JP2015059857A - Search device for ground fault position - Google Patents

Search device for ground fault position Download PDF

Info

Publication number
JP2015059857A
JP2015059857A JP2013194278A JP2013194278A JP2015059857A JP 2015059857 A JP2015059857 A JP 2015059857A JP 2013194278 A JP2013194278 A JP 2013194278A JP 2013194278 A JP2013194278 A JP 2013194278A JP 2015059857 A JP2015059857 A JP 2015059857A
Authority
JP
Japan
Prior art keywords
measurement signal
cable
ground fault
power supply
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013194278A
Other languages
Japanese (ja)
Other versions
JP5844327B2 (en
Inventor
明宏 小川
Akihiro Ogawa
明宏 小川
潔 畑
Kiyoshi Hata
潔 畑
光男 高田
Mitsuo Takada
光男 高田
臨 木束地
Rin Kizukaji
臨 木束地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2013194278A priority Critical patent/JP5844327B2/en
Publication of JP2015059857A publication Critical patent/JP2015059857A/en
Application granted granted Critical
Publication of JP5844327B2 publication Critical patent/JP5844327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Locating Faults (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

PROBLEM TO BE SOLVED: To quickly and easily specify a ground-faulted cable.SOLUTION: A search device of a ground fault position includes: an AC power supply; a switch for selectively connecting the AC power supply to a positive electrode side cable and negative electrode side cable connected between a DC power supply and a load; a measurement device for, when the AC power supply is connected to the positive electrode side cable, measuring a variable magnetic field due to currents flowing through the positive electrode side cable to output a first measurement signal, and for, when the AC power supply is connected to the negative electrode side cable, measuring the variable magnetic field due to currents flowing through the negative electrode side cable to output a second measurement signal; and a determination device for comparing the first measurement signal with the second measurement signal, and for, when the first measurement signal is different from the second measurement signal, determining that either the positive electrode side cable or the negative electrode side cable is ground-faulted.

Description

本発明は、地絡箇所の探索装置に関する。   The present invention relates to a ground fault location searching apparatus.

変電所で使用される遮断器や変速器などの機器の制御用電源として直流電源が用いられている。上記機器と直流電源との間を接続するために、多数のケーブルが変電所構内にわたって埋設されたり敷設されたりされて、直流回路網が形成されている。なお、上記直流回路網に含まれる個別の回路は、制御室から制御される。   A DC power source is used as a power source for controlling devices such as circuit breakers and transmissions used in substations. In order to connect between the equipment and the DC power source, a large number of cables are buried or laid across the substation premises to form a DC network. The individual circuits included in the DC circuit network are controlled from the control room.

このような直流回路網において、ケーブルの損傷により地絡故障が発生することがあり、その場合、制御室においてエラーが表示される。   In such a DC network, a ground fault may occur due to cable damage, in which case an error is displayed in the control room.

従来、地絡箇所の探索は、例えば次の手順1〜手順3のように行われている。   Conventionally, a search for a ground fault location is performed as in the following procedure 1 to procedure 3, for example.

手順1: 制御室に設けられた個別の回路のスイッチを1つずつ切っていき、エラーが解消されるかどうかを確認することで、地絡している線路を特定する。 Procedure 1: Switch off individual circuits provided in the control room one by one, and identify whether the ground fault is present by checking whether the error is resolved.

手順2: 地絡している線路に含まれるケーブルを部分的に切り離し、地絡しているケーブルを特定する。 Procedure 2: Partially disconnect the cable included in the grounded track and identify the grounded cable.

手順3: 地絡しているケーブルを目視により点検し、損傷箇所を探しだす。 Procedure 3: Visually inspect the grounding cable to find the damaged part.

特にケーブルが複数本まとめて埋設されたり敷設されたりしている場合には、手順2と手順3は時間と労力を要する。 In particular, when a plurality of cables are buried or laid together, procedure 2 and procedure 3 require time and labor.

また、例えば特許文献1および2に開示されているような地絡箇所の探索装置および検出方法が提案されている。   Further, for example, a ground fault location searching apparatus and a detection method as disclosed in Patent Documents 1 and 2 have been proposed.

特開平8−94699号公報JP-A-8-94699 特開2000−284015号公報JP 2000-284015 A

しかし、特許文献1および2の探索装置および検出方法を用いた場合でも、まとめて埋設されたり敷設されたりしている状態における複数本のケーブルから、地絡しているケーブルを特定することが、時間を要する作業であることに変わりはない。   However, even when the search device and the detection method of Patent Documents 1 and 2 are used, it is possible to identify a grounded cable from a plurality of cables in a state where they are buried or laid together, This is a time-consuming task.

前述した課題を解決する主たる本発明は、交流電源と、直流電源と負荷との間に接続されている正極側ケーブルおよび負極側ケーブルに対して前記交流電源を選択的に接続するスイッチと、前記交流電源が正極側ケーブルに接続されているとき、前記正極側ケーブルを流れる電流による変動磁場を測定して第1測定信号を出力し、前記交流電源が負極側ケーブルに接続されているとき、前記負極側ケーブルを流れる電流による変動磁場を測定して第2測定信号を出力する測定装置と、前記第1測定信号と前記第2測定信号とを比較して、前記第1測定信号と前記第2測定信号が異なる場合、前記正極側ケーブルおよび前記負極側ケーブルのいずれか一方に地絡が発生していると判定する判定装置と、を備える。   The main present invention for solving the above-mentioned problems is an AC power source, a switch that selectively connects the AC power source to a positive side cable and a negative side cable connected between the DC power source and a load, When the AC power source is connected to the positive side cable, the variable magnetic field due to the current flowing through the positive side cable is measured to output a first measurement signal, and when the AC power source is connected to the negative side cable, A measurement device that measures a varying magnetic field due to a current flowing through the negative cable and outputs a second measurement signal, and compares the first measurement signal with the second measurement signal, and compares the first measurement signal with the second measurement signal. And a determination device that determines that a ground fault has occurred in either one of the positive cable and the negative cable when the measurement signals are different.

本発明の他の特徴については、添付図面及び本明細書の記載により明らかとなる。   Other features of the present invention will become apparent from the accompanying drawings and the description of this specification.

本発明によれば、速やかにかつ簡便に、地絡しているケーブルを特定することができる。   According to the present invention, it is possible to quickly and easily identify a grounded cable.

本発明の第1実施形態における地絡箇所の探索装置の概略を示す図である。It is a figure which shows the outline of the search apparatus of the ground fault location in 1st Embodiment of this invention. 本発明の第1実施形態における判定装置を示す図である。It is a figure which shows the determination apparatus in 1st Embodiment of this invention. 本発明の第2実施形態における判定装置を示す図である。It is a figure which shows the determination apparatus in 2nd Embodiment of this invention.

本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。   At least the following matters will become apparent from the description of this specification and the accompanying drawings.

[第1実施形態]
以下、図1および図2を参照して、本発明の第1実施形態における地絡箇所の探索装置および探索方法について説明する。
なお、本実施形態において、直流電源ED、2つの負荷5(51,52)、および、直流電源EDと負荷5(51,52)との間をそれぞれ接続する正極側および負極側ケーブル6(61p,61n、62p,62n)は、直流回路網を形成している。また、Cgはケーブル6(61p,61n、62p,62n)と大地との間の対地静電容量を表す。本実施形態では、特に明示のない限り、負荷52に接続されている負極側ケーブル62nにおける位置Fで地絡事故が発生したものとする。
[First embodiment]
Hereinafter, with reference to FIG. 1 and FIG. 2, a ground fault location searching apparatus and searching method according to the first embodiment of the present invention will be described.
In the present embodiment, the DC power supply ED, the two loads 5 (51, 52), and the positive and negative cables 6 (61p) connecting the DC power supply ED and the load 5 (51, 52), respectively. , 61n, 62p, 62n) form a DC network. Cg represents the electrostatic capacitance between the cable 6 (61p, 61n, 62p, 62n) and the ground. In the present embodiment, it is assumed that a ground fault has occurred at position F in the negative electrode side cable 62n connected to the load 52 unless otherwise specified.

===構成および動作===
図1は、本実施形態における地絡箇所の探索装置の概略を示す。図1に示されるように、地絡箇所の探索装置1は、交流電源Ea、スイッチSW、磁気センサ2および判定装置3を備える。交流電源Eaは、例えば数百Hzの周波数の電圧を発生させ、好ましくは600Hzの周波数の電圧を発生させる。数百Hzの周波数を採用するのは、後述するように、判定装置3において、対地充電電流ICgおよび地絡電流Irに伴う微弱な変動磁場と環境磁場とに由来する成分を含む測定信号Sから、変動磁場の成分が検出されるようにするためである。600Hzほどの比較的高い周波数の場合には、測定信号Sから変動磁場に由来する成分の検出はより容易になる。
=== Configuration and Operation ===
FIG. 1 shows an outline of a ground fault location searching apparatus in the present embodiment. As shown in FIG. 1, the ground fault location searching device 1 includes an AC power source Ea, a switch SW, a magnetic sensor 2, and a determination device 3. The AC power supply Ea generates a voltage having a frequency of, for example, several hundred Hz, and preferably generates a voltage having a frequency of 600 Hz. The frequency of several hundred Hz is adopted from the measurement signal S including a component derived from the weakly varying magnetic field and the environmental magnetic field associated with the ground charging current ICg and the ground fault current Ir in the determination device 3 as described later. This is because the component of the varying magnetic field is detected. In the case of a relatively high frequency of about 600 Hz, it becomes easier to detect a component derived from the varying magnetic field from the measurement signal S.

また、スイッチSWは、交流電源Eaを正極側ケーブル61p,62pおよび負極側ケーブル61n,62nに選択的に接続する。スイッチSWが一方の極性のケーブルに接続された場合、磁気センサ2が、判定装置3で比較される程度の大きさの測定信号S(S1p,S1n,S2p,S2n)を出力するまで、その極性のケーブルへの接続は維持される。なお、スイッチSWの切替は例えば手動により行われる。なお、後述するように、地絡ケーブルの判定後に、磁気センサ2を地絡ケーブルに沿って走査することで地絡箇所の探索が行われる。その場合には、磁気センサ2による走査の間、スイッチSWは地絡ケーブルの側に接続される。   The switch SW selectively connects the AC power source Ea to the positive side cables 61p and 62p and the negative side cables 61n and 62n. When the switch SW is connected to a cable of one polarity, the polarity of the magnetic sensor 2 is output until the magnetic sensor 2 outputs a measurement signal S (S1p, S1n, S2p, S2n) having a magnitude comparable to that of the determination device 3. The connection to the cable is maintained. Note that the switch SW is manually switched, for example. As will be described later, after the ground fault cable is determined, the ground fault location is searched by scanning the magnetic sensor 2 along the ground fault cable. In that case, the switch SW is connected to the ground fault cable side during scanning by the magnetic sensor 2.

磁気センサ2は、ケーブル6(61p,61n、62p,62n)に流れる電流によって生ずる変動磁場を測定し、測定信号を出力する測定装置である。磁気センサ2は、地磁気や変圧器からの磁気などによる環境磁場の中から微弱な上記変動磁場を検出するように、例えば超伝導量子干渉計(superconducting quantum interferometer device;以下、SQUIDと言う)グラジオメータである。   The magnetic sensor 2 is a measuring device that measures a varying magnetic field generated by a current flowing through the cable 6 (61p, 61n, 62p, 62n) and outputs a measurement signal. The magnetic sensor 2 is, for example, a superconducting quantum interferometer device (hereinafter referred to as SQUID) gradiometer so as to detect the above-mentioned weak magnetic field from the environmental magnetic field due to geomagnetism or magnetism from a transformer. It is.

本実施形態におけるSQUIDグラジオメータは、磁場を捕捉する検出コイルとSQUID本体とを含む。SQUID本体が環境磁場などの影響を受けないように、検出コイルはSQUID本体から分離している。検出コイルは、互いの入力を打ち消し合うように同一平面上に配置された一対のピックアップコイルを含み、一対のピックアップコイルのそれぞれに入力された信号の差分がSQUID本体に出力される。個々のピックアップコイルの寸法はケーブル6の直径とほぼ同じの大きさである。例えば、一方のピックアップコイルがケーブル6の近傍に配置され、他方のピックアップコイルが上記一方のピックアップコイルよりもケーブル6から離れて配置されているときのように、両ピックアップコイルに鎖交する磁束に差がある場合に、検出コイルは、両ピックアップコイルの入力の差分をSQUID本体に伝達する。なお、検出コイルは例えば手動により操作される。   The SQUID gradiometer in the present embodiment includes a detection coil that captures a magnetic field and a SQUID body. The detection coil is separated from the SQUID body so that the SQUID body is not affected by an environmental magnetic field or the like. The detection coil includes a pair of pickup coils arranged on the same plane so as to cancel each other's input, and a difference between signals input to each of the pair of pickup coils is output to the SQUID body. The size of each pickup coil is almost the same as the diameter of the cable 6. For example, when one pickup coil is arranged in the vicinity of the cable 6 and the other pickup coil is arranged farther from the cable 6 than the one pickup coil, the magnetic flux interlinked with both pickup coils is generated. When there is a difference, the detection coil transmits the difference between the inputs of both pickup coils to the SQUID body. The detection coil is manually operated, for example.

本実施形態において、健全なケーブル61p,61n、62pには、ほぼ同じ大きさの対地充電電流ICgがそれぞれ流れるのに対して、地絡の生じているケーブル62nの位置Fより交流電源Ea側の部分には、対地充電電流ICgに加えて地絡電流Irが流れる。従って、ケーブル61p,61n、62pに対する磁気センサ2の測定信号S1p,S1n,S2pはほぼ同じ大きさであるのに対して、ケーブル62nにおける位置Fより交流電源Ea側の部分に対する磁気センサ2の測定信号S2nは測定信号S1p,S1n,S2pより大きい。また、ケーブル62nにおける位置Fより負荷側の部分には対地充電電流も地絡電流も流れないため、磁気センサ2から出力される測定信号は0である。よって、磁気センサ2の検出コイルをケーブル62nに沿って、交流電源Ea側から位置Fを経て負荷52側へ走査するとき、測定信号S2nは、位置Fを境にして、上述した相対的に大きな値から0に変化する。なお、対地充電電流ICgおよび地絡電流Irは、交流電源Eaの周波数とほぼ同じ周波数を持ち、磁気センサ2の出力する測定信号S1p,S1n,S2p,S2nもまた、ケーブル62nにおける位置Fより負荷側の測定信号を除き、交流電源Eaの周波数とほぼ同じ周波数を持つ。   In the present embodiment, ground charging currents ICg having almost the same magnitude flow through the healthy cables 61p, 61n, and 62p, respectively, whereas the position F of the cable 62n where the ground fault occurs is closer to the AC power supply Ea side. In the portion, the ground fault current Ir flows in addition to the ground charging current ICg. Accordingly, the measurement signals S1p, S1n, and S2p of the magnetic sensor 2 for the cables 61p, 61n, and 62p are substantially the same magnitude, whereas the measurement of the magnetic sensor 2 for the portion on the AC power supply Ea side from the position F in the cable 62n. The signal S2n is larger than the measurement signals S1p, S1n, S2p. In addition, since the ground charging current and the ground fault current do not flow in the portion on the load side from the position F in the cable 62n, the measurement signal output from the magnetic sensor 2 is zero. Therefore, when the detection coil of the magnetic sensor 2 is scanned along the cable 62n from the AC power supply Ea side to the load 52 side through the position F, the measurement signal S2n is relatively large with the position F as a boundary. Change from value to zero. The ground charging current ICg and the ground fault current Ir have substantially the same frequency as that of the AC power supply Ea, and the measurement signals S1p, S1n, S2p, S2n output from the magnetic sensor 2 are also loaded from the position F in the cable 62n. Except for the measurement signal on the side, it has substantially the same frequency as that of the AC power supply Ea.

判定装置3は、交流電源Eaが正極側ケーブル61p,62pに接続されている場合に磁気センサ2からそれぞれ出力される測定信号S1p,S2pと、交流電源Eaが負極側ケーブル61n,62nに接続されている場合に磁気センサ2からそれぞれ出力される測定信号S1n,S2nとを比較して、これら測定信号が異なるとき、ケーブル6のいずれかに地絡が生じていると判定する。本実施形態では、測定信号S1p,S1n,S2pと測定信号S2nとは異なっているから、例えば、測定信号S1pとS1n、S2pとS2nがそれぞれ判定装置3において比較される場合には、ほぼ同じ信号であるS1pとS1nに対応するケーブル61pと61nに地絡は生じておらず、異なる信号であるS2pとS2nに対応するケーブル62pと62nのいずれかに地絡が生じていると判定する。更に、測定信号S2nは、ケーブル62nにおける位置Fより交流電源Ea側の部分では、測定信号S1p,S1n,S2pより大きいから、判定装置3は、ケーブル62nに地絡が生じていると判定する。   In the determination device 3, when the AC power source Ea is connected to the positive cables 61p and 62p, the measurement signals S1p and S2p output from the magnetic sensor 2 and the AC power source Ea are connected to the negative cables 61n and 62n, respectively. The measurement signals S1n and S2n respectively output from the magnetic sensor 2 are compared, and when these measurement signals are different, it is determined that a ground fault has occurred in any of the cables 6. In the present embodiment, the measurement signals S1p, S1n, S2p are different from the measurement signal S2n. For example, when the measurement signals S1p and S1n and S2p and S2n are compared in the determination device 3, respectively, substantially the same signal It is determined that a ground fault has not occurred in the cables 61p and 61n corresponding to S1p and S1n, and a ground fault has occurred in one of the cables 62p and 62n corresponding to different signals S2p and S2n. Furthermore, since the measurement signal S2n is larger than the measurement signals S1p, S1n, and S2p in the portion on the AC power supply Ea side from the position F in the cable 62n, the determination device 3 determines that a ground fault has occurred in the cable 62n.

図2は、本実施形態における判定装置の一例を示す。図2に示されるように、判定装置3は、ハイパスフィルタ31と比較器32とを含む。ハイパスフィルタ31は、入力された測定信号S1p,S2p,S1n,S2nのうち、交流電源Eaの周波数より大きい周波数成分を通過させる。測定信号S1p,S2p,S1n,S2nは、交流電源Eaの周波数と同じ周波数成分のほかに、上述した環境磁場などに由来する雑音を含むから、ハイパスフィルタ31は、測定信号S1p,S2p,S1n,S2nのうち交流電源Eaの周波数と同じ周波数成分が次段の比較器32で検出されるように、このような雑音を減衰させる。   FIG. 2 shows an example of the determination apparatus in the present embodiment. As shown in FIG. 2, the determination device 3 includes a high pass filter 31 and a comparator 32. The high pass filter 31 passes a frequency component larger than the frequency of the AC power supply Ea among the input measurement signals S1p, S2p, S1n, S2n. Since the measurement signals S1p, S2p, S1n, and S2n include noise derived from the above-described environmental magnetic field in addition to the same frequency component as the frequency of the AC power supply Ea, the high-pass filter 31 includes Such noise is attenuated so that the same frequency component as the frequency of the AC power supply Ea in S2n is detected by the comparator 32 at the next stage.

測定信号S1p,S2p,S1n,S2nは、ハイパスフィルタ31を経て、比較器32に入力される。比較器32は、例えば、測定信号S1pとS1n,S2pとS2nをそれぞれ比較し、比較された2つの信号が同じか異なるかを比較結果として出力する。本実施形態において、比較器32は、測定信号S1pとS1nは同じであるとの比較結果を出力し、測定信号S2pとS2nは異なるとの比較結果を出力する。判定装置3は、比較器32の比較結果を受けて、測定信号S1pとS1nにそれぞれ対応するケーブル61pと61nには地絡は生じておらず、測定信号S2pとS2nにそれぞれ対応するケーブル62pと62nのいずれかに地絡が生じていると判定する。   The measurement signals S1p, S2p, S1n, and S2n are input to the comparator 32 through the high pass filter 31. For example, the comparator 32 compares the measurement signals S1p and S1n, S2p and S2n, and outputs whether the two compared signals are the same or different as a comparison result. In the present embodiment, the comparator 32 outputs a comparison result that the measurement signals S1p and S1n are the same, and outputs a comparison result that the measurement signals S2p and S2n are different. The determination device 3 receives the comparison result of the comparator 32, and no ground fault occurs in the cables 61p and 61n corresponding to the measurement signals S1p and S1n, respectively, and the cables 62p corresponding to the measurement signals S2p and S2n, respectively. It is determined that a ground fault has occurred in any of 62n.

比較器32は、入力された測定信号Sのうち大きい方を比較結果として出力するものであってもよく、例えば、測定信号S2pとS2nの入力に対して、測定信号S2pの方が大きいとの比較結果を出力する。判定装置3は、比較器32のこの比較結果を受けて、測定信号S2pに対応するケーブル62nが地絡していると判定する。   The comparator 32 may output a larger one of the input measurement signals S as a comparison result. For example, the measurement signal S2p is larger than the input of the measurement signals S2p and S2n. Output the comparison result. The determination device 3 receives this comparison result of the comparator 32 and determines that the cable 62n corresponding to the measurement signal S2p is grounded.

===使用方法===
本実施形態における探索装置の使用方法を説明する。本探索装置1を用いて地絡箇所を探索する手順は、地絡ケーブル6を判定する手順と、地絡ケーブル6における地絡箇所を特定する手順とに大別されるから、以下、順を追って説明する。
=== Usage ===
A method of using the search device in this embodiment will be described. The procedure for searching for a ground fault location using the search device 1 is roughly divided into a procedure for determining the ground fault cable 6 and a procedure for specifying the ground fault location in the ground fault cable 6. I will explain later.

[地絡ケーブルを判定する手順]
スイッチSWを操作し、交流電源Eaを例えば正極側ケーブル61p,62pに接続する。磁気センサ2の検出コイルを正極側ケーブル61p,62pに近づけ、測定信号S1p,S2pを得る。磁気センサ2として例えばSQUIDグラジオメータを用いることにより、微弱な変動磁場が検出される。なお、正極側ケーブル61p,62pが埋設されていたり他のケーブルとともに敷設されていたりする場合でも、埋設や敷設がなされた状態のまま、正極側ケーブル61p,62pに磁気センサ2の検出コイルを近づければよい。この段階では、判定装置3で比較される程度の測定信号Sが得られるように、ケーブル61p,61nのおける任意の地点とその近傍を磁気センサ2で走査すればよい。
[Procedure for determining ground fault cable]
The switch SW is operated to connect the AC power source Ea to, for example, the positive side cables 61p and 62p. The detection coil of the magnetic sensor 2 is brought close to the positive cables 61p and 62p to obtain measurement signals S1p and S2p. By using, for example, a SQUID gradiometer as the magnetic sensor 2, a weak variable magnetic field is detected. Even when the positive-side cables 61p and 62p are buried or laid together with other cables, the detection coil of the magnetic sensor 2 is brought close to the positive-side cables 61p and 62p while being buried or laid. Just do it. At this stage, the magnetic sensor 2 may be used to scan an arbitrary point in the cables 61p and 61n and the vicinity thereof so that the measurement signal S comparable to the determination device 3 can be obtained.

次に、スイッチSWを切り替え、交流電源Eaを負極側ケーブル61n,62nに接続して、磁気センサ2の検出コイルを負極側ケーブル61n,62nに近づけて、測定信号S1n,S2nを得る。ここでも、負極側ケーブル61n,62nが埋設されていたり他のケーブルとともに敷設されていたりする場合に、埋設や敷設がなされた状態のまま、負極側ケーブル61n,62nに磁気センサ2の検出コイルを近づければよい。また、この段階では、判定装置3で比較される程度の測定信号Sが得られるように、ケーブル61n,62nのおける任意の地点とその近傍を磁気センサ2で走査すればよい。   Next, the switch SW is switched, the AC power source Ea is connected to the negative cables 61n and 62n, and the detection coil of the magnetic sensor 2 is brought close to the negative cables 61n and 62n to obtain the measurement signals S1n and S2n. Here again, when the negative side cables 61n and 62n are buried or laid together with other cables, the detection coil of the magnetic sensor 2 is attached to the negative side cables 61n and 62n while being buried or laid. It only has to be close. Further, at this stage, the magnetic sensor 2 may be used to scan an arbitrary point in the cables 61n and 62n and the vicinity thereof so that the measurement signal S comparable to the determination device 3 can be obtained.

そして、得られた測定信号Sを測定装置3に入力し、測定信号S同士を比較する。例えばS1pとS1n、S2pとS2nがそれぞれ比較されるように測定信号を測定装置3に入力すると、上述したように測定信号S1pとS1nはほぼ同じであり、測定信号S2pとS2nは異なることから、測定装置3は、測定信号S1pとS1nに対応するケーブル61pと61nに地絡は生じておらず、測定信号S2pとS2nに対応するケーブル62pと62nのいずれか一方に地絡が生じている、と判定する。更に、測定信号S2nは、ケーブル62nにおける位置Fより交流電源Ea側を測定した信号である場合には、地絡電流Irに相当する分だけ測定信号S2pより大きいから、測定装置3は、大きい方の測定信号S2nに対応するケーブル62nに地絡が生じている、と判定する。   Then, the obtained measurement signal S is input to the measurement device 3 and the measurement signals S are compared with each other. For example, when a measurement signal is input to the measurement apparatus 3 so that S1p and S1n and S2p and S2n are compared, the measurement signals S1p and S1n are substantially the same as described above, and the measurement signals S2p and S2n are different. In the measuring apparatus 3, no ground fault occurs in the cables 61p and 61n corresponding to the measurement signals S1p and S1n, and a ground fault occurs in one of the cables 62p and 62n corresponding to the measurement signals S2p and S2n. Is determined. Further, when the measurement signal S2n is a signal obtained by measuring the AC power supply Ea side from the position F in the cable 62n, the measurement device 3 is larger than the measurement signal S2p by an amount corresponding to the ground fault current Ir. It is determined that a ground fault has occurred in the cable 62n corresponding to the measurement signal S2n.

なお、地絡ケーブルの判定のための手順において、ケーブル62nにおいて地絡が生じている位置Fより負荷52側に磁気センサ2を当てた場合には、測定信号として0が出力される。その場合には、磁気センサ2で測定中のケーブル6に地絡が生じていると判定される。   In the procedure for determining the ground fault cable, when the magnetic sensor 2 is applied to the load 52 side from the position F where the ground fault occurs in the cable 62n, 0 is output as the measurement signal. In that case, it is determined that a ground fault has occurred in the cable 6 being measured by the magnetic sensor 2.

また、例えば、第3の負荷53(図示せず)の負極側ケーブル63n(図示せず)が、ケーブル62nにおける位置Fより上流側の位置A(図示せず)から分岐している場合であって、ケーブル62nに対する測定信号S2nほかに、ケーブル63nに対する測定信号S3nも0であるときには、ケーブル62nが地絡ケーブルであると判定されるとともに、ケーブル62nの位置Aより上流側において地絡が生じていると判定される。   Further, for example, this is a case where the negative electrode side cable 63n (not shown) of the third load 53 (not shown) branches from a position A (not shown) upstream of the position F in the cable 62n. When the measurement signal S2n for the cable 62n and the measurement signal S3n for the cable 63n are also 0, it is determined that the cable 62n is a ground fault cable, and a ground fault occurs upstream of the position A of the cable 62n. It is determined that

[地絡箇所を特定する手順]
上述した手順において地絡が生じていると判定されたケーブルについて、地絡箇所を特定するために次の作業が行われる。
[Procedure for identifying ground fault location]
The following work is performed to identify the ground fault location for the cable determined to have a ground fault in the above-described procedure.

まず、交流電源Eaが地絡ケーブル(本実施形態ではケーブル62n)に接続されるようにスイッチSWを切り替える。スイッチSWの切替は例えば手動で行われる。   First, the switch SW is switched so that the AC power supply Ea is connected to the ground fault cable (cable 62n in the present embodiment). The switch SW is switched manually, for example.

次に、磁気センサ2の検出コイルをケーブル62nに近づけた状態で、検出コイルをケーブル62nの軸方向に沿って走査する。走査は、例えば、手動により、ケーブル62nにおける交流電源Ea側から位置Fを経て負荷52側に向かって行われる。その場合、磁気センサ2から出力される測定信号S2nは、対地充電電流ICgに地絡電流Irが重畳して流れることに伴う比較的大きな値から、位置Fを境として0に変化する。判定装置3は、測定信号S2nがこのように変化したときにおける磁気センサ2の検出コイルの位置の近傍を、地絡箇所と判断する。   Next, the detection coil is scanned along the axial direction of the cable 62n while the detection coil of the magnetic sensor 2 is brought close to the cable 62n. Scanning is performed manually, for example, from the AC power supply Ea side of the cable 62n toward the load 52 side through the position F. In that case, the measurement signal S2n output from the magnetic sensor 2 changes from a relatively large value that accompanies the flow of the ground fault current Ir to the ground charging current ICg to 0 at the position F as a boundary. The determination device 3 determines the vicinity of the position of the detection coil of the magnetic sensor 2 when the measurement signal S2n changes in this way as a ground fault location.

なお、上述のようにして地絡箇所が特定された後、該当するケーブルが人手によって引っ張りだされ、目視により損傷の有無が確認される。本実施形態においては、ケーブル6を掘り出したり引き出したりするような時間と労力を要する作業は、地絡箇所が特定された後に行われるので、簡便な作業により地絡箇所が特定される。   In addition, after a ground fault location is specified as mentioned above, the applicable cable is pulled out manually and the presence or absence of damage is confirmed visually. In the present embodiment, the work requiring time and labor for digging out and pulling out the cable 6 is performed after the ground fault location is specified, and therefore the ground fault location is specified by a simple operation.

[第2実施形態]
図3を参照して、本発明の第2実施形態における地絡箇所の探索装置について説明する。なお、本実施形態における探索装置1’は、判定装置において第1実施形態における探索装置1と相違し、その他の構成は同じである。よって、本実施形態において、第1実施形態と同様の部材および装置には共通の符号を付すとともに、説明を省略する。
[Second Embodiment]
With reference to FIG. 3, the ground fault location search apparatus in 2nd Embodiment of this invention is demonstrated. The search device 1 ′ in the present embodiment is different from the search device 1 in the first embodiment in the determination device, and the other configurations are the same. Therefore, in the present embodiment, the same members and devices as those in the first embodiment are denoted by common reference numerals and the description thereof is omitted.

図3は、本実施形態における判定装置の概略を示す図である。図3に示されるように、判定装置3’は、同期検波器33と比較器34とを含む。
同期検波器33は、交流電源Eaと同じ周波数で測定信号S(S1p,S2p,S1n,S2n)を検波する。対地充電電流ICgおよび地絡電流Irならびにこれら電流に伴う変動磁場は、交流電源Eaの周波数とほぼ同じ周波数で変動することから、測定信号Sから交流電源Eaの周波数とほぼ同じ周波数成分を検出して地絡判定のために用いることで、地絡判定の確実性が向上する。なお、判定装置3’は例えばロックインアンプである。
FIG. 3 is a diagram showing an outline of the determination apparatus in the present embodiment. As shown in FIG. 3, the determination device 3 ′ includes a synchronous detector 33 and a comparator 34.
The synchronous detector 33 detects the measurement signal S (S1p, S2p, S1n, S2n) at the same frequency as the AC power supply Ea. Since the ground charging current ICg, the ground fault current Ir, and the fluctuating magnetic field accompanying these currents fluctuate at substantially the same frequency as the frequency of the AC power supply Ea, the frequency component substantially the same as the frequency of the AC power supply Ea is detected from the measurement signal S By using it for ground fault determination, the reliability of ground fault determination is improved. The determination device 3 ′ is, for example, a lock-in amplifier.

同期検波器33の出力は比較器34に入力されるところ、比較器34の動作は、第1実施形態における比較器32の動作と同様であるので、説明を省略する。   Since the output of the synchronous detector 33 is input to the comparator 34, the operation of the comparator 34 is the same as the operation of the comparator 32 in the first embodiment, and thus description thereof is omitted.

探索装置1’の使用方法は第1実施形態における探索装置1の使用方法と同じであるので、説明を省略する。   Since the usage method of the search device 1 'is the same as the usage method of the search device 1 in the first embodiment, the description thereof is omitted.

前述したとおり、スイッチSWは、直流電源EDと負荷5(51,52)との間に接続されている正極側ケーブル61p,62pおよび負極側ケーブル61n,62nに対して、交流電源Eaを選択的に接続する。また、磁気センサ2は、交流電源Eaが正極側ケーブル61p,62pに接続されているとき、正極側ケーブル61p,62pを流れる電流による変動磁場を測定して第1測定信号S1p,S2pを出力し、交流電源Eaが負極側ケーブル61n,62nに接続されているとき、負極側ケーブル61n,62nを流れる電流による変動磁場を測定して第2測定信号S1n,S2nを出力する。また、判定装置3は、第1測定信号S1p,S2pと第2測定信号S1n,S2nとを比較し、第1測定信号S1p,S2pと第2測定信号S1n,S2nが異なる場合、正極側ケーブル61p,62pおよび負極側ケーブル61n,62nのいずれか一方に地絡が発生していると判定する。本実施形態において、測定信号S1pとS1nはほぼ同じであるから、ケーブル61pと61nには地絡は生じていないと判定され、測定信号S2pとS2nは異なるからケーブル62pと62nのいずれかに地絡が生じていると判定される。従って、複数本のケーブルがまとめて埋設されたり敷設されたりしている場合でも、速やかにかつ簡便に、地絡しているケーブルが特定される。   As described above, the switch SW selectively selects the AC power source Ea for the positive side cables 61p and 62p and the negative side cables 61n and 62n connected between the DC power source ED and the load 5 (51, 52). Connect to. In addition, when the AC power supply Ea is connected to the positive cables 61p and 62p, the magnetic sensor 2 measures the fluctuating magnetic field due to the current flowing through the positive cables 61p and 62p and outputs the first measurement signals S1p and S2p. When the AC power supply Ea is connected to the negative cables 61n and 62n, the magnetic field fluctuating due to the current flowing through the negative cables 61n and 62n is measured and the second measurement signals S1n and S2n are output. Further, the determination device 3 compares the first measurement signals S1p and S2p with the second measurement signals S1n and S2n, and when the first measurement signals S1p and S2p are different from the second measurement signals S1n and S2n, the positive-side cable 61p. 62p and the negative side cables 61n, 62n are determined to have a ground fault. In the present embodiment, since the measurement signals S1p and S1n are substantially the same, it is determined that no ground fault has occurred in the cables 61p and 61n, and the measurement signals S2p and S2n are different, so that either one of the cables 62p and 62n is grounded. It is determined that an entanglement has occurred. Therefore, even when a plurality of cables are buried or laid together, a grounded cable is identified quickly and easily.

また、判定装置3は、第1測定信号S1p,S2pと第2測定信号S1n,S2nとを比較し、正極側ケーブル61p,62pおよび負極側ケーブル61n,62nのうち第1測定信号S1p,S2pと第2測定信号S1n,S2nの値が大きい方のケーブルに地絡が発生していると判定する。本実施形態において、測定信号の値が大きい方のケーブル62nに地絡が生じていると判定されるから、更に速やかにかつ簡便に、地絡しているケーブルが特定される。   In addition, the determination device 3 compares the first measurement signals S1p and S2p with the second measurement signals S1n and S2n, and the first measurement signals S1p and S2p of the positive cables 61p and 62p and the negative cables 61n and 62n It is determined that a ground fault has occurred in the cable having the larger value of the second measurement signals S1n and S2n. In the present embodiment, since it is determined that a ground fault has occurred in the cable 62n having the larger measurement signal value, the ground fault cable is identified more quickly and simply.

また、磁気センサ2は、正極側ケーブル61p,62pまたは負極側ケーブル61n,62nを流れる電流による変動磁場を、検出コイルを介して測定する。変動磁場を、磁気センサ2の本体から分離した検出コイルで検出することで、磁気センサ2の本体が環境磁場等の影響を受けないので、正確な測定信号Sを得ることができる。よって、正確な地絡判定が可能となる。   Moreover, the magnetic sensor 2 measures the fluctuation | variation magnetic field by the electric current which flows through the positive electrode side cables 61p and 62p or the negative electrode side cables 61n and 62n via a detection coil. By detecting the fluctuating magnetic field with a detection coil separated from the main body of the magnetic sensor 2, the main body of the magnetic sensor 2 is not affected by an environmental magnetic field or the like, so that an accurate measurement signal S can be obtained. Therefore, accurate ground fault determination is possible.

また、交流電源Eaは、略600Hzの周波数の交流電圧を出力する。このとき、対地充電電流ICgおよび地絡電流Irは略600Hzで変動し、これら電流に伴う微弱な変動磁場も略600Hzで変動する。測定信号Sは、変動磁場に対応する略600Hzの周波数成分と、環境磁場等に由来する雑音とを含むところ、略600Hzの周波数成分は、雑音に埋もれることなく判定装置3において検出される。よって、正確な判定結果により確実に地絡ケーブルを特定することができる。   The AC power supply Ea outputs an AC voltage having a frequency of approximately 600 Hz. At this time, the ground charging current ICg and the ground fault current Ir fluctuate at about 600 Hz, and the weak fluctuating magnetic field accompanying these currents fluctuates at about 600 Hz. The measurement signal S includes a frequency component of approximately 600 Hz corresponding to the varying magnetic field and noise derived from the environmental magnetic field or the like. The frequency component of approximately 600 Hz is detected by the determination device 3 without being buried in the noise. Therefore, it is possible to reliably identify the ground fault cable based on the accurate determination result.

また、判定装置3は、第1測定信号S1p,S2pおよび第2測定信号S1n,S2nから交流電源Eaの周波数と略同一の周波数成分が検出されるように、第1測定信号S1p,S2pおよび第2測定信号S1n,S2nのうち交流電源Eaの周波数より高い周波数成分を通過させるハイパスフィルタを含む。測定信号S(S1p,S2p,S1n,S2n)に含まれる雑音をハイパスフィルタ31によって減衰させることによって、測定信号S(S1p,S2p,S1n,S2n)のうち交流電源Eaの周波数と同じ周波数成分は、判定装置3によって確実に検出される。従って、確実に地絡ケーブルを特定することができる。   Further, the determination device 3 detects the first measurement signals S1p, S2p and the second measurement signals S1p, S2p and the second measurement signals S1n, S2n so that the frequency components substantially the same as the frequency of the AC power supply Ea are detected. 2 The high-pass filter which passes the frequency component higher than the frequency of AC power supply Ea among measurement signals S1n and S2n is included. By attenuating noise included in the measurement signal S (S1p, S2p, S1n, S2n) by the high-pass filter 31, the same frequency component as the frequency of the AC power supply Ea in the measurement signal S (S1p, S2p, S1n, S2n) is obtained. , It is reliably detected by the determination device 3. Therefore, it is possible to reliably identify the ground fault cable.

また、判定装置3は、第1測定信号S1p,S2pおよび第2測定信号S1n,S2nから交流電源Eaの周波数と略同一の周波数成分が検出されるように、第1測定信号S1p,S2pおよび第2測定信号S1n,S2nから交流電源Eaの周波数と略同一の周波数成分を選択する同期検波器33を含む。測定信号S(S1p,S2p,S1n,S2n)から交流電源Eaの周波数とほぼ同じ周波数成分を選択することによって、測定信号Sの比較が容易になり、地絡判定の確実性が増す。   Further, the determination device 3 detects the first measurement signals S1p, S2p and the second measurement signals S1p, S2p and the second measurement signals S1n, S2n so that the frequency components substantially the same as the frequency of the AC power supply Ea are detected. 2 includes a synchronous detector 33 that selects a frequency component substantially the same as the frequency of the AC power supply Ea from the measurement signals S1n and S2n. By selecting substantially the same frequency component as the frequency of the AC power supply Ea from the measurement signal S (S1p, S2p, S1n, S2n), the comparison of the measurement signal S is facilitated, and the reliability of the ground fault determination is increased.

また、磁気センサ2は、正極側ケーブル61p,62pおよび負極側ケーブル61n,62nを軸方向に沿って走査する。更に、判定装置3は、正極側ケーブル61p,62pに地絡が発生していると判定した場合、磁気センサ2が正極側ケーブル61p,62pを走査したときの第1測定信号S1p,S2pの変化から地絡箇所を判定し、負極側ケーブル61n,62nに地絡が発生していると判定した場合、磁気センサ2が負極側ケーブル61n,62nを走査したときの第2測定信号S1n,S2nの変化から地絡箇所を判定する。測定信号S(S1p,S2p,S1n,S2n)は、磁気センサ2がケーブル62nにおける地絡箇所Fの近傍を走査するとき、ある値から0に、あるいは逆に、0からある値に変化する。このように変化する測定信号Sの値に着目して地絡箇所を探索することで、地絡箇所の特定を迅速かつ簡便に行うことができる。   Moreover, the magnetic sensor 2 scans the positive side cables 61p and 62p and the negative side cables 61n and 62n along the axial direction. Further, when the determination device 3 determines that a ground fault has occurred in the positive cables 61p and 62p, the change in the first measurement signals S1p and S2p when the magnetic sensor 2 scans the positive cables 61p and 62p. The ground fault location is determined, and when it is determined that a ground fault has occurred in the negative side cables 61n and 62n, the second measurement signals S1n and S2n when the magnetic sensor 2 scans the negative side cables 61n and 62n. The ground fault location is determined from the change. The measurement signal S (S1p, S2p, S1n, S2n) changes from a certain value to 0, or vice versa, when the magnetic sensor 2 scans the vicinity of the ground fault location F in the cable 62n. By searching for the ground fault location by paying attention to the value of the measurement signal S changing in this way, the ground fault location can be identified quickly and easily.

また、地絡箇所の探索方法では、直流電源と負荷との間に接続されている正極側ケーブル61p,62pおよび負極側ケーブル61n,62nに対して、交流電源Eaを選択的に接続する。そして、交流電源Eaが正極側ケーブル61p,62pに接続されているとき、正極側ケーブル61p,62pを流れる電流による変動磁場を測定して第1測定信号S1p,S2pを出力し、交流電源Eaが負極側ケーブル61n,62nに接続されているとき、負極側ケーブル61n,62nを流れる電流による変動磁場を測定して第2測定信号S1n,S2nを出力する。そして、第1測定信号S1p,S2pと第2測定信号S1n,S2nとを比較し、第1測定信号S1p,S2pと第2測定信号S1n,S2nが異なる場合、正極側ケーブル61p,62pおよび負極側ケーブル61n,62nのいずれか一方に地絡が発生していると判定する。本実施形態においては、上述したとおりケーブル61pと61nには地絡は生じておらず、ケーブル62pと62nのいずれかに地絡が生じていると判定される。従って、複数本のケーブルがまとめて埋設されたり敷設されたりしている場合でも、速やかにかつ簡便に、地絡しているケーブルが特定される。   In the ground fault location searching method, the AC power source Ea is selectively connected to the positive side cables 61p and 62p and the negative side cables 61n and 62n connected between the DC power source and the load. When the AC power source Ea is connected to the positive side cables 61p and 62p, the magnetic field fluctuating due to the current flowing through the positive side cables 61p and 62p is measured and the first measurement signals S1p and S2p are output. When connected to the negative side cables 61n and 62n, the fluctuation magnetic field due to the current flowing through the negative side cables 61n and 62n is measured and the second measurement signals S1n and S2n are output. Then, the first measurement signals S1p and S2p are compared with the second measurement signals S1n and S2n. When the first measurement signals S1p and S2p are different from the second measurement signals S1n and S2n, the positive side cables 61p and 62p and the negative side It is determined that a ground fault has occurred in either one of the cables 61n and 62n. In the present embodiment, as described above, it is determined that no ground fault has occurred in the cables 61p and 61n, and a ground fault has occurred in either of the cables 62p and 62n. Therefore, even when a plurality of cables are buried or laid together, a grounded cable is identified quickly and easily.

なお、上記第1及び第2実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物も含まれる。   In addition, the said 1st and 2nd embodiment is for making an understanding of this invention easy, and is not for limiting and interpreting this invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes equivalents thereof.

例えば、交流電源Eaの周波数は、判定装置3において測定信号Sから微弱な変動磁場の成分が検出される程度であればよく、数百Hzでも600Hzより高くてもよい。   For example, the frequency of the AC power supply Ea is only required to be such that a weak variable magnetic field component is detected from the measurement signal S in the determination device 3, and may be several hundred Hz or higher than 600 Hz.

1 地絡箇所の探索装置
2 磁気センサ
3 判定装置
Ea 交流電源
SW スイッチ
DESCRIPTION OF SYMBOLS 1 Ground fault location search device 2 Magnetic sensor 3 Judgment device Ea AC power supply SW switch

Claims (8)

交流電源と、
直流電源と負荷との間に接続されている正極側ケーブルおよび負極側ケーブルに対して、前記交流電源を選択的に接続するスイッチと、
前記交流電源が正極側ケーブルに接続されているとき、前記正極側ケーブルを流れる電流による変動磁場を測定して第1測定信号を出力し、前記交流電源が負極側ケーブルに接続されているとき、前記負極側ケーブルを流れる電流による変動磁場を測定して第2測定信号を出力する測定装置と、
前記第1測定信号と前記第2測定信号とを比較し、前記第1測定信号と前記第2測定信号が異なる場合、前記正極側ケーブルおよび前記負極側ケーブルのいずれか一方に地絡が発生していると判定する判定装置と
を備えることを特徴とする地絡箇所の探索装置。
AC power supply,
A switch for selectively connecting the AC power supply to the positive cable and the negative cable connected between the DC power supply and the load;
When the AC power supply is connected to the positive cable, the first measurement signal is output by measuring the variable magnetic field due to the current flowing through the positive cable, and the AC power supply is connected to the negative cable. A measuring device for measuring a variable magnetic field due to a current flowing through the negative cable and outputting a second measurement signal;
When the first measurement signal and the second measurement signal are compared, and the first measurement signal and the second measurement signal are different, a ground fault occurs in one of the positive side cable and the negative side cable. A ground fault location searching device comprising: a determination device that determines that the ground fault is present.
前記判定装置は、前記第1測定信号と前記第2測定信号とを比較し、前記正極側ケーブルおよび前記負極側ケーブルのうち前記第1測定信号と前記第2測定信号の値が大きい方のケーブルに地絡が発生していると判定することを特徴とする請求項1に記載の地絡箇所の探索装置。   The determination device compares the first measurement signal and the second measurement signal, and the cable having the larger value of the first measurement signal and the second measurement signal among the positive cable and the negative cable. The ground fault location searching device according to claim 1, wherein it is determined that a ground fault has occurred. 前記測定装置は、前記正極側ケーブルまたは前記負極側ケーブルを流れる電流による変動磁場を検出コイルを介して測定するセンサを含むことを特徴とする請求項1または2に記載の地絡箇所の探索装置。   3. The ground fault location searching device according to claim 1, wherein the measuring device includes a sensor that measures, via a detection coil, a variable magnetic field due to a current flowing through the positive cable or the negative cable. . 前記交流電源は、略600Hzの周波数の交流電圧を出力することを特徴とする請求項1ないし3のいずれかに記載の地絡箇所の探索装置。   4. The ground fault location searching device according to claim 1, wherein the AC power source outputs an AC voltage having a frequency of approximately 600 Hz. 前記判定装置は、前記第1測定信号および前記第2測定信号から前記交流電源の周波数と略同一の周波数成分が検出されるように、前記第1測定信号および前記第2測定信号のうち前記交流電源の周波数より高い周波数成分を通過させるハイパスフィルタを含むことを特徴とする請求項1ないし4のいずれかに記載の地絡箇所の探索装置。   The determination device is configured to detect the AC signal of the first measurement signal and the second measurement signal so that a frequency component substantially the same as the frequency of the AC power supply is detected from the first measurement signal and the second measurement signal. The ground fault location searching device according to any one of claims 1 to 4, further comprising a high-pass filter that allows a frequency component higher than the frequency of the power supply to pass therethrough. 前記判定装置は、前記第1測定信号および前記第2測定信号から前記交流電源の周波数と略同一の周波数成分が検出されるように、前記第1測定信号および前記第2測定信号から前記交流電源の周波数と略同一の周波数成分を選択する同期検波器を含むことを特徴とする請求項1ないし4のいずれかに記載の地絡箇所の探索装置。   The determination device detects the AC power source from the first measurement signal and the second measurement signal so that a frequency component substantially the same as the frequency of the AC power source is detected from the first measurement signal and the second measurement signal. The ground fault location searching device according to any one of claims 1 to 4, further comprising a synchronous detector that selects a frequency component that is substantially the same as the first frequency component. 前記測定装置は、前記正極側ケーブルおよび前記負極側ケーブルを軸方向に沿って走査し、
前記判定装置は、前記正極側ケーブルに地絡が発生していると判定した場合、前記測定装置が前記正極側ケーブルを走査したときの前記第1測定信号の変化から地絡箇所を判定し、前記負極側ケーブルに地絡が発生していると判定した場合、前記測定装置が前記負極側ケーブルを走査したときの前記第2測定信号の変化から地絡箇所を判定する
ことを特徴とする請求項1ないし6のいずれかに記載の地絡箇所の探索装置。
The measuring device scans the positive cable and the negative cable along the axial direction,
When the determination device determines that a ground fault has occurred in the positive cable, the determination device determines a ground fault location from a change in the first measurement signal when the measurement device scans the positive cable; When it is determined that a ground fault has occurred in the negative cable, the ground fault location is determined from a change in the second measurement signal when the measuring device scans the negative cable. Item 7. The ground fault location searching device according to any one of Items 1 to 6.
直流電源と負荷との間に接続されている正極側ケーブルおよび負極側ケーブルに対して、交流電源を選択的に接続し、
前記交流電源が正極側ケーブルに接続されているとき、前記正極側ケーブルを流れる電流による変動磁場を測定して第1測定信号を出力し、前記交流電源が負極側ケーブルに接続されているとき、前記負極側ケーブルを流れる電流による変動磁場を測定して第2測定信号を出力し、
前記第1測定信号と前記第2測定信号とを比較し、前記第1測定信号と前記第2測定信号が異なる場合、前記正極側ケーブルおよび前記負極側ケーブルのいずれか一方に地絡が発生していると判定する
ことを特徴とする地絡箇所の探索方法。
Selectively connect an AC power supply to the positive and negative cables connected between the DC power supply and the load,
When the AC power supply is connected to the positive cable, the first measurement signal is output by measuring the variable magnetic field due to the current flowing through the positive cable, and the AC power supply is connected to the negative cable. A variable magnetic field due to the current flowing through the negative cable is measured and a second measurement signal is output;
When the first measurement signal and the second measurement signal are compared, and the first measurement signal and the second measurement signal are different, a ground fault occurs in one of the positive side cable and the negative side cable. A method of searching for a ground fault location, characterized by determining that the
JP2013194278A 2013-09-19 2013-09-19 Ground fault location search device and ground fault location search method Active JP5844327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013194278A JP5844327B2 (en) 2013-09-19 2013-09-19 Ground fault location search device and ground fault location search method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013194278A JP5844327B2 (en) 2013-09-19 2013-09-19 Ground fault location search device and ground fault location search method

Publications (2)

Publication Number Publication Date
JP2015059857A true JP2015059857A (en) 2015-03-30
JP5844327B2 JP5844327B2 (en) 2016-01-13

Family

ID=52817503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013194278A Active JP5844327B2 (en) 2013-09-19 2013-09-19 Ground fault location search device and ground fault location search method

Country Status (1)

Country Link
JP (1) JP5844327B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111711129B (en) * 2020-06-29 2021-08-17 中国化学工程第十一建设有限公司 Construction method for searching and repairing fault of outer sheath of single-core high-voltage cable

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838875A (en) * 1981-08-31 1983-03-07 Toshiba Corp Device to test insulation between turns
JPH0755873A (en) * 1993-08-20 1995-03-03 Kaihatsu Denki Kk Discrimination method of ground fault of dc control circuit
JPH1010178A (en) * 1996-06-25 1998-01-16 Toshiba Corp Method and apparatus for detecting partial discharge of gas insulated machine
JPH11220830A (en) * 1998-02-02 1999-08-10 Tokyo Electric Power Co Inc:The Method for identifying fault point on power cable
JP2001133508A (en) * 1999-08-26 2001-05-18 Sumitomo Electric Ind Ltd Method of diagnosing deterioration of cable hot-line
JP2007057319A (en) * 2005-08-23 2007-03-08 Tokyo Electric Power Co Inc:The Ground fault position detection system
JP2010139377A (en) * 2008-12-11 2010-06-24 Oht Inc Circuit pattern inspection device and method of inspecting circuit pattern thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838875A (en) * 1981-08-31 1983-03-07 Toshiba Corp Device to test insulation between turns
JPH0755873A (en) * 1993-08-20 1995-03-03 Kaihatsu Denki Kk Discrimination method of ground fault of dc control circuit
JPH1010178A (en) * 1996-06-25 1998-01-16 Toshiba Corp Method and apparatus for detecting partial discharge of gas insulated machine
JPH11220830A (en) * 1998-02-02 1999-08-10 Tokyo Electric Power Co Inc:The Method for identifying fault point on power cable
JP2001133508A (en) * 1999-08-26 2001-05-18 Sumitomo Electric Ind Ltd Method of diagnosing deterioration of cable hot-line
JP2007057319A (en) * 2005-08-23 2007-03-08 Tokyo Electric Power Co Inc:The Ground fault position detection system
JP2010139377A (en) * 2008-12-11 2010-06-24 Oht Inc Circuit pattern inspection device and method of inspecting circuit pattern thereof

Also Published As

Publication number Publication date
JP5844327B2 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
CN106463944B (en) Method for detecting the disconnected phase condition of transformer
KR101300789B1 (en) Instrument and method to obtain ratio error of current transformer for watt-hour-meter
KR20150059089A (en) The method and apparatus for locating the udnePinpointing the earth leaking point under TN-C environment
US10502778B2 (en) Method and apparatus for electric arc detection
CN103430017A (en) Fault detection for laminated core
WO2018221619A1 (en) Electricity leakage detecting method
JP5743296B1 (en) Leakage location exploration method and apparatus
Loos et al. Fault direction method in compensated network using the zero sequence active energy signal
US10775449B2 (en) Mobile transformer test device and method for testing a power transformer
JP5844327B2 (en) Ground fault location search device and ground fault location search method
JP6896592B2 (en) Open phase detection device and open phase detection system
KR101551341B1 (en) Apparatus for checking of cable
JP6809189B2 (en) Insulation resistance measurement method for DC power supply circuit
CN108008173B (en) Alternating current-direct current superposition testing device
JP4406193B2 (en) Degradation diagnosis method for power cable and degradation diagnosis device for power cable
RU2660221C2 (en) Method and system of switchgear testing for use in electric power transmission equipment
KR101487337B1 (en) Apparatus and Method for testing wideband alternating current magnetic sensor using series RLC resonance
JP6969079B2 (en) Forced installation device, ground fault investigation device and method using it
JP7013770B2 (en) Forced grounding device and ground fault search device
JP3592676B2 (en) Wiring exploration equipment
JP7023138B2 (en) Insulation monitoring system
JPH04220573A (en) Low-voltage system line wire insulation monitoring method
RU2556332C1 (en) Leakage current monitor in load of single-phase rectifier
CN203376382U (en) Leakage current detection apparatus
JP6722928B1 (en) Zero-phase current measuring method and device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151118

R150 Certificate of patent or registration of utility model

Ref document number: 5844327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150