JP2015063881A - Artificial shoal or tidal flat and repair method thereof - Google Patents

Artificial shoal or tidal flat and repair method thereof Download PDF

Info

Publication number
JP2015063881A
JP2015063881A JP2014067384A JP2014067384A JP2015063881A JP 2015063881 A JP2015063881 A JP 2015063881A JP 2014067384 A JP2014067384 A JP 2014067384A JP 2014067384 A JP2014067384 A JP 2014067384A JP 2015063881 A JP2015063881 A JP 2015063881A
Authority
JP
Japan
Prior art keywords
layer
sand
soil
modified soil
tidal flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014067384A
Other languages
Japanese (ja)
Other versions
JP5954351B2 (en
Inventor
本田 秀樹
Hideki Honda
秀樹 本田
林 正宏
Masahiro Hayashi
正宏 林
多穂 谷敷
Taho Yashiki
多穂 谷敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014067384A priority Critical patent/JP5954351B2/en
Publication of JP2015063881A publication Critical patent/JP2015063881A/en
Application granted granted Critical
Publication of JP5954351B2 publication Critical patent/JP5954351B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an artificial shoal/tidal flat capable of suppressing consolidation settlement of a dredge soil layer and preventing local blowout of press-fit dredge soil through a sand-cover layer when a raising method in which dredge soil is press fit into the dredge soil layer is used.SOLUTION: An artificial shoal or tidal flat has a sand-cover layer 2 of a sand-cover material in which water permeability coefficient is 10cm/s or more over a dredge soil layer 1. A modified soil layer 3 of a modified soil in which the water permeability coefficient is 10cm/s or less after 28-day cure between the dredge soil layer 1 and the sand-cover layer 2. The uniaxial compressive strength of the modified soil after 28-day cure constituting the modified soil layer 3 is preferably 100kN/mor more.

Description

本発明は、沿岸海域の環境改善を目的に造成される人工浅場・干潟及びその補修方法に関する。   The present invention relates to an artificial shallow area / tidal flat constructed for the purpose of improving the environment of a coastal sea area and a repair method thereof.

沿岸海域の環境改善(水質、生物環境などの改善)を目的として、人工浅場や干潟の造成が行われている。従来の人工浅場や干潟の造成では、沖合に砕石などを用いた土留め用の潜堤を設置し、その岸側(陸側)に浚渫土を投入し、この浚渫土層の上に天然砂を覆砂している(例えば、非特許文献1)。   Artificial shallow areas and tidal flats are being created for the purpose of improving the environment of coastal waters (improvement of water quality, biological environment, etc.). In the construction of conventional artificial shallows and tidal flats, a submerged dike is installed offshore using crushed stone and the like, and dredged soil is put on the shore side (land side). (For example, Non-Patent Document 1).

この浚渫土層と覆砂層からなる従来の人工浅場・干潟では、造成からある程度の期間が経過すると、浚渫土層の圧密沈下により浅場・干潟の天端高さが低下してしまう問題があり、浅場としての機能低下、干潟面積の減少につながる。この対策として、例えば、以下のような方法や構造が知られている。
(1)表層の覆砂層の上にさらに覆砂を行うことで、天端高さを回復する方法。
(2)覆砂層の下の浚渫土層に浚渫土を圧入して嵩上げする方法(特許文献1)。
(3)浚渫土に特定の鉄鋼スラグを混合した材料で浚渫土層(中詰層)を構成する(特許文献2)。
In the conventional artificial shallow ground and tidal flats composed of this dredged layer and sand-covered sand layer, when a certain period of time has passed since the creation, there is a problem that the top height of the shallow field and tidal flat will decrease due to consolidation settlement of the dredged layer, This leads to a decline in functionality as a shallow area and a decrease in tidal flat area. For example, the following methods and structures are known as countermeasures.
(1) A method of recovering the top height by further covering sand on the surface sand covering layer.
(2) A method in which the clay is pressed into the clay layer under the sand-capping layer and raised (Patent Document 1).
(3) A clay layer (filled layer) is composed of a material obtained by mixing specific steel slag with clay (Patent Document 2).

特開2012−219506号公報JP 2012-219506 A 特開2011−208365号公報JP 2011-208365 A

「浚渫土の生物生息環境創造への有効利用」,用水と排水,Vol.39,No.7,1997“Effective use of dredged soil for creating biological habitats”, Water and drainage, Vol.39, No.7, 1997

しかし、上記(1)の方法は、維持費用の増大や天然資源(天然砂など)の利用増大を招く問題がある。また、上記(2)の方法は、表層の覆砂層(砂層)が強度を有しないため、図4に示すように、圧入した浚渫土が局所的に覆砂層を破って漏出する場合がある。また、上記(3)の構造は、浚渫土と鉄鋼スラグの混合土が強度発現するため、長期的な圧密沈下が生じる可能性は非常に低くなるが、中詰層全体を混合土で構成するため、浅場・干潟の造成費用が高くなるという問題がある。   However, the method (1) has problems that increase maintenance costs and use of natural resources (natural sand, etc.). In the method (2), since the surface sand covering layer (sand layer) does not have strength, as shown in FIG. 4, the pressed clay may break through the sand covering layer locally and leak. The structure of (3) above shows the strength of mixed soil of dredged soil and steel slag, so the possibility of long-term consolidation settlement is very low, but the entire filling layer is composed of mixed soil. Therefore, there is a problem that the construction cost of shallow ground and tidal flats becomes high.

したがって本発明の目的は、以上のような従来技術の課題を解決し、浚渫土層の圧密沈下が生じにくい人工浅場又は干潟を提供することにある。
また、本発明の他の目的は、浚渫土層の圧密沈下が生じにくいだけでなく、圧密沈下が生じた浚渫土層に浚渫土を圧入して嵩上げする方法を適用した場合に、圧入した浚渫土が局所的に覆砂層を破って漏出することがない人工浅場又は干潟を提供することにある。さらに、本発明の他の目的は、そのような人工浅場又は干潟の補修方法を提供することにある。
Accordingly, an object of the present invention is to solve the above-described problems of the prior art and to provide an artificial shallow field or tidal flat where the consolidation settlement of the dredged soil layer is unlikely to occur.
Another object of the present invention is not only that the consolidation settlement of the clay layer is difficult to occur, but also when the method of press-fitting the clay into the clay layer where the consolidation settlement has occurred and applying a method of raising the height is applied. The object is to provide an artificial shallow place or tidal flat where the soil does not break through the sand-covered layer locally. Furthermore, the other object of this invention is to provide the repair method of such an artificial shallow field or a tidal flat.

本発明者らが、上記課題を解決するために検討を重ねた結果、浚渫土層と覆砂層との間に、透水係数が所定レベル以下の改質土層を設けることにより、浚渫土層の排水が抑制されるため、浚渫土層の圧密沈下を効果的に抑えることができることが判った。また、この改質土層に所定レベル以上の一軸圧縮強度を持たせることにより、圧密沈下が生じた浚渫土層に浚渫土を圧入して嵩上げする方法を適用した場合に、圧入した浚渫土が局所的に覆砂層を破って漏出することを適切に防止できることも判った。   As a result of repeated investigations by the present inventors to solve the above-mentioned problems, by providing a modified soil layer having a hydraulic conductivity of a predetermined level or less between the clay layer and the sand-capping layer, Since drainage is suppressed, it was found that consolidation settlement of dredged soil layer can be effectively suppressed. In addition, when the modified soil layer has a uniaxial compressive strength of a predetermined level or higher, when the method of press-fitting the clay into the clay layer where consolidation settlement has occurred and applying a method of raising the volume is applied, It was also found that local breakage of the sand-capping layer can be prevented appropriately.

本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
[1]浚渫土層の上層に、透水係数が10−3cm/s以上の覆砂材からなる覆砂層を有する人工浅場又は干潟において、浚渫土層と覆砂層の間に、28日養生後の透水係数が10−4cm/s以下の改質土からなる改質土層を設けることを特徴とする人工浅場又は干潟。
[2]上記[1]の人工浅場又は干潟において、改質土層を構成する改質土は、土砂に水和反応を生じさせる改質材を混合したものであることを特徴とする人工浅場又は干潟。
The present invention has been made on the basis of such knowledge and has the following gist.
[1] In an artificial shallow field or tidal flat that has a sand-capping layer made of a sand-capping material with a hydraulic conductivity of 10 −3 cm / s or more above the dredged soil layer, after curing for 28 days between the dredged layer and the sand-capped layer An artificial shallow field or tidal flat characterized by providing a modified soil layer made of modified soil having a hydraulic conductivity of 10 −4 cm / s or less.
[2] In the artificial shallow field or tidal flat of [1] above, the modified soil constituting the modified soil layer is a mixture of a modified material that causes a hydration reaction in the earth and sand. Or a tidal flat.

[3]上記[1]又は[2]の人工浅場又は干潟において、改質土層を構成する改質土の28日養生後の一軸圧縮強度が100kN/m以上であることを特徴とする人工浅場又は干潟。
[4]上記[3]の人工浅場又は干潟の補修方法であって、浚渫土層に注入管を挿入し、該注入管を通じて浚渫土層内に浚渫土を圧入することにより、浚渫土層を嵩上げすることを特徴とする人工浅場又は干潟の補修方法。
[3] In the artificial shallow ground or tidal flat of [1] or [2] above, the uniaxial compressive strength after the 28-day curing of the modified soil constituting the modified soil layer is 100 kN / m 2 or more. Artificial shallow or tidal flat.
[4] The method of repairing an artificial shallow field or tidal flat according to [3] above, wherein an injection pipe is inserted into the clay layer, and the clay is pressed into the clay layer through the injection pipe. A method of repairing an artificial shallow place or tidal flat characterized by raising the height.

本発明によれば、浚渫土層と覆砂層の間に透水係数が所定レベル以下の改質土層を設けることにより、浚渫土層の排水が抑制されるため、従来よりも浚渫土層の圧密沈下を抑えることができ、浅場・干潟の維持補修を低減することができる。
また、改質土層に所定レベル以上の一軸圧縮強度を持たせることにより、改質土層による浚渫土層の拘束効果が得られる。このため、浚渫土層にある程度の圧密沈下が生じた場合に、天端高さ回復のために浚渫土層に浚渫土を圧入して嵩上げを行う場合でも、圧入した浚渫土が局所的に覆砂層を破って漏出することを適切に防止できる。
According to the present invention, since the drainage of the dredged soil layer is suppressed by providing a modified soil layer having a water permeability coefficient of a predetermined level or less between the dredged soil layer and the sand-capped sand layer, the consolidation of the dredged soil layer is more than conventional. Settling can be suppressed, and maintenance and repair of shallow areas and tidal flats can be reduced.
Moreover, the restraint effect of the dredged soil layer by the modified soil layer is obtained by giving the modified soil layer a uniaxial compressive strength of a predetermined level or higher. For this reason, when a certain amount of consolidation settlement occurs in the dredged layer, even if the dredged soil is pressed into the dredged layer and raised to restore the top height, the pressed dredged soil is locally covered. It is possible to appropriately prevent the sand layer from being broken and leaking.

本発明の人工浅場又は干潟の一実施形態を示す模式縦断面図The schematic longitudinal cross-sectional view which shows one Embodiment of the artificial shallow field or tidal flat of this invention 改質土層を構成する改質土の28日養生後の透水係数と浚渫土層の沈下量との関係を示すグラフA graph showing the relationship between the hydraulic conductivity of the modified soil that constitutes the modified soil layer after 28-day curing and the amount of settlement of the dredged soil layer 本発明の人工浅場又は干潟の補修方法の一実施形態を、浅場又は干潟を縦断面した状態で示す説明図An explanatory view showing one embodiment of a method for repairing an artificial shallow field or tidal flat of the present invention in a state where the shallow field or tidal flat is longitudinally sectioned. 圧密沈下を生じた浚渫土層に浚渫土を圧入して嵩上げを行う従来方法において、圧入した浚渫土が局所的に覆砂層を破って漏出した状態を示す説明図Explanatory drawing which shows the state in which the pressed clay locally broke the sand-covering layer and leaked in the conventional method of pressing the clay into the clay layer where consolidation settlement occurred and raising the volume 港湾工事で発生する浚渫土の粒度分布の幾つかの例を示すグラフGraph showing some examples of grain size distribution of dredged soil generated by port construction

本発明の人工浅場又は干潟は、浚渫土層の上層に、透水係数が10−3cm/s以上の覆砂材からなる覆砂層を有する人工浅場又は干潟において、浚渫土層と覆砂層の間に、28日養生後の透水係数が10−4cm/s以下の改質土からなる改質土層を設けるものである。
図1は、本発明の人工浅場又は干潟の一実施形態を示す模式縦断面図である。この人工浅場又は干潟は、造成水域を囲むように構築された土留め用の潜堤4の内側に造成され、下層の浚渫土層1と上層の覆砂層2との間に透水係数が低い改質土層3が設けられている。
覆砂層2は、通常、砂(天然砂など)又は/及び礫で構成される。このような覆砂材の透水係数は10−3cm/s以上(通常、10−3〜1.0cm/s程度)である。
The artificial shallow field or tidal flat according to the present invention is an artificial shallow field or tidal flat having a sand-covering layer made of a sand-covering material having a hydraulic conductivity of 10 −3 cm / s or more above the dredged soil layer. In addition, a modified soil layer made of modified soil having a water permeability of 10 −4 cm / s or less after curing on the 28th is provided.
FIG. 1 is a schematic longitudinal sectional view showing an embodiment of an artificial shallow field or tidal flat according to the present invention. This artificial shallow ground or tidal flat is constructed inside the submerged dike 4 constructed so as to surround the constructed water area, and has a low permeability coefficient between the lower dredged layer 1 and the upper sand-clad layer 2. A clay layer 3 is provided.
The sand covering layer 2 is usually composed of sand (such as natural sand) and / or gravel. Such a sand-capping material has a water permeability coefficient of 10 −3 cm / s or more (usually about 10 −3 to 1.0 cm / s).

一方、改質土層3を構成する改質土としては、土砂に改質材(水和反応を生じさせる改質材)を混合した混合土が好ましい。土砂(被改質土)としては、例えば、港湾工事で発生する浚渫土、建設泥土、掘削工事から生じる泥土などが挙げられ、これらの1種以上を用いることができる。地盤材料は、その粒度により表1(地盤工学会基準JGS 0511)のように分類されるが、これらのなかで、本発明で使用する被改質土である土砂は粒径が比較的小さいものであり、具体的には、平均粒径d50(通過質量百分率50%における粒径)が2.0mm未満のものが好ましい。港湾工事で発生する浚渫土の粒度分布の幾つかの例を図5に示すが、いずれも平均粒径d50は2.0mm未満である。 On the other hand, the modified soil constituting the modified soil layer 3 is preferably a mixed soil obtained by mixing a modifying material (a modifying material causing a hydration reaction) with earth and sand. Examples of the earth and sand (modified soil) include dredged soil, construction mud, and mud generated from excavation work, and one or more of these can be used. The ground material is classified as shown in Table 1 (Geotechnical Society Standard JGS 0511) according to the particle size, and among these, the earth and sand which is the modified soil used in the present invention has a relatively small particle size. Specifically, it is preferable that the average particle size d 50 (particle size at a passing mass percentage of 50%) is less than 2.0 mm. Some examples of grain size distribution of dredged soil generated in harbor construction are shown in FIG. 5, all of which have an average particle diameter d 50 of less than 2.0 mm.

Figure 2015063881
Figure 2015063881

水分を含んだ土砂に改質材(固化材)を混合した改質土は、水和反応により固化し、その28日養生後の透水係数は、改質前の土砂に較べて相当程度低くなる。また、28日養生後の一軸圧縮強度は、改質前の土砂に較べて相当程度高くなる。
改質材としては、水和反応を生じさせる粉体や粒状物であればよい。具体的には、セメント(高炉セメント、ポルトランドセメントなど)、鉄鋼スラグ、高炉スラグ微粉末、アルカリ刺激剤を添加した高炉スラグ微粉末、石灰などが挙げられ、これらの1種以上を用いることができる。
The modified soil in which the modifying material (solidifying material) is mixed with the soil containing moisture is solidified by the hydration reaction, and the hydraulic conductivity after curing for 28 days is considerably lower than the soil before the modification. . In addition, the uniaxial compressive strength after curing on the 28th is considerably higher than the soil before the modification.
The modifying material may be any powder or granular material that causes a hydration reaction. Specific examples include cement (blast furnace cement, Portland cement, etc.), steel slag, blast furnace slag fine powder, blast furnace slag fine powder to which an alkali stimulant is added, lime, and the like, and one or more of these can be used. .

鉄鋼スラグ(鉄鋼製造プロセスで発生するスラグ)としては、高炉スラグ、製鋼スラグ、鉱石還元スラグなどがある。高炉スラグには、高炉徐冷スラグ、高炉水砕スラグがある。また、製鋼スラグとしては、溶銑予備処理、転炉吹錬、鋳造などの工程で発生する製鋼系スラグ(例えば、脱炭スラグ、脱燐スラグ、脱硫スラグ、脱珪スラグ、造塊スラグなど)、電気炉スラグなどが挙げられる。この中でも、改質材として機能の面からは製鋼系スラグが好ましい。
鉄鋼スラグの粒度は、早期に強度発現させるという観点から、約20mm以下が好ましい。
Steel slag (slag generated in the steel manufacturing process) includes blast furnace slag, steelmaking slag, ore reduction slag, and the like. Blast furnace slag includes blast furnace slow cooling slag and blast furnace granulated slag. In addition, as steelmaking slag, steelmaking slag generated in hot metal pretreatment, converter blowing, casting and other processes (for example, decarburized slag, dephosphorized slag, desulfurized slag, desiliconized slag, ingot slag, etc.), Examples include electric furnace slag. Among these, steelmaking slag is preferable from the viewpoint of the function as a modifier.
The particle size of the steel slag is preferably about 20 mm or less from the viewpoint of developing strength early.

上述したように、砂(天然砂など)又は/及び礫で構成される覆砂層2の透水係数は10−3cm/sを下回ることはない。これに対して、改質土層3を構成する改質土については、28日養生後の透水係数を10−4cm/s以下とする。また、好ましい条件としては、改質土の28日養生後の透水係数は10−5cm/s以下が好ましく、10−6cm/s以下がより好ましい。なお、この透水係数は、JIS−A1218「土の透水試験方法」により測定した値である。 As described above, the hydraulic conductivity of the sand-covering layer 2 composed of sand (such as natural sand) or / and gravel does not fall below 10 −3 cm / s. On the other hand, for the modified soil constituting the modified soil layer 3, the hydraulic conductivity after curing on the 28th is set to 10 −4 cm / s or less. Moreover, as a preferable condition, the water permeability after the 28-day curing of the modified soil is preferably 10 −5 cm / s or less, and more preferably 10 −6 cm / s or less. The water permeability coefficient is a value measured according to JIS-A1218 “Soil permeability test method”.

図2に、浚渫土層と覆砂層との間に改質土層を設けた浅場・干潟構造において、改質土層を構成する改質土の28日養生後の透水係数と、浚渫土層の沈下量(造成から約10年経過後の沈下量)との関係を求めた結果を示す。ここでは、浚渫土層(標準的な層厚である厚さ5m)の上層に、透水係数の異なる改質土層(厚さ0.5m)を設けた断面において、改質土層の透水係数と浚渫土層からの排水量が比例すると仮定して、下記(1)式を用い、標準的な排水係数0.0006として浚渫土層の沈下量を求めた。ここで、排水係数とは、改質土層の透水係数と浚渫土層の沈下量(排水量)との関係から経験的に定められる係数であり、一般に0.0004〜0.0008程度の値を採り得る。
浚渫土層の沈下量(cm)=改質土層の28日養生後の透水係数(cm/s)×造成からの経過期間(s)×排水係数 …(1)
Fig. 2 shows the permeability coefficient of the modified soil that forms the modified soil layer after 28 days of curing in the shallow and tidal flat structure where the modified soil layer is provided between the dredged soil layer and the sand-covered sand layer. The result of having calculated | required the relationship with the amount of subsidence (subsidence amount about 10 years after creation) is shown. Here, the permeability coefficient of the modified soil layer is shown in a cross section in which the modified soil layer (thickness 0.5 m) having a different hydraulic conductivity is provided on the upper layer of the dredged soil layer (standard thickness of 5 m). Assuming that the amount of drainage from the dredged soil layer is proportional, the subsidence amount of the dredged soil layer was determined using the following formula (1) as a standard drainage coefficient of 0.0006. Here, the drainage coefficient is a coefficient empirically determined from the relationship between the permeability coefficient of the modified soil layer and the subsidence amount (drainage amount) of the dredged soil layer, and generally has a value of about 0.0004 to 0.0008. It can be taken.
Subsidence amount of dredged soil layer (cm) = Permeability coefficient after 28-day curing of the modified soil layer (cm / s) x elapsed time since creation (s) x drainage coefficient (1)

図2によれば、改質土層を構成する土砂の改質が十分でなく、28日養生後の透水係数が10−3cm/s程度の場合には、浚渫土層の沈下量が非常に大きい。これに対して、改質土の28日養生後の透水係数が10−4cm/sになると浚渫土層の沈下量が格段に小さくなり、特に28日養生後の透水係数が10−5cm/s以下になると浚渫土層の沈下が極めて小さくなり、10−6cm/s以下では殆どなくなる。これは、透水係数が小さい改質土層で蓋をすることにより、浚渫土層の排水が抑制されるため、浚渫土層の圧密沈下が抑えられるためであると考えられる。
なお、改質土層3を構成する改質土の透水係数があまりに高くなるとアルカリ溶出の問題を生じるおそれがあるので、改質土の28日養生後の透水係数は10−7cm/s程度を上限とすることが好ましい。
According to FIG. 2, when the earth and sand constituting the modified soil layer is not sufficiently modified, and the permeability coefficient after curing on the 28th is about 10 −3 cm / s, the subsidence amount of the dredged soil layer is very large. Big. On the other hand, when the permeability of the modified soil after the 28-day curing is 10 −4 cm / s, the subsidence amount of the dredged layer is remarkably reduced. In particular, the permeability after the 28-day curing is 10 −5 cm. When it is less than / s, the subsidence of the clay layer becomes extremely small, and when it is less than 10 −6 cm / s, it almost disappears. This is considered to be because the drainage of the dredged layer is suppressed by covering with the modified soil layer having a small hydraulic conductivity, so that the consolidation settlement of the dredged layer is suppressed.
In addition, if the permeability coefficient of the modified soil constituting the modified soil layer 3 becomes too high, there is a risk of causing alkali elution, so the permeability coefficient of the modified soil after curing for 28 days is about 10 −7 cm / s. Is preferably the upper limit.

また、改質土層3を構成する改質土は、28日養生後の一軸圧縮強度が100kN/m以上であることが好ましく、また、200kN/m以上であることがより好ましい。この一軸圧縮強度の測定は、JIS−A1216(土の一軸圧縮試験方法)に準拠して行う。
このように改質土層3に所定の一軸圧縮強度を持たせることにより、改質土層3による浚渫土層1の拘束効果が得られる。このため、浚渫土層1にある程度の圧密沈下が生じた場合に、天端高さ回復のために浚渫土層に浚渫土を圧入して嵩上げを行う場合でも、圧入した浚渫土が局所的に覆砂層を破って漏出することを防止できる。
Further, the modified soil constituting the modified soil layer 3 preferably has a uniaxial compressive strength after curing for 28 days of 100 kN / m 2 or more, and more preferably 200 kN / m 2 or more. The measurement of the uniaxial compressive strength is performed in accordance with JIS-A1216 (soil uniaxial compression test method).
Thus, by giving the modified soil layer 3 a predetermined uniaxial compressive strength, the restraining effect of the clay layer 1 by the modified soil layer 3 is obtained. For this reason, when a certain amount of consolidation settlement occurs in the dredged layer 1, even if the dredged soil is pressed into the dredged layer and raised to restore the top height, It can prevent leaking by breaking the sand-capping layer.

土の変形係数(数値が大きいほど変形しにくい)は、一軸圧縮強さと圧縮ひずみに基づいてJIS−A1216(土の一軸圧縮試験方法)で規定する算定式により求めることができるが、これに従うと、改質土や標準的な砂の一軸圧縮強さ(kN/m)と変形係数(kN/m)には、概ね下記の関係が成り立つ。
変形係数=200×一軸圧縮強さ
標準的な砂の場合、一軸圧縮強さは30kN/m程度であり、したがって、変形係数は約6000kN/m程度である。これに対して、一軸圧縮強さ(28日養生後)100kN/mの改質土の変形係数は約20000kN/m程度であり、標準的な砂の3倍以上である。また、より好ましい一軸圧縮強さ(28日養生後)200kN/mの改質土の変形係数は約40000kN/m程度であり、標準的な砂の6倍以上である。このような高い変形係数を有する改質土層を設けることにより、天端高さ回復のために浚渫土層に浚渫土を圧入しても改質土層が変形しにくく、このため改質土層が局所的に破壊されて浚渫土が漏出することを防止できる。また、改質土の28日養生後の一軸圧縮強さが大きくなるほど、この効果が顕著になる。
なお、改質土層3を構成する改質土の一軸圧縮強度があまりに高くなるとアルカリ溶出の問題を生じるおそれがあるので、改質土の28日養生後の一軸圧縮強度は300kN/m程度を上限とすることが好ましい。
The deformation coefficient of soil (the larger the numerical value, the harder it is to deform) can be obtained from the calculation formula stipulated in JIS-A1216 (uniaxial compression test method of soil) based on the uniaxial compressive strength and compressive strain. The following relationship is generally established between the uniaxial compressive strength (kN / m 2 ) and the deformation coefficient (kN / m 2 ) of the modified soil and standard sand.
For deformation coefficient = 200 × uniaxial compressive strength standard sand, uniaxial compressive strength is about 30 kN / m 2, therefore, deformation coefficient is about 6000kN / m 2. In contrast, the modulus of deformation of the uniaxial compressive strength (after 28 days curing) 100 kN / m 2 of the modified soil is about 20000kN / m 2, it is standard sand 3 times. Further, more preferred variant coefficient modification soil uniaxial compressive strength (after 28 days curing) 200 kN / m 2 is about 40000kN / m 2, at 6 times the standard sand. By providing the modified soil layer having such a high deformation coefficient, the modified soil layer is not easily deformed even when the clay is pressed into the dredged soil layer to recover the top edge height. It is possible to prevent the clay from leaking due to local destruction of the layer. In addition, this effect becomes more prominent as the uniaxial compressive strength of the modified soil after 28 days of curing increases.
In addition, if the uniaxial compressive strength of the modified soil constituting the modified soil layer 3 becomes too high, there is a risk of causing alkali elution, so the uniaxial compressive strength after the 28-day curing of the modified soil is about 300 kN / m 2. Is preferably the upper limit.

改質土層3を構成する改質土の28日養生後の透水係数や一軸圧縮強度は、土砂の粒度や土砂に対する改質材(固化材)の混合割合などで調整する。
したがって、土砂(被改質土)に対する改質材の混合割合は上記の観点で決められるが、例えば、土砂(被改質土)に浚渫土を用い、改質材に製鋼スラグを用いる場合には、通常、土砂/製鋼スラグ=9/1〜6/4(体積比)程度の範囲で混合される。
改質土層3の層厚は特に制限はないが、蓋となって浚渫土層の排水を抑制するという機能を十分に果たすために、最も薄い部分でも0.5m程度の層厚が確保されることが好ましい。また、平均層厚では0.5〜1.0m程度が好ましい。
また、覆砂層2の層厚も特に制限はないが、通常、平均層厚で0.5〜1.0m程度である。
The permeability coefficient and uniaxial compressive strength after the 28-day curing of the modified soil constituting the modified soil layer 3 are adjusted by the particle size of the soil and the mixing ratio of the modifying material (solidifying material) to the soil.
Therefore, the mixing ratio of the modifying material to the earth and sand (modified soil) is determined from the above viewpoint. For example, when dredged soil is used as the earth and sand (modified soil) and steel slag is used as the modifying material. Is usually mixed in the range of earth / sand / steel slag = 9/1 to 6/4 (volume ratio).
The layer thickness of the modified soil layer 3 is not particularly limited, but a layer thickness of about 0.5 m is ensured even at the thinnest part in order to sufficiently function as a lid to suppress drainage of the dredged soil layer. It is preferable. The average layer thickness is preferably about 0.5 to 1.0 m.
The layer thickness of the sand covering layer 2 is not particularly limited, but is usually about 0.5 to 1.0 m in average layer thickness.

本発明では、透水係数が小さい改質土層3を設けることにより浚渫土層1の排水が抑制されるため、浚渫土層1の圧密沈下が抑えられるが、それでも造成から長期間経た場合には、浚渫土層1にある程度の圧密沈下が避けられないことがある。このような場合には、浚渫土層に浚渫土を圧入することで、浚渫土層1を嵩上げする補修を行うことが好ましいが、その場合でも、改質土層3を構成する改質土の28日養生後の一軸圧縮強さが100kN/m以上(好ましくは200kN/m以上)であれば、圧入した浚渫土が局所的に覆砂層を破って漏出することを適切に防止できる。 In the present invention, since the drainage of the dredged soil layer 1 is suppressed by providing the modified soil layer 3 having a small hydraulic conductivity, the consolidation settlement of the dredged soil layer 1 is suppressed. A certain degree of consolidation settlement may be unavoidable in the clay layer 1. In such a case, it is preferable to repair the clay layer 1 by press-fitting the clay into the clay layer, but even in this case, the modified soil constituting the modified soil layer 3 If the uniaxial compressive strength after curing for 28 days is 100 kN / m 2 or more (preferably 200 kN / m 2 or more), it is possible to appropriately prevent the injected clay from breaking through the sand-covering layer locally and leaking.

図3は、その補修方法を示すもので、浚渫土層1にある程度の圧密沈下が生じた人工浅場・干潟において、作業船(図示せず)から下ろされた注入管5(トレミー管等)の先端を浚渫土層1に挿入し、浚渫土10の圧入を行う。この浚渫土10の圧入を、適当な間隔で浚渫土層1の全体に対して行うことにより、浚渫土層全体の嵩上げを行うことができる。なお、浚渫土を圧入すべき浚渫土層1の領域を撹乱手段により事前に撹乱した後、浚渫土の圧入を行うようにしてもよく、これにより、浚渫土の圧入による上層(改質土層3、覆砂層2)の凹凸や局所的な***を抑え、人工浅場・干潟の表層面を滑らかな形状にすることができる。
このような人工浅場・干潟の補修において、改質土層3の一軸圧縮強さを100kN/m以上(好ましくは200kN/m以上)とすることにより、圧入した浚渫土が局所的に覆砂層2を破って漏出することを適切に防止することができる。
FIG. 3 shows the repair method. In an artificial shallow area / tidal flat where some consolidation subsidence has occurred in the dredged soil layer 1, an injection pipe 5 (Tremmy pipe etc.) lowered from a work ship (not shown). The tip is inserted into the clay layer 1 and the clay 10 is press-fitted. By performing the press-fitting of the clay 10 on the entire clay layer 1 at an appropriate interval, the entire clay layer can be raised. The area of the clay layer 1 where the clay should be injected may be preliminarily disturbed by the disturbing means, and then the clay may be injected, so that the upper layer (modified soil layer) 3. Unevenness and local uplift of the sand-capping layer 2) can be suppressed, and the surface of the artificial shallow ground / tidal flat can be made smooth.
In repairing such artificial shallows and tidal flats, the uniaxial compressive strength of the modified soil layer 3 is set to 100 kN / m 2 or more (preferably 200 kN / m 2 or more), so that the injected clay is locally covered. It is possible to appropriately prevent the sand layer 2 from being broken and leaking.

瀬戸内海沿岸部において、試験的に浅場を造成した。浚渫土層用と改質土用の浚渫土は、笠岡地区(岡山県)で採取したものを用い、改質材としては粒度0−20mmの製鋼スラグ(脱炭スラグ)を用いた。改質土は、浚渫土と製鋼スラグを浚渫土:製鋼スラグ=7:3(体積比)で混合したものを用いた。覆砂材としては、天然砂を用いた。
改質土の28日養生後の透水係数は4.5×10−6cm/s、28日養生後の一軸圧縮強度は220kN/mであった。
On the coastal area of the Seto Inland Sea, a shallow field was created experimentally. As the dredged soil for the dredged layer and the modified soil, those collected in the Kasaoka district (Okayama Prefecture) were used, and a steelmaking slag (decarburized slag) having a particle size of 0-20 mm was used as the modifier. The modified soil used was a mixture of clay and steelmaking slag at a ratio of clay: steelmaking slag = 7: 3 (volume ratio). Natural sand was used as the sand covering material.
The permeability of the modified soil after 28-day curing was 4.5 × 10 −6 cm / s, and the uniaxial compressive strength after 28-day curing was 220 kN / m 2 .

水底に、下層側から順に層厚1.5mの浚渫土層、層厚0.5mの改質土層、層厚0.5mの覆砂層を敷設し、浅場を造成した。
造成した浅場において、浚渫土層内への浚渫土圧入試験を実施した。浚渫土の圧入は、注入管を用いて直径15mの範囲に対して行った。その結果、浚渫土の注入量約180mにおいて、覆砂層の天端高さが最大1.6m回復(***)できることを確認した。また、その際に、圧入した浚渫土が局所的に覆砂層を破って漏出することはなかった。
A dredged soil layer with a layer thickness of 1.5 m, a modified soil layer with a layer thickness of 0.5 m, and a sand covering layer with a layer thickness of 0.5 m were laid in order from the lower layer side on the bottom of the water to create a shallow field.
A dredging test was carried out in the dredged layer in the newly constructed shallow ground. The press-fitting of the kneaded material was performed on a range of 15 m in diameter using an injection tube. As a result, it was confirmed that the maximum height of the top of the sand-capping layer can be recovered (raised) by 1.6 m at an injection amount of dredged soil of about 180 m 3 . At that time, the injected clay did not break through the sand-covering layer locally and leak out.

1 浚渫土層
2 覆砂層
3 改質土層
4 潜堤
5 注入管
10 浚渫土
DESCRIPTION OF SYMBOLS 1 dredged soil layer 2 sand covering layer 3 modified soil layer 4 submerged dike 5 injection pipe 10 dredged soil

Claims (4)

浚渫土層の上層に、透水係数が10−3cm/s以上の覆砂材からなる覆砂層を有する人工浅場又は干潟において、
浚渫土層と覆砂層の間に、28日養生後の透水係数が10−4cm/s以下の改質土からなる改質土層を設けることを特徴とする人工浅場又は干潟。
In an artificial shallow field or tidal flat having a sand-covering layer made of a sand-covering material having a hydraulic conductivity of 10 −3 cm / s or more on the upper layer of the dredged soil layer,
An artificial shallow ground or tidal flat characterized by providing a modified soil layer made of modified soil having a permeability of 10 −4 cm / s or less after curing on the 28th between the dredged soil layer and the sand-capped layer.
改質土層を構成する改質土は、土砂に水和反応を生じさせる改質材を混合したものであることを特徴とする請求項1に記載の人工浅場又は干潟。   The artificial shallow ground or tidal flat according to claim 1, wherein the modified soil constituting the modified soil layer is a mixture of a modifying material that causes a hydration reaction in the soil. 改質土層を構成する改質土の28日養生後の一軸圧縮強度が100kN/m以上であることを特徴とする請求項1又は2に記載の人工浅場又は干潟。 The artificial shallow field or tidal flat according to claim 1 or 2, wherein the uniaxial compressive strength after the 28-day curing of the modified soil constituting the modified soil layer is 100 kN / m 2 or more. 請求項3に記載の人工浅場又は干潟の補修方法であって、
浚渫土層に注入管を挿入し、該注入管を通じて浚渫土層内に浚渫土を圧入することにより、浚渫土層を嵩上げすることを特徴とする人工浅場又は干潟の補修方法。
A method for repairing an artificial shallow ground or tidal flat according to claim 3,
A method for repairing an artificial shallow field or tidal flat, wherein an injection pipe is inserted into the clay layer, and the clay is pressed into the clay layer through the injection pipe, thereby raising the clay layer.
JP2014067384A 2013-08-30 2014-03-28 Artificial shallow ground or tidal flat and its repair method Active JP5954351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014067384A JP5954351B2 (en) 2013-08-30 2014-03-28 Artificial shallow ground or tidal flat and its repair method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013178949 2013-08-30
JP2013178949 2013-08-30
JP2014067384A JP5954351B2 (en) 2013-08-30 2014-03-28 Artificial shallow ground or tidal flat and its repair method

Publications (2)

Publication Number Publication Date
JP2015063881A true JP2015063881A (en) 2015-04-09
JP5954351B2 JP5954351B2 (en) 2016-07-20

Family

ID=52831984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014067384A Active JP5954351B2 (en) 2013-08-30 2014-03-28 Artificial shallow ground or tidal flat and its repair method

Country Status (1)

Country Link
JP (1) JP5954351B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053150A (en) * 2015-09-10 2017-03-16 五洋建設株式会社 Submerged dyke construction material and submerged dyke structure using the same
JP2017141543A (en) * 2016-02-08 2017-08-17 Jfeスチール株式会社 Artificial shallow ground or tideland
JP2020056305A (en) * 2019-12-26 2020-04-09 五洋建設株式会社 Submerged dyke construction material and submerged dyke structure using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183813A (en) * 1989-12-14 1991-08-09 Chiyoda Corp Creation of tideland
JP2004285560A (en) * 2003-01-30 2004-10-14 Nippon Steel Corp Sand cover structure and sand cover method
JP2006214084A (en) * 2005-02-01 2006-08-17 Jfe Steel Kk Method for developing shallows and the like
JP2012219506A (en) * 2011-04-08 2012-11-12 Penta Ocean Construction Co Ltd Method for raising dry beach
JP2012246729A (en) * 2011-05-31 2012-12-13 Nippon Steel & Sumitomo Metal Method for backfilling dredged depression

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183813A (en) * 1989-12-14 1991-08-09 Chiyoda Corp Creation of tideland
JP2004285560A (en) * 2003-01-30 2004-10-14 Nippon Steel Corp Sand cover structure and sand cover method
JP2006214084A (en) * 2005-02-01 2006-08-17 Jfe Steel Kk Method for developing shallows and the like
JP2012219506A (en) * 2011-04-08 2012-11-12 Penta Ocean Construction Co Ltd Method for raising dry beach
JP2012246729A (en) * 2011-05-31 2012-12-13 Nippon Steel & Sumitomo Metal Method for backfilling dredged depression

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6015047742; 地盤工学会編集委員会: 地盤工学用語辞典 第1刷, 20060310, 第129頁, 社団法人地盤工学会 *
JPN6015047743; 社団法人セメント協会: セメント系固化材による地盤改良マニュアル 1版1刷, 19850420, 第39〜40頁、図-2.23, 技報堂出版 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053150A (en) * 2015-09-10 2017-03-16 五洋建設株式会社 Submerged dyke construction material and submerged dyke structure using the same
JP2017141543A (en) * 2016-02-08 2017-08-17 Jfeスチール株式会社 Artificial shallow ground or tideland
JP2020056305A (en) * 2019-12-26 2020-04-09 五洋建設株式会社 Submerged dyke construction material and submerged dyke structure using the same

Also Published As

Publication number Publication date
JP5954351B2 (en) 2016-07-20

Similar Documents

Publication Publication Date Title
JP5998713B2 (en) Filling method
JP5954351B2 (en) Artificial shallow ground or tidal flat and its repair method
JP5400680B2 (en) Artificial shallow or tidal flat
JP6032013B2 (en) Soft soil improvement material, soft soil improvement method using the same, and soft ground improvement method
JP6411202B2 (en) Impermeable material
JP4662957B2 (en) Suction prevention injection method
JP7133281B2 (en) Dredged soil modification method
JP6361889B2 (en) Artificial shallow or tidal flat
JP4976073B2 (en) Repair method for underground filler and earth structure
JP2006348466A (en) Improved ground concurrently using different types of sand compaction piles (scp)
JP6327215B2 (en) Gravity breakwater
JP5742477B2 (en) How to backfill the Ogikubo land
JP2008045341A (en) Construction method of banking on soft ground and banking structure therefor
JP2007154646A (en) Construction method for placing steel slag under water
JP6213749B2 (en) Artificial shallow or tidal flat
JP2005299337A (en) Consolidation accelerating method for blast-furnace slag back-filling material
JP7145910B2 (en) Method for manufacturing artificial stone, method for conveying artificial stone, and artificial stone
JP7238257B2 (en) Ground material and ground improvement method
JP6376254B2 (en) Artificial shallow or tidal flat
JP4606928B2 (en) Scour prevention method
JP4505319B2 (en) Determination method of water shielding material
KR101779251B1 (en) The method of carring out reinforced block on the ground base under connection part of tap and waste water pipeline using solidification agent of soil
JP5620341B2 (en) Manufacturing method of water shielding material
JP2013019216A (en) Impermeable wall mixed with fiber rubber and construction method of the same
JP3878716B2 (en) Control method of alkaline seepage water in cement-based granular improved soil layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160530

R150 Certificate of patent or registration of utility model

Ref document number: 5954351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250