi 0.5 Mn 1.5 O 4. The positive electrode for nonaqueous electrolyte secondary batteries as described. 前記正極がさらに、導電材を含むことを特徴とする請求項1又は2に記載の非水電解質二次電池用の正極。   The positive electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein the positive electrode further contains a conductive material. 少なくともリチウムの吸蔵放出が可能なLiCoxNiyMnz2(x+y+z=1)、LiCo0.15Ni0.8Al0.052、もしくはLiNi0.5Mn1.54のいずれかを含む正極活物質、ケイ素(Si)および結着剤を含有することを特徴とする非水電解質二次電池の正極用合材。 A positive electrode active material containing at least one of LiCo x Ni y Mn z O 2 (x + y + z = 1), LiCo 0.15 Ni 0.8 Al 0.05 O 2 , or LiNi 0.5 Mn 1.5 O 4 capable of occluding and releasing lithium, silicon (Si ) And a binder, a positive electrode composite material for a non-aqueous electrolyte secondary battery. 請求項1乃至3のいずれか一項に記載の正極と、リチウムの吸蔵放出が可能な負極と、これら正負極間に配置されたセパレータと、非水電解質とを備えたことを特徴とする非水電解質二次電池。   A non-electrode comprising the positive electrode according to any one of claims 1 to 3, a negative electrode capable of occluding and releasing lithium, a separator disposed between the positive and negative electrodes, and a non-aqueous electrolyte. Water electrolyte secondary battery.
JP2013197301A 2013-09-24 2013-09-24 Positive electrode for nonaqueous electrolyte secondary batteries, mixture material for positive electrodes of nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery Pending JP2015064977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013197301A JP2015064977A (en) 2013-09-24 2013-09-24 Positive electrode for nonaqueous electrolyte secondary batteries, mixture material for positive electrodes of nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013197301A JP2015064977A (en) 2013-09-24 2013-09-24 Positive electrode for nonaqueous electrolyte secondary batteries, mixture material for positive electrodes of nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2015064977A true JP2015064977A (en) 2015-04-09

Family

ID=52832722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013197301A Pending JP2015064977A (en) 2013-09-24 2013-09-24 Positive electrode for nonaqueous electrolyte secondary batteries, mixture material for positive electrodes of nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2015064977A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169184A1 (en) * 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 Positive electrode active substance for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353526A (en) * 1999-05-25 2000-12-19 Samsung Sdi Co Ltd Positive electrode active material composition for lithium secondary battery and manufacture of positive electrode using it
JP2013206583A (en) * 2012-03-27 2013-10-07 Furukawa Battery Co Ltd:The Cathode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2014186837A (en) * 2013-03-22 2014-10-02 Toyota Industries Corp Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2014207077A (en) * 2013-04-11 2014-10-30 古河電池株式会社 Positive electrode for nonaqueous electrolyte secondary battery, mixture for positive electrode of nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353526A (en) * 1999-05-25 2000-12-19 Samsung Sdi Co Ltd Positive electrode active material composition for lithium secondary battery and manufacture of positive electrode using it
JP2013206583A (en) * 2012-03-27 2013-10-07 Furukawa Battery Co Ltd:The Cathode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2014186837A (en) * 2013-03-22 2014-10-02 Toyota Industries Corp Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2014207077A (en) * 2013-04-11 2014-10-30 古河電池株式会社 Positive electrode for nonaqueous electrolyte secondary battery, mixture for positive electrode of nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169184A1 (en) * 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 Positive electrode active substance for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell
JPWO2017169184A1 (en) * 2016-03-30 2019-02-07 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US10916768B2 (en) 2016-03-30 2021-02-09 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP7066223B2 (en) Positive electrode material for lithium secondary batteries, positive electrodes including this, and lithium secondary batteries
CN108370068B (en) Non-aqueous electrolyte additive, non-aqueous electrolyte including the same, and lithium secondary battery including the same
WO2018179817A1 (en) Negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP6219302B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
WO2010131401A1 (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
TWI587562B (en) Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active materiallayer for lithium ion battery
KR20130134239A (en) Negative active material for lithium battery and battery comprising the same
JP2014053193A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2014167886A (en) Battery
WO2015037367A1 (en) Nonaqueous-electrolyte secondary battery
CN109494356B (en) Non-aqueous electrolyte secondary battery
JP2016528706A (en) Lithium secondary battery
WO2011070748A1 (en) Non-aqueous electrolyte secondary battery, and method for charging same
JP6697377B2 (en) Lithium ion secondary battery
JP2016119154A (en) Lithium secondary battery
JPWO2015015883A1 (en) Lithium secondary battery and electrolyte for lithium secondary battery
JP2017091886A (en) Nonaqueous electrolyte secondary battery
JP6219303B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
WO2015141194A1 (en) Cathode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2022547501A (en) Method for manufacturing secondary battery
CN112054190A (en) Positive electrode material for lithium secondary battery and lithium secondary battery using the same
US20230090463A1 (en) Battery
CN112054163A (en) Positive electrode for secondary battery and secondary battery using the same
JP2014165038A (en) Electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP5279362B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170627