JP2015059669A5 - - Google Patents

Download PDF

Info

Publication number
JP2015059669A5
JP2015059669A5 JP2013191695A JP2013191695A JP2015059669A5 JP 2015059669 A5 JP2015059669 A5 JP 2015059669A5 JP 2013191695 A JP2013191695 A JP 2013191695A JP 2013191695 A JP2013191695 A JP 2013191695A JP 2015059669 A5 JP2015059669 A5 JP 2015059669A5
Authority
JP
Japan
Prior art keywords
refrigerant
heat medium
plate
heat
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013191695A
Other languages
Japanese (ja)
Other versions
JP2015059669A (en
JP6160385B2 (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from JP2013191695A external-priority patent/JP6160385B2/en
Priority to JP2013191695A priority Critical patent/JP6160385B2/en
Priority to DE112014001028.6T priority patent/DE112014001028T5/en
Priority to CN201480010696.4A priority patent/CN105074375B/en
Priority to PCT/JP2014/000901 priority patent/WO2014132602A1/en
Priority to US14/770,717 priority patent/US10962307B2/en
Publication of JP2015059669A publication Critical patent/JP2015059669A/en
Publication of JP2015059669A5 publication Critical patent/JP2015059669A5/ja
Publication of JP6160385B2 publication Critical patent/JP6160385B2/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

上記目的を達成するため、請求項1に記載の発明では、冷凍サイクルの冷媒と熱媒体とを熱交換させる熱交換部(12)を備え、熱交換部(12)は、複数の板状部材(11)が互いに積層されて接合されることによって形成されており、複数の板状部材(11)同士の間には、冷媒が流れる複数の冷媒流路(121)、および熱媒体が流れる複数の熱媒体流路(122)が形成され、複数の冷媒流路(121)および複数の熱媒体流路(122)は、複数の板状部材(11)の積層方向に並んで配置されており、複数の冷媒流路(121)および複数の熱媒体流路(122)には、それぞれ、隣り合う板状部材(11)同士を接合し、かつ冷媒と熱媒体との間での熱交換を促進させるインナーフィン(301、302)が設けられており、冷媒流路(121)に設けられたインナーフィンは、部分的に切り起こされた切り起こし部(30a)が冷媒の流れ方向に多数形成されるとともに、冷媒の流れ方向に隣り合う切り起こし部(30a)同士が互いにオフセットされている冷媒側オフセットフィン(301)であり、熱媒体流路(122)に設けられたインナーフィンは、部分的に切り起こされた切り起こし部(30a)が熱媒体の流れ方向に多数形成されるとともに、熱媒体の流れ方向に隣り合う切り起こし部(30a)同士が互いにオフセットされている熱媒体側オフセットフィン(302)であり、冷媒流路(121)における板状部材(11)の積層方向の長さである冷媒流路高さは、冷媒側オフセットフィン(301)における板状部材(11)の積層方向の長さである冷媒側フィン高さFrhと等しくなっており、熱媒体流路(122)における板状部材(11)の積層方向の長さ
である熱媒体流路高さは、熱媒体側オフセットフィン(302)における板状部材(11)の積層方向の長さである熱媒体側フィン高さFwhと等しくなっており、冷媒側フィン高さFrおよび熱媒体側フィン高さFwhが、0.14<Frh/(Frh+Fwh)<0.49の関係を満たすように設定されていることを特徴とする。
In order to achieve the above object, according to the first aspect of the present invention, the heat exchange unit (12) for exchanging heat between the refrigerant of the refrigeration cycle and the heat medium is provided, and the heat exchange unit (12) includes a plurality of plate-like members. (11) are stacked and joined to each other, and a plurality of refrigerant flow paths (121) through which a refrigerant flows and a plurality of heat mediums flow between the plurality of plate-like members (11). The plurality of refrigerant channels (121) and the plurality of heat medium channels (122) are arranged side by side in the stacking direction of the plurality of plate-like members (11). The plurality of refrigerant flow paths (121) and the plurality of heat medium flow paths (122) respectively join adjacent plate-like members (11) and exchange heat between the refrigerant and the heat medium. Inner fins (301, 302) to promote are provided, The inner fin provided in the medium flow path (121) has a plurality of cut-and-raised portions (30a) partially cut and raised in the flow direction of the refrigerant, and cut-and-raised portions adjacent to the flow direction of the refrigerant ( 30a) are refrigerant side offset fins (301) which are offset from each other, and the inner fin provided in the heat medium flow path (122) has a cut and raised part (30a) partially cut and raised. The heat medium side offset fins (302) are formed in the flow direction of the heat medium, and the cut and raised portions (30a) adjacent to each other in the flow direction of the heat medium are offset from each other. The refrigerant channel height, which is the length in the stacking direction of the sheet-like member (11), is the length in the stacking direction of the plate-like member (11) in the refrigerant-side offset fin (301). The heat medium flow path height, which is equal to the refrigerant side fin height Frh and is the length in the stacking direction of the plate-like members (11) in the heat medium flow path (122), is the heat medium side offset fin (302). ) has become equal to the plate member (11) the heat medium side fin height Fwh the length in the stacking direction of the refrigerant-side fin height Fr h and the heat medium side fin height Fwh is 0.14 < It is set to satisfy the relationship of Frh / (Frh + Fwh) <0.49.

本実施形態によれば、冷媒側フィン高さFrおよび熱媒体側フィン高さFwhが、0.14<Frh/(Frh+Fwh)<0.49の関係を満たすように設定することで、後述の図5に示すように、冷媒および熱媒体の圧力損失を低減しつつ、冷媒と熱媒体との間の伝熱性能を向上させることができる。このため、熱交換性能を向上させることが可能となる。 According to the present embodiment, the refrigerant fin height Fr h and the heat medium side fin height FWH is, 0.14 <Frh / (Frh + Fwh) < the set that to meet the 0.49 relations, later As shown in FIG. 5, the heat transfer performance between the refrigerant and the heat medium can be improved while reducing the pressure loss of the refrigerant and the heat medium. For this reason, it becomes possible to improve heat exchange performance.

また、請求項4に記載の発明では、冷凍サイクルの冷媒と熱媒体とを熱交換させる熱交換部(12)を備え、熱交換部(12)は、複数の板状部材(11)が互いに積層されて接合されることによって形成されており、複数の板状部材(11)同士の間には、冷媒が流れる複数の冷媒流路(121)、および熱媒体が流れる複数の熱媒体流路(122)が形成され、複数の冷媒流路(121)および複数の熱媒体流路(122)は、複数の板状部材(11)の積層方向に並んで配置されており、複数の冷媒流路(121)および複数の熱媒体流路(122)には、それぞれ、隣り合う板状部材(11)同士を接合し、かつ冷媒と熱媒体との間での熱交換を促進させるインナーフィン(301、302)が設けられており、冷媒流路(121)に設けられたインナーフィンは、部分的に切り起こされた切り起こし部(30a)が冷媒の流れ方向に多数形成されるとともに、冷媒の流れ方向に隣り合う切り起こし部(30a)同士が互いにオフセットされている冷媒側オフセットフィン(301)であり、熱媒体流路(122)に設けられたインナーフィンは、部分的に切り起こされた切り起こし部(30a)が熱媒体の流れ方向に多数形成されるとともに、熱媒体の流れ方向に隣り合う切り起こし部(30a)同士が互いにオフセットされている熱媒体側オフセットフィン(302)であり、熱交換部(12)は、板状部材(11)の積層方向が重力方向と交差するように配置されており、熱交換部(12)は、冷媒流路(121)を流通する冷媒の流れをUターンさせるUターン部(11)を有しており、冷媒流路(121)における板状部材(11)の積層方向の長さである冷媒流路高さは、冷媒側オフセットフィン(301)における板状部材(11)の積層方向の長さである冷媒側フィン高さFrhと等しくなっており、熱媒体流路(122)における板状部材(11)の積層方向の長さである熱媒体流路高さは、熱媒体側オフセットフィン(302)における板状部材(11)の積層方向の長さである熱媒体側フィン高さFwhと等しくなっており、冷媒側フィン高さFrhおよび熱媒体側フィン高さFwhが、0.14<Frh/(Frh+Fwh)<0.49の関係を満たすように設定されていることを特徴とする。 Moreover, in invention of Claim 4, the heat exchange part (12) which heat-exchanges the refrigerant | coolant and heat medium of a refrigerating cycle is provided, and a several plate-shaped member (11) mutually has a heat exchange part (12). A plurality of refrigerant flow paths (121) through which a refrigerant flows and a plurality of heat medium flow paths through which a heat medium flows are formed between the plurality of plate-like members (11). (122) is formed, and the plurality of refrigerant flow paths (121) and the plurality of heat medium flow paths (122) are arranged side by side in the stacking direction of the plurality of plate-like members (11). Inner fins that join adjacent plate-like members (11) to each other and promote heat exchange between the refrigerant and the heat medium are respectively connected to the path (121) and the plurality of heat medium flow paths (122). 301, 302) and a refrigerant flow path (121). The provided inner fin has a number of cut and raised portions (30a) partially cut and raised in the refrigerant flow direction, and the cut and raised portions (30a) adjacent to each other in the refrigerant flow direction are offset from each other. The inner fins provided in the heat medium flow path (122) are refrigerant side offset fins (301), and a large number of partially raised parts (30a) are formed in the flow direction of the heat medium. And the heat medium side offset fins (302) in which the cut and raised parts (30a) adjacent to each other in the flow direction of the heat medium are offset from each other, and the heat exchange part (12) is formed of the plate-like member (11). The stacking direction is arranged so as to intersect with the direction of gravity, and the heat exchanging part (12) is a U-turn part that makes a U-turn the flow of the refrigerant flowing through the refrigerant flow path (121). 11 g) has a length in the stacking direction coolant channel height of the refrigerant channel (the plate-like member in 121) (11), the plate-like member in the refrigerant side offset fin (301) (11 ) Is equal to the refrigerant side fin height Frh which is the length in the stacking direction, and the heat medium flow path height which is the length in the stacking direction of the plate-like members (11) in the heat medium flow path (122) is The heat medium side fin height Frh is equal to the heat medium side fin height Fwh which is the length in the stacking direction of the plate-like member (11) in the heat medium side offset fin (302). Fwh is set to satisfy the relationship of 0.14 <Frh / (Frh + Fwh) <0.49 .

Claims (4)

冷凍サイクルの冷媒と熱媒体とを熱交換させる熱交換部(12)を備え、
前記熱交換部(12)は、複数の板状部材(11)が互いに積層されて接合されることによって形成されており、
前記複数の板状部材(11)同士の間には、前記冷媒が流れる複数の冷媒流路(121)、および前記熱媒体が流れる複数の熱媒体流路(122)が形成され、
前記複数の冷媒流路(121)および前記複数の熱媒体流路(122)は、前記複数の板状部材(11)の積層方向に並んで配置されており、
前記複数の冷媒流路(121)および前記複数の熱媒体流路(122)には、それぞれ、隣り合う前記板状部材(11)同士を接合し、かつ前記冷媒と前記熱媒体との間での熱交換を促進させるインナーフィン(301、302)が設けられており、
前記冷媒流路(121)に設けられた前記インナーフィンは、部分的に切り起こされた切り起こし部(30a)が前記冷媒の流れ方向に多数形成されるとともに、前記冷媒の流れ方向に隣り合う前記切り起こし部(30a)同士が互いにオフセットされている冷媒側オフセットフィン(301)であり、
前記熱媒体流路(122)に設けられた前記インナーフィンは、部分的に切り起こされた切り起こし部(30a)が前記熱媒体の流れ方向に多数形成されるとともに、前記熱媒体の流れ方向に隣り合う前記切り起こし部(30a)同士が互いにオフセットされている熱媒体側オフセットフィン(302)であり、
前記冷媒流路(121)における前記板状部材(11)の積層方向の長さである冷媒流路高さは、前記冷媒側オフセットフィン(301)における前記板状部材(11)の積層方向の長さである冷媒側フィン高さFrhと等しくなっており、
前記熱媒体流路(122)における前記板状部材(11)の積層方向の長さである熱媒体流路高さは、前記熱媒体側オフセットフィン(302)における前記板状部材(11)の積層方向の長さである熱媒体側フィン高さFwhと等しくなっており、
前記冷媒側フィン高さFrおよび前記熱媒体側フィン高さFwhが、0.14<Frh/(Frh+Fwh)<0.49の関係を満たすように設定されていることを特徴とする積層型熱交換器。
A heat exchange section (12) for exchanging heat between the refrigerant of the refrigeration cycle and the heat medium;
The heat exchange part (12) is formed by laminating and joining a plurality of plate-like members (11) to each other,
Between the plurality of plate-like members (11), a plurality of refrigerant flow paths (121) through which the refrigerant flows and a plurality of heat medium flow paths (122) through which the heat medium flows are formed.
The plurality of refrigerant channels (121) and the plurality of heat medium channels (122) are arranged side by side in the stacking direction of the plurality of plate-like members (11),
Adjacent plate members (11) are joined to the plurality of refrigerant flow paths (121) and the plurality of heat medium flow paths (122), respectively, and between the refrigerant and the heat medium. Inner fins (301, 302) that promote heat exchange are provided,
The inner fin provided in the refrigerant flow path (121) has a number of cut and raised portions (30a) partially cut and raised in the flow direction of the refrigerant and is adjacent to the flow direction of the refrigerant. The cut and raised portions (30a) are refrigerant side offset fins (301) that are offset from each other,
The inner fin provided in the heat medium flow path (122) has a plurality of cut and raised portions (30a) partially cut and raised in the flow direction of the heat medium, and the flow direction of the heat medium. The heat medium side offset fins (302) in which the cut and raised portions (30a) adjacent to each other are offset from each other,
The refrigerant channel height, which is the length in the stacking direction of the plate-like member (11) in the refrigerant channel (121), is the stacking direction of the plate-like member (11) in the refrigerant-side offset fin (301). It is equal to the refrigerant side fin height Frh which is the length,
The heat medium flow path height, which is the length in the stacking direction of the plate-like member (11) in the heat medium flow path (122), is the height of the plate-like member (11) in the heat medium side offset fin (302). It is equal to the heat medium side fin height Fwh which is the length in the stacking direction,
The refrigerant side fin height Fr h and the heating medium side fin height FWH is, 0.14 <Frh / (Frh + Fwh) < laminated heat, characterized in that it is set to satisfy 0.49 a relationship Exchanger.
前記冷媒流路(121)における前記冷媒の流れ方向の長さLと、前記冷媒流路(121)における前記冷媒の流れ方向および前記板状部材(11)の積層方向の双方に直交する方向の長さWとの比であるアスペクト比(L/W)が、1.3以上に設定されており、
前記冷媒側オフセットフィン(301)の前記切り起こし部(30a)における前記冷媒の流れ方向の長さSが、L/80以下に設定されていることを特徴とする請求項1に記載の積層型熱交換器。
A length L in the refrigerant flow direction in the refrigerant flow path (121) and a direction orthogonal to both the flow direction of the refrigerant in the refrigerant flow path (121) and the stacking direction of the plate-like members (11). The aspect ratio (L / W), which is the ratio with the length W, is set to 1.3 or more,
The stacked die according to claim 1, wherein a length S of the refrigerant side offset fin (301) in the flow direction of the refrigerant in the cut-and-raised part (30a) is set to L / 80 or less. Heat exchanger.
前記熱交換部(12)は、前記板状部材(11)の積層方向が重力方向と交差するように配置されており、
前記熱交換部(12)は、前記冷媒流路(121)を流通する前記冷媒の流れをUターンさせるUターン部(11)を有していることを特徴とする請求項1または2に記載の積層型熱交換器。
The heat exchange part (12) is arranged so that the laminating direction of the plate-like member (11) intersects the direction of gravity,
The said heat exchange part (12) has a U-turn part ( 11g ) which makes the U-turn the flow of the said refrigerant | coolant which distribute | circulates the said refrigerant | coolant flow path (121), The Claim 1 or 2 characterized by the above-mentioned. The laminated heat exchanger as described.
冷凍サイクルの冷媒と熱媒体とを熱交換させる熱交換部(12)を備え、
前記熱交換部(12)は、複数の板状部材(11)が互いに積層されて接合されることによって形成されており、
前記複数の板状部材(11)同士の間には、前記冷媒が流れる複数の冷媒流路(121)、および前記熱媒体が流れる複数の熱媒体流路(122)が形成され、
前記複数の冷媒流路(121)および前記複数の熱媒体流路(122)は、前記複数の板状部材(11)の積層方向に並んで配置されており、
前記複数の冷媒流路(121)および前記複数の熱媒体流路(122)には、それぞれ、隣り合う前記板状部材(11)同士を接合し、かつ前記冷媒と前記熱媒体との間での熱交換を促進させるインナーフィン(301、302)が設けられており、
前記冷媒流路(121)に設けられた前記インナーフィンは、部分的に切り起こされた切り起こし部(30a)が前記冷媒の流れ方向に多数形成されるとともに、前記冷媒の流れ方向に隣り合う前記切り起こし部(30a)同士が互いにオフセットされている冷媒側オフセットフィン(301)であり、
前記熱媒体流路(122)に設けられた前記インナーフィンは、部分的に切り起こされた切り起こし部(30a)が前記熱媒体の流れ方向に多数形成されるとともに、前記熱媒体の流れ方向に隣り合う前記切り起こし部(30a)同士が互いにオフセットされている熱媒体側オフセットフィン(302)であり、
前記熱交換部(12)は、前記板状部材(11)の積層方向が重力方向と交差するように配置されており、
前記熱交換部(12)は、前記冷媒流路(121)を流通する前記冷媒の流れをUターンさせるUターン部(11)を有しており、
前記冷媒流路(121)における前記板状部材(11)の積層方向の長さである冷媒流路高さは、前記冷媒側オフセットフィン(301)における前記板状部材(11)の積層方向の長さである冷媒側フィン高さFrhと等しくなっており、
前記熱媒体流路(122)における前記板状部材(11)の積層方向の長さである熱媒体流路高さは、前記熱媒体側オフセットフィン(302)における前記板状部材(11)の積層方向の長さである熱媒体側フィン高さFwhと等しくなっており、
前記冷媒側フィン高さFrhおよび前記熱媒体側フィン高さFwhが、0.14<Frh/(Frh+Fwh)<0.49の関係を満たすように設定されていることを特徴とする積層型熱交換器。
A heat exchange section (12) for exchanging heat between the refrigerant of the refrigeration cycle and the heat medium;
The heat exchange part (12) is formed by laminating and joining a plurality of plate-like members (11) to each other,
Between the plurality of plate-like members (11), a plurality of refrigerant flow paths (121) through which the refrigerant flows and a plurality of heat medium flow paths (122) through which the heat medium flows are formed.
The plurality of refrigerant channels (121) and the plurality of heat medium channels (122) are arranged side by side in the stacking direction of the plurality of plate-like members (11),
Adjacent plate members (11) are joined to the plurality of refrigerant flow paths (121) and the plurality of heat medium flow paths (122), respectively, and between the refrigerant and the heat medium. Inner fins (301, 302) that promote heat exchange are provided,
The inner fin provided in the refrigerant flow path (121) has a number of cut and raised portions (30a) partially cut and raised in the flow direction of the refrigerant and is adjacent to the flow direction of the refrigerant. The cut and raised portions (30a) are refrigerant side offset fins (301) that are offset from each other,
The inner fin provided in the heat medium flow path (122) has a plurality of cut and raised portions (30a) partially cut and raised in the flow direction of the heat medium, and the flow direction of the heat medium. The heat medium side offset fins (302) in which the cut and raised portions (30a) adjacent to each other are offset from each other,
The heat exchange part (12) is arranged so that the laminating direction of the plate-like member (11) intersects the direction of gravity,
The heat exchange part (12) has a U-turn part (11 g ) for making a U-turn the flow of the refrigerant flowing through the refrigerant flow path (121) .
The refrigerant channel height, which is the length in the stacking direction of the plate-like member (11) in the refrigerant channel (121), is the stacking direction of the plate-like member (11) in the refrigerant-side offset fin (301). It is equal to the refrigerant side fin height Frh which is the length,
The heat medium flow path height, which is the length in the stacking direction of the plate-like member (11) in the heat medium flow path (122), is the height of the plate-like member (11) in the heat medium side offset fin (302). It is equal to the heat medium side fin height Fwh which is the length in the stacking direction,
The refrigerant-type fin height Frh and the heat medium-side fin height Fwh are set so as to satisfy a relationship of 0.14 <Frh / (Frh + Fwh) <0.49. vessel.
JP2013191695A 2013-02-27 2013-09-17 Laminate heat exchanger Active JP6160385B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013191695A JP6160385B2 (en) 2013-09-17 2013-09-17 Laminate heat exchanger
US14/770,717 US10962307B2 (en) 2013-02-27 2014-02-21 Stacked heat exchanger
CN201480010696.4A CN105074375B (en) 2013-02-27 2014-02-21 Cascade type heat exchanger
PCT/JP2014/000901 WO2014132602A1 (en) 2013-02-27 2014-02-21 Stacked heat exchanger
DE112014001028.6T DE112014001028T5 (en) 2013-02-27 2014-02-21 Stack heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013191695A JP6160385B2 (en) 2013-09-17 2013-09-17 Laminate heat exchanger

Publications (3)

Publication Number Publication Date
JP2015059669A JP2015059669A (en) 2015-03-30
JP2015059669A5 true JP2015059669A5 (en) 2015-07-02
JP6160385B2 JP6160385B2 (en) 2017-07-12

Family

ID=52817346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013191695A Active JP6160385B2 (en) 2013-02-27 2013-09-17 Laminate heat exchanger

Country Status (1)

Country Link
JP (1) JP6160385B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6578980B2 (en) * 2016-02-11 2019-09-25 株式会社デンソー Laminate heat exchanger
JP6645579B2 (en) 2016-06-07 2020-02-14 株式会社デンソー Stacked heat exchanger
KR101679743B1 (en) * 2016-06-28 2016-12-02 (주)시에스 Heat exchanger for exhaust heat recovery system of vehicle
JP7247717B2 (en) 2019-04-01 2023-03-29 株式会社デンソー Heat exchanger

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625098A (en) * 1985-07-01 1987-01-12 Nippon Denso Co Ltd Inner fin of heat exchanger
JPH0539322Y2 (en) * 1987-04-28 1993-10-05
JPH04155191A (en) * 1990-10-17 1992-05-28 Hitachi Ltd Lamination type heat exchanger
JPH0989483A (en) * 1995-09-22 1997-04-04 Hisaka Works Ltd Plate heat exchanger
JPH11223421A (en) * 1998-02-10 1999-08-17 Denso Corp Refrigerant evaporator
JP3292128B2 (en) * 1998-02-27 2002-06-17 ダイキン工業株式会社 Plate heat exchanger
JP4153082B2 (en) * 1998-06-18 2008-09-17 三菱電機株式会社 Plate heat exchanger and refrigeration cycle equipment
JP2000337784A (en) * 1999-05-24 2000-12-08 Nhk Spring Co Ltd Plate type heat exchanger for three liquids
JP2003185375A (en) * 2001-12-17 2003-07-03 Daikin Ind Ltd Plate-type heat exchanger
FR2846733B1 (en) * 2002-10-31 2006-09-15 Valeo Thermique Moteur Sa CONDENSER, IN PARTICULAR FOR A CIRCUIT FOR CIMATING A MOTOR VEHICLE, AND CIRCUIT COMPRISING THE CONDENSER
JP2004293880A (en) * 2003-03-26 2004-10-21 Calsonic Kansei Corp Stacked heat exchanger
JP2005055087A (en) * 2003-08-05 2005-03-03 Calsonic Kansei Corp Laminated type heat exchanger
JP2007010299A (en) * 2005-07-04 2007-01-18 Denso Corp Heat exchanger and hot water supply device
JP2007183071A (en) * 2006-01-10 2007-07-19 Tokyo Bureizu Kk High-pressure-resistant compact heat exchanger and manufacturing method of the same
JP4818044B2 (en) * 2006-09-28 2011-11-16 三洋電機株式会社 Manufacturing method of heat exchanger
JP4827905B2 (en) * 2008-09-29 2011-11-30 三菱電機株式会社 Plate type heat exchanger and air conditioner equipped with the same
FR2955928B1 (en) * 2010-01-29 2012-06-01 Valeo Systemes Thermiques HEAT EXCHANGER
US8931305B2 (en) * 2010-03-31 2015-01-13 Denso International America, Inc. Evaporator unit
JP5556691B2 (en) * 2011-02-14 2014-07-23 株式会社デンソー Heat exchanger
KR101316858B1 (en) * 2011-12-08 2013-10-10 현대자동차주식회사 Condenser for vehicle
WO2013183113A1 (en) * 2012-06-05 2013-12-12 三菱電機株式会社 Plate-type heat exchanger and refrigeration cycle device comprising same

Similar Documents

Publication Publication Date Title
JP6504367B2 (en) Heat exchanger
JP2016001099A5 (en)
JP6528283B2 (en) Heat exchanger
JP2015059669A5 (en)
KR20180077188A (en) heat transmitter
JP6160385B2 (en) Laminate heat exchanger
JP2019002609A5 (en)
JPWO2021149223A5 (en)
JP6306901B2 (en) Plate heat exchanger
JP3192720U (en) Plate member and heat exchanger
WO2014077084A1 (en) Laminated heat exchanger
JP2016205718A (en) Heat exchanger
CN105806124A (en) A heat exchange aluminum finned tube
WO2019131569A1 (en) Header plateless type heat exchanger
WO2016084668A1 (en) Heat exchanger
JP5851846B2 (en) Heat exchanger and manufacturing method thereof
KR20070064938A (en) Heat exchanger
JP5947158B2 (en) Outdoor heat exchanger for heat pump
JP5933605B2 (en) Plate heat exchanger
CN105698564A (en) Heat exchanger
JP2020169745A (en) Heat exchanger
KR101427931B1 (en) Plate type heat exchanger
JP2015138840A (en) Heat exchanger
JP6720890B2 (en) Stacked heat exchanger
JP2020169745A5 (en)