JP7013770B2 - Forced grounding device and ground fault search device - Google Patents

Forced grounding device and ground fault search device Download PDF

Info

Publication number
JP7013770B2
JP7013770B2 JP2017185544A JP2017185544A JP7013770B2 JP 7013770 B2 JP7013770 B2 JP 7013770B2 JP 2017185544 A JP2017185544 A JP 2017185544A JP 2017185544 A JP2017185544 A JP 2017185544A JP 7013770 B2 JP7013770 B2 JP 7013770B2
Authority
JP
Japan
Prior art keywords
current
ground fault
power supply
exploration
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017185544A
Other languages
Japanese (ja)
Other versions
JP2019060726A (en
Inventor
明久 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2017185544A priority Critical patent/JP7013770B2/en
Publication of JP2019060726A publication Critical patent/JP2019060726A/en
Application granted granted Critical
Publication of JP7013770B2 publication Critical patent/JP7013770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

本発明は、電気所の電気機器を操作するシーケンス回路に直流電源を供給する直流電源供給回路の地絡故障を探査するための探査電流を発生させる強制接地装置及び地絡故障探査装置に関する。 The present invention relates to a forced grounding device and a ground fault exploration device that generate an exploration current for exploring a ground fault of a DC power supply circuit that supplies DC power to a sequence circuit that operates an electric device of an electric station.

発変電所や開閉所等の電気所では、遮断器や断路器等の電気機器を操作するシーケンス回路に直流電源を供給する直流電源供給回路が設けられている。この直流電源供給回路は、直流電源装置が接続された直流母線から複数引き出され、さらに、直流電源供給回路から分岐して多数の直流負荷であるシーケンス回路に直流電源を供給する。 Electric stations such as substations and switch stations are provided with a DC power supply circuit that supplies DC power to a sequence circuit that operates electrical equipment such as circuit breakers and disconnectors. A plurality of DC power supply circuits are drawn from the DC bus to which the DC power supply device is connected, and further branch off from the DC power supply circuit to supply DC power to a sequence circuit which is a large number of DC loads.

このような直流電源供給回路においては、直流電源供給回路の地絡故障を検出するための直流地絡継電器(64D)が設置されている。直流地絡継電器は、直流電源供給回路の直流母線の正極と負極を抵抗分圧した分圧回路に設けられ、分圧回路の分圧中点は抵抗を介して接地されている。 In such a DC power supply circuit, a DC ground relay (64D) for detecting a ground fault in the DC power supply circuit is installed. The DC ground relay is provided in a voltage dividing circuit in which the positive and negative electrodes of the DC bus of the DC power supply circuit are divided by resistance, and the voltage dividing middle point of the voltage dividing circuit is grounded via a resistor.

このような直流電源供給回路のいずれかで絶縁低下が発生し地絡故障が発生した場合は、直流地絡継電器が動作するので地絡故障が発生したことは検知できるが、地絡故障の箇所を特定することまではできない。そこで、地絡故障が発生したことが検知されると、地絡故障の箇所を探査することになる。地絡故障の箇所を探査する手法として、フリッカ法や低周波重畳法がある。 If insulation deteriorates in any of these DC power supply circuits and a ground fault occurs, the DC ground relay operates so that it can be detected that a ground fault has occurred, but the location of the ground fault failure. Cannot be specified. Therefore, when it is detected that a ground fault has occurred, the location of the ground fault will be searched. There are flicker method and low frequency superimposition method as a method for exploring the location of a ground fault.

図12は、電気所のシーケンス回路に直流電源を供給する直流電源供給回路の直流回路の回路図である。電気所の直流回路は、直流電源装置11が接続された直流母線12から直流電源盤13の開閉器14を介して複数の直流電源供給回路15a~15nにそれぞれ直流電源が供給されシーケンス回路16a~16nに直流電源を供給する。図12中のCは直流電源供給回路15a~15nの電線の対地静電容量を示している。 FIG. 12 is a circuit diagram of a DC circuit of a DC power supply circuit that supplies DC power to a sequence circuit of an electric station. In the DC circuit of the electric station, DC power is supplied from the DC bus 12 to which the DC power supply device 11 is connected to the plurality of DC power supply circuits 15a to 15n via the switch 14 of the DC power supply panel 13, respectively, and the sequence circuits 16a to A DC power supply is supplied to 16n. C in FIG. 12 shows the ground capacitance of the electric wires of the DC power supply circuits 15a to 15n.

また、各々の直流電源供給回路15a~15nは複数の分岐回路17を有する。図12では、直流電源供給回路15aは1個の分岐回路17を有し、直流電源供給回路15b、15nは2個の分岐回路17を有したものを示している。図示は省略するが分岐回路17にも分岐回路を有し、各々の分岐回路にはシーケンス回路が接続され電線の対地静電容量も有している。一方、直流回路の母線12の正極と負極との間には、正極と負極とを抵抗分圧し分圧中点を抵抗接地した分圧回路18が設置され、この分圧回路18は直流回路の地絡故障を検出する直流地絡継電器19の要素を構成し、直流地絡継電器19は分圧回路18の電圧のバランスが崩れたときに動作する。 Further, each DC power supply circuit 15a to 15n has a plurality of branch circuits 17. In FIG. 12, the DC power supply circuit 15a has one branch circuit 17, and the DC power supply circuits 15b and 15n have two branch circuits 17. Although not shown, the branch circuit 17 also has a branch circuit, and a sequence circuit is connected to each branch circuit to have a capacitance to ground of the electric wire. On the other hand, between the positive and negative sides of the bus 12 of the DC circuit, a voltage dividing circuit 18 is installed in which the positive and negative voltages are divided by resistance and the middle point of the voltage dividing is resistance-grounded. It constitutes an element of the DC ground fault relay 19 for detecting a ground fault, and the DC ground fault relay 19 operates when the voltage of the voltage dividing circuit 18 is out of balance.

このような電気所の直流回路に地絡が発生すると直流の地絡電流が流れる。例えば、直流電源供給回路15bのF点で地絡抵抗Rfの地絡故障が発生したとすると、図12の点線矢印で示すように、直流電源装置11の正極から直流電源盤13の開閉器14、地絡故障点F、分圧回路18の接地点(中性線)、直流電源装置11の負極に至る回路が形成され直流の地絡電流が流れる。これにより、分圧回路18の電圧のバランスが崩れ直流地絡継電器19が動作するので、直流電源供給回路15a~15nのいずれかに地絡故障が発生したことが分かる。さらに、地絡故障点Fを探査するには、各々の直流電源供給回路15a~15nについて、直流の地絡電流が流れているか否かを調査し、地絡故障が発生している直流電源供給回路15a~15nを特定し、地絡故障箇所を特定することになる。この場合、交流の地絡電流の場合には交流電流クランプメータにより容易に検出できるが、直流の地絡電流を検出することが難しい。 When a ground fault occurs in the DC circuit of such an electric place, a DC ground fault current flows. For example, assuming that a ground fault of the ground fault resistance Rf occurs at point F of the DC power supply circuit 15b, as shown by the dotted arrow in FIG. 12, the switch 14 of the DC power supply panel 13 is connected to the positive electrode of the DC power supply device 11. A circuit is formed to reach the ground fault failure point F, the grounding point (neutral wire) of the voltage dividing circuit 18, and the negative electrode of the DC power supply device 11, and a DC ground fault current flows. As a result, the voltage balance of the voltage dividing circuit 18 is lost and the DC ground relay relay 19 operates, so that it can be seen that a ground fault has occurred in any of the DC power supply circuits 15a to 15n. Further, in order to search for the ground fault point F, it is investigated whether or not a DC ground fault current is flowing in each of the DC power supply circuits 15a to 15n, and the DC power supply in which the ground fault has occurred is supplied. The circuits 15a to 15n are specified, and the location of the ground fault failure is specified. In this case, the AC ground fault current can be easily detected by the AC current clamp meter, but it is difficult to detect the DC ground fault current.

そこで、直流地絡継電器19が動作し地絡故障が発生したことが検出されると、低周波重畳法あるいはフリッカ法により、交流電流クランプメータを用いて地絡故障点Fを探査できるようにしている。低周波重畳法は、各々の直流電源供給回路15a~15nに低周波交流電流を強制的に流し、交流電流クランプメータにより、その流した交流電流の探査電流の有無や変化状態で地絡故障点Fを探査する方式であり、フリッカ法は、分圧回路18の接地点にフリッカ装置を接続し、フリッカ装置のフリッカ接点を間欠でオンオフさせ直流電源装置11から探査電流を発生させ、交流電流クランプメータにより、その流した探査電流を測定して地絡故障点Fを探査する方式である。 Therefore, when it is detected that the DC ground relay relay 19 operates and a ground fault has occurred, the ground fault point F can be searched for using an AC current clamp meter by the low frequency superimposition method or the flicker method. There is. In the low-frequency superimposition method, a low-frequency AC current is forcibly passed through each of the DC power supply circuits 15a to 15n, and a ground fault failure point is determined by the presence or absence of the probe current of the passed AC current and the change state by the AC current clamp meter. In the flicker method, a flicker device is connected to the grounding point of the voltage dividing circuit 18, the flicker contacts of the flicker device are intermittently turned on and off to generate an exploration current from the DC power supply device 11, and an AC current clamp is used. This is a method of exploring the ground fault point F by measuring the flowed exploration current with a meter.

図13は直流電源供給回路の地絡故障点を低周波重畳法で探査する場合の説明図である。図12と同様に直流電源供給回路15bのF点で地絡抵抗Rfの地絡故障が発生したとすると、直流地絡継電器19が動作し、直流電源供給回路15a~15nのいずれかに地絡故障が発生したことが分かる。低周波重畳法で地絡故障点Fを探査するにあたっては、分圧回路18の接地点(中性線)に低周波交流電源装置20を接続し、この低周波交流電源装置20から低周波の交流の探査電流を直流電源供給回路15a~15nに供給する。そうすると、図13の点線矢印で示すように、低周波交流電源装置20から分圧回路18の接地抵抗、分圧回路18の正極側の分圧抵抗、直流電源盤13の開閉器14bp、地絡故障点F、低周波交流電源装置20の接地点に至る回路が形成され、地絡抵抗Rfに探査電流Ipfが流れる。 FIG. 13 is an explanatory diagram in the case of searching for a ground fault point of a DC power supply circuit by a low frequency superimposition method. As in FIG. 12, if a ground fault of the ground fault resistance Rf occurs at point F of the DC power supply circuit 15b, the DC ground relay relay 19 operates and a ground fault occurs in any of the DC power supply circuits 15a to 15n. It can be seen that a failure has occurred. When searching for the ground fault point F by the low frequency superimposition method, a low frequency AC power supply device 20 is connected to the grounding point (neutral line) of the voltage dividing circuit 18, and the low frequency AC power supply device 20 is used to connect the low frequency AC power supply device 20. The AC exploration current is supplied to the DC power supply circuits 15a to 15n. Then, as shown by the dotted arrow in FIG. 13, the ground resistance of the voltage divider circuit 18 from the low frequency AC power supply device 20, the voltage divider resistance on the positive side of the voltage divider circuit 18, the switch 14bp of the DC power supply panel 13, and the ground fault. A circuit is formed to reach the failure point F and the grounding point of the low-frequency AC power supply device 20, and the exploration current Ipf flows through the ground fault resistance Rf.

また、探査電流は交流電流であることから、低周波交流電源装置20から分圧回路18の接地抵抗、分圧回路18の正極側の分圧抵抗、直流電源盤13の開閉器14bp、直流電源供給回路15bの電線の対地静電容量Cbp、低周波交流電源装置20の接地点に至る回路が形成され、対地静電容量Cbpに探査電流Ipcが流れる。さらに、低周波交流電源装置20から分圧回路18の接地抵抗、分圧回路18の負極側の分圧抵抗、直流電源盤13の開閉器14bn、直流電源供給回路15bの電線の対地静電容量Cbn、低周波交流電源装置20の接地点に至る回路が形成され、対地静電容量Cbnに探査電流Incが流れる。 Further, since the exploration current is an alternating current, the low frequency alternating current power supply device 20 to the ground resistance of the voltage dividing circuit 18, the voltage dividing resistance on the positive side of the voltage dividing circuit 18, the switch 14bp of the DC power supply panel 13, and the DC power supply. A circuit is formed up to the ground capacitance Cbp of the electric wire of the supply circuit 15b and the grounding point of the low-frequency AC power supply device 20, and the exploration current Ipc flows through the ground capacitance Cbp. Further, from the low frequency AC power supply device 20, the ground resistance of the voltage dividing circuit 18, the voltage dividing resistance on the negative side of the voltage dividing circuit 18, the switch 14bn of the DC power supply panel 13, and the ground capacitance of the electric wire of the DC power supply circuit 15b. A circuit is formed to reach the grounding point of the low frequency AC power supply device 20 at Cbn, and the exploration current Inc flows through the ground capacitance Cbn.

地絡故障点Fを探査するには、各々の直流電源供給回路15a~15nについて、直流電源盤13に近い箇所(直流母線12の近傍)から直流電源供給回路15の下流の分岐回路17の分岐点に順次交流電流クランプメータ21を移動させ直流電源供給回路15の電線に挟んでクランプし探査電流を測定する。いま、地絡故障点Fが発生している直流電源供給回路15bには、交流の探査電流I1として、地絡抵抗Rfに流れる探査電流Ipf、対地静電容量Cbpに流れる探査電流Ipc、対地静電容量Cbnに流れる探査電流Incを合計した探査電流I1(=Ipf+Ipc+Inc)が流れるので、直流電源供給回路15bの直流母線12の近傍の電線に交流電流クランプメータ21をクランプした場合には、交流電流クランプメータ21はこの探査電流I1を測定することになる。 To search for the ground fault point F, for each of the DC power supply circuits 15a to 15n, the branch circuit 17 downstream of the DC power supply circuit 15 is branched from the location near the DC power supply board 13 (near the DC bus 12). The AC current clamp meter 21 is sequentially moved to the points, sandwiched between the electric wires of the DC power supply circuit 15, and clamped to measure the exploration current. In the DC power supply circuit 15b where the ground fault point F is generated, the AC exploration current I1 is the exploration current Ipf flowing through the ground fault resistance Rf, the exploration current Ipc flowing through the ground capacitance Cbp, and the ground static. Since the exploration current I1 (= Ipf + Ipc + Inc), which is the sum of the exploration currents Inc flowing in the electric capacity Cbn, flows, when the AC current clamp meter 21 is clamped to the electric wire near the DC bus 12 of the DC power supply circuit 15b, the AC current The clamp meter 21 will measure this exploration current I1.

次に、直流電源供給回路15bの分岐回路17bの分岐点の手前の電線に交流電流クランプメータ21をクランプした場合には、地絡故障点Fを通りすぎた箇所であるので、その箇所には、交流の探査電流I2として、対地静電容量Cbpに流れる探査電流Ipc、対地静電容量Cbnに流れる探査電流Incを合計した探査電流I2(=Ipc+Inc)が流れる。 Next, when the AC current clamp meter 21 is clamped to the electric wire in front of the branch point of the branch circuit 17b of the DC power supply circuit 15b, it is a location that has passed the ground fault failure point F. As the AC exploration current I2, the exploration current I2 (= Ipc + Inc), which is the sum of the exploration current Ipc flowing through the ground capacitance Cbp and the exploration current Inc flowing through the ground capacitance Cbn, flows.

このように、探査電流I1は地絡抵抗Rfに流れる探査電流Ipfを含んでいるが、探査電流I2は地絡抵抗Rfに流れる探査電流Ipfを含んでいない。このことから、探査電流I1及び探査電流I2の電流ベクトルから地絡抵抗Rfを含む成分の有無を判定し、地絡故障点Fの箇所を特定できる。つまり、直流母線12の近傍の電線の下流に地絡故障点Fがあり、直流電源供給回路15bの分岐回路17bの分岐点の手前の電線の下流には地絡故障点Fがないことが分かるので、この間に地絡故障点Fがあると判定
する。
As described above, the exploration current I1 includes the exploration current Ipf flowing through the ground fault resistance Rf, but the exploration current I2 does not include the exploration current Ipf flowing through the ground fault resistance Rf. From this, the presence or absence of the component including the ground fault resistance Rf can be determined from the current vectors of the exploration current I1 and the exploration current I2, and the location of the ground fault failure point F can be specified. That is, it can be seen that there is a ground fault point F downstream of the electric wire in the vicinity of the DC bus 12, and there is no ground fault point F downstream of the electric wire before the branch point of the branch circuit 17b of the DC power supply circuit 15b. Therefore, it is determined that there is a ground fault point F during this period.

しかし、低周波重畳法での地絡故障点の探査は、地絡故障点の地絡抵抗Rfが大きい場合や、直流電源供給回路15の電線の対地静電容量が大きい場合には、探査電流の検出精度が低下する。地絡故障点の地絡抵抗Rfが大きい場合には探査電流が小さくなり、対地静電容量が大きい場合には相対的に探査電流が小さくなり、検出誤差の範囲に入ってしまうからである。すなわち、対地静電容量の影響を低減するために交流の探査電流は低周波とせざるを得ず、探査電流の周波数と検出精度とが比例する交流電流クランプメータの感度は自ずと低くなるため、地絡故障の検出感度も低いものであった。 However, the search for the ground fault point by the low frequency superimposition method is performed when the ground fault resistance Rf at the ground fault point is large or when the ground capacitance of the electric wire of the DC power supply circuit 15 is large. Detection accuracy is reduced. This is because when the ground fault resistance Rf at the ground fault point is large, the exploration current becomes small, and when the capacitance to ground is large, the exploration current becomes relatively small and falls within the range of the detection error. That is, in order to reduce the influence of the capacitance to ground, the AC exploration current must be set to a low frequency, and the sensitivity of the AC current clamp meter, which is proportional to the frequency of the exploration current and the detection accuracy, is naturally low. The detection sensitivity of the entanglement failure was also low.

図14は直流電源供給回路の地絡故障点をフリッカ法で探査する場合の説明図である。図12と同様に直流電源供給回路15bのF点で地絡抵抗Rfの地絡故障が発生したとすると、直流地絡継電器19が動作し、直流電源供給回路15a~15nのいずれかに地絡故障が発生したことが分かる。フリッカ法で地絡故障点Fを探査するにあたっては、分圧回路18の接地点(中性線)にフリッカ装置22を接続し、フリッカ装置22のフリッカ接点を間欠でオンオフさせ直流電源装置11から矩形波脈流の探査電流を発生させ、矩形波脈流の探査電流を直流電源供給回路15a~15nに供給する。 FIG. 14 is an explanatory diagram when searching for a ground fault point of a DC power supply circuit by the flicker method. As in FIG. 12, if a ground fault of the ground fault resistance Rf occurs at point F of the DC power supply circuit 15b, the DC ground relay relay 19 operates and a ground fault occurs in any of the DC power supply circuits 15a to 15n. It can be seen that a failure has occurred. When searching for the ground fault point F by the flicker method, the flicker device 22 is connected to the grounding point (neutral wire) of the voltage dividing circuit 18, and the flicker contact of the flicker device 22 is intermittently turned on and off from the DC power supply device 11. The exploration current of the rectangular wave pulsating current is generated, and the exploration current of the rectangular wave pulsating current is supplied to the DC power supply circuits 15a to 15n.

そうすると、フリッカ装置22のフリッカ接点がオンのときは分圧回路18の接地点(中性線)が接地された状態となるので、図14の点線矢印で示すように、直流電源供給回路11の正極から直流電源盤13の開閉器14bp、地絡故障点F、フリッカ装置22のフリッカ接点(接地点)、分圧回路の分圧抵抗、直流電源供給回路11の負極に至る回路が形成され、地絡抵抗Rfに探査電流Ipfが流れる。 Then, when the flicker contact of the flicker device 22 is on, the grounding point (neutral wire) of the voltage dividing circuit 18 is in a grounded state. Therefore, as shown by the dotted arrow in FIG. 14, the DC power supply circuit 11 A circuit is formed from the positive electrode to the switch 14bp of the DC power supply panel 13, the ground fault failure point F, the flicker contact (grounding point) of the flicker device 22, the voltage dividing resistance of the voltage dividing circuit, and the negative electrode of the DC power supply circuit 11. The exploration current Ipf flows through the ground fault resistance Rf.

また、図示は省略するが、探査電流は矩形波脈流の探査電流であることから、矩形波の立ち上がり部分や立ち下がり部分において、対地静電容量Cbpに探査電流Ipcが流れ、対地静電容量Cbnに探査電流Incが流れる。 Although not shown, since the exploration current is the exploration current of the square wave pulsating current, the exploration current Ipc flows through the ground capacitance Cbp at the rising and falling portions of the square wave, and the ground capacitance Exploration current Inc flows through Cbn.

地絡故障点Fを探査するには、前述したように、各々の直流電源供給回路15a~15nについて、直流母線12の近傍から直流電源供給回路15の下流の分岐回路17の分岐点に順次交流電流クランプメータ21を移動させ直流電源供給回路15の電線にクランプして探査電流を測定する。ここで、地絡故障点Fが発生している直流電源供給回路15bには、矩形波脈流の探査電流I1として、地絡抵抗Rfに流れる探査電流Ipf、対地静電容量Cbpに流れる探査電流Ipc、対地静電容量Cbnに流れる探査電流Incを合計した探査電流I1(=Ipf+Ipc+Inc)が流れるが、対地静電容量Cbpに流れる探査電流Ipc、対地静電容量Cbnに流れる探査電流Incは、矩形波脈流の立ち上がり部分や立ち下がり部分において流れる電流であり、対地静電容量Cbpに流れる探査電流Ipcと対地静電容量Cbnに流れる探査電流Incとは正負の極性が反対であることから足し算したときは相殺される。 In order to search for the ground fault point F, as described above, for each of the DC power supply circuits 15a to 15n, alternating current is sequentially applied from the vicinity of the DC bus 12 to the branch point of the branch circuit 17 downstream of the DC power supply circuit 15. The current clamp meter 21 is moved and clamped to the electric wire of the DC power supply circuit 15 to measure the exploration current. Here, in the DC power supply circuit 15b where the ground fault point F is generated, the exploration current Ipf flowing through the ground fault resistance Rf and the exploration current flowing through the ground capacitance Cbp are used as the exploration current I1 of the rectangular wave pulse flow. The exploration current I1 (= Ipf + Ipc + Inc), which is the sum of the exploration currents Inc flowing in the Ipc and the ground capacitance Cbn, flows, but the exploration current Ipc flowing in the ground capacitance Cbp and the exploration current Inc flowing in the ground capacitance Cbn are rectangular. It is the current that flows in the rising and falling parts of the wave pulse flow, and it is added because the positive and negative polarities of the exploration current Ipc flowing in the ground capacitance Cbp and the exploration current Inc flowing in the ground capacitance Cbn are opposite. Sometimes it is offset.

従って、交流電流クランプメータ21で測定される探査電流I1は地絡抵抗Rfに流れる探査電流Ipfである。直流電源供給回路15bの直流母線12の近傍の電線に交流電流クランプメータ21をクランプした場合には、交流電流クランプメータ21はこの探査電流I1を測定することになる。なお、探査電流I1は地絡抵抗Rfに流れる探査電流Ipfであり、矩形波脈流の探査電流であるので、交流電流クランプメータ21は矩形波脈流の立ち上がり部分または立ち下がり部分の大きさで探査電流の有無を判定する。 Therefore, the exploration current I1 measured by the AC current clamp meter 21 is the exploration current Ipf flowing through the ground fault resistance Rf. When the AC current clamp meter 21 is clamped to the electric wire in the vicinity of the DC bus 12 of the DC power supply circuit 15b, the AC current clamp meter 21 measures the exploration current I1. Since the exploration current I1 is the exploration current Ipf flowing through the ground fault resistance Rf and is the exploration current of the square wave pulsating current, the AC current clamp meter 21 has the size of the rising portion or the falling portion of the rectangular wave pulsating current. Determine the presence or absence of exploration current.

次に、直流電源供給回路15bの分岐回路17bの分岐点の手前の電線に交流電流クランプメータ21をクランプした場合には、地絡故障点Fを通りすぎた箇所であるので、その箇所には、地絡抵抗Rfに流れる探査電流Ipfは存在しない。このことから、探査電流I1及び探査電流I2に地絡抵抗Rfに流れる探査電流Ipfの成分を判定することで、地絡故障点Fの箇所を特定できる。つまり、探査電流I1には地絡抵抗Rfに流れる探査電流Ipfの成分が含まれるので、直流母線12の近傍の電線の下流に地絡故障点Fがあり、直流電源供給回路15bの分岐回路17bの分岐点の手前の電線の下流には地絡抵抗Rfに流れる探査電流Ipfの成分がないので、地絡故障点Fがないことが分かる。従って、この間に地絡故障点Fがあると判定する。 Next, when the AC current clamp meter 21 is clamped to the electric wire in front of the branch point of the branch circuit 17b of the DC power supply circuit 15b, it is a location that has passed the ground fault failure point F. , There is no exploration current Ipf flowing through the ground fault resistance Rf. From this, the location of the ground fault point F can be specified by determining the components of the exploration current Ipf flowing through the ground fault resistance Rf in the exploration current I1 and the exploration current I2. That is, since the exploration current I1 contains the component of the exploration current Ipf flowing through the ground fault resistance Rf, there is a ground fault failure point F downstream of the electric wire in the vicinity of the DC bus 12, and the branch circuit 17b of the DC power supply circuit 15b. Since there is no component of the exploration current Ipf flowing through the ground fault resistance Rf downstream of the electric wire in front of the branch point, it can be seen that there is no ground fault failure point F. Therefore, it is determined that there is a ground fault point F during this period.

また、フリッカ法での地絡故障点の探査は、探査電流が矩形波脈流の探査電流であるので、交流電流クランプメータは矩形波脈流の立ち上がり部分または立ち下がり部分の大きさで探査電流の有無を判定することになるので、探査電流をある程度大きくしないと検出精度を向上させることができない。 In addition, since the exploration current is the exploration current of the square wave pulsating current in the search for the ground fault point by the flicker method, the AC current clamp meter uses the size of the rising or falling part of the square wave pulsating current as the exploration current. Since it is determined whether or not the current is present, the detection accuracy cannot be improved unless the exploration current is increased to some extent.

ここで、複数の負荷回路が並列に接続されている直流電回路の地絡検出用直流地絡継電器が地絡電流を検出したとき、フリッカ継電器にてリレー接点を開閉させることにより地絡電流を矩形波脈流に変換して出力し、その矩形波脈流を検出器で検出することで直流接地点を探索するにあたり、矩形波脈流の検出器の回路に交流波形電流の帰還部を接続し、矩形波脈流の検出精度を向上させたものがある(例えば、特許文献1参照)。 Here, when the DC ground fault relay for ground fault detection of a DC electric circuit in which a plurality of load circuits are connected in parallel detects a ground fault current, the ground fault current is rectangularized by opening and closing the relay contact with the flicker relay. When searching for a DC grounding point by converting to a wave pulsating current and outputting it and detecting the rectangular pulsating current with a detector, an AC waveform current feedback unit is connected to the circuit of the rectangular pulsating current detector. , There is one with improved detection accuracy of rectangular wave pulsating current (see, for example, Patent Document 1).

また、特許文献1のものでは、矩形波脈流の検出器(交流電流クランプメータ)の回路に交流波形電流の帰還部を接続し、矩形波脈流の検出精度を向上させているが、フリッカ法での地絡故障点の探査は、矩形波脈流の立ち上がり部分または立ち下がり部分の大きさで探査電流の有無を判定することになるので検出精度の向上には限界がある。 Further, in Patent Document 1, the feedback portion of the AC waveform current is connected to the circuit of the rectangular wave pulsating current detector (AC current clamp meter) to improve the detection accuracy of the rectangular wave pulsating current. In the exploration of the ground fault point by the method, the presence or absence of the exploration current is determined by the size of the rising portion or the falling portion of the rectangular wave pulsating current, so that there is a limit to the improvement of the detection accuracy.

そこで、特許出願人は、直流電源供給回路の地絡故障を安全に精度よく探査できる探査電流を発生させることができる強制接地装置及び地絡故障探査装置を開発し、特願2016-168255号として出願した。 Therefore, the patent applicant has developed a forced grounding device and a ground fault search device that can generate an exploration current that can safely and accurately search for a ground fault in the DC power supply circuit, and as Japanese Patent Application No. 2016-168255. I applied for it.

この強制接地装置は、直流地絡継電器が接続された直流電源供給回路の直流母線の正極と負極との間の分圧回路の分圧中点を非接地とした状態で、地絡故障が発生した直流電源供給回路の直流母線への接続点における健全極の作業用端子に接続され、制限抵抗により探査電流の大きさをシーケンス回路が誤動作しない程度の大きさに制限するとともに、強制接地スイッチにより高感度直流電流クランプメータのゼロ点調整のときはオフして制限抵抗を非接地とし、高感度直流電流クランプメータが地絡故障点を探査するときはオンして制限抵抗を接地し、直流電源装置から直流の探査電流を直流電源供給回路に供給するものである。 In this forced grounding device, a ground fault occurs when the midpoint of the voltage dividing circuit between the positive and negative sides of the DC bus of the DC power supply circuit to which the DC ground fault relay is connected is not grounded. It is connected to the working terminal of the healthy pole at the connection point of the DC power supply circuit to the DC bus, and the size of the exploration current is limited by the limiting resistance to the extent that the sequence circuit does not malfunction, and the forced ground switch is used. When adjusting the zero point of the high-sensitivity DC current clamp meter, turn it off to make the limiting resistor ungrounded. The DC exploration current is supplied from the device to the DC power supply circuit.

また、地絡故障探査装置は、この強制接地装置と、直流電源供給回路の電線にクランプされゼロ点調整を行ってから直流電源装置から供給される直流の探査電流を検出する高感度直流電流クランプメータとを組み合わせたものである。これにより、作業員が、複数の探索対象の分岐回路に高感度直流電流クランプメータを順次設置していき、強制接地装置にて強制接地を行ったときに探査電流が高感度直流電流クランプメータにて検出されると、当該分岐回路に地絡故障事故点があることを特定できる。 In addition, the ground fault detection device is a high-sensitivity DC current clamp that detects the DC exploration current supplied from the DC power supply device after being clamped to the forced grounding device and the electric wire of the DC power supply circuit and adjusting the zero point. It is a combination with a meter. As a result, when a worker sequentially installs high-sensitivity DC current clamp meters in multiple branch circuits to be searched and forcibly grounds them with a forced grounding device, the search current becomes a high-sensitivity DC current clamp meter. When it is detected, it is possible to identify that the branch circuit has a ground fault failure point.

特公平5-35384号公報Tokuhei 5-35384 Gazette

しかし、特願2016-168255号の強制接地装置では、制限抵抗により探査電流の大きさをシーケンス回路が誤動作しない程度の大きさに制限しているので、地絡故障点Fの地絡抵抗Rfが大きいと探査電流Ipfが小さくなり検出し難くなる。特に、地絡抵抗Rfが不安定な場合、探査電流Ipfが変動するので電流が読み難く探査電流Ipfの検出が難くなる。 However, in the forced grounding device of Japanese Patent Application No. 2016-168255, the magnitude of the exploration current is limited to a magnitude that does not cause the sequence circuit to malfunction due to the limiting resistance, so that the ground fault resistance Rf at the ground fault failure point F is high. If it is large, the exploration current Ipf becomes small and difficult to detect. In particular, when the ground fault resistance Rf is unstable, the exploration current Ipf fluctuates, so that the current is difficult to read and the exploration current Ipf is difficult to detect.

また、強制接地装置は、直流地絡継電器(64D)近傍の作業用端子に接続することになるので、強制接地するための接地操作をする作業員と高感度直流電流クランプメータで探査電流Ipfの読み取りをするための作業員とが必要となる。地絡故障点Fでの地絡状態の把握のために、強制接地装置に電流計を設置して地絡電流を計測表示する場合があるが、強制接地装置の電流計で計測した地絡電流の情報を作業員同士で連絡を取り合わないと、高感度直流電流クランプメータの作業員に報告することができない。 In addition, since the forced grounding device will be connected to the work terminal near the DC ground relay (64D), the exploration current Ipf will be measured by the worker performing the grounding operation for forced grounding and the high-sensitivity DC current clamp meter. A worker is required to read. In order to grasp the ground fault state at the ground fault point F, an ammeter may be installed in the forced grounding device to measure and display the ground fault current, but the ground fault current measured by the current meter of the forced grounding device Unless the workers keep in touch with each other, it is not possible to report the above information to the workers of the high-sensitivity DC ammeter.

強制接地装置の接地箇所で検出される電流は地絡電流であり、高感度直流電流クランプメータで検出される電流は探査電流Ipfであり、複数の箇所で地絡故障が発生している場合は、地絡電流が複数の地絡故障点を分流することになるので、地絡電流が探査電流Ipfより大きくなるが、地絡電流と探査電流Ipfとの突き合わせは作業員同士で連絡を取り合わないと判別することができない。従って、複数の箇所で地絡故障が発生しているか否かの判定が容易でない。 The current detected at the grounding point of the forced grounding device is the ground fault current, and the current detected by the high-sensitivity DC current clamp meter is the exploration current Ipf. , Since the ground fault current divides multiple ground fault points, the ground fault current becomes larger than the exploration current Ipf, but the matching between the ground fault current and the exploration current Ipf does not communicate with each other. Cannot be determined. Therefore, it is not easy to determine whether or not a ground fault has occurred at a plurality of locations.

さらには、地絡故障点Fの探査のきっかけとなるのは直流地絡継電器(64D)の動作であり、その場合、強制接地装置に設置された電流計で地絡電流を直読できるが、地絡抵抗を直読することができない。地絡故障点Fの地絡不具合の度合い(程度)は地絡抵抗により推定できるが、地絡抵抗を把握するには制限抵抗の値を把握して地絡電流及び直流電源電圧から計算しなければならない。 Furthermore, the trigger for exploration of the ground fault point F is the operation of the DC ground relay (64D). In that case, the ammeter installed in the forced grounding device can directly read the ground fault current, but the ground The entanglement resistance cannot be read directly. The degree (degree) of ground fault failure at the ground fault point F can be estimated from the ground fault resistance, but in order to grasp the ground fault resistance, the value of the limiting resistance must be grasped and calculated from the ground fault current and the DC power supply voltage. Must be.

また、大きな変電所などでは、数Hz程度の長周期の電圧変動が直流電源供給回路に重畳し地絡電流が脈動し変動するので、高感度直流電流クランプ電流計の読みが変動し容易に読みとれないことがある。 Also, in a large substation, a long-period voltage fluctuation of about several Hz is superimposed on the DC power supply circuit and the ground fault current pulsates and fluctuates, so the reading of the high-sensitivity DC current clamp ammeter fluctuates and can be easily read. Sometimes not.

本発明の目的は、電気所の電気機器を操作するシーケンス回路に直流電源を供給する直流電源供給回路の地絡故障点の地絡抵抗の影響を受けずに安定した探査電流を供給できる強制接地装置及び地絡故障探査装置を提供することである。 An object of the present invention is forced grounding that can supply a stable exploration current without being affected by the ground fault resistance of the ground fault failure point of the DC power supply circuit that supplies DC power to the sequence circuit that operates the electrical equipment of the electric station. It is to provide the device and the ground fault search device.

請求項1の発明に係る強制接地装置は、 電気所の電気機器を操作するシーケンス回路に直流電源装置から直流電源を供給する複数の直流電源供給回路のいずれかに地絡故障が発生したとき、前記直流電源供給回路の電線にクランプされゼロ点調整を行ってから前記直流電源装置から供給される直流の探査電流を高感度直流電流クランプメータにより検出して前記地絡故障点を探査する際に、前記地絡故障を検出する直流地絡継電器が接続された前記直流電源供給回路の直流母線の正極と負極との間の分圧回路の分圧中点を非接地とした状態で用いられる強制接地装置であり、
前記地絡故障が発生した前記直流電源供給回の前記直流母線への接続点における作業用の正極及び負極の作業用端子のうち健全極の作業用端子に接続され、前記直流電源装置から供給される直流の探査電流の大きさを調整して出力する探査電流調整部と、
前記探査電流調整部に直列に接続され前記高感度直流電流クランプメータのゼロ点調整のときはオフして前記直流電源装置から供給される直流の探査電流の大きさを前記シーケンス回路が誤動作しない程度の大きさに制限する制限抵抗を非接地とし、前記高感度直流電流クランプメータが前記地絡故障点を探査するときはオンして前記探査電流調整部を接地し前記直流電源装置から直流の探査電流を前記直流電源供給回路に供給するための強制接地スイッチと、
前記強制接地スイッチに直列接続され前記強制接地スイッチに流れる電流を測定する電流計を備え、
前記探査電流調整部は、前記制限抵抗と、前記制限抵抗に並列に接続され前記探査電流の大きさが予め定めた一定値になるように調整する電流制限回路と、前記制限抵抗と前記電流制限回路とを切り替える切替スイッチとを有したことを特徴とする。
The forced grounding device according to the invention of claim 1 is when a ground fault occurs in any of a plurality of DC power supply circuits that supply DC power from a DC power supply device to a sequence circuit that operates an electric device of an electric place. When searching for the ground fault point by detecting the DC exploration current supplied from the DC power supply device with a high-sensitivity DC current clamp meter after being clamped to the electric wire of the DC power supply circuit and adjusting the zero point. , Forced to be used with the voltage division midpoint of the voltage division circuit between the positive and negative sides of the DC bus of the DC power supply circuit to which the DC ground fault relay for detecting the ground fault failure is ungrounded. It is a grounding device
It is connected to the work terminal of the sound electrode among the work terminals of the positive electrode and the negative electrode for work at the connection point of the DC power supply circuit to the DC bus where the ground fault has occurred, and is supplied from the DC power supply device. The exploration current adjustment unit that adjusts and outputs the magnitude of the DC exploration current to be output,
When the zero point adjustment of the high-sensitivity DC current clamp meter is connected in series with the exploration current adjustment unit, it is turned off to the extent that the sequence circuit does not malfunction the magnitude of the DC exploration current supplied from the DC power supply device. The limiting resistance that limits the size of the current is not grounded, and when the high-sensitivity DC current clamp meter searches for the ground fault point, it is turned on to ground the search current adjustment unit and search for DC from the DC power supply. A forced grounding switch for supplying current to the DC power supply circuit ,
It is equipped with an ammeter that is connected in series to the forced ground switch and measures the current flowing through the forced ground switch.
The exploration current adjusting unit includes the limiting resistor , a current limiting circuit connected in parallel to the limiting resistor and adjusting the magnitude of the exploration current to a predetermined constant value, and the limiting resistor and the current limiting. It is characterized by having a changeover switch for switching between the circuit and the circuit.

請求項2の発明に係る強制接地装置は、請求項1の発明において、前記電流計の近傍に地絡電流に対応する地絡抵抗を表記した目盛り表記部を備えたことを特徴とする。 The forced grounding device according to the second aspect of the present invention is characterized in that, in the first aspect of the present invention, a scale notation portion indicating the ground fault resistance corresponding to the ground fault current is provided in the vicinity of the ammeter.

請求項3の発明の発明に係る地絡故障探査装置は、請求項1または請求項2に記載のいずれかの強制接地装置と、前記直流電源供給回路の電線にクランプされゼロ点調整を行ってから前記直流電源装置から供給される直流の探査電流を検出する高感度直流電流クランプメータとを備えたことを特徴とする。 The ground fault search device according to the invention of claim 3 is clamped to the forced grounding device according to claim 1 or claim 2 and the electric current of the DC power supply circuit to adjust the zero point. It is characterized by being provided with a high-sensitivity DC current clamp meter that detects a DC exploration current supplied from the DC power supply device.

請求項4の発明に係る地絡故障探査装置は、請求項3の発明において、前記強制接地装置の前記強制接地スイッチのオンオフを遠隔操作する接地リモートスイッチと、前記強制接地装置における前記探査電流調整部の前記切替スイッチの切替操作を遠隔操作する切替リモートスイッチと、前記強制接地装置の前記電流計で測定された地絡電流を前記強制接地装置の前記電流計と同等に表示する地絡電流表示器とを有し、前記高感度直流電流クランプメータとともに持ち運ばれる遠隔操作器を備えたことを特徴とする。 In the invention of claim 3, the ground fault search device according to the fourth aspect of the present invention includes a grounding remote switch that remotely controls the on / off of the forced grounding switch of the forced grounding device, and the exploration current adjustment in the forced grounding device. A ground fault current display that displays the ground fault current measured by the changeover remote switch that remotely controls the changeover operation of the changeover switch and the current meter of the forced grounding device in the same manner as the current meter of the forced grounding device. It is characterized by having a device and a remote controller that can be carried together with the high-sensitivity DC current clamp meter.

請求項5の発明に係る地絡故障探査装置は、請求項3または請求項4の発明において、前記高感度直流電流クランプメータに接続され前記高感度直流電流クランプメータで検出された所定期間の探査電流の移動平均電流値を演算する移動平均演算部と、前記移動平均演算部で演算する移動平均電流値の所定期間を設定する所定期間設定部と、前記移動平均演算部の演算のセットまたはリセットを選択する移動平均演算選択スイッチと、前記移動平均演算部で演算された移動平均電流値または前記高感度直流電流クランプメータで検出された電流値を表示出力する探査電流表示器とを有したクランプメータアダプタを備えたことを特徴とする。 In the invention of claim 3 or 4, the ground fault exploration apparatus according to the invention of claim 5 is connected to the high-sensitivity direct current current clamp meter and the exploration for a predetermined period detected by the high-sensitivity direct current clamp meter. A moving average calculation unit that calculates the moving average current value of the current, a predetermined period setting unit that sets a predetermined period of the moving average current value calculated by the moving average calculation unit, and a set or reset of the calculation of the moving average calculation unit. A clamp having a moving average calculation selection switch for selecting, and an exploration current indicator that displays and outputs the moving average current value calculated by the moving average calculation unit or the current value detected by the high-sensitivity DC current clamp meter. It is characterized by being equipped with a meter adapter.

請求項1の発明によれば、直流電源供給回路の地絡故障を探査する際に、直流地絡継電器が接続された直流電源供給回路の直流母線の正極と負極との間の分圧回路の分圧中点を非接地とした状態で強制接地装置を強制接地し、探査電流調整部の電流制限回路から大きさが予め定めた一定値の探査電流を供給できるので、探査電流の検出を容易に行える。 According to the invention of claim 1, when searching for a ground fault of the DC power supply circuit, a voltage dividing circuit between the positive and negative sides of the DC bus of the DC power supply circuit to which the DC ground fault successor is connected The forced grounding device is forcibly grounded with the voltage dividing midpoint ungrounded, and the exploration current of a predetermined value can be supplied from the current limiting circuit of the exploration current adjustment unit, making it easy to detect the exploration current. Can be done.

請求項2の発明によれば、請求項1の発明の効果に加え、電流計の近傍に地絡電流に対応する地絡抵抗を表記した目盛り表記部を備えたので、概略の地絡抵抗を容易に把握でき地絡故障点Fの地絡不具合の度合い(程度)を概略で把握できる。 According to the invention of claim 2, in addition to the effect of the invention of claim 1, a scale notation portion indicating the ground fault resistance corresponding to the ground fault current is provided in the vicinity of the ammeter, so that the approximate ground fault resistance can be obtained. It can be easily grasped and the degree (degree) of the ground fault failure at the ground fault failure point F can be roughly grasped.

請求項3の発明によれば、請求項1または請求項2の強制接地装置に、直流電源供給回路の電線にクランプされゼロ点調整を行ってから直流電源から供給される直流の探査電流を検出する高感度直流電流クランプメータを組み合わせて地絡故障探査装置を構成したので、請求項1または請求項2の発明の効果を有した地絡故障探査装置を提供できる。 According to the invention of claim 3, the forced grounding device of claim 1 or 2 detects the DC exploration current supplied from the DC power supply after being clamped to the electric wire of the DC power supply circuit and adjusting the zero point. Since the ground fault search device is configured by combining the high-sensitivity direct current clamp meters, it is possible to provide the ground fault search device having the effect of the invention of claim 1 or 2.

請求項4の発明によれば、請求項3の発明の効果に加え、高感度直流電流クランプメータとともに持ち運ばれる遠隔操作器にて、強制接地装置を強制接地や探査電流調整部の電流制限器と制限抵抗との切り替えを行えるので、強制接地装置を操作をする作業員が不要となる。また、遠隔操作器にて、強制接地装置の電流計で検出した地絡電流の読み取ることができるので、地絡電流と探査電流との突き合わせが容易に行え、複数の箇所で地絡故障が発生していることを容易に判定できる。 According to the invention of claim 4, in addition to the effect of the invention of claim 3, the forced grounding device is forced grounded or the current limiter of the exploration current adjusting unit is a remote controller carried together with the high-sensitivity DC current clamp meter. And the limiting resistance can be switched, eliminating the need for a worker to operate the forced grounding device. In addition, since the ground fault current detected by the ammeter of the forced grounding device can be read by the remote controller, the ground fault current and the exploration current can be easily matched, and ground faults occur at multiple points. You can easily determine what you are doing.

請求項5の発明によれば、請求項3または請求項4の発明の効果に加え、高感度直流電流クランプメータに接続されるクランプメータアダプタにて、高感度直流電流クランプメータで検出された所定期間の探査電流の移動平均演算のセットまたはリセットの選択を可能としているので、数Hz程度の長周期の電圧変動が直流電源供給回路に重畳し地絡電流が脈動し変動した場合であっても、移動平均値を探査電流表示器に表示させることによって、容易に安定して探査電流を読み取れる。 According to the invention of claim 5, in addition to the effect of the invention of claim 3 or 4, a predetermined value detected by the high-sensitivity direct current clamp meter by the clamp meter adapter connected to the high-sensitivity direct current clamp meter. Since it is possible to select the set or reset of the moving average calculation of the exploration current during the period, even if a long-period voltage fluctuation of about several Hz is superimposed on the DC power supply circuit and the ground fault current pulsates and fluctuates. By displaying the moving average value on the exploration current indicator, the exploration current can be read easily and stably.

本発明の第1実施形態に係る強制接地装置を高感度直流電流クランプメータとを組み合わせることによって地絡故障探査装置を構成し1段目の直流電源回路に高感度直流電流クランプメータをクランプしてゼロ点調整を行っている状態を示す回路図。A ground fault search device is configured by combining the forced grounding device according to the first embodiment of the present invention with a high-sensitivity DC current clamp meter, and the high-sensitivity DC current clamp meter is clamped to the first-stage DC power supply circuit. A circuit diagram showing a state in which zero point adjustment is being performed. 本発明の第1実施形態における強制接地装置の電流計の近傍に設けられる目盛り表記部の説明図。The explanatory view of the scale notation part provided in the vicinity of the ammeter of the forced grounding apparatus in 1st Embodiment of this invention. 本発明の第1実施形態における強制接地装置の電流制限回路の一例を示す回路図。The circuit diagram which shows an example of the current limiting circuit of the forced grounding apparatus in 1st Embodiment of this invention. 図1の状態で高感度直流電流クランプメータのゼロ点調整を行った後に強制接地装置の強制接地スイッチをオンした状態を示す回路図。FIG. 3 is a circuit diagram showing a state in which the forced grounding switch of the forced grounding device is turned on after adjusting the zero point of the high-sensitivity DC current clamp meter in the state of FIG. 図4の状態から次段の2段目の直流電源回路に高感度直流電流クランプメータをクランプしてゼロ点調整を行っている状態を示す回路図。FIG. 6 is a circuit diagram showing a state in which a high-sensitivity DC current clamp meter is clamped to a DC power supply circuit in the second stage of the next stage from the state of FIG. 4 to perform zero point adjustment. 図5の状態で高感度直流電流クランプメータのゼロ点調整を行った後に強制接地装置の強制接地スイッチをオンして探査電流を供給している状態を示す回路図。FIG. 5 is a circuit diagram showing a state in which the forced grounding switch of the forced grounding device is turned on and the exploration current is supplied after the zero point adjustment of the high-sensitivity DC current clamp meter is performed in the state of FIG. 図6の状態で高感度直流電流クランプメータを直流電源供給回路の分岐点の手前の電線に移動させゼロ点調整を行っている状態を示す回路図。FIG. 6 is a circuit diagram showing a state in which a high-sensitivity DC current clamp meter is moved to an electric wire in front of a branch point of a DC power supply circuit to perform zero point adjustment in the state of FIG. 図7の状態で高感度直流電流クランプメータのゼロ点調整を行った後に強制接地装置の強制接地スイッチをオンして探査電流を供給している状態を示す回路図。FIG. 7 is a circuit diagram showing a state in which the exploration current is supplied by turning on the forced grounding switch of the forced grounding device after adjusting the zero point of the high-sensitivity DC current clamp meter in the state of FIG. 7. 本発明の第1実施形態に係る地絡故障探査装置の強制接地装置での地絡電流Ifと地絡抵抗Rfとのグラフである。It is a graph of the ground fault current If and the ground fault resistance Rf in the forced grounding apparatus of the ground fault investigation apparatus which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る地絡故障探査装置を構成する強制接地装置及び遠隔操作器の構成図。FIG. 3 is a configuration diagram of a forced grounding device and a remote controller constituting the ground fault detection device according to the second embodiment of the present invention. 本発明の第3実施形態に係る地絡故障探査装置を構成するクランプメータアダプタの構成図。The block diagram of the clamp meter adapter which constitutes the ground fault investigation apparatus which concerns on 3rd Embodiment of this invention. 電気所のシーケンス回路に直流電源を供給する直流電源供給回路の直流回路の回路図。The circuit diagram of the DC circuit of the DC power supply circuit that supplies DC power to the sequence circuit of the electric place. 直流電源供給回路の地絡故障点を低周波重畳法で探査する場合の説明図。Explanatory drawing when searching the ground fault point of the DC power supply circuit by the low frequency superimposition method. 直流電源供給回路の地絡故障点をフリッカ法で探査する場合の説明図。Explanatory drawing when searching for a ground fault point of a DC power supply circuit by the flicker method.

以下、本発明の実施形態を説明する。図1は、本発明の第1実施形態に係る強制接地装置を高感度直流電流クランプメータ24とを組み合わせることによって地絡故障探査装置を構成し1段目の直流電源回路15aに高感度直流電流クランプメータをクランプしてゼロ点調整を行っている状態を示す回路図である。図1では直流電源供給回路15bの正極の電線のF点で地絡抵抗Rfの地絡故障が発生し、強制接地装置23は、地絡故障が発生した直流電源供給回路15の健全極に接続された場合を示している。すなわち、地絡故障が発生した直流電源供給回路15の健全極への接続は直流母線12への接続点における作業用の正極及び負極の作業用端子25p、25nのうちの健全極(負極)の作業用端子25nに接続された場合を示している。また、高感度直流電流クランプメータ24は直流電源供給回路15aにクランプして高感度直流電流クランプメータ24のゼロ点調整を行う状態を示している。図12と同一要素には同一符号を付し重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described. FIG. 1 shows a ground fault exploration device configured by combining the forced grounding device according to the first embodiment of the present invention with a high-sensitivity DC current clamp meter 24, and a high-sensitivity DC current in the first-stage DC power supply circuit 15a. It is a circuit diagram which shows the state which clamps a clamp meter and performs zero point adjustment. In FIG. 1, a ground fault of the ground fault resistance Rf occurs at point F of the positive electrode wire of the DC power supply circuit 15b, and the forced grounding device 23 is connected to the sound pole of the DC power supply circuit 15 in which the ground fault has occurred. It shows the case where it was done. That is, the connection to the healthy electrode of the DC power supply circuit 15 in which the ground fault has occurred is the healthy electrode (negative electrode) of the working terminals 25p and 25n of the working positive electrode and the negative electrode at the connection point to the DC bus 12. The case where it is connected to the work terminal 25n is shown. Further, the high-sensitivity DC current clamp meter 24 shows a state in which the high-sensitivity DC current clamp meter 24 is clamped to the DC power supply circuit 15a to adjust the zero point. The same elements as those in FIG. 12 are designated by the same reference numerals, and duplicate description will be omitted.

ここで、本発明の実施形態で使用する高感度直流電流クランプメータは、例えば、市販の高感度直流電流クランプメータ(マルチ計測器株式会社製、高感度DCクランプメータ、M-730、DC 0~100mA、分解能0.01mA)を採用する。これにより、直流地絡継電器が一旦動作するが継続して動作しない程度の地絡故障あるいは直流地絡継電器が動作しない程度の地絡故障であってもその地絡電流を検出できるので故障点を特定することができる。高感度直流電流クランプメータには測定した電流を表示する電流表示器を有している。 Here, the high-sensitivity direct current clamp meter used in the embodiment of the present invention is, for example, a commercially available high-sensitivity direct current clamp meter (manufactured by Multi-Measuring Instrument Co., Ltd., high-sensitivity DC clamp meter, M-730, DC 0 to 100mA, resolution 0.01mA) is adopted. As a result, even if the DC ground relay operates once but does not continue to operate, or even if the DC ground relay does not operate, the ground fault current can be detected. Can be identified. The high-sensitivity DC current clamp meter has a current indicator that displays the measured current.

電気所の直流電源供給回路15における地絡故障が一旦発生すると、直流地絡継電器19の動作より検出される。直流地絡継電器19は故障極を検出し表示するため、直流電源供給回路15の正極あるいは負極のどちらに故障が発生したかは、直流地絡継電器19の故障極表示を確認することで把握する。 Once a ground fault in the DC power supply circuit 15 of an electric station occurs, it is detected by the operation of the DC ground relay relay 19. Since the DC ground relay 19 detects and displays a faulty electrode, it is possible to determine whether a failure has occurred in the positive electrode or the negative electrode of the DC power supply circuit 15 by checking the faulty pole display of the DC ground relay. ..

直流地絡継電器19が動作しない程度の地絡故障の発生把握及び故障極の特定は、直流電源供給回路15の電圧バランスを定期的に測定することにより確認する。直流電源供給回路15の正負極の電圧バランス測定は作業用端子25p、25nにおける正極及び負極の対地電圧の測定により行う。また、作業用端子25が各々の直流電源供給回路15a~15nの正極及び負極に個別に設けられる場合には、個別の作業用端子25につき正極及び負極の電圧バランスを測定することにより、健全極を特定できる。 The occurrence of a ground fault failure to the extent that the DC ground relay relay 19 does not operate and the identification of the failure pole are confirmed by periodically measuring the voltage balance of the DC power supply circuit 15. The voltage balance of the positive and negative electrodes of the DC power supply circuit 15 is measured by measuring the voltage to ground of the positive and negative electrodes at the working terminals 25p and 25n. When the working terminals 25 are individually provided on the positive and negative electrodes of the DC power supply circuits 15a to 15n, the voltage balance between the positive and negative electrodes is measured for each working terminal 25 to obtain a healthy electrode. Can be identified.

以下の説明では、直流地絡継電器19の動作により、電気所の直流電源供給回路15a~15nのいずれかに地絡故障が発生したことが検出された場合について説明する。直流電源供給回路15における地絡故障の発生把握及び故障極の特定は直流地絡継電器19の故障極表示を確認して行う。 In the following description, a case where it is detected that a ground fault has occurred in any of the DC power supply circuits 15a to 15n of the electric station due to the operation of the DC ground relay relay 19 will be described. The occurrence of a ground fault in the DC power supply circuit 15 and the identification of the faulty pole are confirmed by checking the faulty pole display of the DC ground relay relay 19.

直流地絡継電器19の動作により、電気所の直流電源供給回路15a~15nのいずれかに地絡故障が発生したことが検出されると、強制接地装置23は、地絡故障を検出する直流地絡継電器19の分圧回路18の分圧中点を非接地とした状態で用いられる。これは、強制接地装置23は、直流電源装置11から直流の探査電流を直流電源供給回路15に供給するものであり、地絡故障点以外の接地点である分圧回路18の分圧中点に探査電流が流れるのを阻止するためである。分圧回路18の分圧中点を非接地とすることで探査電流の検出精度を高めることができる。 When it is detected that a ground fault has occurred in any of the DC power supply circuits 15a to 15n of the electric station due to the operation of the DC ground relay, the forced grounding device 23 detects the ground fault. It is used in a state where the voltage dividing midpoint of the voltage dividing circuit 18 of the relay electric device 19 is not grounded. This is because the forced grounding device 23 supplies a DC exploration current from the DC power supply device 11 to the DC power supply circuit 15, and is a voltage dividing middle point of the voltage dividing circuit 18 which is a grounding point other than the ground fault failure point. This is to prevent the exploration current from flowing in. By making the voltage dividing midpoint of the voltage dividing circuit 18 ungrounded, the detection accuracy of the exploration current can be improved.

ここで、作業用端子25は各々の直流電源供給回路15a~15nの正極及び負極に個別に設けられる場合、各々の直流電源供給回路15a~15nの正極及び負極に共通に設けられる場合があるが、図1では共通に設けられた作業用端子25p、25nを示している。すなわち、各々の直流電源供給回路15a~15nに対し、正極には共通の作業用端子25pが設けられ、負極には作業用端子25nが共通に設けられている場合を示している。 Here, when the working terminal 25 is individually provided on the positive electrode and the negative electrode of each DC power supply circuit 15a to 15n, it may be commonly provided on the positive electrode and the negative electrode of each DC power supply circuit 15a to 15n. , FIG. 1 shows working terminals 25p and 25n which are commonly provided. That is, for each of the DC power supply circuits 15a to 15n, a common working terminal 25p is provided on the positive electrode, and a working terminal 25n is commonly provided on the negative electrode.

以下の説明では、作業用端子25は各々の直流電源供給回路15a~15nの正極及び負極に共通に設けられている場合について説明する。すなわち、図1では、強制接地装置23を、地絡故障が発生した直流電源供給回路15の直流母線12への接続点における作業用の正極及び負極の作業用端子25のうち健全極の共通の作業用端子25nに接続した場合を示している。 In the following description, a case where the working terminal 25 is provided in common to the positive electrode and the negative electrode of the respective DC power supply circuits 15a to 15n will be described. That is, in FIG. 1, the forced grounding device 23 is common to the healthy electrodes of the working positive electrode and the working terminal 25 of the working positive electrode and the negative electrode at the connection point of the DC power supply circuit 15 where the ground fault has occurred to the DC bus 12. The case where it is connected to the work terminal 25n is shown.

強制接地装置23は、探査電流調整部26、強制接地スイッチ27及び電流計28を直列に接続して構成されている。電流計28の近傍には目盛り表記部29が設けられている。目盛り表記部29は地絡電流に対応する地絡抵抗を表記したものである。 The forced grounding device 23 is configured by connecting the exploration current adjusting unit 26, the forced grounding switch 27, and the ammeter 28 in series. A scale notation unit 29 is provided in the vicinity of the ammeter 28. The scale notation unit 29 indicates the ground fault resistance corresponding to the ground fault current.

探査電流調整部26は、直流電源装置から供給される直流の探査電流の大きさを調整して出力するものであり、制限抵抗30に並列に電流制限回路31が接続されて構成され、さらに、制限抵抗30と電流制限回路31とを切り替える切替スイッチ32を有している。なお、電流制限回路31に直列に接続された抵抗33は、電流制限回路31が短絡故障した場合に過大電流が流れるのを防止するための保護抵抗である。制限抵抗30は、直流電源装置11から供給される直流の探査電流の大きさをシーケンス回路16が誤動作しない程度の大きさに制限する抵抗である。また、電流制限回路31は、地絡抵抗Rfの大きさに関係なく探査電流の大きさが予め定めた一定値でシーケンス回路16が誤動作しない程度の大きさになるように調整するものである。 The exploration current adjusting unit 26 adjusts and outputs the magnitude of the DC exploration current supplied from the DC power supply device, and is configured by connecting the current limiting circuit 31 in parallel to the limiting resistance 30 and further. It has a changeover switch 32 for switching between the limiting resistance 30 and the current limiting circuit 31. The resistance 33 connected in series with the current limiting circuit 31 is a protection resistance for preventing an excessive current from flowing when the current limiting circuit 31 has a short-circuit failure. The limiting resistor 30 is a resistor that limits the magnitude of the DC exploration current supplied from the DC power supply device 11 to such a magnitude that the sequence circuit 16 does not malfunction. Further, the current limiting circuit 31 is adjusted so that the magnitude of the exploration current is a predetermined constant value regardless of the magnitude of the ground fault resistance Rf so that the sequence circuit 16 does not malfunction.

強制接地スイッチ27はオンのときに直流電源装置11から直流の探査電流を直流電源供給回路15に供給するためのスイッチである。図1では強制接地スイッチ27はオフの状態であり、この状態では直流電源装置11から直流の探査電流は直流電源供給回路15に供給されない。また、電流計28は強制接地スイッチ27に直列接続され、強制接地スイッチ27に流れる電流を測定し表示出力する。前述したように、電流計28の近傍には目盛り表記部29が設けられている。 The forced grounding switch 27 is a switch for supplying a DC exploration current from the DC power supply device 11 to the DC power supply circuit 15 when it is on. In FIG. 1, the forced grounding switch 27 is in the off state, and in this state, the DC exploration current is not supplied from the DC power supply device 11 to the DC power supply circuit 15. Further, the ammeter 28 is connected in series to the forced grounding switch 27, measures the current flowing through the forced grounding switch 27, and outputs a display. As described above, a scale notation unit 29 is provided in the vicinity of the ammeter 28.

図2は目盛り表記部29の説明図である。目盛り表記部29の上段には地絡電流Ifの地絡電流目盛り部29Aが表記され、目盛り表記部29の下段には地絡電流Ifに対応して地絡抵抗Rfの地絡抵抗目盛り部29Bが表記されている。
目盛り表記部29は、地絡電流目盛り部29Aと地絡抵抗目盛り部29Bとで、探査電流調整部26の選択スイッチ32で制限抵抗30を選択した際の地絡電流Ifと地絡抵抗Rfとの関係を示している。
FIG. 2 is an explanatory diagram of the scale notation unit 29. The ground fault current scale part 29A of the ground fault current If is written in the upper part of the scale notation part 29, and the ground fault resistance scale part 29B of the ground fault resistance Rf corresponds to the ground fault current If in the lower part of the scale notation part 29. Is written.
The scale notation unit 29 is a ground fault current scale unit 29A and a ground fault resistance scale unit 29B, and the ground fault current If and the ground fault resistance Rf when the limiting resistor 30 is selected by the selection switch 32 of the exploration current adjusting unit 26. Shows the relationship.

直流電源装置11の直流電圧がEであるとすると、地絡電流Ifは(1)式で示され、地絡抵抗Rfは(2)式で示される。 Assuming that the DC voltage of the DC power supply device 11 is E, the ground fault current If is expressed by the equation (1), and the ground fault resistance Rf is expressed by the equation (2).

If=E/(Rf+制限抵抗) …(1)
Rf=E/If-制限抵抗 …(2)
いま、直流電源装置11の直流電圧Eが110V、制限抵抗30が100kΩであるとすると、Rf=110/If-100となる。この場合、地絡電流Ifが1.1mAであるときは地絡抵抗Rfは0、地絡電流Ifが1.0mAであるときは地絡抵抗Rfは10kΩ、地絡電流Ifが0.5mAであるときは地絡抵抗Rfは120kΩとなる。このように、電流計28で計測された地絡電流を目盛り表記部29により地絡抵抗Rfに容易に換算できるので、概略の地絡抵抗Rfを容易に把握でき地絡故障点Fの地絡不具合の度合い(程度)を概略で把握できる。
If = E / (Rf + limiting resistance) ... (1)
Rf = E / If-Limited resistance ... (2)
Assuming that the DC voltage E of the DC power supply device 11 is 110 V and the limiting resistance 30 is 100 kΩ, Rf = 110 / If-100. In this case, when the ground fault current If is 1.1 mA, the ground fault resistance Rf is 0, and when the ground fault current If is 1.0 mA, the ground fault resistance Rf is 10 kΩ and the ground fault current If is 0.5 mA. At one time, the ground fault resistance Rf becomes 120 kΩ. In this way, since the ground fault current measured by the ammeter 28 can be easily converted into the ground fault resistance Rf by the scale notation unit 29, the approximate ground fault resistance Rf can be easily grasped and the ground fault at the ground fault failure point F. The degree (degree) of the defect can be roughly grasped.

図3は電流制限回路31の一例を示す回路図である。電流制限回路31は定電流ダイオード34とダイオードブリッジ回路35とで構成され、定電流ダイオード34は0[V]~Vk[V]の領域では印加電圧に比例して電流値が増減するがVk[V]を超えると一定の電流(ピンチオフ電流)を流す素子である。電流制限回路31は双方向特性を持たせるためにダイオードブリッジ回路35を設けている。図3では定電流ダイオード34を用いて構成した電流制限回路31を示しているが、電流制限回路31はトランジスタを用いて一定の電流を流す回路を構成するようにしてもよい。 FIG. 3 is a circuit diagram showing an example of the current limiting circuit 31. The current limiting circuit 31 is composed of a constant current diode 34 and a diode bridge circuit 35. The constant current diode 34 increases or decreases in proportion to the applied voltage in the range of 0 [V] to Vk [V], but Vk [ V] is an element that allows a constant current (pinch-off current) to flow. The current limiting circuit 31 is provided with a diode bridge circuit 35 in order to have bidirectional characteristics. Although FIG. 3 shows a current limiting circuit 31 configured by using a constant current diode 34, the current limiting circuit 31 may be configured to flow a constant current by using a transistor.

次に、直流電源供給回路15の地絡故障点Fを探査するには、探査電流調整部26の選択スイッチ32で制限抵抗30を選択し、強制接地スイッチ27を閉じて制限抵抗30(例えば100kΩ)で接地する。そして、電流計28の電流(地絡電流)を読み取り、電流の変動や大きさを確認することで故障点の様相を判別する。その際に前述したように目盛り表記部29を参照して地絡抵抗を推定する。この後、強制接地スイッチ27を開いて探査電流調整部26の選択スイッチ32で電流制限回路31を選択し、電流制限回路31による定電流(例えば1mA)で地絡探査を行うことになる。 Next, in order to search for the ground fault point F of the DC power supply circuit 15, the limiting resistance 30 is selected by the selection switch 32 of the exploration current adjusting unit 26, the forced grounding switch 27 is closed, and the limiting resistance 30 (for example, 100 kΩ) is closed. ) To ground. Then, the aspect of the failure point is determined by reading the current (ground fault current) of the ammeter 28 and confirming the fluctuation and magnitude of the current. At that time, as described above, the ground fault resistance is estimated with reference to the scale notation unit 29. After that, the forced grounding switch 27 is opened, the current limiting circuit 31 is selected by the selection switch 32 of the exploration current adjusting unit 26, and the ground fault exploration is performed with the constant current (for example, 1 mA) by the current limiting circuit 31.

電流制限回路31を選択した後、強制接地装置23の強制接地スイッチ27がオフの状態で、各々の直流電源供給回路15a~15nについて、直流母線12の近傍から直流電源供給回路15の下流の分岐回路17の分岐点に向けて順次高感度直流電流クランプメータ24を移動させ、移動の度にゼロ点調整を行い強制接地装置23の強制接地スイッチ27を閉じて探査電流を測定して地絡故障点を特定することになる。前述したように高感度直流電流クランプメータ24には測定した電流を表示する電流表示を有しているので、作業員は測定した電流を容易に把握できる。 After selecting the current limiting circuit 31, with the forced grounding switch 27 of the forced grounding device 23 turned off, each DC power supply circuit 15a to 15n is branched downstream from the vicinity of the DC bus 12 to the downstream of the DC power supply circuit 15. The high-sensitivity DC current clamp meter 24 is sequentially moved toward the branch point of the circuit 17, the zero point is adjusted each time the meter is moved, the forced grounding switch 27 of the forced grounding device 23 is closed, and the exploration current is measured to cause a ground fault. You will identify the point. As described above, since the high-sensitivity DC current clamp meter 24 has a current display for displaying the measured current, the operator can easily grasp the measured current.

高感度直流電流クランプメータ24のゼロ点調整を行うのは、高感度直流電流クランプメータ24は2次側に交流バイアスを流して直流の電流を検出するものであることから、ゼロ点オフセットを補正するために測定の度にゼロ点調整を必要とするからである。 The zero point adjustment of the high-sensitivity DC current clamp meter 24 is performed because the high-sensitivity DC current clamp meter 24 detects the direct current by passing an AC bias to the secondary side, so that the zero point offset is corrected. This is because the zero point adjustment is required for each measurement.

まず、強制接地装置23の強制接地スイッチ27を開いた状態で、直流電源供給回路の1段目の直流電源回路15aの電線に高感度直流電流クランプメータをクランプしてゼロ点調整を行う。そして、高感度直流電流クランプメータ24のゼロ点調整を行った後に、図4に示すように、強制接地装置23の強制接地スイッチ27をオンにする。切替スイッチ32により電流制限回路31が選択されているので、強制接地装置23の強制接地スイッチ27のオンにより、直流電源供給回路15aに地絡故障が発生している場合には、直流電源装置11から直流の探査電流を直流電源供給回路15aに供給できる状態となるが、直流電源供給回路15aには地絡故障が発生していないので、強制接地装置23の強制接地スイッチ27をオンしても探査電流は流れない。従って、高感度直流電流クランプメータ24は探査電流を検出しないので、直流電源供給回路15aには地絡故障が発生していないことが分かる。 First, with the forced grounding switch 27 of the forced grounding device 23 open, a high-sensitivity DC current clamp meter is clamped to the electric wire of the first-stage DC power supply circuit 15a of the DC power supply circuit to adjust the zero point. Then, after adjusting the zero point of the high-sensitivity DC current clamp meter 24, the forced grounding switch 27 of the forced grounding device 23 is turned on as shown in FIG. Since the current limiting circuit 31 is selected by the changeover switch 32, if a ground fault has occurred in the DC power supply circuit 15a due to the forced grounding switch 27 of the forced grounding device 23 being turned on, the DC power supply device 11 However, since no ground fault has occurred in the DC power supply circuit 15a, even if the forced grounding switch 27 of the forced grounding device 23 is turned on, the DC exploration current can be supplied to the DC power supply circuit 15a. No exploration current flows. Therefore, since the high-sensitivity DC current clamp meter 24 does not detect the exploration current, it can be seen that no ground fault has occurred in the DC power supply circuit 15a.

次に、1段目の直流電源回路15aには地絡故障は発生していないので、図5に示すように、次段の2段目の直流電源回路15bの電線に高感度直流電流クランプメータをクランプしてゼロ点調整を行う。そして、高感度直流電流クランプメータ24のゼロ点調整を行った後に、図6に示すように、強制接地装置23の強制接地スイッチ27をオンにする。 Next, since no ground fault has occurred in the first-stage DC power supply circuit 15a, as shown in FIG. 5, a high-sensitivity DC current clamp meter is attached to the electric wire of the second-stage DC power supply circuit 15b in the next stage. Clamp to adjust the zero point. Then, after adjusting the zero point of the high-sensitivity DC current clamp meter 24, the forced grounding switch 27 of the forced grounding device 23 is turned on as shown in FIG.

図6に示すように、2段目の直流電源回路15bには地絡故障が発生しているので、強制接地装置23の強制接地スイッチ27をオンすると、直流電源装置11の正極から直流電源盤13の開閉器14bp、地絡故障点F、強制接地装置23の電流制限回路31及び保護抵抗33、健全極の作業用端子25n、直流電源装置11の負極に至る回路が形成され直流の探査電流が流れる。探査電流は直流の定電流であることから直流電源供給回路15bの電線の対地静電容量Cbpには流れない。 As shown in FIG. 6, since a ground fault has occurred in the second-stage DC power supply circuit 15b, when the forced grounding switch 27 of the forced grounding device 23 is turned on, the DC power supply panel is connected to the positive electrode of the DC power supply device 11. A circuit is formed to reach the switch 14bp of the switch 13, the ground fault failure point F, the current limiting circuit 31 and the protection resistor 33 of the forced grounding device 23, the working terminal 25n of the sound pole, and the negative electrode of the DC power supply device 11, and the DC exploration current. Flows. Since the exploration current is a DC constant current, it does not flow in the ground capacitance Cbp of the electric wire of the DC power supply circuit 15b.

この状態で、高感度直流電流クランプメータ24は、探査電流検出スイッチを操作にして、クランプした直流電源供給回路15bの電線に流れる直流の探査電流を検出する。前述したように、強制接地スイッチ27に直列接続された電流制限回路31は、地絡抵抗Rfの大きさに関係なく予め定めた一定値の探査電流を出力するものであるので、高感度直流電流クランプメータ24は探査電流を容易に検出できる。また、電流制限回路31から出力される探査電流の大きさはシーケンス回路16が誤動作しない程度の大きさであるので、シーケンス回路16を誤操作させることはない。 In this state, the high-sensitivity DC current clamp meter 24 operates the exploration current detection switch to detect the DC exploration current flowing through the electric wire of the clamped DC power supply circuit 15b. As described above, the current limiting circuit 31 connected in series to the forced grounding switch 27 outputs a predetermined constant value exploration current regardless of the magnitude of the ground fault resistance Rf, and therefore has a high-sensitivity direct current. The clamp meter 24 can easily detect the exploration current. Further, since the magnitude of the exploration current output from the current limiting circuit 31 is such that the sequence circuit 16 does not malfunction, the sequence circuit 16 will not be erroneously operated.

図6の状態では、高感度直流電流クランプメータ24は探査電流を検出するので、直流電源供給回路15bの直流電源盤13より下流に地絡故障が発生していることが分かる。次に、直流電源供給回路15bの分岐回路17bの分岐点の手前の電線に交流電流クランプメータ21をクランプして高感度直流電流クランプメータ24により探査電流を検出することになるが、前述したように、高感度直流電流クランプメータ24は測定の度にゼロ点調整を必要とするから、強制接地装置23の強制接地スイッチ27をオフにして高感度直流電流クランプメータ24のゼロ点調整を行う。 In the state of FIG. 6, since the high-sensitivity DC current clamp meter 24 detects the exploration current, it can be seen that a ground fault has occurred downstream of the DC power supply panel 13 of the DC power supply circuit 15b. Next, the AC current clamp meter 21 is clamped to the electric wire in front of the branch point of the branch circuit 17b of the DC power supply circuit 15b, and the exploration current is detected by the high-sensitivity DC current clamp meter 24. In addition, since the high-sensitivity DC current clamp meter 24 requires zero-point adjustment for each measurement, the forced grounding switch 27 of the forced grounding device 23 is turned off to adjust the zero-point of the high-sensitivity DC current clamp meter 24.

図7は、図6の状態で高感度直流電流クランプメータを直流電源供給回路の分岐点の手前の電線に移動させゼロ点調整を行っている状態を示す回路図である。図7に示すように、高感度直流電流クランプメータ24を次の測定箇所である直流電源供給回路15bの分岐回路17bの分岐点の手前の電線に移動させ、強制接地装置23の強制接地スイッチ27をオフにする。この状態で、高感度直流電流クランプメータ24のゼロ点調整を行う。 FIG. 7 is a circuit diagram showing a state in which the high-sensitivity DC current clamp meter is moved to the electric wire in front of the branch point of the DC power supply circuit to adjust the zero point in the state of FIG. As shown in FIG. 7, the high-sensitivity DC current clamp meter 24 is moved to the electric wire in front of the branch point of the branch circuit 17b of the DC power supply circuit 15b, which is the next measurement point, and the forced grounding switch 27 of the forced grounding device 23 is moved. Turn off. In this state, the zero point of the high-sensitivity DC current clamp meter 24 is adjusted.

そして、図7の状態で、高感度直流電流クランプメータ24のゼロ点調整を行った後に、強制接地装置23の強制接地スイッチ27をオンにして、直流電源装置11から直流の探査電流を直流電源供給回路15bに供給する。 Then, in the state of FIG. 7, after adjusting the zero point of the high-sensitivity DC current clamp meter 24, the forced grounding switch 27 of the forced grounding device 23 is turned on, and the DC exploration current from the DC power supply device 11 is supplied to the DC power supply. It is supplied to the supply circuit 15b.

図8は、図7の状態で高感度直流電流クランプメータのゼロ点調整を行った後に強制接地装置の強制接地スイッチをオンして探査電流を供給している状態を示す回路図である。図8に示すように、強制接地装置23の強制接地スイッチ27をオンすると、図6の場合と同じように、直流電源装置11の正極から直流電源盤13の開閉器14bp、地絡故障点F、強制接地装置23の強制接地スイッチ27、強制接地装置23の電流制限回路31及び保護抵抗33、健全極の作業用端子25n、直流電源装置11の負極に至る回路が形成され直流の探査電流が流れる。探査電流は直流であることから直流電源供給回路15bの電線の対地静電容量Cbpには流れない。 FIG. 8 is a circuit diagram showing a state in which the forced grounding switch of the forced grounding device is turned on and the exploration current is supplied after the zero point adjustment of the high-sensitivity DC current clamp meter is performed in the state of FIG. As shown in FIG. 8, when the forced grounding switch 27 of the forced grounding device 23 is turned on, as in the case of FIG. A circuit is formed to reach the forced grounding switch 27 of the forced grounding device 23, the current limiting circuit 31 and the protection resistor 33 of the forced grounding device 23, the working terminal 25n of the sound pole, and the negative electrode of the DC power supply device 11, and the DC exploration current is generated. It flows. Since the exploration current is direct current, it does not flow in the ground capacitance Cbp of the electric wire of the direct current power supply circuit 15b.

この状態で、高感度直流電流クランプメータ24は、探査電流検出スイッチを操作にして、クランプした直流電源供給回路15bの電線に流れる直流の探査電流を検出する。高感度直流電流クランプメータ24をクランプした箇所は、直流電源供給回路15bの分岐回路17bの分岐点の手前であり地絡故障点Fを通りすぎた箇所であるので、図8の状態では、高感度直流電流クランプメータ24は探査電流を検出しない。このことから、直流母線12の近傍の電線の下流に地絡故障点Fがあり、直流電源供給回路15bの分岐回路17bの分岐点の手前の電線の下流には地絡故障点Fがないことが分かる。従って、この間に地絡故障点Fがあると判定できる。 In this state, the high-sensitivity DC current clamp meter 24 operates the exploration current detection switch to detect the DC exploration current flowing through the electric wire of the clamped DC power supply circuit 15b. The location where the high-sensitivity DC current clamp meter 24 is clamped is before the branch point of the branch circuit 17b of the DC power supply circuit 15b and has passed the ground fault failure point F. Sensitivity DC current clamp meter 24 does not detect exploration current. From this, there is a ground fault point F downstream of the electric wire near the DC bus 12, and there is no ground fault point F downstream of the electric wire before the branch point of the branch circuit 17b of the DC power supply circuit 15b. I understand. Therefore, it can be determined that there is a ground fault point F during this period.

図9は、地絡電流Ifと地絡抵抗Rfとのグラフである。図9では、直流電源装置11の直流電圧Eが110Vであり、探査電流調整部26の制限抵抗30が100kΩ、探査電流調整部26の電流制限回路31の制限電流が1.0mA及び保護抵抗33が33kΩである場合を示している。 FIG. 9 is a graph of the ground fault current If and the ground fault resistance Rf. In FIG. 9, the DC voltage E of the DC power supply device 11 is 110 V, the limiting resistance 30 of the exploration current adjusting unit 26 is 100 kΩ, the limiting current of the current limiting circuit 31 of the exploration current adjusting unit 26 is 1.0 mA, and the protection resistance 33. Is 33 kΩ.

曲線C1aは直流電源供給回路15の正極に地絡故障点Fが発生した場合、曲線C1bは直流電源供給回路15の負極に地絡故障点Fが発生した場合に、探査電流調整部26の制限抵抗30を選択した際のそれぞれの地絡電流Ifと地絡抵抗Rfとの関係を示す曲線である。同様に、曲線C2aは直流電源供給回路15の正極に地絡故障点Fが発生した場合、曲線C2bは直流電源供給回路15の負極に地絡故障点Fが発生した場合に、探査電流調整部26の電流制限回路31を選択した際の地絡電流Ifと地絡抵抗Rfとの関係を示す曲線である。 The curve C1a is a limitation of the exploration current adjusting unit 26 when a ground fault failure point F occurs in the positive electrode of the DC power supply circuit 15, and the curve C1b shows a ground fault failure point F in the negative electrode of the DC power supply circuit 15. It is a curve which shows the relationship between each ground fault current If and ground fault resistance Rf when resistance 30 is selected. Similarly, the curve C2a shows a ground fault failure point F in the positive electrode of the DC power supply circuit 15, and the curve C2b shows a ground fault failure point F in the negative electrode of the DC power supply circuit 15. It is a curve which shows the relationship between the ground fault current If and the ground fault resistance Rf when the current limiting circuit 31 of 26 is selected.

以下の説明では、直流電源供給回路15の正極に地絡故障点Fが発生した場合の曲線C1a、C2aの場合について説明する。探査電流調整部26の制限抵抗30を選択した場合には、曲線C1aに示すように、地絡抵抗Rfが0のときは地絡電流Ifは1.1mAである。これは、前述の(1)式のEに110V、Rf=0、制限抵抗=100kΩを代入して求められる。地絡抵抗Rfが150kΩのときは地絡電流Ifは0.44mAとなり、地絡抵抗Rfが大きくなればなるほど地絡電流Ifは小さくなる。 In the following description, the case of the curves C1a and C2a when the ground fault point F occurs in the positive electrode of the DC power supply circuit 15 will be described. When the limiting resistance 30 of the exploration current adjusting unit 26 is selected, as shown in the curve C1a, when the ground fault resistance Rf is 0, the ground fault current If is 1.1 mA. This is obtained by substituting 110V, Rf = 0, and limiting resistance = 100kΩ for E in the above equation (1). When the ground fault resistance Rf is 150 kΩ, the ground fault current If is 0.44 mA, and the larger the ground fault resistance Rf, the smaller the ground fault current If.

一方、探査電流調整部26の電流制限回路31を選択した場合には、曲線C2aに示すように、地絡抵抗Rfが0のときは地絡電流Ifは1.0mAである。これは、電流制限回路31により地絡電流Ifが制限電流1.0mAに制限されるからである。ここで、電流制限回路31には直列に保護抵抗33が接続されていることから、地絡抵抗Rfが77kΩより大きくなると地絡電流Ifは制限電流1.0mAより小さくなる。 On the other hand, when the current limiting circuit 31 of the exploration current adjusting unit 26 is selected, the ground fault current If is 1.0 mA when the ground fault resistance Rf is 0, as shown in the curve C2a. This is because the ground fault current If is limited to the limiting current of 1.0 mA by the current limiting circuit 31. Here, since the protection resistor 33 is connected in series to the current limiting circuit 31, when the ground fault resistance Rf becomes larger than 77 kΩ, the ground fault current If becomes smaller than the limit current 1.0 mA.

例えば、地絡抵抗Rfが50kΩであるとすると、前述の(1)式のEに110V、Rf=50、制限抵抗=33kΩを代入すると、地絡電流Ifは1.325mAとなるが、電流制限回路31により地絡電流Ifは制限電流1.0mAに制限される。地絡抵抗Rfが100kΩであるとすると、前述の(1)式のEに110V、Rf=100、制限抵抗=33kΩを代入すると、地絡電流Ifは0.827mAとなり、電流制限回路31の制限電流1.0mAより小さいので、地絡電流Ifは0.827mAとなる。 For example, assuming that the ground fault resistance Rf is 50 kΩ, if 110 V, Rf = 50 and the limiting resistance = 33 kΩ are substituted for E in the above equation (1), the ground fault current If is 1.325 mA, but the current limit is reached. The ground fault current If is limited by the circuit 31 to a limiting current of 1.0 mA. Assuming that the ground fault resistance Rf is 100 kΩ, if 110 V, Rf = 100, and the limiting resistance = 33 kΩ are substituted for E in the above equation (1), the ground fault current If becomes 0.827 mA, which is the limitation of the current limiting circuit 31. Since the current is smaller than 1.0 mA, the ground fault current If is 0.827 mA.

このように、探査電流調整部26の制限抵抗30を選択した場合には、地絡抵抗Rfが大きくなればなるほど地絡電流Ifは小さくなるので、直流電源供給回路15の地絡故障点Fを探査する際には、探査電流調整部26の電流制限回路31を選択して地絡探査を行う。なお、探査電流調整部26の電流制限回路31を選択した際には、地絡抵抗Rfが0~77kΩの領域では地絡電流Ifが制限電流1.0mAに制限されるので、地絡電流Ifから地絡抵抗Rfを知ることができない。そこで、直流電源供給回路15の地絡故障点Fの探査に先立ち、探査電流調整部26の選択スイッチ32で制限抵抗30を選択し、強制接地装置23の電流計28の電流(地絡電流)を読み取り、電流の変動や大きさを確認することで故障点の様相を判別するとともに、前述したように目盛り表記部29を参照して地絡抵抗を推定する。 In this way, when the limiting resistance 30 of the exploration current adjusting unit 26 is selected, the ground fault current If becomes smaller as the ground fault resistance Rf becomes larger, so that the ground fault failure point F of the DC power supply circuit 15 is set. When exploring, the current limiting circuit 31 of the exploration current adjusting unit 26 is selected to perform ground fault exploration. When the current limiting circuit 31 of the exploration current adjusting unit 26 is selected, the ground fault current If is limited to the limiting current of 1.0 mA in the region where the ground fault resistance Rf is 0 to 77 kΩ, so that the ground fault current If. The ground fault resistance Rf cannot be known from. Therefore, prior to the search for the ground fault point F of the DC power supply circuit 15, the limiting resistor 30 is selected by the selection switch 32 of the search current adjustment unit 26, and the current (ground fault current) of the ammeter 28 of the forced grounding device 23. By reading the above and confirming the fluctuation and magnitude of the current, the aspect of the failure point is discriminated, and as described above, the ground fault resistance is estimated with reference to the scale notation unit 29.

本発明の第1実施形態によれば、直流電源装置11から供給される直流の探査電流の大きさを調整して出力する強制接地装置23の探査電流調整部26は、直流電源装置11から供給される直流の探査電流の大きさをシーケンス回路16が誤動作しない程度の大きさに制限する制限抵抗30と、探査電流の大きさが予め定めた一定値になるように調整する電流制限回路31を有するので、地絡電流の変動や大きさなど故障点の様相を判別するときは探査電流調整部26の制限抵抗30を選択でき、直流電源供給回路15の地絡故障点Fを探査するときは探査電流調整部26の電流制限回路31を選択できる。 According to the first embodiment of the present invention, the exploration current adjusting unit 26 of the forced grounding device 23 that adjusts and outputs the magnitude of the exploration current of the DC supplied from the DC power supply device 11 is supplied from the DC power supply device 11. A limiting resistor 30 that limits the magnitude of the DC exploration current to the extent that the sequence circuit 16 does not malfunction, and a current limiting circuit 31 that adjusts the magnitude of the exploration current to a predetermined constant value. Therefore, the limiting resistance 30 of the exploration current adjusting unit 26 can be selected when determining the aspect of the failure point such as the fluctuation and magnitude of the ground fault current, and when searching for the ground fault point F of the DC power supply circuit 15. The current limiting circuit 31 of the exploration current adjusting unit 26 can be selected.

探査電流調整部26の制限抵抗30を選択したとき、地絡電流を計測する電流計28の近傍に地絡電流に対応する地絡抵抗を表記した目盛り表記部29を備えているので、電流計28で測定された地絡電流から容易に地絡抵抗を推定できる。探査電流調整部26の電流制限回路31を選択したとき、探査電流調整部26の電流制限回路31から大きさが予め定めた一定値の探査電流を供給できるので、高感度直流電流クランプメータ24により探査電流の検出を容易に行える。すなわち、高感度直流電流クランプメータ24を用いてゼロ点調整を行いながら探査電流を検出していくので、安全にしかも高感度に地絡故障点を特定することができる。 When the limiting resistance 30 of the exploration current adjusting unit 26 is selected, the ammeter is provided with a scale notation unit 29 indicating the ground fault resistance corresponding to the ground fault current in the vicinity of the ammeter 28 for measuring the ground fault current. The ground fault resistance can be easily estimated from the ground fault current measured in No. 28. When the current limiting circuit 31 of the exploration current adjusting unit 26 is selected, the exploration current of a predetermined value can be supplied from the current limiting circuit 31 of the exploration current adjusting unit 26. The exploration current can be easily detected. That is, since the exploration current is detected while adjusting the zero point using the high-sensitivity DC current clamp meter 24, it is possible to safely and highly sensitively identify the ground fault point.

次に、本発明の第2実施形態を説明する。図10は、本発明の第2実施形態に係る地絡故障探査装置を構成する強制接地装置及び遠隔操作器の構成図であり、図10(a)は強制接地装置の構成図、図10(b)は遠隔操作器の構成図である。この第2の実施形態は、第1実施形態の地絡故障探査装置に対し、強制接地装置23を遠隔操作する遠隔操作器37を設けたものである。遠隔操作器37は高感度直流電流クランプメータ24とともに持ち運ばれる。図1と同一要素には同一符号を付し重複する説明は省略する。 Next, a second embodiment of the present invention will be described. FIG. 10 is a block diagram of a forced grounding device and a remote controller constituting the ground fault search device according to the second embodiment of the present invention, and FIG. 10A is a block diagram of the forced grounding device, FIG. 10 (a). b) is a block diagram of the remote controller. In this second embodiment, the ground fault search device of the first embodiment is provided with a remote controller 37 for remotely controlling the forced grounding device 23. The remote controller 37 is carried with the high-sensitivity DC current clamp meter 24. The same elements as those in FIG. 1 are designated by the same reference numerals, and duplicate description will be omitted.

図10(a)において、図1に示した強制接地装置23に無線通信を行う通信部36Aが追加して設けられ、また、図10(b)において、遠隔操作器37に無線通信を行う通信部36Bが設けられている。強制接地装置23の通信部36Aと遠隔操作器37の通信部36Bとで相互にデータの送受信を行う。 In FIG. 10A, a communication unit 36A for wireless communication is additionally provided in the forced grounding device 23 shown in FIG. 1, and in FIG. 10B, communication for wireless communication is performed with the remote controller 37. A portion 36B is provided. The communication unit 36A of the forced grounding device 23 and the communication unit 36B of the remote controller 37 mutually transmit and receive data.

図10(b)に示すように、遠隔操作器37は接地リモートスイッチ38と切替リモートスイッチ39と地絡電流表示器40とを有する。遠隔操作器37は高感度直流電流クランプメータ24とともに持ち運ばれ、高感度直流電流クランプメータ24で探査電流Ipfの読み取りをするための作業員により強制接地装置23が遠隔操作される。 As shown in FIG. 10B, the remote controller 37 has a grounding remote switch 38, a switching remote switch 39, and a ground fault current indicator 40. The remote controller 37 is carried together with the high-sensitivity DC current clamp meter 24, and the forced grounding device 23 is remotely controlled by a worker for reading the exploration current Ipf with the high-sensitivity DC current clamp meter 24.

接地リモートスイッチ38は、強制接地装置23の強制接地スイッチ27のオンオフを遠隔操作するスイッチであり、接地リモートスイッチ38のオンオフ信号は遠隔操作装置37の通信部36Bを経由して強制接地装置23の通信部36Aに伝達され、強制接地装置23の強制接地スイッチ27がオンオフ操作される。強制接地装置23の強制接地スイッチ27のオンオフ状態は強制接地装置23の通信部36Aを経由して遠隔操作装置37の通信部36Bに伝達され状態表示器41aに表示出力される。これにより、高感度直流電流クランプメータ24の作業員は遠隔操作装置37により強制接地装置23の強制接地スイッチ27のオンオフをその状態を確認しながら遠隔操作し、強制接地装置23の強制接地及びその解除を行う。 The grounding remote switch 38 is a switch that remotely controls the on / off of the forced grounding switch 27 of the forced grounding device 23, and the on / off signal of the grounding remote switch 38 is the on / off signal of the forced grounding device 23 via the communication unit 36B of the remote control device 37. It is transmitted to the communication unit 36A, and the forced grounding switch 27 of the forced grounding device 23 is turned on and off. The on / off state of the forced grounding switch 27 of the forced grounding device 23 is transmitted to the communication unit 36B of the remote control device 37 via the communication unit 36A of the forced grounding device 23, and is displayed and output to the status indicator 41a. As a result, the worker of the high-sensitivity DC current clamp meter 24 remotely controls the on / off of the forced grounding switch 27 of the forced grounding device 23 by the remote control device 37 while checking the state, and the forced grounding of the forced grounding device 23 and the forced grounding thereof. Release it.

切替リモートスイッチ39は、強制接地装置23の切替スイッチ32のオンオフを遠隔操作するスイッチであり、切替リモートスイッチ39のオンオフ信号は遠隔操作装置37の通信部36Bを経由して強制接地装置23の通信部36Aに伝達され、強制接地装置23の切替スイッチ32がオンオフ操作される。強制接地装置23の切替スイッチ32のオンオフ状態は強制接地装置23の通信部36Aを経由して遠隔操作装置37の通信部36Bに伝達され状態表示器41bに表示出力される。これにより、高感度直流電流クランプメータ24の作業員は遠隔操作装置37により強制接地装置23の切替スイッチ32のオンオフをその状態を確認しながら遠隔操作し、制限抵抗30と電流制限回路31との切替を遠隔操作で行う。 The changeover remote switch 39 is a switch for remotely controlling the on / off of the changeover switch 32 of the forced grounding device 23, and the on / off signal of the changeover remote switch 39 is the communication of the forced grounding device 23 via the communication unit 36B of the remote control device 37. It is transmitted to the unit 36A, and the changeover switch 32 of the forced grounding device 23 is turned on and off. The on / off state of the changeover switch 32 of the forced grounding device 23 is transmitted to the communication unit 36B of the remote control device 37 via the communication unit 36A of the forced grounding device 23, and is displayed and output to the status indicator 41b. As a result, the worker of the high-sensitivity DC current clamp meter 24 remotely controls the on / off of the changeover switch 32 of the forced grounding device 23 by the remote control device 37 while checking the state, and the limiting resistance 30 and the current limiting circuit 31 are combined. Switching is performed by remote control.

地絡電流表示器40は、強制接地装置23の電流計28で測定された地絡電流を表示するもので強制接地装置23の電流計28と同等の機能を持つ。強制接地装置23の電流計28で測定された地絡電流は、強制接地装置23の通信部36Aを経由して遠隔操作装置37の通信部36Bに伝達され地絡電流表示器40に表示出力される。地絡電流表示器40は、強制接地装置23の電流計28で測定された地絡電流及び地絡抵抗値をアナログ表示してもよいしディジタル表示をしてもよい。 The ground fault current indicator 40 displays the ground fault current measured by the ammeter 28 of the forced grounding device 23, and has the same function as the ammeter 28 of the forced grounding device 23. The ground fault current measured by the ammeter 28 of the forced grounding device 23 is transmitted to the communication unit 36B of the remote control device 37 via the communication unit 36A of the forced grounding device 23, and is displayed and output to the ground fault current indicator 40. To. The ground fault current indicator 40 may display the ground fault current and the ground fault resistance value measured by the ammeter 28 of the forced grounding device 23 in analog or digital display.

本発明の第2実施形態によれば、第1実施形態の効果に加え、高感度直流電流クランプメータ24とともに持ち運ばれる遠隔操作器37にて、強制接地装置23の強制接地スイッチ27をオンにして強制接地したり、強制接地装置23の切替スイッチ32のオンオフにより探査電流調整部26の制限抵抗30と電流制限器31との切り替えを遠隔操作で行えるので、強制接地装置23を操作する作業員が不要となる。また、遠隔操作器37にて、強制接地装置23の電流計28で検出した地絡電流を読み取ることができるので、地絡電流と探査電流との突き合わせが容易に行え、複数の箇所で地絡故障が発生していることを容易に判定できる。すなわち、高感度直流電流クランプメータ24で検出した探査電流と強制接地装置23の電流計28で検出した地絡電流とが等しいときは地絡故障点は1箇所であるが、地絡電流が探査電流より大きいときは複数箇所で地絡していることが分かる。 According to the second embodiment of the present invention, in addition to the effect of the first embodiment, the forced grounding switch 27 of the forced grounding device 23 is turned on by the remote controller 37 carried together with the high-sensitivity DC current clamp meter 24. The worker who operates the forced grounding device 23 can remotely switch between the limiting resistance 30 of the exploration current adjusting unit 26 and the current limiting device 31 by turning the changeover switch 32 of the forced grounding device 23 on and off. Is unnecessary. Further, since the remote controller 37 can read the ground fault current detected by the ammeter 28 of the forced grounding device 23, the ground fault current and the exploration current can be easily matched with each other, and the ground fault can be easily matched at a plurality of points. It can be easily determined that a failure has occurred. That is, when the exploration current detected by the high-sensitivity DC current clamp meter 24 and the ground fault current detected by the ammeter 28 of the forced grounding device 23 are equal, there is one ground fault failure point, but the ground fault current is searched. When it is larger than the current, it can be seen that there are ground faults at multiple points.

次に、本発明の第3実施形態を説明する。図11は、本発明の第3実施形態に係る地絡故障探査装置を構成するクランプメータアダプタ42の構成図である。本発明の第3実施形態は、第2実施形態に対しクランプメータアダプタ42を追加して設けたものであり、高感度直流電流クランプメータ24を操作する作業員により持ち運ばれ、高感度直流電流クランプメータ24に接続して使用される。 Next, a third embodiment of the present invention will be described. FIG. 11 is a configuration diagram of a clamp meter adapter 42 constituting the ground fault search device according to the third embodiment of the present invention. The third embodiment of the present invention is provided by adding the clamp meter adapter 42 to the second embodiment, and is carried by a worker who operates the high-sensitivity direct current clamp meter 24, and has a high-sensitivity direct current. It is used by connecting to the clamp meter 24.

クランプメータアダプタ42は、高感度直流電流クランプメータ24で検出された探査電流の電流値を表示出力するものであり、探査電流が変動する場合であっても安定して探査電流を読み取れるように電流値を表示出力するものである。これは、前述したように高感度直流電流クランプメータ24には測定した電流を表示する電流表示を有しているが、数Hz程度の長周期の電圧変動が直流電源供給回路15に重畳して地絡電流が脈動した場合には、高感度直流電流クランプメータ24で検出される探査電流も変動し、探査電流を安定して読み取ることが難しくなるからである。そこで、クランプメータアダプタ42は、高感度直流電流クランプメータ24で検出された所定期間の探査電流の移動平均電流値を演算する移動平均演算部43を有している。 The clamp meter adapter 42 displays and outputs the current value of the exploration current detected by the high-sensitivity DC current clamp meter 24, and is a current so that the exploration current can be read stably even when the exploration current fluctuates. The value is displayed and output. As described above, the high-sensitivity DC current clamp meter 24 has a current display that displays the measured current, but a long-period voltage fluctuation of about several Hz is superimposed on the DC power supply circuit 15. This is because when the ground fault current pulsates, the exploration current detected by the high-sensitivity DC current clamp meter 24 also fluctuates, making it difficult to read the exploration current in a stable manner. Therefore, the clamp meter adapter 42 has a moving average calculation unit 43 that calculates a moving average current value of the exploration current detected by the high-sensitivity DC current clamp meter 24 for a predetermined period.

図11において、高感度直流電流クランプメータ24で検出された探査電流は入力処理部44に入力され、入力処理部44で移動平均演算部43及び表示処理演算部45で処理できる信号に変換されて記憶部46に記憶される。 In FIG. 11, the exploration current detected by the high-sensitivity DC current clamp meter 24 is input to the input processing unit 44, and is converted into a signal that can be processed by the moving average calculation unit 43 and the display processing calculation unit 45 by the input processing unit 44. It is stored in the storage unit 46.

移動平均演算部43は、移動平均演算選択スイッチ47により移動平均演算のセットまたはリセットが選択される。移動平均演算選択スイッチ47により移動平均演算のセットが選択されたときは、移動平均演算部43は、所定期間設定部48に設定された所定期間の探査電流の移動平均電流値を演算する。所定期間設定部48には入力装置49から所定期間が設定される。所定期間は、例えば1s、10s、60sなどであり、長周期の電圧変動に合わせて設定される。移動平均演算部43で演算された探査電流の移動平均値は、表示処理演算部45を介して探査電流表示器50に出力される。表示処理演算部45は探査電流の移動平均値をアナログ表示またはディジタル表示に変換して探査電流表示器50に出力する。 In the moving average calculation unit 43, the set or reset of the moving average calculation is selected by the moving average calculation selection switch 47. When the set of moving average calculation is selected by the moving average calculation selection switch 47, the moving average calculation unit 43 calculates the moving average current value of the exploration current for the predetermined period set in the predetermined period setting unit 48. A predetermined period is set in the predetermined period setting unit 48 from the input device 49. The predetermined period is, for example, 1s, 10s, 60s, etc., and is set according to the voltage fluctuation in a long period. The moving average value of the exploration current calculated by the moving average calculation unit 43 is output to the exploration current display 50 via the display processing calculation unit 45. The display processing calculation unit 45 converts the moving average value of the exploration current into an analog display or a digital display and outputs it to the exploration current display 50.

一方、移動平均演算選択スイッチ47により移動平均演算のリセットが選択されたときは、表示処理演算部45は記憶部46に記憶された探査電流を読み込み、探査電流の値をアナログ表示またはディジタル表示に変換して探査電流表示器50に出力する。 On the other hand, when the reset of the moving average calculation is selected by the moving average calculation selection switch 47, the display processing calculation unit 45 reads the exploration current stored in the storage unit 46 and displays the value of the exploration current in analog display or digital display. It is converted and output to the exploration current indicator 50.

発明の第3実施形態によれば、第1実施形態及び第2実施形態の効果に加え、高感度直流電流クランプメータ24に接続されるクランプメータアダプタ42にて、所定期間の探査電流の移動平均演算のセットまたはリセットの選択を可能としているので、数Hz程度の長周期の電圧変動が直流電源供給回路15に重畳し地絡電流が脈動した場合であっても、探査電流の移動平均値を探査電流表示器50に表示させることによって、容易に安定して探査電流を読み取れる。 According to the third embodiment of the present invention, in addition to the effects of the first embodiment and the second embodiment, the moving average of the exploration current for a predetermined period by the clamp meter adapter 42 connected to the high-sensitivity DC current clamp meter 24. Since it is possible to select the set or reset of the calculation, even if a long-period voltage fluctuation of about several Hz is superimposed on the DC power supply circuit 15 and the ground fault current pulsates, the moving average value of the exploration current can be obtained. By displaying the exploration current on the exploration current indicator 50, the exploration current can be easily and stably read.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and variations thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

11…直流電源装置
12…直流母線
13…直流電源盤
14…開閉器
15…直流電源供給回路
16…シーケンス回路
17…分岐回路
18…分圧回路
19…直流地絡継電器
20…低周波交流電源装置
21…交流電流クランプメータ
22…フリッカ装置
23…強制接地装置
24…高感度直流電流クランプメータ
25…作業用端子
26…探査電流調整部
27…強制接地スイッチ
28…電流計
29…目盛り表記部
29A…地絡電流目盛り部
29B…地絡抵抗目盛り部
30…制限抵抗
31…電流制限回路
32…切替スイッチ
33…保護抵抗
34…定電流ダイオード
35…ダイオードブリッジ回路
36…通信部
37…遠隔操作器
38…接地リモートスイッチ
39…切替リモートスイッチ
40…地絡電流表示器
41…状態表示器
42…クランプアダプタ
43…移動平均演算部
44…入力処理部
45…表示処理演算部
46…記憶部
47…移動平均演算選択スイッチ
48…所定期間設定部
49…入力装置
50…探査電流表示器
11 ... DC power supply device 12 ... DC bus 13 ... DC power supply panel 14 ... Switch 15 ... DC power supply circuit 16 ... Sequence circuit 17 ... Branch circuit 18 ... Voltage division circuit 19 ... DC ground fault relay 20 ... Low frequency AC power supply device 21 ... AC current clamp meter 22 ... Flicker device 23 ... Forced grounding device 24 ... High-sensitivity DC current clamp meter 25 ... Working terminal 26 ... Exploration current adjustment unit 27 ... Forced grounding switch 28 ... Current meter 29 ... Scale notation unit 29A ... Ground fault current scale 29B ... Ground fault resistance scale 30 ... Limiting resistance 31 ... Current limiting circuit 32 ... Changeover switch 33 ... Protection resistance 34 ... Constant current diode 35 ... Diode bridge circuit 36 ... Communication unit 37 ... Remote controller 38 ... Grounding remote switch 39 ... Switching remote switch 40 ... Ground fault current indicator 41 ... Status indicator 42 ... Clamp adapter 43 ... Moving average calculation unit 44 ... Input processing unit 45 ... Display processing calculation unit 46 ... Storage unit 47 ... Moving average calculation Selection switch 48 ... Predetermined period setting unit 49 ... Input device 50 ... Exploration current indicator

Claims (5)

電気所の電気機器を操作するシーケンス回路に直流電源装置から直流電源を供給する複数の直流電源供給回路のいずれかに地絡故障が発生したとき、前記直流電源供給回路の電線にクランプされゼロ点調整を行ってから前記直流電源装置から供給される直流の探査電流を高感度直流電流クランプメータにより検出して前記地絡故障点を探査する際に、前記地絡故障を検出する直流地絡継電器が接続された前記直流電源供給回路の直流母線の正極と負極との間の分圧回路の分圧中点を非接地とした状態で用いられる強制接地装置であり、
前記地絡故障が発生した前記直流電源供給回路の前記直流母線への接続点における作業用の正極及び負極の作業用端子のうち健全極の作業用端子に接続され、前記直流電源装置から供給される直流の探査電流の大きさを調整して出力する探査電流調整部と、
前記探査電流調整部に直列に接続され前記高感度直流電流クランプメータのゼロ点調整のときはオフして前記直流電源装置から供給される直流の探査電流の大きさを前記シーケンス回路が誤動作しない程度の大きさに制限する制限抵抗を非接地とし、前記高感度直流電流クランプメータが前記地絡故障点を探査するときはオンして前記探査電流調整部を接地し前記直流電源装置から直流の探査電流を前記直流電源供給回路に供給するための強制接地スイッチと、
前記強制接地スイッチに直列接続され前記強制接地スイッチに流れる電流を測定する電流計を備え、
前記探査電流調整部は、前記制限抵抗と、前記制限抵抗に並列に接続され前記探査電流の大きさが予め定めた一定値になるように調整する電流制限回路と、前記制限抵抗と前記電流制限回路とを切り替える切替スイッチとを有したことを特徴とする強制接地装置。
When a ground fault occurs in any of the multiple DC power supply circuits that supply DC power from the DC power supply to the sequence circuit that operates the electrical equipment of the electric station, it is clamped to the electric wire of the DC power supply circuit and the zero point. A DC ground fault relay that detects the ground fault when searching for the ground fault point by detecting the DC exploration current supplied from the DC power supply device with a high-sensitivity DC current clamp meter after making adjustments. It is a forced grounding device used in a state where the midpoint of the voltage dividing circuit between the positive and negative sides of the DC bus of the DC power supply circuit to which is connected is not grounded.
It is connected to the work terminal of the sound electrode among the work terminals of the positive electrode and the negative electrode for work at the connection point of the DC power supply circuit to the DC bus where the ground fault has occurred, and is supplied from the DC power supply device. The exploration current adjustment unit that adjusts and outputs the magnitude of the DC exploration current,
When the zero point adjustment of the high-sensitivity DC current clamp meter is connected in series with the exploration current adjustment unit, it is turned off to the extent that the sequence circuit does not malfunction the magnitude of the DC exploration current supplied from the DC power supply device. The limiting resistance that limits the size of the current is not grounded, and when the high-sensitivity DC current clamp meter searches for the ground fault point, it is turned on to ground the search current adjustment unit and search for DC from the DC power supply. A forced grounding switch for supplying current to the DC power supply circuit ,
It is equipped with an ammeter that is connected in series to the forced ground switch and measures the current flowing through the forced ground switch.
The exploration current adjusting unit includes the limiting resistance , a current limiting circuit connected in parallel with the limiting resistance and adjusting the magnitude of the exploration current to a predetermined constant value, and the limiting resistance and the current limiting. A forced grounding device characterized by having a changeover switch for switching between circuits.
前記電流計の近傍に地絡電流に対応する地絡抵抗を表記した目盛り表記部を備えたことを特徴とする請求項1記載の強制接地装置。 The forced grounding device according to claim 1, further comprising a scale notation portion indicating the ground fault resistance corresponding to the ground fault current in the vicinity of the ammeter. 請求項1または請求項2に記載のいずれかの強制接地装置と、
前記直流電源供給回路の電線にクランプされゼロ点調整を行ってから前記直流電源装置から供給される直流の探査電流を検出する高感度直流電流クランプメータとを備えたことを特徴とする地絡故障探査装置。
With any of the forced grounding devices according to claim 1 or 2.
A ground fault failure characterized by being equipped with a high-sensitivity DC current clamp meter that detects the DC exploration current supplied from the DC power supply device after being clamped to the electric wire of the DC power supply circuit and adjusting the zero point. Exploration equipment.
前記強制接地装置の前記強制接地スイッチのオンオフを遠隔操作する接地リモートスイッチと、前記強制接地装置における前記探査電流調整部の前記切替スイッチの切替操作を遠隔操作する切替リモートスイッチと、前記強制接地装置の前記電流計で測定された地絡電流を前記強制接地装置の前記電流計と同等に表示する地絡電流表示器とを有し、前記高感度直流電流クランプメータとともに持ち運ばれる遠隔操作器を備えたことを特徴とする請求項3に記載の地絡故障探査装置。 A grounding remote switch that remotely controls the on / off of the forced grounding switch of the forced grounding device, a switching remote switch that remotely controls the switching operation of the changeover switch of the search current adjusting unit in the forced grounding device, and the forced grounding device. A remote controller that has a ground fault current indicator that displays the ground fault current measured by the current meter in the same manner as the current meter of the forced grounding device, and is carried together with the high-sensitivity DC current clamp meter. The ground fault search device according to claim 3, wherein the device is provided. 前記高感度直流電流クランプメータに接続され前記高感度直流電流クランプメータで検出された所定期間の探査電流の移動平均電流値を演算する移動平均演算部と、前記移動平均演算部で演算する移動平均電流値の所定期間を設定する所定期間設定部と、前記移動平均演算部の演算のセットまたはリセットを選択する移動平均演算選択スイッチと、前記移動平均演算部で演算された移動平均電流値または前記高感度直流電流クランプメータで検出された電流値を表示出力する探査電流表示器とを有したクランプメータアダプタを備えたことを特徴とする請求項3または請求項4に記載の地絡故障探査装置。 A moving average calculation unit that is connected to the high-sensitivity DC current clamp meter and calculates a moving average current value of the exploration current for a predetermined period detected by the high-sensitivity DC current clamp meter, and a moving average calculated by the moving average calculation unit. A predetermined period setting unit for setting a predetermined period of the current value, a moving average calculation selection switch for selecting a set or reset of the calculation of the moving average calculation unit, and a moving average current value calculated by the moving average calculation unit or the above. The ground fault search device according to claim 3 or 4, further comprising a clamp meter adapter including a search current indicator that displays and outputs a current value detected by a high-sensitivity DC current clamp meter. ..
JP2017185544A 2017-09-27 2017-09-27 Forced grounding device and ground fault search device Active JP7013770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017185544A JP7013770B2 (en) 2017-09-27 2017-09-27 Forced grounding device and ground fault search device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017185544A JP7013770B2 (en) 2017-09-27 2017-09-27 Forced grounding device and ground fault search device

Publications (2)

Publication Number Publication Date
JP2019060726A JP2019060726A (en) 2019-04-18
JP7013770B2 true JP7013770B2 (en) 2022-02-01

Family

ID=66177214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017185544A Active JP7013770B2 (en) 2017-09-27 2017-09-27 Forced grounding device and ground fault search device

Country Status (1)

Country Link
JP (1) JP7013770B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116520188A (en) * 2023-02-14 2023-08-01 阿坝水电开发有限公司 Auxiliary searching method for generator stator ground fault

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057319A (en) 2005-08-23 2007-03-08 Tokyo Electric Power Co Inc:The Ground fault position detection system
JP2008216040A (en) 2007-03-05 2008-09-18 Tokyo Electric Power Co Inc:The Voltage application type failure probe system and method
JP2014196911A (en) 2013-03-29 2014-10-16 東日本旅客鉄道株式会社 Fault point orientation system and method for dc electric railroad feeding circuit
JP2017017922A (en) 2015-07-03 2017-01-19 東芝プラントシステム株式会社 Dc power supply system, and dc ground fault point examination method
JP2018036103A (en) 2016-08-30 2018-03-08 東京電力ホールディングス株式会社 Forced grounding device, and ground fault survey device and method using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652754Y2 (en) * 1974-12-26 1981-12-09

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057319A (en) 2005-08-23 2007-03-08 Tokyo Electric Power Co Inc:The Ground fault position detection system
JP2008216040A (en) 2007-03-05 2008-09-18 Tokyo Electric Power Co Inc:The Voltage application type failure probe system and method
JP2014196911A (en) 2013-03-29 2014-10-16 東日本旅客鉄道株式会社 Fault point orientation system and method for dc electric railroad feeding circuit
JP2017017922A (en) 2015-07-03 2017-01-19 東芝プラントシステム株式会社 Dc power supply system, and dc ground fault point examination method
JP2018036103A (en) 2016-08-30 2018-03-08 東京電力ホールディングス株式会社 Forced grounding device, and ground fault survey device and method using the same

Also Published As

Publication number Publication date
JP2019060726A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
CN106415286B (en) System and method for impulse ground fault detection and localization
KR102050255B1 (en) Method and test device for testing wiring of transducers
JP5140012B2 (en) Electric leakage test device, electric leakage circuit breaker, circuit breaker, and electric leakage monitoring device provided with the same
US20150088438A1 (en) Ratio metric current measurement
US20120025840A1 (en) Appratus for measuring ground leakage current in an ungrounded direct current power system, and method for same
US9568535B2 (en) Methods for detecting an open current transformer
WO2018221619A1 (en) Electricity leakage detecting method
JP5743296B1 (en) Leakage location exploration method and apparatus
JP2007271610A (en) Method and apparatus for identifying ground-fault bank
CN103913660B (en) Large electric current, intelligent digital welding system assay calibration method
CN113614553B (en) Contact abnormality monitoring device and circuit breaker using the same
JP7013770B2 (en) Forced grounding device and ground fault search device
JP6932964B2 (en) DC power supply circuit disconnection discriminator and wiring discriminator
JP2006266814A (en) Alternating-current impedance measuring device and method
KR102109414B1 (en) Switchgear capable of detecting current transformer faults by variation in secondary current
JP2019109192A (en) Insulation monitoring device and insulation monitoring system
JP6969079B2 (en) Forced installation device, ground fault investigation device and method using it
JP4712594B2 (en) Method for determining erroneous connection of outlet with ground electrode and tester for determining erroneous connection of outlet with ground electrode
SE1650931A1 (en) System for analyzing high voltage circuit breakers
JP6897933B2 (en) High-voltage insulation monitoring device and high-voltage insulation monitoring method
JP2006267002A (en) Insulation deterioration position locating device and method thereof
US11965916B2 (en) Method and device for determining the resistive component of the leakage current impedance in the alternating current network
JP2018096804A (en) Insulation resistance measurement method of dc power supply circuit
JP5354568B2 (en) System identification device
JP5791347B2 (en) Resistance measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220103