JP2015059054A - Surface organic resin-coated hydrophobic spherical silica fine particle, production method of the same, and toner external additive for electrostatic charge image development using the same - Google Patents

Surface organic resin-coated hydrophobic spherical silica fine particle, production method of the same, and toner external additive for electrostatic charge image development using the same Download PDF

Info

Publication number
JP2015059054A
JP2015059054A JP2013192658A JP2013192658A JP2015059054A JP 2015059054 A JP2015059054 A JP 2015059054A JP 2013192658 A JP2013192658 A JP 2013192658A JP 2013192658 A JP2013192658 A JP 2013192658A JP 2015059054 A JP2015059054 A JP 2015059054A
Authority
JP
Japan
Prior art keywords
silica fine
fine particles
spherical silica
organic resin
toner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013192658A
Other languages
Japanese (ja)
Other versions
JP6008137B2 (en
Inventor
松村 和之
Kazuyuki Matsumura
和之 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2013192658A priority Critical patent/JP6008137B2/en
Publication of JP2015059054A publication Critical patent/JP2015059054A/en
Application granted granted Critical
Publication of JP6008137B2 publication Critical patent/JP6008137B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide surface organic resin-coated hydrophobic spherical silica fine particles and a production method of the fine particles, in which dispersibility in a toner and falling property from a toner can be improved, and a toner external additive for electrostatic charge image development using the fine particles.SOLUTION: The surface organic resin-coated hydrophobic spherical silica fine particles have an average particle diameter of 0.01 to 5 μm in primary particles in terms of a volume-based median diameter, in which at least a part of the particle surface is coated with an organic resin coating having a glass transition temperature of 65 to 120°C.

Description

本発明は、表面有機樹脂被覆疎水性球状シリカ微粒子、その製造方法及びそれを用いた静電荷像現像用トナー外添剤に関する。   The present invention relates to surface organic resin-coated hydrophobic spherical silica fine particles, a method for producing the same, and a toner external additive for developing an electrostatic image using the same.

電子写真法等で使用する乾式現像剤は、結着樹脂中に着色剤を分散したトナーそのものを用いる一成分現像剤と、そのトナーにキャリアを混合した二成分現像剤とに大別でき、そしてこれらの現像剤を用いてコピー操作を行う場合、プロセス適合性を有するためには、現像剤が流動性、耐ケーキング性、定着性、帯電性、クリーニング性等に優れていることが必要である。そして特に、流動性、耐ケーキング性、定着性、クリーニング性を高めるために、無機微粒子をトナーに添加することがしばしば行われている。   Dry developers used in electrophotography and the like can be broadly classified into a one-component developer using a toner itself in which a colorant is dispersed in a binder resin, and a two-component developer in which the toner is mixed with a carrier, and When performing a copying operation using these developers, in order to have process compatibility, the developer needs to be excellent in fluidity, caking resistance, fixing properties, charging properties, cleaning properties, and the like. . In particular, in order to improve fluidity, caking resistance, fixability, and cleaning properties, inorganic fine particles are often added to the toner.

トナーに添加する無機微粒子としては一般的にシリカ微粒子が好適に使用されている。シリカ微粒子は、その製法によって、シラン化合物を燃焼させて得られる燃焼法シリカ(即ち、ヒュームドシリカ)、金属珪素粉を爆発的に燃焼させて得られる爆燃法シリカ、珪酸ナトリウムと鉱酸との中和反応によって得られる湿式シリカ(このうち、アルカリ条件で合成し凝集させたものを沈降法シリカ、酸性条件で合成し凝集させたものをゲル法シリカという)、珪酸ナトリウムからイオン交換樹脂で脱ナトリウムして得られた酸性珪酸をアルカリ性にして重合することで得られるコロイダルシリカ(シリカゾル)、ヒドロカルビルオキシシランの加水分解によって得られるゾルゲル法シリカ(いわゆるStoeber法)などに大別される。   In general, silica fine particles are preferably used as the inorganic fine particles added to the toner. Silica fine particles are produced by combustion method silica obtained by burning a silane compound (ie fumed silica), deflagration silica obtained by explosively burning metal silicon powder, sodium silicate and mineral acid. Wet silica obtained by neutralization reaction (of which, synthesized and aggregated under alkaline conditions is precipitated silica, and synthesized and aggregated under acidic conditions is gel silica), dehydrated from sodium silicate with ion exchange resin Colloidal silica (silica sol) obtained by polymerizing acidic silicic acid obtained by sodium to alkalinity, and sol-gel silica obtained by hydrolysis of hydrocarbyloxysilane (so-called Stöber method) are roughly classified.

電子写真用トナーの外添剤としては、疎水化表面処理をしたシリカ微粒子粉体が好適に用いられている。
疎水化表面処理方法としては、シリカ微粒子粉体に、疎水化剤、例えば界面活性剤、シリコーンオイル、又はアルキルハロゲノシラン、アルキルアルコキシシラン、アルキルジシラザンなどのシリル化剤の気体を接触させ疎水化処理する方法、水と親水性有機混合溶媒中でシリル化剤に接触させ疎水化処理する方法等が挙げられる。
As an external additive for an electrophotographic toner, silica fine particle powder subjected to a hydrophobic surface treatment is preferably used.
Hydrophobic surface treatment is performed by bringing silica fine particle powder into contact with a hydrophobizing agent such as a surfactant, silicone oil, or a silylating agent such as alkylhalogenosilane, alkylalkoxysilane, or alkyldisilazane. The method of processing, the method of contacting with a silylating agent in water and a hydrophilic organic mixed solvent, and the method of hydrophobizing are mentioned.

そのような疎水化表面処理をしたシリカ微粒子粉体は、電子写真用トナーの外添剤として好適に用いられているが、これはトナー母体の比重に対して1.5〜1.8倍(シリカ比重は1.8〜2.2)と、かなりトナー母体と比重差があるため、トナー母体に混合する操作を行なう際、分散させ難かったり、トナー母体と固着しても経時的にトナー母体からシリカ微粒子が脱落しやすいなどの問題が指摘されていた。   The silica fine particle powder subjected to such a hydrophobic surface treatment is suitably used as an external additive for an electrophotographic toner, which is 1.5 to 1.8 times the specific gravity of the toner base ( The specific gravity of silica is 1.8 to 2.2), which is considerably different from that of the toner base. Therefore, when mixing with the toner base, it is difficult to disperse or even if the toner base adheres to the toner base over time. From the above, problems such as easy removal of silica fine particles have been pointed out.

このような問題を解決する従来技術としては、一旦金属酸化物からなる外添剤をトナーに付着させた後、脱落を防止するために有機樹脂粒子を更に被覆するという技術がある(特許文献1)。しかしこの方法は、外添剤よりも小さくて均一な有機樹脂粒子がないことや、その有機樹脂粒子が現像機内で飛散・遊離して画像に悪影響を及ぼしたり、帯電を悪くする等の問題を有していた。   As a conventional technique for solving such a problem, there is a technique in which an external additive made of a metal oxide is once attached to a toner and then further coated with organic resin particles in order to prevent dropping (Patent Document 1). ). However, this method has problems such as that there are no organic resin particles that are smaller and uniform than the external additive, that the organic resin particles are scattered and released in the developing machine, adversely affecting the image, and charging becomes worse. Had.

特許第5108564号公報Japanese Patent No. 5108564

従って、本発明は、トナー母体に混合したときに高い分散状態を保ち、トナー母体との付着強度も強く、更にトナー表面から離脱し帯電に悪影響を与えるような現象がない表面有機樹脂被覆疎水性球状シリカ微粒子、その製造方法及びそれを用いた静電荷像現像用トナー外添剤を提供することを目的とする。   Therefore, the present invention maintains a high dispersion state when mixed with the toner base, has a strong adhesion strength to the toner base, and further has a surface organic resin-coated hydrophobicity that does not cause a phenomenon that is separated from the toner surface and adversely affects charging. An object of the present invention is to provide spherical silica fine particles, a process for producing the same, and an external toner additive for developing an electrostatic image using the same.

斯かる実情に鑑み、本発明者は鋭意研究を行った結果、下記シリカ微粒子がトナー母体に混合したときに高い分散状態を保ち、付着強度も強く、更にトナー表面から離脱し帯電に悪影響を与えるような現象がないことを見出し本発明を完成した。
即ち本発明は、次に示すものである。
In view of such circumstances, the present inventor has conducted intensive research. As a result, when the following silica fine particles are mixed in the toner base, the present invention maintains a high dispersion state and has a high adhesion strength, and further departs from the toner surface and adversely affects charging. The present invention was completed by finding that there was no such phenomenon.
That is, the present invention is as follows.

<1>
1次粒子の平均粒子径が体積基準メジアン径で0.01〜5μmであり、表面の少なくとも一部がガラス転移温度が65〜120℃である有機樹脂被膜で被覆された、表面有機樹脂被覆疎水性球状シリカ微粒子。
<1>
Surface organic resin-coated hydrophobic, in which the average particle diameter of primary particles is 0.01-5 μm in volume-based median diameter, and at least a part of the surface is coated with an organic resin film having a glass transition temperature of 65-120 ° C. Spherical silica fine particles.

<2>
(A1)下記一般式(I):
Si(OR34 (I)
(但し、R3は同一又は異種の炭素原子数1〜6の一価炭化水素基である。)
で示される4官能性シラン化合物、その部分加水分解生成物又はこれらの混合物を、塩基性物質の存在下で親水性有機溶媒と水の混合液中で加水分解、縮合することによって、SiO2単位を含む親水性球状シリカ微粒子の混合溶媒分散液を得る工程と、
(A2)該親水性球状シリカ微粒子の混合溶媒分散液に、下記一般式(II):
1Si(OR43 (II)
(但し、R1は置換又は非置換の炭素原子数1〜20の一価炭化水素基であり、R4は同一又は異種の炭素原子数1〜6の一価炭化水素基である。)
で示される3官能性シラン化合物、その部分加水分解生成物又はこれらの混合物を添加して、前記親水性球状シリカ微粒子の表面を処理することにより、該親水性球状シリカ微粒子の表面にR1SiO3/2単位(但し、R1は前記と同じである。)を導入し、第一の表面疎水化球状シリカ微粒子の混合溶媒分散液を得る工程と、
(A3)該第一の表面疎水化球状シリカ微粒子の混合溶媒分散液又はその濃縮液に下記一般式(III):
2 3SiNHSiR2 3 (III)
(但し、R2は同一又は異種の置換又は非置換の炭素原子数1〜6の一価炭化水素基である)
で示されるシラザン化合物、
下記一般式(IV):
2 3SiX (IV)
(但し、R2は同一又は異種の置換又は非置換の炭素原子数1〜6の一価炭化水素基であり、XはOH基又は加水分解性基である。)
で示される1官能性シラン化合物又はこれらの混合物を添加し、該第一の表面疎水化球状シリカ微粒子の表面を処理して、該第一の表面疎水化球状シリカ微粒子の表面にR2 3SiO1/2単位(但し、R2は前記と同じである。)を導入することにより第二の疎水性球状シリカ微粒子を得る工程と、
(A4)該第二の疎水性球状シリカ微粒子の分散液に、ガラス転移温度が65〜120℃の有機樹脂を溶解せしめ、該第二の疎水性球状シリカ微粒子の表面の少なくとも一部に有機樹脂被覆を形成して有機樹脂被覆疎水性球状シリカ微粒子を得る工程と、
を有することを特徴とする<1>に記載の表面有機樹脂被覆疎水性球状シリカ微粒子の製造方法。
<2>
(A1) The following general formula (I):
Si (OR 3 ) 4 (I)
(However, R 3 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms.)
By hydrolyzing and condensing a tetrafunctional silane compound represented by the formula, a partial hydrolysis product thereof or a mixture thereof in a mixture of a hydrophilic organic solvent and water in the presence of a basic substance, SiO 2 unit Obtaining a mixed solvent dispersion of hydrophilic spherical silica fine particles comprising:
(A2) In the mixed solvent dispersion of the hydrophilic spherical silica fine particles, the following general formula (II):
R 1 Si (OR 4 ) 3 (II)
(However, R 1 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and R 4 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms.)
Is added to the surface of the hydrophilic spherical silica fine particles to add R 1 SiO to the surface of the hydrophilic spherical silica fine particles. Introducing 3/2 units (where R 1 is as defined above) to obtain a mixed solvent dispersion of the first surface-hydrophobized spherical silica fine particles;
(A3) A mixed solvent dispersion of the first surface-hydrophobized spherical silica fine particles or a concentrated liquid thereof has the following general formula (III):
R 2 3 SiNHSiR 2 3 (III)
(Wherein R 2 is the same or different substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms)
A silazane compound represented by
The following general formula (IV):
R 2 3 SiX (IV)
(Wherein R 2 is the same or different substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms, and X is an OH group or a hydrolyzable group.)
A monofunctional silane compound represented by the formula (1) or a mixture thereof is added, and the surface of the first surface hydrophobized spherical silica fine particles is treated to form R 2 3 SiO on the surface of the first surface hydrophobized spherical silica fine particles. A step of obtaining second hydrophobic spherical silica fine particles by introducing 1/2 unit (wherein R 2 is the same as above);
(A4) An organic resin having a glass transition temperature of 65 to 120 ° C. is dissolved in the dispersion liquid of the second hydrophobic spherical silica fine particles, and the organic resin is formed on at least a part of the surface of the second hydrophobic spherical silica fine particles. Forming an organic resin-coated hydrophobic spherical silica fine particle by forming a coating;
<1> The method for producing hydrophobic spherical silica fine particles coated with surface organic resin according to <1>.

<3>
<2>に記載の製造方法により製造された表面有機樹脂被覆疎水性球状シリカ微粒子。
<4>
<1>又は<3>に記載の表面有機樹脂被覆疎水性球状シリカ微粒子からなる静電荷像現像用トナー外添剤。
<5>
<1>又は<3>に記載の表面有機樹脂被覆疎水性球状シリカ微粒子を含有する静電荷像現像用トナー。
<3>
Surface organic resin-coated hydrophobic spherical silica fine particles produced by the production method according to <2>.
<4>
<1> or <3> a toner external additive for developing an electrostatic image comprising the surface organic resin-coated hydrophobic spherical silica fine particles.
<5>
<1> or <3> A toner for developing an electrostatic charge image, comprising the surface organic resin-coated hydrophobic spherical silica fine particles.

このような表面有機樹脂被覆疎水性球状シリカ微粒子をトナー外添剤として用いれば、トナーに混合したときに高分散状態を保ちながら付着強度の高い状態を有し、トナー表面から離脱したものが帯電に悪影響を与えるような現象を抑制することができる。   When such surface organic resin-coated hydrophobic spherical silica fine particles are used as an external toner additive, when mixed with the toner, it has a high adhesion state while maintaining a high dispersion state, and the one separated from the toner surface is charged. It is possible to suppress a phenomenon that adversely affects the image.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

<表面有機樹脂被覆疎水性球状シリカ微粒子の特徴>
まず、本発明の表面有機樹脂被覆疎水性球状シリカ微粒子の特徴について説明する。本発明の微粒子は、1次粒子の平均粒子径が体積基準メジアン径で0.01〜5μmの、表面の少なくとも一部が有機樹脂被覆処理された球状シリカ微粒子である。球状でありながら、有機樹脂が表面に被覆されているため、トナー母体と比重差があるにも関らずトナー母体に固着して脱落性が大きく改善できる。これは、トナー母体とシリカ表面の有機樹脂との摩擦帯電極性が同じになり、それぞれの有機樹脂が類似構造のため着きやすい、すなわち似たもの同士が着きやすいという特性からではないかと推測される。
<Features of surface organic resin-coated hydrophobic spherical silica fine particles>
First, the characteristics of the surface organic resin-coated hydrophobic spherical silica fine particles of the present invention will be described. The fine particles of the present invention are spherical silica fine particles whose primary particles have an average particle diameter of 0.01 to 5 μm in volume basis median diameter and whose surface is at least partially coated with an organic resin. Although it is spherical, since the surface is coated with an organic resin, it adheres to the toner base and can largely improve the drop-off property despite a difference in specific gravity from the toner base. This is presumed to be due to the characteristics that the toner base and the organic resin on the silica surface have the same triboelectric charge polarity, and each organic resin is easy to wear because of its similar structure, that is, similar things are easy to wear. .

本発明の表面有機樹脂被覆疎水性球状シリカ微粒子について、「球状」とは、真球だけでなく、若干歪んだ球も含む。具体的には、「球状」であるとは粒子を二次元に投影したときの円形度が0.8〜1の範囲にあることを意味する。ここで円形度とは、(実際の粒子を二次元投影したときの図形の面積と等しい真円の周囲長)/(実際の粒子を二次元投影したときの図形の面積の周囲長)を意味する。   Regarding the surface organic resin-coated hydrophobic spherical silica fine particles of the present invention, “spherical” includes not only true spheres but also slightly distorted spheres. Specifically, “spherical” means that the circularity when particles are projected two-dimensionally is in the range of 0.8-1. Here, the circularity means (peripheral length of a perfect circle equal to the area of the figure when an actual particle is projected two-dimensionally) / (perimeter of the area of the figure when an actual particle is projected two-dimensionally) To do.

本発明の表面有機樹脂被覆疎水性球状シリカ微粒子の粒子径は、1次粒子の平均粒子径が体積基準メジアン径で0.01〜5μmであり、好ましくは0.05〜0.5μmである。この粒子径が0.01μmより小さい場合には、上記微粒子が凝集してしまい、現像剤の流動性、耐ケーキング性、定着性等を得ることができない。また、この粒子径が5μmより大きい場合には、感光体の変質や削れ、微粒子のトナーへの付着性の低下といった不都合が生じる。なお、本発明において、微粒子の粒度分布は、動的光散乱法/レーザードップラー法ナノトラック粒度分布測定装置(日機装株式会社製、商品名:UPA-EX150)により測定し、その体積基準メジアン径を粒子径とした。なお、メジアン径とは粒度分布を累積分布として表した時の累積50%に相当する粒子径である。   The particle diameter of the surface organic resin-coated hydrophobic spherical silica fine particles of the present invention is such that the average particle diameter of the primary particles is 0.01 to 5 μm, preferably 0.05 to 0.5 μm in terms of volume-based median diameter. When the particle diameter is smaller than 0.01 μm, the fine particles are aggregated, and the fluidity, caking resistance, fixability, and the like of the developer cannot be obtained. On the other hand, when the particle diameter is larger than 5 μm, problems such as deterioration or abrasion of the photoconductor and reduction in adhesion of fine particles to the toner occur. In the present invention, the particle size distribution of the fine particles is measured by a dynamic light scattering method / laser Doppler nanotrack particle size distribution measuring apparatus (trade name: UPA-EX150, manufactured by Nikkiso Co., Ltd.), and the volume-based median diameter is The particle diameter was taken. The median diameter is a particle diameter corresponding to 50% cumulative when the particle size distribution is expressed as a cumulative distribution.

シリカ表面の被覆に用いられる有機樹脂は、ガラス転移温度が65〜120℃のものである。このガラス転移温度が65℃未満のものでは高温高湿下でのトナーの保管性が悪化する場合があり好ましくない。一方、ガラス転移温度が120℃を超えるようなものは、定着時に阻害要素、すなわち、軟化するのに必要な熱量が多くなることから、トナーへ付与されるべき熱量が奪われることとなり、好ましくない。   The organic resin used for coating the silica surface has a glass transition temperature of 65 to 120 ° C. If the glass transition temperature is less than 65 ° C., the storage stability of the toner under high temperature and high humidity may deteriorate, which is not preferable. On the other hand, those having a glass transition temperature exceeding 120 ° C. are not preferable because the amount of heat to be imparted to the toner is deprived because the amount of heat necessary for softening is increased during the fixing process. .

本発明に用いられる有機樹脂としては、トナー用のスチレン−アクリル樹脂やポリエステル樹脂のほか、ポリスチレン樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、フッ化ビニリデン樹脂やその他のフッ素系樹脂、溶剤可溶性ナイロン樹脂、ブチラール樹脂、フェノキシ樹脂、ポリカーボネート樹脂などが挙げられる。これらの内、スチレン−アクリル樹脂やポリエステル樹脂が特に好ましい。   As the organic resin used in the present invention, in addition to styrene-acrylic resin and polyester resin for toner, polystyrene resin, vinyl chloride resin, vinylidene chloride resin, vinylidene fluoride resin and other fluorine-based resins, solvent-soluble nylon resins, Examples include butyral resin, phenoxy resin, and polycarbonate resin. Of these, styrene-acrylic resins and polyester resins are particularly preferred.

本発明においては、シリカ微粒子の表面の少なくとも一部が上記有機樹脂で被覆されているが、具体的には、シリカ微粒子表面の1〜90%の面積が有機樹脂被膜で被覆されていることが好ましく、更に5〜70%の面積が有機樹脂被膜で被覆されていることが好ましい。   In the present invention, at least a part of the surface of the silica fine particles is coated with the organic resin. Specifically, the area of 1 to 90% of the surface of the silica fine particles is covered with the organic resin film. It is preferable that an area of 5 to 70% is further covered with an organic resin film.

<表面有機樹脂被覆疎水性球状シリカ微粒子の製造方法>
次に、本発明の表面有機樹脂被覆疎水性球状シリカ微粒子は、例えば、以下の製造方法により、製造することができる。
合成シリカ微粒子は、その製法によって、燃焼法シリカ(即ち、ヒュームドシリカ)、爆燃法シリカ、湿式シリカ、ゾルゲル法シリカ(いわゆるStoeber法)に大別される。本発明で用いるシリカ微粒子は、ゾルゲル法シリカに属する。
<Method for producing surface organic resin-coated hydrophobic spherical silica fine particles>
Next, the surface organic resin-coated hydrophobic spherical silica fine particles of the present invention can be produced, for example, by the following production method.
Synthetic silica fine particles are roughly classified into combustion method silica (that is, fumed silica), deflagration method silica, wet silica, and sol-gel method silica (so-called Stober method) depending on the production method. The silica fine particles used in the present invention belong to sol-gel silica.

本発明の表面疎水化球状シリカ微粒子は、
工程(A1):親水性球状シリカ微粒子の合成工程と、
工程(A2):3官能性シラン化合物による表面処理工程と、
工程(A3):1官能性シラン化合物による表面処理工程と、
工程(A4):有機樹脂による表面被覆処理工程と、
によって得られる。以下各工程を順を追って説明する。
The surface hydrophobized spherical silica fine particles of the present invention are:
Step (A1): Step of synthesizing hydrophilic spherical silica fine particles;
Step (A2): a surface treatment step with a trifunctional silane compound;
Step (A3): a surface treatment step with a functional silane compound;
Step (A4): Surface coating treatment step with an organic resin,
Obtained by. Each process will be described below in order.

−工程(A1):親水性球状シリカ微粒子の合成工程−
本工程では、一般式(I):
Si(OR34 (I)
(但し、各R3は同一又は異種の炭素原子数1〜6の一価炭化水素基である。)
で示される4官能性シラン化合物、その部分加水分解生成物又はこれらの混合物を、塩基性物質の存在下で親水性有機溶媒と水の混合液中で加水分解、縮合することによって親水性球状シリカ微粒子混合溶媒分散液を得る。
-Step (A1): Step of synthesizing hydrophilic spherical silica fine particles-
In this step, the general formula (I):
Si (OR 3 ) 4 (I)
(However, each R 3 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms.)
Hydrophilic spherical silica by hydrolyzing and condensing a tetrafunctional silane compound represented by the formula, a partial hydrolysis product thereof, or a mixture thereof in a mixture of a hydrophilic organic solvent and water in the presence of a basic substance. A fine particle mixed solvent dispersion is obtained.

上記一般式(I):Si(OR34中、R3は、炭素原子数1〜6の一価炭化水素基であるが、好ましくは炭素原子数1〜4、特に好ましくは1〜2の1価炭化水素基である。R3で表される1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、フェニル基等、好ましくは、メチル基、エチル基、プロピル基、ブチル基、特に好ましくは、メチル基、エチル基が挙げられる。 In the above general formula (I): Si (OR 3 ) 4 , R 3 is a monovalent hydrocarbon group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, particularly preferably 1 to 2 carbon atoms. These are monovalent hydrocarbon groups. Examples of the monovalent hydrocarbon group represented by R 3 include a methyl group, an ethyl group, a propyl group, a butyl group, and a phenyl group, preferably a methyl group, an ethyl group, a propyl group, and a butyl group, and particularly preferably , Methyl group, and ethyl group.

上記一般式(I):Si(OR34で示される4官能性シラン化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等のテトラアルコキシシラン、テトラフェノキシシラン等が挙げられ、好ましくは、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、特に好ましくは、テトラメトキシシラン、テトラエトキシシランが挙げられる。また、一般式(I)で示される4官能性シラン化合物の部分加水分解縮合生成物としては、例えば、メチルシリケート、エチルシリケート等が挙げられる。 Examples of the tetrafunctional silane compound represented by the general formula (I): Si (OR 3 ) 4 include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane, and tetraphenoxysilane. Preferably, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, and particularly preferably tetramethoxysilane, tetraethoxysilane. Examples of the partial hydrolysis-condensation product of the tetrafunctional silane compound represented by the general formula (I) include methyl silicate and ethyl silicate.

前記親水性有機溶媒としては、上記一般式(I):Si(OR34で示される4官能性シラン化合物と、この部分加水分解縮合生成物と、水とを溶解するものであれば特に制限されず、例えば、アルコール類; メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、酢酸セロソルブ等のセロソルブ類; アセトン、メチルエチルケトン等のケトン類;ジオキサン、テトラヒドロフラン等のエーテル類等が挙げられ、好ましくは、アルコール類、セロソルブ類、特に好ましくはアルコール類が挙げられる。 The hydrophilic organic solvent is not particularly limited as long as it dissolves the tetrafunctional silane compound represented by the general formula (I): Si (OR 3 ) 4 , the partial hydrolysis-condensation product, and water. Without limitation, for example, alcohols; cellosolves such as methyl cellosolve, ethyl cellosolve, butyl cellosolve, cellosolve acetate; ketones such as acetone and methylethylketone; ethers such as dioxane and tetrahydrofuran; preferably alcohols; Cellosolves, particularly preferably alcohols are mentioned.

ここで、アルコール類としては、一般式(V):
5OH (V)
(式中、R5は炭素原子数1〜6の1価炭化水素基である)
で示されるアルコールが挙げられる。
Here, as alcohols, general formula (V):
R 5 OH (V)
(Wherein R 5 is a monovalent hydrocarbon group having 1 to 6 carbon atoms)
The alcohol shown by is mentioned.

上記一般式(V):R5OH中、R5は、好ましくは炭素原子数1〜4、特に好ましくは1〜2の1価炭化水素基である。R5で表される1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基等のアルキル基等、好ましくはメチル基、エチル基、プロピル基、イソプロピル基、より好ましくはメチル基、エチル基が挙げられる。上記一般式(V)で示されるアルコールとしては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール等、好ましくは、メタノール、エタノールが挙げられる。アルコールの炭素原子数が増えると、生成する球状シリカ微粒子の粒子径が大きくなる。従って、目的とする小粒径シリカ微粒子を得るためにはメタノールが好ましい。 In the general formula (V): R 5 OH, R 5 is preferably a monovalent hydrocarbon group having 1 to 4 carbon atoms, particularly preferably 1 to 2 carbon atoms. Examples of the monovalent hydrocarbon group represented by R 5 include an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group, preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, More preferably, a methyl group and an ethyl group are mentioned. Examples of the alcohol represented by the general formula (V) include methanol, ethanol, propanol, isopropanol, butanol, and preferably methanol and ethanol. As the number of carbon atoms in the alcohol increases, the particle size of the spherical silica fine particles to be generated increases. Therefore, methanol is preferred in order to obtain the desired small particle size silica fine particles.

また、上記塩基性物質としてはアンモニア、ジメチルアミン、ジエチルアミン等が挙げられ、好ましくは、アンモニア、ジエチルアミン、特に好ましくはアンモニアが挙げられる。これらの塩基性物質は、所要量を水に溶解した後、得られた水溶液(塩基性)を前記親水性有機溶媒と混合すればよい。   Examples of the basic substance include ammonia, dimethylamine, diethylamine and the like, preferably ammonia, diethylamine, and particularly preferably ammonia. These basic substances may be dissolved in water in a required amount, and the obtained aqueous solution (basic) may be mixed with the hydrophilic organic solvent.

塩基性物質の量は、上記一般式(I):Si(OR34で示される4官能性シラン化合物および/又はその部分加水分解縮合生成物、のヒドロカルビルオキシ基の合計1モルに対して0.01〜2モルであることが好ましく、0.02〜0.5モルであることがより好ましく、0.04〜0.12モルであることが特に好ましい。このとき、塩基性物質の量が少ないほど所望の小粒径シリカ微粒子となる。 The amount of the basic substance is based on 1 mol of the total hydrocarbyloxy group of the tetrafunctional silane compound represented by the above general formula (I): Si (OR 3 ) 4 and / or a partial hydrolysis-condensation product thereof. The amount is preferably 0.01 to 2 mol, more preferably 0.02 to 0.5 mol, and particularly preferably 0.04 to 0.12 mol. At this time, the smaller the amount of the basic substance, the desired small particle size silica fine particles.

上記加水分解及び縮合で使用される水の量は、上記一般式(I):Si(OR34で示される4官能性シラン化合物および/又はその部分加水分解縮合生成物のヒドロカルビルオキシ基の合計1モルに対して0.5〜5モルであることが好ましく、0.6〜2モルであることがより好ましく、0.7〜1モルであることが特に好ましい。水に対する親水性有機溶媒の比率は、質量比で0.5〜10であることが好ましく、3〜9であることがより好ましく、5〜8であることが特に好ましい。このとき、親水性有機溶媒の量が多いほど所望の小粒径シリカ微粒子となる。 The amount of water used in the hydrolysis and condensation is the amount of the hydrocarbyloxy group of the tetrafunctional silane compound represented by the general formula (I): Si (OR 3 ) 4 and / or the partial hydrolysis condensation product thereof. The amount is preferably 0.5 to 5 mol, more preferably 0.6 to 2 mol, and particularly preferably 0.7 to 1 mol with respect to 1 mol in total. The ratio of the hydrophilic organic solvent to water is preferably 0.5 to 10 in terms of mass ratio, more preferably 3 to 9, and particularly preferably 5 to 8. At this time, as the amount of the hydrophilic organic solvent increases, the desired small particle size silica fine particles are obtained.

上記一般式(I):Si(OR34で示される4官能性シラン化合物等の加水分解および縮合は、周知の方法、即ち、塩基性物質を含む親水性有機溶媒と水との混合物中に、上記一般式(I)で示される4官能性シラン化合物等を添加することにより行われる。 The hydrolysis and condensation of the tetrafunctional silane compound represented by the general formula (I): Si (OR 3 ) 4 is performed by a well-known method, that is, in a mixture of a hydrophilic organic solvent containing a basic substance and water. Is performed by adding a tetrafunctional silane compound or the like represented by the above general formula (I).

本工程(A1)で得られる親水性球状シリカ微粒子混合溶媒分散液中のシリカ微粒子の濃度は一般に3〜15質量%であり、好ましくは5〜10質量%である。   The concentration of silica fine particles in the hydrophilic spherical silica fine particle mixed solvent dispersion obtained in this step (A1) is generally 3 to 15% by mass, preferably 5 to 10% by mass.

−工程(A2):3官能性シラン化合物による表面処理工程−
本工程は、工程(A1)において得られた親水性球状シリカ微粒子混合溶媒分散液に、一般式(II):
1Si(OR43 (II)
(但し、R1は置換又は非置換の炭素原子数1〜20の一価炭化水素基、R4は同一又は異種の炭素原子数1〜6の一価炭化水素基である)で示される3官能性シラン化合物、その部分加水分解生成物又はこれらの混合物を添加して親水性球状シリカ微粒子表面をこれにより処理することにより、前記親水性球状シリカ微粒子の表面にR1SiO3/2単位(但し、R1は前記式(II)の定義と同じである。)を導入し、第一の表面疎水化球状シリカ微粒子の混合溶媒分散液を得る工程である。
-Step (A2): Surface treatment step with trifunctional silane compound-
In this step, the hydrophilic spherical silica fine particle mixed solvent dispersion obtained in the step (A1) is added to the general formula (II):
R 1 Si (OR 4 ) 3 (II)
Wherein R 1 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and R 4 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms. By adding a functional silane compound, a partially hydrolyzed product thereof or a mixture thereof and treating the surface of the hydrophilic spherical silica fine particles with this, R 1 SiO 3/2 units ( However, R 1 is the same as the definition of the formula (II).) To obtain a mixed solvent dispersion of the first surface hydrophobized spherical silica fine particles.

本工程(A2)は、後の工程においてシリカ微粒子の凝集を抑制するために不可欠である。凝集を抑制できないと、得られるシリカ系粉体の個々の粒子は一次粒子径を維持できないため、工程(A4)に移行したときに表面の有機樹脂被覆がうまくいかない場合があり、更に表面有機樹脂被覆疎水性球状シリカ微粒子をトナーに添加した時の流動性付与能が悪くなる場合があり好ましくない。   This step (A2) is indispensable for suppressing aggregation of silica fine particles in the subsequent step. If the agglomeration cannot be suppressed, the individual particles of the resulting silica-based powder cannot maintain the primary particle size, so the surface organic resin coating may not work well when the process (A4) is entered, and the surface organic resin coating When the hydrophobic spherical silica fine particles are added to the toner, the fluidity imparting ability may deteriorate, which is not preferable.

上記一般式(II):R1Si(OR43中、R1は、炭素原子数1〜20、好ましくは炭素原子数1〜3、特に好ましくは1〜2の1価炭化水素基である。R1で表される1価炭化水素基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基、ヘキシル基等のアルキル基等が挙げられ、好ましくは、メチル基、エチル基、n−プロピル基、イソプロピル基、特に好ましくは、メチル基、エチル基が挙げられる。また、これらの1価炭化水素基の水素原子の一部又は全部が、フッ素原子、塩素原子、臭素原子等のハロゲン原子、好ましくはフッ素原子で置換されていてもよい。 In the above general formula (II): R 1 Si (OR 4 ) 3 , R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 3 carbon atoms, particularly preferably 1 to 2 carbon atoms. is there. Examples of the monovalent hydrocarbon group represented by R 1 include alkyl groups such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a butyl group, and a hexyl group, preferably a methyl group, An ethyl group, an n-propyl group, and an isopropyl group, particularly preferably a methyl group and an ethyl group are exemplified. Further, some or all of the hydrogen atoms of these monovalent hydrocarbon groups may be substituted with halogen atoms such as fluorine atom, chlorine atom, bromine atom, preferably fluorine atom.

上記一般式(II):R1Si(OR43中、R4は、炭化水素数1〜6、好ましくは炭素原子数1〜3、特に好ましくは1〜2の1価炭化水素基である。R4で表される1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基等のアルキル基等が挙げられ、好ましくは、メチル基、エチル基、プロピル基、特に好ましくは、メチル基、エチル基が挙げられる。 In the general formula (II): R 1 Si (OR 4 ) 3 , R 4 is a monovalent hydrocarbon group having 1 to 6 hydrocarbons, preferably 1 to 3 carbon atoms, particularly preferably 1 to 2 carbon atoms. is there. Examples of the monovalent hydrocarbon group represented by R 4 include alkyl groups such as a methyl group, an ethyl group, a propyl group, and a butyl group, preferably a methyl group, an ethyl group, and a propyl group, and particularly preferably Includes a methyl group and an ethyl group.

上記一般式(II):R1Si(OR43で示される3官能性シラン化合物としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ヘキシルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン等のトリアルコキシシラン等が挙げられ、好ましくは、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、より好ましくは、メチルトリメトキシシラン、メチルトリエトキシシラン、又は、これらの部分加水分解縮合生成物が挙げられる。 Examples of the trifunctional silane compound represented by the general formula (II): R 1 Si (OR 4 ) 3 include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n- Propyltrimethoxysilane, n-propyltriethoxysilane, isopropyltrimethoxysilane, isopropyltriethoxysilane, butyltrimethoxysilane, butyltriethoxysilane, hexyltrimethoxysilane, trifluoropropyltrimethoxysilane, heptadecafluorodecyltrimethoxy Trialkoxysilanes such as silane, etc., preferably methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, more preferably methyltrimethoxy Shishiran, methyltriethoxysilane, or their partially hydrolyzed condensation products thereof.

上記一般式(II):R1Si(OR43で示される3官能性シラン化合物の添加量は、使用された親水性球状シリカ微粒子のSi原子1モル当り0.001〜1モルが好ましく、特に0.01〜0.1モル、更に0.01〜0.05モルが好ましい。添加量が0.01モル以上であれば、分散性が良いのでトナー外添加剤として使用した際の流動性が良くなり好ましい。また1モル以下であれば、シリカ微粒子の凝集が生じることもなく好ましい。 The addition amount of the trifunctional silane compound represented by the above general formula (II): R 1 Si (OR 4 ) 3 is preferably 0.001 to 1 mole per mole of Si atoms of the used hydrophilic spherical silica fine particles. In particular, 0.01 to 0.1 mol, more preferably 0.01 to 0.05 mol is preferable. An addition amount of 0.01 mol or more is preferable because the dispersibility is good and the fluidity when used as an additive outside the toner is improved. Moreover, if it is 1 mol or less, it is preferable, without agglomeration of a silica particle.

本工程(A2)で得られる第一の表面疎水化球状シリカ微粒子の混合溶媒分散液中の該シリカ微粒子の濃度は通常3質量%以上15質量%未満である。   The concentration of the silica fine particles in the mixed solvent dispersion of the first surface-hydrophobized spherical silica fine particles obtained in this step (A2) is usually 3% by mass or more and less than 15% by mass.

次の工程(A3)において表面処理剤として使用される一般式(III)で表されるシラザン化合物および一般式(IV)で表される一官能性シラン化合物が、アルコールや水と反応して表面処理が不十分となり、その後に乾燥を行う時に凝集を生じ、得られるシリカ粉体は一次粒子径を維持できず、工程(A4)に移行したときに表面の有機樹脂被覆がうまくいかない場合があったり、更に表面有機樹脂被覆疎水性球状シリカ微粒子をトナーに添加した時の流動性付与能が悪くなるといった不具合を抑制するために、工程(A2)の後に濃縮工程を設けることが好ましい。   The silazane compound represented by the general formula (III) and the monofunctional silane compound represented by the general formula (IV) used as a surface treating agent in the next step (A3) react with alcohol or water to produce a surface. Insufficient treatment and subsequent aggregation may cause agglomeration, and the resulting silica powder may not be able to maintain the primary particle size, and the surface may not be covered with the organic resin when transferred to step (A4). Further, in order to suppress the problem that the fluidity imparting ability deteriorates when the surface organic resin-coated hydrophobic spherical silica fine particles are added to the toner, it is preferable to provide a concentration step after the step (A2).

濃縮工程は、上記工程(A2)で得られた第一の表面疎水化球状シリカ微粒子混合溶媒分散液から親水性有機溶媒と水の一部を除去することにより第一の表面疎水化球状シリカ微粒子の混合溶媒濃縮分散液を得る工程である。この際、疎水性有機溶媒をあらかじめ、或いは工程中に加えてもよい。使用する疎水性溶媒は、炭化水素系、ケトン系溶媒が好ましい。具体的には、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン等が挙げられ、好ましくはメチルイソブチルケトンが好ましい。親水性有機溶媒と水の一部を除去する方法としては、例えば留去、減圧留去などが挙げられる。得られる濃縮分散液はシリカ微粒子濃度が15〜40質量%のものが好ましく、20〜35質量%のものがでがより好ましく、25〜30質量%のものが特に好ましい。この濃度が15質量%以上であれば、後工程の表面処理がうまくゆき、40質量%以下であればシリカ微粒子の凝集が生じることもなく好都合である。   In the concentration step, the first surface hydrophobized spherical silica fine particles are removed by removing a part of the hydrophilic organic solvent and water from the first surface hydrophobized spherical silica fine particle mixed solvent dispersion obtained in the step (A2). Is a step of obtaining a concentrated dispersion liquid of At this time, a hydrophobic organic solvent may be added in advance or in the process. The hydrophobic solvent used is preferably a hydrocarbon solvent or a ketone solvent. Specific examples include toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, and the like, preferably methyl isobutyl ketone. Examples of the method for removing a part of the hydrophilic organic solvent and water include distillation and distillation under reduced pressure. The obtained concentrated dispersion has a silica fine particle concentration of preferably 15 to 40% by mass, more preferably 20 to 35% by mass, and particularly preferably 25 to 30% by mass. If the concentration is 15% by mass or more, the surface treatment in the subsequent process is successful, and if it is 40% by mass or less, the silica fine particles are not agglomerated, which is convenient.

−工程(A3):1官能性シラン化合物による表面処理工程−
工程(A2)で得られた第一の表面疎水化球状シリカ微粒子の混合溶媒(濃縮)分散液に、下記一般式(III):
2 3SiNHSiR2 3 (III)
(但し、R2は同一又は異種の置換又は非置換の炭素原子数1〜6の一価炭化水素基である)で示されるシラザン化合物、又は下記一般式(IV):
2 3SiX (IV)
(但し、R2は同一又は異種の置換又は非置換の炭素原子数1〜6の一価炭化水素基であり、XはOH基又は加水分解性基である。)
で示される1官能性シラン化合物又はこれらの混合物を添加し、これにより前記第一の表面疎水化球状シリカ微粒子表面を処理して前記第一の表面疎水化球状シリカ微粒子の表面にR2 3SiO1/2単位(但し、R2は前記と同じである。)を導入して第二の表面疎水性球状シリカ微粒子を得る。この工程では、上記の処理により第一の表面疎水化球状シリカ微粒子の表面に残存するシラノール基をトリオルガノシリル化する形でR2 3SiO1/2単位が該表面に導入される。この工程で表面の疎水性を高めておくことで、工程A4での表面有機樹脂被覆をしやすくなるため、この工程は必須である。この工程がないと表面が親水性のシラノールにより、有機樹脂被覆は疎水性表面に比べて悪くなるため好ましくない。
-Step (A3): Surface treatment step with a functional silane compound-
In the mixed solvent (concentrated) dispersion of the first surface-hydrophobized spherical silica fine particles obtained in the step (A2), the following general formula (III):
R 2 3 SiNHSiR 2 3 (III)
(Wherein R 2 is the same or different substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms), or the following general formula (IV):
R 2 3 SiX (IV)
(Wherein R 2 is the same or different substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms, and X is an OH group or a hydrolyzable group.)
A monofunctional silane compound represented by formula (1) or a mixture thereof is added, whereby the surface of the first surface hydrophobized spherical silica fine particles is treated to form R 2 3 SiO on the surface of the first surface hydrophobized spherical silica fine particles. 1/2 unit (wherein R 2 is the same as described above) is introduced to obtain second surface hydrophobic spherical silica fine particles. In this step, R 2 3 SiO 1/2 units are introduced to the surface in the form of triorganosilylation of the silanol groups remaining on the surface of the first surface-hydrophobized spherical silica fine particles by the above treatment. This step is indispensable because the surface hydrophobicity in the step A4 is facilitated by increasing the surface hydrophobicity in this step. Without this step, the organic resin coating becomes worse than the hydrophobic surface due to the silanol having a hydrophilic surface, which is not preferable.

上記一般式(III):R2 3SiNHSiR2 3および(IV):R2 3SiX中、R2は、炭素原子数1〜6の一価炭化水素基であるが、炭素原子数1〜4、特に1〜2の1価炭化水素基が好ましい。R2で表される1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基等のアルキル基等、好ましくは、メチル基、エチル基、プロピル基、特に好ましくは、メチル基、エチル基が挙げられる。また、これらの1価炭化水素基の水素原子の一部又は全部が、フッ素原子、塩素原子、臭素原子等のハロゲン原子、好ましくは、フッ素原子で置換されていてもよい。 In the general formula (III): R 2 3 SiNHSiR 2 3 and (IV): R 2 3 SiX, R 2 is a monovalent hydrocarbon group having 1 to 6 carbon atoms, but 1 to 4 carbon atoms. In particular, a monovalent hydrocarbon group of 1 to 2 is preferable. The monovalent hydrocarbon group represented by R 2 is, for example, an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, or a butyl group, preferably a methyl group, an ethyl group, or a propyl group. Includes a methyl group and an ethyl group. Further, some or all of the hydrogen atoms of these monovalent hydrocarbon groups may be substituted with halogen atoms such as fluorine atom, chlorine atom, bromine atom, preferably fluorine atom.

上記一般式(IV):R2 3SiX中のXで表される加水分解性基としては、例えば、塩素原子、アルコキシ基、アミノ基、アシルオキシ基等が挙げられ、好ましくは、アルコキシ基、アミノ基、特に好ましくは、アルコキシ基が挙げられる。 Examples of the hydrolyzable group represented by X in the general formula (IV): R 2 3 SiX include a chlorine atom, an alkoxy group, an amino group, an acyloxy group, and the like, preferably an alkoxy group, an amino group, and the like. A group, particularly preferably an alkoxy group.

上記一般式(III):R2 3SiNHSiR2 3で示されるシラザン化合物としては、例えば、ヘキサメチルジシラザン、ヘキサエチルジシラザン等が挙げられ、好ましくはヘキサメチルジシラザンが挙げられる。上記一般式(IV):R2 3SiXで示される1官能性シラン化合物としては、例えば、トリメチルシラノール、トリエチルシラノール等のモノシラノール化合物、トリメチルクロロシラン、トリエチルクロロシラン等のモノクロロシラン、トリメチルメトキシシラン、トリメチルエトキシシラン等のモノアルコキシシラン、トリメチルシリルジメチルアミン、トリメチルシリルジエチルアミン等のモノアミノシラン、トリメチルアセトキシシラン等のモノアシルオキシシランが挙げられ、好ましくは、トリメチルシラノール、トリメチルメトキシシラン、トリメチルシリルジエチルアミン、特に好ましくは、トリメチルシラノール、トリメチルメトキシシランが挙げられる。 Examples of the silazane compound represented by the general formula (III): R 2 3 SiNHSiR 2 3 include hexamethyldisilazane and hexaethyldisilazane, and preferably hexamethyldisilazane. Examples of the monofunctional silane compound represented by the general formula (IV): R 2 3 SiX include monosilanol compounds such as trimethylsilanol and triethylsilanol, monochlorosilanes such as trimethylchlorosilane and triethylchlorosilane, trimethylmethoxysilane, and trimethyl. Examples include monoalkoxysilanes such as ethoxysilane, monoaminosilanes such as trimethylsilyldimethylamine and trimethylsilyldiethylamine, and monoacyloxysilanes such as trimethylacetoxysilane, preferably trimethylsilanol, trimethylmethoxysilane, trimethylsilyldiethylamine, particularly preferably trimethylsilanol. And trimethylmethoxysilane.

上記シラザン化合物及び/又は1官能性シラン化合物の使用量は、使用した親水性球状シリカ微粒子のSi原子1モルに対して0.1〜0.5モルが好ましく、特に0.2〜0.4モル、更に0.25〜0.35モルが好ましい。使用量が0.1モル以上であれば、トナー外添加剤として使用した際の流動性が良好であり好ましい。また0.5モル以下であれば経済的に有利であり好ましい。   The amount of the silazane compound and / or monofunctional silane compound used is preferably 0.1 to 0.5 mol, particularly 0.2 to 0.4, relative to 1 mol of Si atoms in the used hydrophilic spherical silica fine particles. Mol, more preferably 0.25 to 0.35 mol. If the amount used is 0.1 mol or more, the fluidity when used as an additive outside the toner is good, which is preferable. Moreover, if it is 0.5 mol or less, it is economically advantageous and preferable.

本工程により得られる表面疎水性球状シリカ微粒子は、分散液のまま次の工程(A4)移行してもよいし、ここで一旦常圧乾燥、減圧乾燥等の常法によって粉体として得た後、再度溶剤に分散させて工程(A4)移行してもよい。   The surface hydrophobic spherical silica fine particles obtained in this step may be transferred to the next step (A4) as a dispersion, or once obtained as a powder by a conventional method such as normal pressure drying or reduced pressure drying. , It may be dispersed again in the solvent and transferred to step (A4).

−工程(A4):有機樹脂による表面被覆処理工程−
工程(A3)で得られた第二の疎水性球状シリカ微粒子の分散溶液はそのまま本工程に用いることができる。一方、第二の疎水性球状シリカ微粒子を一旦乾燥させて乾燥粉体にしたものは、再度溶媒に分散させた分散溶液とする。この時に第二の疎水性球状シリカ微粒子を分散させる溶剤としては、使用する樹脂が可溶なものであればよく、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶剤、各種脂肪族炭化水素やトルエン、キシレンなどの芳香族炭化水素およびそれらの誘導体、各種アルコール、エステル系溶媒、THF(テトラヒドロフラン)などの環状エーテルなど、各種の有機溶媒が挙げられる。
-Step (A4): Surface coating treatment step with organic resin-
The dispersion solution of the second hydrophobic spherical silica fine particles obtained in the step (A3) can be used in this step as it is. On the other hand, the second hydrophobic spherical silica fine particles once dried to form a dry powder are used as a dispersion solution again dispersed in a solvent. As the solvent for dispersing the second hydrophobic spherical silica fine particles at this time, it is sufficient that the resin to be used is soluble. For example, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and various aliphatic hydrocarbons. And various organic solvents such as aromatic hydrocarbons such as toluene and xylene and derivatives thereof, various alcohols, ester solvents, and cyclic ethers such as THF (tetrahydrofuran).

表面に被覆する有機樹脂としては、ガラス転移温度が65〜120℃の有機樹脂である。このガラス転移温度が65℃未満のものは高温高湿下でのトナーの保管性が悪化する場合があり好ましくない。一方、ガラス転移温度が120℃を超えるものは、定着時に阻害要素、すなわち、軟化するのに必要な熱量が多くなることから、トナーへ付与されるべき熱量が奪われることとなり、好ましくない。   The organic resin to be coated on the surface is an organic resin having a glass transition temperature of 65 to 120 ° C. Those having a glass transition temperature of less than 65 ° C. are not preferable because the storage stability of the toner under high temperature and high humidity may deteriorate. On the other hand, those having a glass transition temperature exceeding 120 ° C. are not preferable because the amount of heat to be imparted to the toner is deprived because the amount of heat necessary for softening is increased during the fixing process.

ここで用いられる有機樹脂は、トナー用のスチレン−アクリル樹脂やポリエステル樹脂のほか、ポリスチレン樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、フッ化ビニリデン樹脂やその他のフッ素系樹脂、溶剤可溶性ナイロン樹脂、ブチラール樹脂、フェノキシ樹脂、ポリカーボネート樹脂などが挙げられる。この内、特に好ましいものはスチレン−アクリル樹脂やポリエステル樹脂である。   Organic resins used here include styrene-acrylic resins and polyester resins for toner, polystyrene resins, vinyl chloride resins, vinylidene chloride resins, vinylidene fluoride resins and other fluorine resins, solvent-soluble nylon resins, butyral resins , Phenoxy resin, polycarbonate resin and the like. Of these, styrene-acrylic resins and polyester resins are particularly preferable.

被覆する有機樹脂の量は第二の疎水性球状シリカ微粒子100質量部に対して0.1〜50質量部が好ましい。より好ましくは3〜30質量部である。この量が0.1質量部よりも少ないとトナーへの付着性が低下するため好ましくない。またこの量が50質量部より多いと帯電が悪化したり、乾燥時融着等が起こりやすくなるため好ましくない。   The amount of the organic resin to be coated is preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of the second hydrophobic spherical silica fine particles. More preferably, it is 3-30 mass parts. If the amount is less than 0.1 parts by mass, the adhesion to the toner is lowered, which is not preferable. On the other hand, when the amount is more than 50 parts by mass, charging is deteriorated and fusion during drying is likely to occur.

有機樹脂の被覆は、例えば有機樹脂を有機溶剤に溶解させた有機樹脂溶解溶液を、疎水性球状シリカ微粒子が有機溶剤に分散している分散溶液中に混合し、乾燥することによりシリカ表面に有機樹脂を被覆することができる。上記混合条件としては、反応温度20〜100℃、反応時間1〜8時間行うことが好ましい。更に好ましくは反応温度20〜80℃、反応時間2〜8時間で行う方がより好ましい。   For example, the organic resin coating is performed by mixing an organic resin-dissolved solution obtained by dissolving an organic resin in an organic solvent into a dispersion solution in which hydrophobic spherical silica fine particles are dispersed in an organic solvent, and then drying the organic resin. Resin can be coated. As said mixing conditions, it is preferable to carry out reaction temperature 20-100 degreeC and reaction time 1-8 hours. More preferably, the reaction temperature is 20 to 80 ° C. and the reaction time is 2 to 8 hours.

有機樹脂を被覆後、常法により乾燥することにより、本発明の有機樹脂被覆疎水性球状シリカ微粒子を得ることができる。   After coating the organic resin, the organic resin-coated hydrophobic spherical silica fine particles of the present invention can be obtained by drying by a conventional method.

また、本発明により得られる有機樹脂被覆疎水性球状シリカ微粒子は、必要に応じて種々のシランカップリング剤、ジメチルジメトキシシラン等のシランで表面処理してもよい。   Moreover, the organic resin-coated hydrophobic spherical silica fine particles obtained by the present invention may be surface-treated with various silane coupling agents and silanes such as dimethyldimethoxysilane as necessary.

<有機樹脂被覆疎水性球状シリカ微粒子を用いたトナー外添剤>
本発明の有機樹脂被覆疎水性球状シリカ微粒子又は本発明方法により製造される有機樹脂被覆疎水性球状シリカ微粒子は、トナー外添剤等、特に静電荷像現像用トナー外添剤として好適に用いることができる。該有機樹脂被覆疎水性球状シリカ微粒子を用いたトナー外添剤のトナーに対する配合量は、トナー100質量部に対して、0.01〜20質量部が好ましく、さらに好ましくは0.1〜5重量部である。この配合量が、0.01質量部以上であれば、トナーへの付着量が十分で、トナーの流動性が十分得られるため好ましく、20質量部以下であれば、トナーの帯電性に好影響を及ぼし、経済的にも好ましい。
<External toner additive using hydrophobic spherical silica particles coated with organic resin>
The organic resin-coated hydrophobic spherical silica fine particles of the present invention or the organic resin-coated hydrophobic spherical silica fine particles produced by the method of the present invention are suitably used as a toner external additive, particularly as a toner external additive for developing electrostatic images. Can do. The blending amount of the toner external additive using the organic resin-coated hydrophobic spherical silica fine particles with respect to the toner is preferably 0.01 to 20 parts by weight, more preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the toner. Part. If the blending amount is 0.01 parts by mass or more, it is preferable because the adhesion amount to the toner is sufficient and sufficient fluidity of the toner is obtained, and if it is 20 parts by mass or less, the chargeability of the toner is positively affected. It is economically preferable.

本発明の表有機樹脂被覆疎水性球状シリカ微粒子又は本発明により製造される有機樹脂被覆疎水性球状シリカ微粒子を用いたトナー外添剤が添加されるトナー粒子としては、結着樹脂と着色剤を主成分として構成される公知のものが使用できる。また、必要に応じて帯電制御剤が添加されていてもよい。   As the toner particles to which the external toner additive using the surface organic resin-coated hydrophobic spherical silica fine particles of the present invention or the organic resin-coated hydrophobic spherical silica fine particles produced according to the present invention is added, a binder resin and a colorant are used. A well-known thing comprised as a main component can be used. Moreover, the charge control agent may be added as needed.

本発明の有機樹脂被覆疎水性球状シリカ微粒子又は本発明により製造される有機樹脂被覆疎水性球状シリカ微粒子を用いたトナー外添剤が添加されたトナーは、一成分現像剤として使用できるが、また、それをキャリアと混合して二成分現像剤として使用することもできる。二成分現像剤として使用する場合においては、上記トナー外添剤は予めトナー粒子に添加せず、トナーとキャリアの混合時に添加してトナーの表面被覆を行ってもよい。キャリアとしては、鉄粉等、あるいはそれらの表面に樹脂コーティングされた公知のものが使用される。   The toner to which an organic resin-coated hydrophobic spherical silica fine particle of the present invention or an organic resin-coated hydrophobic spherical silica fine particle produced according to the present invention is added can be used as a one-component developer. It can also be mixed with a carrier and used as a two-component developer. When used as a two-component developer, the toner external additive may not be added to the toner particles in advance, but may be added when the toner and the carrier are mixed to coat the surface of the toner. As the carrier, iron powder or the like, or a known one whose surface is resin-coated is used.

以下、実施例および比較例を示して本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not limited to these Examples.

<有機樹脂(スチレン−アクリル樹脂)合成例1>
撹拌機及び温度計を備えた反応容器に、脱イオン水160質量部、ポリアクリル酸ソーダ水溶液(固形分3.3質量%)0.04質量部、硫酸ナトリウム0.4質量部を仕込み、次いで単量体成分としてスチレン85質量部、ブチルアクリレート15質量部、トリメチロールプロパントリアクリレート0.3質量部、及び重合開始剤としてベンゾイルパーオキサイド2質量部、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート0.5質量部を添加した。内容物を攪拌しながら40℃から130℃まで65分間で昇温し、130℃に到達した後、さらに2時間30分攪拌した後、冷却し、重合体粒子の懸濁液を得た。重合体を分離、洗浄、乾燥し、スチレン−アクリル樹脂Aを得た。このもののガラス転移点は100℃まで昇温した後、DSC(Rigaku製、Thermo plusDSC8230システム)を用い、昇温速度10/minの条件下で測定したショルダー値で計測した。このスチレン−アクリル樹脂Aのガラス転移温度は70℃であった。
<Organic resin (styrene-acrylic resin) synthesis example 1>
In a reaction vessel equipped with a stirrer and a thermometer, 160 parts by mass of deionized water, 0.04 parts by mass of a sodium polyacrylate aqueous solution (solid content: 3.3% by mass), and 0.4 parts by mass of sodium sulfate were charged. 85 parts by mass of styrene as monomer components, 15 parts by mass of butyl acrylate, 0.3 parts by mass of trimethylolpropane triacrylate, and 2 parts by mass of benzoyl peroxide as a polymerization initiator, t-butylperoxy-2-ethylhexyl monocarbonate 0.5 parts by weight were added. While stirring the contents, the temperature was raised from 40 ° C. to 130 ° C. over 65 minutes, and after reaching 130 ° C., the contents were further stirred for 2 hours 30 minutes and then cooled to obtain a suspension of polymer particles. The polymer was separated, washed and dried to obtain styrene-acrylic resin A. The glass transition point of this product was measured with the shoulder value measured under the condition of a temperature increase rate of 10 / min using DSC (manufactured by Rigaku, Thermo plus DSC8230 system) after increasing the temperature to 100 ° C. The glass transition temperature of this styrene-acrylic resin A was 70 ° C.

<有機樹脂(スチレン−アクリル樹脂)合成例2>
上記合成例1のスチレンを98質量部、ブチルアクリレートを2質量部とした以外は同様に合成し、スチレン−アクリル樹脂Bを得た。このもののガラス転移温度は120℃まで昇温した後、DSC(Rigaku製、Thermo plusDSC8230システム)を用い、昇温速度10/minの条件下で測定したショルダー値で計測した。このスチレン−アクリル樹脂Bのガラス転移温度は100℃であった。
<Organic resin (styrene-acrylic resin) synthesis example 2>
A styrene-acrylic resin B was obtained in the same manner except that 98 parts by mass of styrene and 2 parts by mass of butyl acrylate in Synthesis Example 1 were used. The glass transition temperature of this product was raised to 120 ° C., and then measured with a shoulder value measured using DSC (Rigaku, Thermo plus DSC 8230 system) under a temperature raising rate of 10 / min. The glass transition temperature of this styrene-acrylic resin B was 100 ° C.

<実施例1>
[有機樹脂被覆疎水性球状シリカ微粒子の合成]
−工程(A1):親水性球状シリカ微粒子の合成工程−
攪拌機と、滴下ロートと、温度計とを備えた3リットルのガラス製反応器にメタノール989.5gと、水135.5gと、28%アンモニア水66.5gとを入れて混合した。この溶液を35℃となるように調整し、攪拌しながらテトラメトキシシラン436.5g(2.87モル)を6時間かけて滴下した。この滴下が終了した後も、さらに0.5時間攪拌を継続して加水分解を行うことにより、親水性球状シリカ微粒子の懸濁液を得た。
<Example 1>
[Synthesis of organic resin-coated hydrophobic spherical silica fine particles]
-Step (A1): Step of synthesizing hydrophilic spherical silica fine particles-
In a 3 liter glass reactor equipped with a stirrer, a dropping funnel, and a thermometer, 989.5 g of methanol, 135.5 g of water, and 66.5 g of 28% aqueous ammonia were mixed. This solution was adjusted to 35 ° C., and 436.5 g (2.87 mol) of tetramethoxysilane was added dropwise over 6 hours while stirring. Even after the completion of the dropwise addition, the suspension was further stirred for 0.5 hours for hydrolysis to obtain a suspension of hydrophilic spherical silica fine particles.

−工程(A2):3官能性シラン化合物による表面処理工程−
上記で得られた懸濁液に室温でメチルトリメトキシシラン4.4g(0.03モル)を0.5時間かけて滴下し、滴下後も12時間攪拌を継続し、シリカ微粒子表面を疎水化処理することにより、疎水化球状シリカ微粒子分散液を得た。
-Step (A2): Surface treatment step with trifunctional silane compound-
To the suspension obtained above, 4.4 g (0.03 mol) of methyltrimethoxysilane was added dropwise at room temperature over 0.5 hours, and stirring was continued for 12 hours after the addition to hydrophobize the silica fine particle surface. By processing, a hydrophobized spherical silica fine particle dispersion was obtained.

次いで、ガラス製反応器にエステルアダプターと冷却管とを取り付け、得られた分散液を60〜70℃に加熱してメタノールと水の混合物1021gを留去し、疎水化球状シリカ微粒子混合溶媒濃縮分散液を得た。このとき、濃縮分散液中の疎水化球状シリカ微粒子含有量は28質量%であった。   Next, an ester adapter and a condenser tube are attached to a glass reactor, and the resulting dispersion is heated to 60 to 70 ° C. to distill off a mixture of methanol and water, and the concentrated dispersion of hydrophobic spherical silica fine particles is dispersed. A liquid was obtained. At this time, the content of hydrophobized spherical silica fine particles in the concentrated dispersion was 28% by mass.

−工程(A3):1官能性シラン化合物による表面処理工程−
前工程で得られた濃縮分散液に、室温において、ヘキサメチルジシラザン138.4g(0.86モル)を添加した後、この分散液を50〜60℃に加熱し、9時間反応させることにより、分散液中のシリカ微粒子をトリメチルシリル化した。次いで、この分散液中の溶媒を130℃、減圧下(6650Pa)で留去することにより、疎水性球状シリカ微粒子(1)186gを得た。
-Step (A3): Surface treatment step with a functional silane compound-
By adding 138.4 g (0.86 mol) of hexamethyldisilazane to the concentrated dispersion obtained in the previous step at room temperature, the dispersion is heated to 50-60 ° C. and reacted for 9 hours. The silica fine particles in the dispersion were trimethylsilylated. Next, the solvent in this dispersion was distilled off at 130 ° C. under reduced pressure (6650 Pa) to obtain 186 g of hydrophobic spherical silica fine particles (1).

−工程(A4):有機樹脂による表面被覆処理工程−
次に、ニーダー中にTHF(テトラヒドロフラン)25g投入して攪拌しながら、上記(A3)で得られた疎水性球状シリカ微粒子(1)100gを加えて混合した。この混合物を混練しながら、スチレン−アクリル樹脂Aの10質量%THFを50g滴下し、さらに混合した。その後乾燥させて、シリカ微粒子−(1)を103gを得た。
-Step (A4): Surface coating treatment step with organic resin-
Next, 25 g of THF (tetrahydrofuran) was added to the kneader and 100 g of the hydrophobic spherical silica fine particles (1) obtained in the above (A3) were added and mixed while stirring. While kneading this mixture, 50 g of 10% by mass THF of styrene-acrylic resin A was added dropwise and further mixed. Thereafter, drying was performed to obtain 103 g of silica fine particles- (1).

工程(A1)で得られた親水性球状シリカ微粒子について下記の測定方法1に従って測定を行った。また、上記の工程(A1)〜(A4)の各段階を経て得られた有機樹脂被覆疎水性球状シリカ微粒子について、下記の測定方法1、2に従って測定を行った。なお、得られた結果を表1に示す。   The hydrophilic spherical silica fine particles obtained in the step (A1) were measured according to the following measuring method 1. Further, the organic resin-coated hydrophobic spherical silica fine particles obtained through the respective steps (A1) to (A4) were measured according to the following measurement methods 1 and 2. The obtained results are shown in Table 1.

[測定方法1]
−シリカ微粒子の粒子径測定−
メタノールにシリカ微粒子懸濁液又はシリカ微粒子粉体を、シリカ微粒子が0.5質量%となるように添加し、10分間超音波にかけることにより、該微粒子を分散させた。このように処理した微粒子の粒度分布を、動的光散乱法/レーザードップラー法ナノトラック粒度分布測定装置(日機装株式会社製、商品名:UPA−EX150)により測定し、その体積基準メジアン径を粒子径とした。なお、メジアン径とは粒度分布を累積分布として表した時の累積50%に相当する粒子径である。
[Measurement method 1]
-Particle size measurement of silica fine particles-
Silica fine particle suspension or silica fine particle powder was added to methanol so that the silica fine particle was 0.5 mass%, and the fine particles were dispersed by applying ultrasonic waves for 10 minutes. The particle size distribution of the fine particles treated in this way is measured with a dynamic light scattering method / laser Doppler nanotrack particle size distribution measuring device (trade name: UPA-EX150, manufactured by Nikkiso Co., Ltd.), and the volume-based median diameter is measured as particles. The diameter. The median diameter is a particle diameter corresponding to 50% cumulative when the particle size distribution is expressed as a cumulative distribution.

[測定方法2]
−有機樹脂被覆疎水性球状シリカ微粒子の形状測定−
電子顕微鏡(日立製作所製、商品名:S−4700型、倍率:10万倍)によって観察を行い、形状を確認した。「球状」とは、真球だけでなく、若干歪んだ球も含む。
[Measurement method 2]
-Shape measurement of organic resin-coated hydrophobic spherical silica particles-
The shape was confirmed by observation with an electron microscope (manufactured by Hitachi, trade name: S-4700 type, magnification: 100,000 times). The term “spherical” includes not only a true sphere but also a slightly distorted sphere.

<実施例2>
工程(A1)でメタノール、水、及び28%アンモニア水の量をメタノール1045.7g、水112.6g、28%アンモニア水33.2gに変えたこと以外は実施例1と同様にして、シリカ微粒子−(2)104gを得た。得られた有機樹脂被覆疎水性球状シリカ微粒子を用いて実施例1と同様に測定した。この結果を表1に示す。
<Example 2>
Silica fine particles in the same manner as in Example 1 except that the amounts of methanol, water, and 28% ammonia water were changed to 1045.7 g of methanol, 112.6 g of water, and 33.2 g of 28% ammonia water in step (A1). -104 g of (2) was obtained. Measurement was performed in the same manner as in Example 1 using the obtained organic resin-coated hydrophobic spherical silica fine particles. The results are shown in Table 1.

<実施例3>
撹拌機、滴下ロート、温度計を備えた3リットルのガラス製反応器にメタノール623.7g、水41.4g、28%アンモニア水49.8gを添加して混合した。この溶液を35℃に調整し、撹拌しながらテトラメトキシシラン1163.7gおよび5.4%アンモニア水418.1gを同時に添加開始し、前者は6時間、そして後者は4時間かけて滴
下した。テトラメトキシシラン滴下後も0.5時間撹拌を続け加水分解を行いシリカ微粒子の懸濁液を得た。
<Example 3>
623.7 g of methanol, 41.4 g of water, and 49.8 g of 28% aqueous ammonia were added to and mixed with a 3 liter glass reactor equipped with a stirrer, a dropping funnel and a thermometer. The solution was adjusted to 35 ° C., and 1163.7 g of tetramethoxysilane and 418.1 g of 5.4% aqueous ammonia were simultaneously added with stirring. The former was added dropwise over 6 hours and the latter over 4 hours. After the tetramethoxysilane was dropped, the mixture was stirred for 0.5 hours for hydrolysis to obtain a silica fine particle suspension.

こうして得られた懸濁液に室温でメチルトリメトキシシラン11.6g(テトラメトキシシランに対してモル比で0.01相当量)を0.5時間かけて滴下し、滴下後も12時間撹拌しシリカ微粒子表面の処理を行った。   To the suspension thus obtained, 11.6 g of methyltrimethoxysilane (molar ratio of 0.01 equivalent to tetramethoxysilane) was added dropwise at room temperature over 0.5 hours and stirred for 12 hours after the addition. The surface of silica fine particles was treated.

該ガラス製反応器にエステルアダプターと冷却管を取り付け、上記の表面処理を施したシリカ微粒子を含む分散液にメチルイソブチルケトン1440gを添加した後、80〜110℃に加熱しメタノール水を7時間かけて留去した。   An ester adapter and a condenser tube were attached to the glass reactor, and 1440 g of methyl isobutyl ketone was added to the dispersion containing silica fine particles subjected to the above surface treatment, and then heated to 80 to 110 ° C. and methanol water was added for 7 hours. Distilled off.

こうして得られた分散液に室温でヘキサメチルジシラザン357.6gを添加し120℃に加熱し3時間反応させ、シリカ微粒子をトリメチルシリル化した。その後溶媒を減圧下で留去して疎水性球状シリカ微粒子472gを得た。得られたシリカ微粒子100gを実施例1と同様にスチレン−アクリル樹脂Aの10質量%THFを50g滴下し、さらに混合した。その後乾燥させて、シリカ微粒子−(3)を得た。結果を表1に示す。   To the dispersion thus obtained, 357.6 g of hexamethyldisilazane was added at room temperature, heated to 120 ° C. and reacted for 3 hours to trimethylsilylate the silica fine particles. Thereafter, the solvent was distilled off under reduced pressure to obtain 472 g of hydrophobic spherical silica fine particles. 50 g of 10 mass% THF of styrene-acrylic resin A was added dropwise to 100 g of the obtained silica fine particles in the same manner as in Example 1, and further mixed. Thereafter, drying was performed to obtain silica fine particles- (3). The results are shown in Table 1.

<実施例4>
スチレン−アクリル樹脂Aの10質量%THFを150gとした以外は、実施例3と同様に処理し、シリカ微粒子−(4)104gを得た。得られた有機樹脂被覆疎水性球状シリカ微粒子を用いて実施例1と同様に測定した。この結果を表1に示す。
<Example 4>
The same treatment as in Example 3 was conducted except that 10 g of THF of styrene-acrylic resin A was changed to 150 g, to obtain 104 g of silica fine particles (4). Measurement was performed in the same manner as in Example 1 using the obtained organic resin-coated hydrophobic spherical silica fine particles. The results are shown in Table 1.

<実施例5>
ガラス転移温度が100℃のスチレン−アクリル樹脂Bの10質量%THFを50g用いた以外は、実施例3と同様に処理し、シリカ微粒子−(5)103gを得た。得られた有機樹脂被覆疎水性球状シリカ微粒子を用いて実施例1と同様に測定した。この結果を表1に示す。
<Example 5>
The same treatment as in Example 3 was carried out except that 50 g of 10% by mass of styrene-acrylic resin B having a glass transition temperature of 100 ° C. was used to obtain 103 g of silica fine particles (5). Measurement was performed in the same manner as in Example 1 using the obtained organic resin-coated hydrophobic spherical silica fine particles. The results are shown in Table 1.

<比較例1〜6>
実施例1〜3の有機樹脂被覆工程(A4)を行わず、(A3)工程で仕上げた疎水性球状シリカ粒子−(6)〜(8)を得た。更に実施例1〜3の(A3)工程を行わずに仕上げた有機樹脂被覆シリカ粒子(9)〜(11)を得た。
<Comparative Examples 1-6>
Hydrophobic spherical silica particles (6) to (8) finished in the step (A3) were obtained without performing the organic resin coating step (A4) in Examples 1 to 3. Furthermore, the organic resin-coated silica particles (9) to (11) finished without performing the step (A3) of Examples 1 to 3 were obtained.

<注>
1)工程(A1)で得られた分散液の親水性球状シリカ微粒子
2)最終的に得られた有機樹脂被覆疎水性球状シリカ微粒子
<Note>
1) Hydrophilic spherical silica fine particles of dispersion obtained in step (A1) 2) Finally obtained organic resin-coated hydrophobic spherical silica fine particles

上記表に示すように、本発明方法によれば、有機樹脂被覆を行っても、元々のシリカ微粒子由来の形状を保つことが分かり、また、粒度分布を悪くすることはなかった。   As shown in the above table, according to the method of the present invention, it was found that even when organic resin coating was performed, the original shape derived from silica fine particles was maintained, and the particle size distribution was not deteriorated.

<トナー帯電量、外添剤遊離率>
上記得られた実施例1〜5、比較例1〜6[シリカ微粒子(1)〜(11)]の有機樹脂被覆シリカ粒子のトナー帯電量、外添剤遊離率の測定を以下のように行った。
<Toner charge amount, external additive release rate>
The toner charge amount and external additive release rate of the organic resin-coated silica particles of Examples 1 to 5 and Comparative Examples 1 to 6 [Silica fine particles (1) to (11)] obtained above were measured as follows. It was.

(トナー帯電量の測定方法)
シリカ微粒子0.4gと負帯電性トナー(8μm)40gとをミキサーにて攪拌混合してトナー組成物2gとし、これとフェライトキャリア48gとをポリプロピレン容器(100ml容量)に入れ、25℃/50%RH環境下(NN環境下)に24時間放置する。24時間放置したトナー組成物とフェライトキャリアの混合物をそれぞれターブラミキサーで10分振とうする。このトナー組成物とフェライトキャリアの混合物から0.2g採取し、ブローオフ帯電量測定装置(東芝ケミカル社製品:TB−200型)で1分間窒素ブローした後の値をトナー組成物の帯電量とする。その結果を表2に示す。
また、その後それぞれターブラミキサーで更に20分振とうする。トータル30分振とう後の帯電量も表2に示す。
(Measurement method of toner charge)
0.4 g of silica fine particles and 40 g of negatively chargeable toner (8 μm) are stirred and mixed with a mixer to obtain 2 g of a toner composition. This and 48 g of ferrite carrier are placed in a polypropylene container (100 ml capacity) and 25 ° C./50%. Leave in an RH environment (NN environment) for 24 hours. The mixture of the toner composition and the ferrite carrier left for 24 hours is each shaken with a turbula mixer for 10 minutes. The amount obtained by taking 0.2 g from the toner composition and ferrite carrier mixture and blowing with nitrogen for 1 minute with a blow-off charge measuring device (product of Toshiba Chemical Co., Ltd .: Model TB-200) is taken as the charge amount of the toner composition. . The results are shown in Table 2.
After that, shake for another 20 minutes with a tumbler mixer. The charge amount after shaking for 30 minutes is also shown in Table 2.

(外添剤遊離率)
上記で得られた各トナー組成物におけるトナー粒子からのシリカ微粒子の離脱率D
を以下にしたがって測定した。トナー組成物2gに対し、界面活性剤(重合度10のポリオキシエチレンオクチルフェニルエーテル)0.2wt%水溶液を充分に浸漬させ、超音波式ホモジナイザー(US1200T;日本精機製作所社製)を用いて、その分散液中に超音波振動子を浸し、周波数15KHz、出力40Wで1分間超音波振動させることにより、トナー粒子表面から表面に付着させた微粒子外添剤を離脱させた。その後、分散液をデカンテーション(静置)により上澄み液と沈殿物(トナー)に分離し、離脱した添加剤粒子が含まれる上澄み液を除去した。沈殿物(トナー)を純水で穏やかに洗浄し、乾燥させた。乾燥したトナーを蛍光X線分析にかけ、トナー粒子表面に残存するシリカ微粒子の定量を行い、トナー粒子に添加されたシリカ微粒の重量に対し、離脱したシリカ微粒子の重量の比率(重量比)を離脱率Dとして算出し、下記のように判断した。その結果も表2に示す。
〔評価基準〕
○:離脱率Dの値が、20%以下
△:離脱率Dの値が、21%〜45%
×:離脱率Dの値が、46%以上
(External additive release rate)
Separation rate D of silica fine particles from toner particles in each toner composition obtained above
Was measured according to the following. A surfactant (polyoxyethylene octylphenyl ether having a polymerization degree of 10) in an amount of 0.2 wt% is sufficiently immersed in 2 g of the toner composition, and an ultrasonic homogenizer (US1200T; manufactured by Nippon Seiki Seisakusho Co., Ltd.) is used. An ultrasonic vibrator was immersed in the dispersion and subjected to ultrasonic vibration for 1 minute at a frequency of 15 KHz and an output of 40 W, whereby the fine particle external additive adhered to the surface was separated from the surface of the toner particles. Thereafter, the dispersion was separated into a supernatant and a precipitate (toner) by decantation (standing), and the supernatant containing the detached additive particles was removed. The precipitate (toner) was gently washed with pure water and dried. The dried toner is subjected to fluorescent X-ray analysis to determine the amount of silica particles remaining on the toner particle surface, and the ratio of the weight of the separated silica particles to the weight of the silica particles added to the toner particles is removed. It was calculated as a rate D and judged as follows. The results are also shown in Table 2.
〔Evaluation criteria〕
○: The value of the separation rate D is 20% or less. Δ: The value of the separation rate D is 21% to 45%.
X: The value of the withdrawal rate D is 46% or more

表2より、本発明の製造方法により製造された表面有機樹脂被覆疎水性球状シリカ微粒子(実施例1〜5)は、本発明の製造方法により製造されたものではない表面疎水化球状シリカ微粒子(比較例1〜6)と比べて帯電安定性つまり、高分散性、付着性が強いこと、また遊離率も少ないことが明らかとなった。   From Table 2, the surface organic resin-coated hydrophobic spherical silica fine particles (Examples 1 to 5) produced by the production method of the present invention were not produced by the production method of the present invention. As compared with Comparative Examples 1 to 6), it was revealed that the charging stability, that is, the high dispersibility and adhesion are strong, and the liberation rate is small.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Claims (5)

1次粒子の平均粒子径が体積基準メジアン径で0.01〜5μmであり、表面の少なくとも一部がガラス転移温度が65〜120℃である有機樹脂被膜で被覆された、表面有機樹脂被覆疎水性球状シリカ微粒子。   Surface organic resin-coated hydrophobic, in which the average particle diameter of primary particles is 0.01-5 μm in volume-based median diameter, and at least a part of the surface is coated with an organic resin film having a glass transition temperature of 65-120 ° C. Spherical silica fine particles. (A1)下記一般式(I):
Si(OR34 (I)
(但し、R3は同一又は異種の炭素原子数1〜6の一価炭化水素基である。)
で示される4官能性シラン化合物、その部分加水分解生成物又はこれらの混合物を、塩基性物質の存在下で親水性有機溶媒と水の混合液中で加水分解、縮合することによって、SiO2単位を含む親水性球状シリカ微粒子の混合溶媒分散液を得る工程と、
(A2)該親水性球状シリカ微粒子の混合溶媒分散液に、下記一般式(II):
1Si(OR43 (II)
(但し、R1は置換又は非置換の炭素原子数1〜20の一価炭化水素基であり、R4は同一又は異種の炭素原子数1〜6の一価炭化水素基である。)
で示される3官能性シラン化合物、その部分加水分解生成物又はこれらの混合物を添加して、前記親水性球状シリカ微粒子の表面を処理することにより、該親水性球状シリカ微粒子の表面にR1SiO3/2単位(但し、R1は前記と同じである。)を導入し、第一の表面疎水化球状シリカ微粒子の混合溶媒分散液を得る工程と、
(A3)該第一の表面疎水化球状シリカ微粒子の混合溶媒分散液又はその濃縮液に下記一般式(III):
2 3SiNHSiR2 3 (III)
(但し、R2は同一又は異種の置換又は非置換の炭素原子数1〜6の一価炭化水素基である)
で示されるシラザン化合物、
下記一般式(IV):
2 3SiX (IV)
(但し、R2は同一又は異種の置換又は非置換の炭素原子数1〜6の一価炭化水素基であり、XはOH基又は加水分解性基である。)
で示される1官能性シラン化合物又はこれらの混合物を添加し、該第一の表面疎水化球状シリカ微粒子の表面を処理して、該第一の表面疎水化球状シリカ微粒子の表面にR2 3SiO1/2単位(但し、R2は前記と同じである。)を導入することにより第二の疎水性球状シリカ微粒子を得る工程と、
(A4)該第二の疎水性球状シリカ微粒子の分散液に、ガラス転移温度が65〜120℃の有機樹脂を溶解せしめ、該第二の疎水性球状シリカ微粒子の表面の少なくとも一部に有機樹脂被覆を形成して有機樹脂被覆疎水性球状シリカ微粒子を得る工程と、
を有することを特徴とする請求項1に記載の表面有機樹脂被覆疎水性球状シリカ微粒子の製造方法。
(A1) The following general formula (I):
Si (OR 3 ) 4 (I)
(However, R 3 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms.)
By hydrolyzing and condensing a tetrafunctional silane compound represented by the formula, a partial hydrolysis product thereof or a mixture thereof in a mixture of a hydrophilic organic solvent and water in the presence of a basic substance, SiO 2 unit Obtaining a mixed solvent dispersion of hydrophilic spherical silica fine particles comprising:
(A2) In the mixed solvent dispersion of the hydrophilic spherical silica fine particles, the following general formula (II):
R 1 Si (OR 4 ) 3 (II)
(However, R 1 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and R 4 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms.)
Is added to the surface of the hydrophilic spherical silica fine particles to add R 1 SiO to the surface of the hydrophilic spherical silica fine particles. Introducing 3/2 units (where R 1 is as defined above) to obtain a mixed solvent dispersion of the first surface-hydrophobized spherical silica fine particles;
(A3) A mixed solvent dispersion of the first surface-hydrophobized spherical silica fine particles or a concentrated liquid thereof has the following general formula (III):
R 2 3 SiNHSiR 2 3 (III)
(Wherein R 2 is the same or different substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms)
A silazane compound represented by
The following general formula (IV):
R 2 3 SiX (IV)
(Wherein R 2 is the same or different substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms, and X is an OH group or a hydrolyzable group.)
A monofunctional silane compound represented by the formula (1) or a mixture thereof is added, and the surface of the first surface hydrophobized spherical silica fine particles is treated to form R 2 3 SiO on the surface of the first surface hydrophobized spherical silica fine particles. A step of obtaining second hydrophobic spherical silica fine particles by introducing 1/2 unit (wherein R 2 is the same as above);
(A4) An organic resin having a glass transition temperature of 65 to 120 ° C. is dissolved in the dispersion liquid of the second hydrophobic spherical silica fine particles, and the organic resin is formed on at least a part of the surface of the second hydrophobic spherical silica fine particles. Forming an organic resin-coated hydrophobic spherical silica fine particle by forming a coating;
The method for producing surface-organic-resin-coated hydrophobic spherical silica fine particles according to claim 1, wherein:
請求項2記載の製造方法により製造された表面有機樹脂被覆疎水性球状シリカ微粒子。   Surface organic resin-coated hydrophobic spherical silica fine particles produced by the production method according to claim 2. 請求項1又は3に記載の表面有機樹脂被覆疎水性球状シリカ微粒子からなる静電荷像現像用トナー外添剤。   A toner external additive for developing an electrostatic charge image, comprising the surface organic resin-coated hydrophobic spherical silica fine particles according to claim 1. 請求項1又は3に記載の表面有機樹脂被覆疎水性球状シリカ微粒子を含有する静電荷像現像用トナー。   A toner for developing an electrostatic charge image, comprising the surface organic resin-coated hydrophobic spherical silica fine particles according to claim 1.
JP2013192658A 2013-09-18 2013-09-18 Surface organic resin-coated hydrophobic spherical silica fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same Active JP6008137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013192658A JP6008137B2 (en) 2013-09-18 2013-09-18 Surface organic resin-coated hydrophobic spherical silica fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013192658A JP6008137B2 (en) 2013-09-18 2013-09-18 Surface organic resin-coated hydrophobic spherical silica fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same

Publications (2)

Publication Number Publication Date
JP2015059054A true JP2015059054A (en) 2015-03-30
JP6008137B2 JP6008137B2 (en) 2016-10-19

Family

ID=52816867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013192658A Active JP6008137B2 (en) 2013-09-18 2013-09-18 Surface organic resin-coated hydrophobic spherical silica fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same

Country Status (1)

Country Link
JP (1) JP6008137B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017041471A (en) * 2015-08-17 2017-02-23 信越化学工業株式会社 Manufacturing method of solar cell electrode and manufacturing method of conductive paste for forming solar cell electrode
WO2022181018A1 (en) * 2021-02-24 2022-09-01 信越化学工業株式会社 Surface-treated sol-gel silica particle manufacturing method, surface-treated sol-gel silica particles, and toner external additive for electrostatic charge image development
CN115304404A (en) * 2022-07-27 2022-11-08 航天特种材料及工艺技术研究所 SiO (silicon dioxide) 2f /SiO 2 Composite hydrophobic coating and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245213A (en) * 1995-03-06 1996-09-24 Sekisui Finechem Co Ltd Production of silica particles having laminated structure
JPH10226512A (en) * 1997-02-10 1998-08-25 Ube Nitto Kasei Co Ltd Resin-coated silica particle and its production
JP2004109667A (en) * 2002-09-19 2004-04-08 Fuji Xerox Co Ltd Dry toner composition for electrostatic charge image, electrostatic latent image developing developer and image forming method
JP2004145325A (en) * 2002-10-02 2004-05-20 Canon Inc Fine silica particle, toner, two-component developer and image forming method
JP2010176063A (en) * 2009-02-02 2010-08-12 Ricoh Co Ltd Electrostatic latent image developing toner, toner container, developer, image forming apparatus and process cartridge
JP2010533636A (en) * 2007-07-18 2010-10-28 ワッカー ケミー アクチエンゲゼルシャフト Highly dispersed metal oxides with high positive surface charge
JP2011032114A (en) * 2009-07-30 2011-02-17 Shin-Etsu Chemical Co Ltd Hydrophobic spherical silica fine particle, method for producing the same and toner external additive for electrostatic charge image development using the same
JP2012203360A (en) * 2011-03-28 2012-10-22 Nippon Zeon Co Ltd Toner for electrostatic charge image development
WO2013018704A1 (en) * 2011-07-29 2013-02-07 電気化学工業株式会社 Fine spherical silica powder and external toner additive for developing electrostatic images using fine spherical silica powder
JP2013119565A (en) * 2011-12-06 2013-06-17 Fuji Xerox Co Ltd Resin particle and method of producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245213A (en) * 1995-03-06 1996-09-24 Sekisui Finechem Co Ltd Production of silica particles having laminated structure
JPH10226512A (en) * 1997-02-10 1998-08-25 Ube Nitto Kasei Co Ltd Resin-coated silica particle and its production
JP2004109667A (en) * 2002-09-19 2004-04-08 Fuji Xerox Co Ltd Dry toner composition for electrostatic charge image, electrostatic latent image developing developer and image forming method
JP2004145325A (en) * 2002-10-02 2004-05-20 Canon Inc Fine silica particle, toner, two-component developer and image forming method
JP2010533636A (en) * 2007-07-18 2010-10-28 ワッカー ケミー アクチエンゲゼルシャフト Highly dispersed metal oxides with high positive surface charge
JP2010176063A (en) * 2009-02-02 2010-08-12 Ricoh Co Ltd Electrostatic latent image developing toner, toner container, developer, image forming apparatus and process cartridge
JP2011032114A (en) * 2009-07-30 2011-02-17 Shin-Etsu Chemical Co Ltd Hydrophobic spherical silica fine particle, method for producing the same and toner external additive for electrostatic charge image development using the same
JP2012203360A (en) * 2011-03-28 2012-10-22 Nippon Zeon Co Ltd Toner for electrostatic charge image development
WO2013018704A1 (en) * 2011-07-29 2013-02-07 電気化学工業株式会社 Fine spherical silica powder and external toner additive for developing electrostatic images using fine spherical silica powder
JP2013119565A (en) * 2011-12-06 2013-06-17 Fuji Xerox Co Ltd Resin particle and method of producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017041471A (en) * 2015-08-17 2017-02-23 信越化学工業株式会社 Manufacturing method of solar cell electrode and manufacturing method of conductive paste for forming solar cell electrode
WO2022181018A1 (en) * 2021-02-24 2022-09-01 信越化学工業株式会社 Surface-treated sol-gel silica particle manufacturing method, surface-treated sol-gel silica particles, and toner external additive for electrostatic charge image development
CN115304404A (en) * 2022-07-27 2022-11-08 航天特种材料及工艺技术研究所 SiO (silicon dioxide) 2f /SiO 2 Composite hydrophobic coating and preparation method thereof

Also Published As

Publication number Publication date
JP6008137B2 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
JP4781769B2 (en) Highly hydrophobic spherical sol-gel silica fine particles, process for producing the same, toner external additive for developing electrostatic images comprising the fine particles, and developer using the toner external additive
JP4579265B2 (en) Hydrophobic spherical silica fine particles having high fluidity, method for producing the same, toner external additive for developing electrostatic image using the same, and organic resin composition containing the same
JP4118637B2 (en) Silica with low silanol group content
JP5982003B2 (en) Toner additive containing composite particles
JP5631699B2 (en) Method for producing irregular shaped silica fine particles and toner external additive for developing electrostatic image
JP2011185998A (en) Electrostatic image-developing toner and electric charge-controlling particle for external addition
JP5644789B2 (en) Powder composition
JP2014114175A (en) Surface-hydrophobized spherical silica fine particle, method for producing the same, and toner external additive, obtained by using the particle, for developing electrostatic charge image
JP4578400B2 (en) Toner external additive for electrophotography
JP5230067B2 (en) Surface-coated silica and method for producing the same
JP2008174430A (en) Hydrophobic spherical silica fine particle, its manufacturing method and toner external additive for electrostatic charge image development
JP2011032114A (en) Hydrophobic spherical silica fine particle, method for producing the same and toner external additive for electrostatic charge image development using the same
JP2015502567A5 (en)
JP2012025596A (en) Method for producing agglomerated silica microparticle
JP6008137B2 (en) Surface organic resin-coated hydrophobic spherical silica fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
JP5655800B2 (en) Method for producing associated silica
JP2009062274A (en) Method for producing surface-treated silica
JP2020033224A (en) Positive charge type hydrophobic spherical silica particle, method for producing the same, and positive charge toner composition using the same
TWI804672B (en) Positively charged hydrophobic spherical silica particles, method for producing same, and positively charged toner composition using the positively charged hydrophobic spherical silica particles
JP4346403B2 (en) Surface-treated silica particles and uses thereof
JP4347201B2 (en) Toner external additive and toner for developing electrostatic image
JP2005015251A (en) Hydrophobic spherical silica minute particle, its manufacturing method, and toner additive therewith for electrostatic charge image development
JP2014162681A (en) Surface-treated silica powder and method for manufacturing the same
JP4628760B2 (en) Spherical hydrophobic polydiorganosiloxane-containing silica fine particles, toner additive for developing electrostatic image and toner
JP2014136670A (en) Strongly negative charge granted, hydrophobic, and spherical silica fine particle, method for producing the particle, and charge control agent obtained by using the particle for developing electrostatic charge image

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160830

R150 Certificate of patent or registration of utility model

Ref document number: 6008137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150