JP2015057808A - Power storage material having insulating high specific surface area and capacitor using power storage material - Google Patents

Power storage material having insulating high specific surface area and capacitor using power storage material Download PDF

Info

Publication number
JP2015057808A
JP2015057808A JP2013208610A JP2013208610A JP2015057808A JP 2015057808 A JP2015057808 A JP 2015057808A JP 2013208610 A JP2013208610 A JP 2013208610A JP 2013208610 A JP2013208610 A JP 2013208610A JP 2015057808 A JP2015057808 A JP 2015057808A
Authority
JP
Japan
Prior art keywords
storage material
power storage
capacitor
cell
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013208610A
Other languages
Japanese (ja)
Inventor
幹夫 福原
Mikio Fukuhara
幹夫 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013208610A priority Critical patent/JP2015057808A/en
Publication of JP2015057808A publication Critical patent/JP2015057808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power storage material capable of storing power with capacitance of 1-10,000 F/cmin a temperature region from ultralow temperature to 500°C, instantaneously within l ms regardless of DC or AC, and to provide a giant power storage body by laminating them.SOLUTION: In a power storage material, both sides or one side of a crystal metal, alloy thin band or an amorphous alloy thin band is constituted of an amorphous insulation layer of integrated nanostructure (cell) for storing charges in the protrusions and recesses or the valley spaces of subnano/nanometer dimension, in electric double layer.

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、結晶金属・合金薄帯もしくはアモルファス(非晶質と同意義、以下アモルファスで統一)合金薄帯の両面もしくは片面がサブナノ/ナノメートル寸法の微細孔の蜂の巣状、凹凸もしくは渓谷空間を持つ自己組織的でかつ電気抵抗が100−500,000Ωcmの絶縁層から構成され、その微細空間に物理的に電荷が蓄えられる集積ナノ構造(セル)において、極低温から500℃の広温度範囲と0−1,000Vまでの広電圧範囲、直流から1MHzの高周波数領域において、1mF/cmから10,000F/cmまでの広範囲容量を持ち、かつ1ns−1msの瞬時充放電性を実現させた集積ナノ組織薄帯蓄電材料及びその積層体から構成されたコンデンサに関する。The present invention relates to a honeycomb, concavo-convex or valley space of a fine hole with a sub-nano / nanometer size on both sides or one side of a crystalline metal / alloy ribbon or amorphous (same as amorphous, hereinafter unified as amorphous) alloy ribbon. In an integrated nanostructure (cell) that is composed of an insulating layer that has a self-organization and has an electrical resistance of 100-500,000 Ωcm, and in which a charge is physically stored in a fine space, In a wide voltage range from 0 to 1,000 V, in a high frequency range from DC to 1 MHz, it has a wide capacity from 1 mF / cm 3 to 10,000 F / cm 3 and realizes instantaneous charge / discharge characteristics of 1 ns-1 ms. The present invention also relates to a capacitor composed of an integrated nanostructured thin-film electricity storage material and a laminate thereof.

コンデンサは静電容量により電荷(電気エネルギー)を蓄えたり、放電したりする電子部品であり、パソコンや携帯電話等々のモバイル電子機器において電源の安定性、バックアップ回路、カップリング素子、ノイズフィルター等の役割を演じ、電子機器にとって不可欠の部品である。近年、携帯電話や超小型記憶装置などの高機能IT製品及び電気自動車用バッテリが急速に進化し、より一層小型で、大容量かつメモリ等の高機能を持つコンデンサの需要が高まっている。特に地球温暖化防止のためグリーンイノベーション(低炭素化)に合致した製品が求められている。  Capacitors are electronic components that store or discharge electric charges (electrical energy) due to electrostatic capacity, such as power supply stability, backup circuits, coupling elements, and noise filters in mobile electronic devices such as personal computers and mobile phones. It plays a role and is an indispensable part for electronic equipment. In recent years, high-function IT products such as mobile phones and ultra-small storage devices and batteries for electric vehicles have rapidly evolved, and the demand for capacitors that are even smaller, have a large capacity, and have high functions such as memory is increasing. In particular, products that meet green innovation (low carbonization) are required to prevent global warming.

コンデンサの用途による分類では、高電圧電力回路用と電子回路用に大別される。このうち、大容量コンデンサとしては、電気二重層コンデンサが注目され、最近電気貯蔵用として期待されている。具体的にはハイブリッド自動車や電気自動車の電源、コピー機の急速立ち上げ用電源や無停電電源装置、さらには鉄道用電車電源等があり、機動力約2%の確保までの実績がある。  The classification according to the use of the capacitor is roughly divided into a high voltage power circuit and an electronic circuit. Among these, as a large-capacity capacitor, an electric double layer capacitor has attracted attention and has recently been expected to be used for electric storage. Specifically, there are power sources for hybrid vehicles and electric vehicles, power supplies for rapid startup of copy machines, uninterruptible power supplies, train power supplies for railways, etc., with a track record of securing about 2% mobility.

しかしながら、従来の、電気二重層コンデンサでは電解液―電極界面における電界溶液中のイオン及び電極中の電荷担体(電子またはホール)を用いている為、比表面積が大きい活性炭を電極として利用し数F/cm級の静電容量を出しているが、耐圧は電解液の分解圧以下に制限されるため、約1V(水系電解液)、約3V(非水系電解液)と非常に低い。接続された個々のコンデンサの特性ばらつきに起因する過充電防止の工夫が必要であり、漏れ電流が非常に大きく周波数特性も悪い。加えて直流、交流を問わず瞬時の充電ができないという致命的欠陥を持っている。更には溶液系のため、衝撃、地震等で破損後漏洩し環境汚染の可能性が高いと言った弱点を持っている。また液体が凝固する寒冷地や冬期、及び70℃以上の高温では使えない。However, since the conventional electric double layer capacitor uses ions in the electric field solution at the electrolyte-electrode interface and charge carriers (electrons or holes) in the electrode, activated carbon having a large specific surface area is used as the electrode, and a few F / Cm 3 class capacitance is provided, but the withstand voltage is limited to not more than the decomposition pressure of the electrolytic solution, so it is very low, about 1 V (aqueous electrolytic solution) and about 3 V (non-aqueous electrolytic solution). It is necessary to devise measures for preventing overcharge caused by variations in characteristics of individual capacitors connected, and the leakage current is very large and the frequency characteristics are also poor. In addition, it has a fatal defect that it cannot be charged instantly regardless of whether it is direct current or alternating current. Furthermore, since it is a solution system, it has a weak point that it has a high possibility of environmental pollution due to leakage after impact or earthquake. Also, it cannot be used in cold regions where the liquid solidifies, in winter, and at high temperatures of 70 ° C or higher.

ところで、コンデンサの蓄電特性は1pFから数十mFまで広範囲に電子・電気機器の主要構成部品として利用されている。蓄電容量C(F)はC=Q/V=εA/d(Q(Q):電荷、V(V):電圧、ε:誘電率、A(m):電極面積、d(m):電極間距離)で与えられるので、電極面積が大きく電極間距離が小さいほど高電荷容量が得られる。Aを大きくしdを小さくして極大容量にすることや、Aを小さくしdを大きくして極小容量にすることは難しい。By the way, the storage characteristics of capacitors are widely used as main components of electronic and electrical devices from 1 pF to several tens of mF. The storage capacity C (F) is C = Q / V = εA / d (Q (Q): electric charge, V (V): voltage, ε: dielectric constant, A (m 2 ): electrode area, d (m): Therefore, the higher the electrode area and the smaller the electrode distance, the higher the charge capacity. It is difficult to increase A and decrease d to maximize capacity, or to decrease A and increase d to minimize capacity.

上記の問題点は、集積ナノ構造(セル)であるサブナノ/ナノメートル寸法の蜂の巣状、凹凸もしくは渓谷空間に電荷が物理的に蓄えられるならば、Aを小さくdを小さくすることができ、単位面積当たりの蓄電電荷量を極力大きくすることができる。発明者はdを小さくする方法としてアモルファス相を構成するサブナノメートルサイズのクラスタに注目して鋭意研究してきた。例えば、水素含有アモルファス合金Ni0.324Nb0.216Zr0.360.10を構成する0.56nm径の歪んだ20面体ZrNiNbクラスタ間隙に0.23nm径(酸素原子径)の絶縁層トンネルが存在することによって常温で電流誘起の離散的なクーロン振動や常温コンダクタンスの量子化が起こり、このトンネル中には18μFの電気容量が蓄積できることを発明者が世界で初めて発見した。このトンネルは幅1mm、厚さ30μm、長さ15mm間の試料中に約0.7億本存在する。クーロン振動については非特許文献1,2に、コンダクタンスの量子化については非特許文献3に、クラスタ間隙とその蓄積電荷量については非特許文献4に、クラスタ寸法については非特許文献5に示されている。これらの予備研究を踏まえて、特許文献1は、アモルファス合金のナノコンデンサへの使用について開示している。The above problem is that if charges are physically stored in a honeycomb, concavo-convex or valley space with sub-nano / nanometer dimensions that are integrated nanostructures (cells), A can be reduced and d can be reduced. The amount of stored charge per area can be increased as much as possible. The inventor has intensively studied paying attention to the sub-nanometer size cluster constituting the amorphous phase as a method of reducing d. For example, a distorted icosahedron Zr 5 Ni 5 Nb 3 cluster gap of 0.56 nm diameter constituting a hydrogen-containing amorphous alloy Ni 0.324 Nb 0.216 Zr 0.36 H 0.10 has a 0.23 nm diameter (oxygen atom). Presents the world's first discovery that current-induced discrete Coulomb oscillations and room temperature conductance quantization occur at room temperature, and that 18 μF of electrical capacitance can be stored in this tunnel. did. About 70 million tunnels exist in a sample having a width of 1 mm, a thickness of 30 μm, and a length of 15 mm. The Coulomb oscillation is shown in Non-Patent Documents 1 and 2, the conductance quantization is shown in Non-Patent Document 3, the cluster gap and the amount of accumulated charges are shown in Non-Patent Document 4, and the cluster dimensions are shown in Non-Patent Document 5. ing. Based on these preliminary studies, Patent Document 1 discloses the use of amorphous alloys for nanocapacitors.

しかしながら、上記の特許文献1に記載されている合金は充電が出来るものの、電気抵抗が相対的に小さい為放電がしづらいという弱点が見つかった。そこでAlの塩酸抽出によるデアロイング法により微小凹凸面を付与し電気抵抗が1−10ΩcmのSi−Al系ナノ結晶薄帯の蓄電効果を検討した。直流に近い1mHzで100μF(0.45F/cm)を得ることができた(非特許文献6)。特許文献1はこれらを予備研究として得られたものである。However, although the alloy described in Patent Document 1 can be charged, a weak point has been found that it is difficult to discharge because the electrical resistance is relatively small. Then, the electrical storage effect of the Si-Al-based nanocrystal ribbon having a minute uneven surface with an electrical resistance of 1-10 3 Ωcm was examined by a dealing method using Al hydrochloric acid extraction. 100 μF (0.45 F / cm 3 ) could be obtained at 1 mHz close to direct current (Non-patent Document 6). Patent Document 1 was obtained as a preliminary study.

特許文献1は電気容量がまだ不十分であり、試料が脆いと言う弱点も見つかった。更に電気抵抗率を上げるため、アモルファス合金薄帯の両面を陽極酸化させた約50nmの火山孔を持つTi−Ni−Si系合金のナノコンデンサ特性を発表した(非特許文献7)。これにより、蓄電量は平均で864F/cm、耐電圧180V、使用可能温度範囲−80〜+180℃の蓄電材が得られた。Patent Document 1 also has a weak point that the electric capacity is still insufficient and the sample is brittle. In order to further increase the electrical resistivity, the nanocapacitor characteristics of a Ti—Ni—Si alloy having a volcanic hole of about 50 nm in which both sides of an amorphous alloy ribbon were anodized were announced (Non-patent Document 7). As a result, an electricity storage material having an average storage amount of 864 F / cm 3 , a withstand voltage of 180 V, and a usable temperature range of −80 to + 180 ° C. was obtained.

一方、蓄電容量の観点からみると、化学電解液中でのMnO被覆ナノポーラスAu系アモルファス合金セパレータにおいて1,160F/cmの高比電気容量が報告されている(非特許文献8)。しかしながら、これは従来の液体を媒介とする電気化学電池の応用であり、本発明の物理的固体蓄電体とは本質的に異なっている。On the other hand, from the viewpoint of the storage capacity, a high specific electric capacity of 1,160 F / cm 3 has been reported in a MnO 2 -coated nanoporous Au-based amorphous alloy separator in a chemical electrolyte (Non-patent Document 8). However, this is an application of a conventional liquid-mediated electrochemical cell and is essentially different from the physical solid state storage battery of the present invention.

また、物質・材料研究機構(NIMS)により膜厚10nm以下の誘電率210〜240を持つペロブスカイトSrNb10、CaNb10のナノシート薄膜コンデンサ素子の研究が報告されているが(非特許文献9参照)、電極間は本発明品の約10倍大きく、セラミックスのため電極材との接合が容易でなく接触抵抗は高いという問題がある。In addition, research on nanosheet thin film capacitor elements of perovskite Sr 2 Nb 3 O 10 and Ca 2 Nb 3 O 10 having a dielectric constant of 210 to 240 with a film thickness of 10 nm or less has been reported by the National Institute for Materials Science (NIMS). (Refer to non-patent document 9) The distance between the electrodes is about 10 times larger than the product of the present invention.

要約すれば、ナノコンデンサを含有したサブナノ/ナノメートル寸法からメートル寸法までのアモルファス合金を利用して物理的方法により低温から室温以上の温度域までの蓄電容量の研究報告はなされていない。またグリーンイノベーション・スマートグリッド(次世代送電網)社会におけるコンデンサに求められる蓄電及び放電を行う機能を満足するものではない。  In summary, there is no research report on the storage capacity from a low temperature to a temperature range above room temperature by a physical method using an amorphous alloy containing nanocapacitors from sub-nano / nanometer size to metric size. Moreover, it does not satisfy the functions of storing and discharging required for capacitors in a green innovation / smart grid (next generation power transmission network) society.

特願2012−53674号公報Japanese Patent Application No. 2012-53674

M.Fukuhara,A.Kawashima,S.Yamaura and A.Inoue,“Coulomb oscillation of a proton in a Ni−Nb−Zr−H glassy alloy with multiple junctions,”Appl.Phys.Lett.90(2007),203111−1−3.M.M. Fukuhara, A .; Kawashima, S .; Yamaura and A.A. Inoue, “Coulomb occlusion of a proton in a Ni—Nb—Zr—H glassy alloy with multiple junctions,” Appl. Phys. Lett. 90 (2007), 203111-1-3. M.Fukuhara and A.Inoue,“Room−temperature Coulomb oscillation of a proton dot in Ni−Nb−Zr−H glassy alloys with nanofarad capacitance,”J.Appl.Phys.105(2009)063715−1−5.M.M. Fukuhara and A.A. Inoue, “Room-temperature Coulomb occlusion of a protocol dot in Ni-Nb-Zr-H glassy alloys with nanofarad capacity,” J. et al. Appl. Phys. 105 (2009) 0633715-1-5. M.Fukuhara and A.Inoue,“Effect of current on Coulomb oscillation in a Ni−Nb−Zr−H glassy alloy with multiple junctions,”Appl.Phys.Lett.97(2010),243108−1−3.M.M. Fukuhara and A.A. Inoue, “Effect of current on Coulomb occlusion in a Ni—Nb—Zr—H glassy alloy with multiple junctions,” Appl. Phys. Lett. 97 (2010), 243108-1-3. M.Fukuhara,M.Seto and A.Inoue,“ac impedance analysis of a Ni−Nb−Zr−H glassy alloy with femtofarad capacitance tunnels,”Appl.Phys.Lett.96(2010)043103−1−3.M.M. Fukuhara, M .; Seto and A.M. Inoue, “ac impedance analysis of a Ni—Nb—Zr—H glassy alloy with femtofarad capacity tunnels,” Appl. Phys. Lett. 96 (2010) 043103-1-3. M.Fukuhara,N.Fujima,H.Oji,A.Inoue and S.Emura,“Structures of the icosahedral clusters in Ni−Nb−Zr−H glassy alloys determined by first−principles molecular dynamics calculation and XAFS measurements,”J.Alloys Compd.,497(2010)182−187.M.M. Fukuhara, N .; Fujima, H .; Oji, A .; Inoue and S.M. Emura, "Structures of the icosahedral clusters in Ni-Nb-Zr-H glassy allies determined by first-principles molecular dynamics and JAFs. Alloys Compd. 497 (2010) 182-187. M.Fukuhara,T.Araki,K.Nagayama and H.Sakuraba,“Electric storage in de−alloyed Si−Al alloy ribbons”,99,47001(2012).M.M. Fukuhara, T .; Araki, K .; Nagayama and H.M. Sakuraba, “Electric storage in de-allocated Si-Al alloy ribbons”, 99, 47001 (2012). M.Fukuhara,H.Yoshida,M.Sato,K,Sugawara,T.Takeuchi,I.Seki,T.Sueyoshi,“Superior electric storage in de−alloyed and anodic oxided Ti−Ni−Si glassy alloy ribbon,”Phys.Stat.Sol.RRL,7,477−480(2013).M.M. Fukuhara, H .; Yoshida, M .; Sato, K, Sugawara, T .; Takeuchi, I. et al. Seki, T .; Sueoshi, “Superior electrical storage in de-alloyed and anodized Ti—Ni—Si glassy alli ribbon,” Phys. Stat. Sol. RRL, 7, 477-480 (2013). X.Y.Lang,A.Hirata,T.Fujita and M.W.Chen,Nature Nanotech.,6,232 2011)on line(Feb.20,2011).X. Y. Lang, A .; Hirata, T .; Fujita and M.M. W. Chen, Nature Nanotech. , 6,232 2011) on line (Feb. 20, 2011). M.Osada,K.Akatsuka,Y.Ebina,H.Funakubo,K.Ono,K.Takada and T.Sasaki,Robust high−response in molecularly thin perovskite nanosheets,ACS NANO,4,5225−5232(2010).M.M. Osada, K .; Akatsuka, Y. et al. Ebina, H .; Funakubo, K .; Ono, K .; Takada and T.K. Sasaki, Robust high-response in molecularly thin perovskite nanosheets, ACS NANO, 4, 5225-5232 (2010).

発明が解決しようとする課題Problems to be solved by the invention

本発明者は、コンデンサ等、蓄電及び放電を行うことができる電子部品の製造に適した蓄電材料を鋭意研究した結果、任意のサブナノ/ナノメータ寸法の原子空隙を持つ集積微細構造(セル)を自己組織化的に形成させた合金に、更により高比表面積微細孔の蜂の巣状、凹凸もしくは渓谷空間を形成させたアモルファス相を持つ電気抵抗が100−500,000Ωcmの絶縁性酸化物層を作成できることを新たに見出した。  As a result of earnest research on power storage materials suitable for the manufacture of electronic components capable of storing and discharging, such as capacitors, the present inventors have self-assembled an integrated microstructure (cell) having an atomic void of any sub-nano / nanometer size. An insulating oxide layer with an electrical resistance of 100-500,000 Ωcm having an amorphous phase in which an alloy formed in an organized manner has a honeycomb shape with a high specific surface area, fine pores, irregularities or valley spaces formed. Newly found.

本発明は、上記新たな発見に基づいてなされた発明であり、本発明の目的は、コンデンサ等の蓄電及び放電を行うことができる電子部品に求められる機能である、極低温から500℃の温度領域で電荷を1mF/cmから10,000F/cmまでの広範囲に、しかも直流、交流に無関係に瞬時に充電させることができる蓄電材料を提供することである。The present invention is an invention made based on the above-mentioned new discovery, and the object of the present invention is a function required for an electronic component capable of storing and discharging a capacitor or the like. wide range of charges in the region from 1 mF / cm 3 to 10,000F / cm 3, moreover DC, is to provide a power storage material that can be charged instantaneously regardless of AC.

課題を解決するための手段Means for solving the problem

本発明は、以下に示す、蓄電材料及び該蓄電材料を用いたコンデンサに関する。  The present invention relates to the following electricity storage material and a capacitor using the electricity storage material.

(1)結晶金属・合金薄帯もしくはアモルファス合金薄帯の両面もしくは片面が微細孔の蜂の巣状、凹凸もしくは渓谷空間を持ち、かつ電気抵抗が100−500,000Ωcmの絶縁性物質層から構成され、その微細空間に電気二重層的に電荷が蓄えられる集積ナノ構造(セル)であることを特徴とする蓄電材料。
(2)前記蓄電材料において、微細孔の蜂の巣状、凹凸もしくは渓谷空間が2×10−10〜10−8mの幅にあり、容量が1mF/cmから10,000F/cmまでに制御できる極微小サイズの集積ナノ構造(セル)であることを特徴とする請求項1記載の蓄電材料。
(3)前記蓄電材料において、結晶金属・合金薄帯もしくはアモルファス合金薄帯の厚さが0−100μmであることを特徴とする請求項1、2の何れか1項に記載の蓄電材料。
(4)前記蓄電材料において、表面が15at%以下の酸素欠陥構造を持つ酸化物アモルファス相であり、内部構造がその凹凸表面の負(正)電荷の集積に対してそれを電気的に中和する正(負)の電荷の酸素欠陥サイトで構成されていることを特徴とする請求項1〜3の何れか1項に記載の蓄電材料。
(5)前記蓄電材料において、サブナノ/ナノメータ寸法のナノコンデンサが並列接合もしくは直列接合して電気分布定数回路と集中定数回路の各々の一方または両方から構成された集積ナノ構造(セル)であることを特徴とする請求項1〜4の何れか1項に記載の蓄電材料。
(6)前記蓄電材料において、結晶金属・合金薄帯もしくはアモルファス合金薄帯を酸溶解処理によるデアロイング法、水素の強制鑿岩法あるいはイオン注入法によって蜂の巣状、凹凸もしくは渓谷の原子空間を形成し、その後両表面もしくは片表面を酸化させた集積ナノ構造(セル)であることを特徴とする請求項1〜5の何れか1項に記載の蓄電材料。
(7)前記蓄電材料において、酸溶液中の陽極酸化法よって結晶金属・合金もしくはアモルファス合金薄帯の両表面もしくは片表面にサブナノ/ナノメータ寸法の蜂の巣状、凹凸もしくは渓谷空間が作られた厚さ20−500nmmの集積ナノ構造(セル)であることを特徴とする請求項1〜6の何れか1項に記載の蓄電材料。
(8)前記蓄電材料において、表面絶縁物質を物理的蒸着・スパッタリング法によって蜂の巣状、凹凸もしくは渓谷の原子空間を形成させた集積ナノ構造(セル)であることを特徴とする請求項1〜7の何れか1項に記載の蓄電材料。
(9)前記蓄電材料において、ナノコンデンサ特性が極低温から500℃迄作動可能な集積ナノ構造(セル)であることを特徴とする請求項1〜8の何れか1項に記載の蓄電材料。
(10)請求項1〜9の何れか1項に記載の蓄電材料がその表面方向もしくは厚さ方向にプラス、マイナスの金属電極により、特に厚さ方向には有機物テープを介して粘着接合された集積ナノ構造(セル)であることを特徴とするコンデンサ。
(11)請求項1〜10の何れか1項に記載の蓄電材料が立方体を含む直方体、巻尺状、折り畳状、捩巻状体として成形され1fFの微弱電荷から10kFの巨大電荷までを瞬時に蓄電でき、1,000Vまでの広範囲の耐電圧特性を持つことを特徴とするコンデンサ。
(12)請求項1〜11の何れか1項に記載の蓄電材料もしくはコンデンサが1nsから1msのごく短時間で〜1MHzの交流変換直流及び直流を蓄電できることを特徴とするコンデンサ。
(1) Both sides or one side of a crystalline metal / alloy ribbon or an amorphous alloy ribbon is formed of an insulating material layer having a microporous honeycomb shape, unevenness or a valley space, and an electric resistance of 100 to 500,000 Ωcm, A power storage material characterized by an integrated nanostructure (cell) in which electric charges are stored in an electric double layer in the fine space.
(2) In the electricity storage material, the fine pore honeycomb shape, unevenness or valley space has a width of 2 × 10 −10 to 10 −8 m, and the capacity is controlled from 1 mF / cm 3 to 10,000 F / cm 3. The power storage material according to claim 1, wherein the power storage material is an extremely small sized integrated nanostructure (cell).
(3) The electricity storage material according to any one of claims 1 and 2, wherein in the electricity storage material, the thickness of the crystalline metal / alloy ribbon or the amorphous alloy ribbon is 0-100 μm.
(4) In the electricity storage material, the surface is an oxide amorphous phase having an oxygen defect structure of 15 at% or less, and the internal structure electrically neutralizes the accumulation of negative (positive) charges on the uneven surface. The power storage material according to claim 1, wherein the power storage material is configured with oxygen defect sites having positive (negative) charges.
(5) In the power storage material, the nano-capacitor of sub-nano / nanometer size is an integrated nanostructure (cell) composed of one or both of an electric distributed constant circuit and a lumped constant circuit by parallel or serial connection. The electrical storage material of any one of Claims 1-4 characterized by these.
(6) In the power storage material, a crystalline metal / alloy ribbon or an amorphous alloy ribbon is formed into a honeycomb, uneven or valley atomic space by a de-alloying method by acid dissolution treatment, a forced hydrogen rock method or an ion implantation method. The storage material according to claim 1, which is an integrated nanostructure (cell) obtained by oxidizing both surfaces or one surface thereafter.
(7) Thickness in which sub-nano / nanometer-sized honeycomb, irregularities, or valley spaces are formed on both surfaces or one surface of a crystalline metal / alloy or amorphous alloy ribbon by an anodic oxidation method in an acid solution. The power storage material according to claim 1, wherein the power storage material is an integrated nanostructure (cell) of 20 to 500 nm.
(8) The electric storage material is an integrated nanostructure (cell) in which a surface insulating material is formed in a honeycomb shape, unevenness, or valley atomic space by physical vapor deposition / sputtering. The power storage material according to any one of the above.
(9) The electricity storage material according to any one of claims 1 to 8, wherein the electricity storage material is an integrated nanostructure (cell) whose nanocapacitor characteristics are operable from an extremely low temperature to 500 ° C.
(10) The electricity storage material according to any one of claims 1 to 9 is adhesively bonded via an organic tape, particularly in the thickness direction, with a positive or negative metal electrode in the surface direction or thickness direction. A capacitor characterized by an integrated nanostructure (cell).
(11) The electricity storage material according to any one of claims 1 to 10 is formed as a rectangular parallelepiped including a cube, a tape measure, a fold, or a spiral, and instantaneously ranges from a weak charge of 1 fF to a huge charge of 10 kF. Capacitor characterized by having a wide withstand voltage characteristic up to 1,000V.
(12) A capacitor characterized in that the power storage material or capacitor according to any one of claims 1 to 11 can store AC conversion DC and DC of 1 MHz in a very short time from 1 ns to 1 ms.

発明の効果Effect of the invention

本発明は、以下の効果を奏する。
(1)本発明の蓄電材料は、電荷の蓄電及び放電を行うことができるため、コンデンサ制御の電子部品の構成材料として用いることができる。
(2)本発明の蓄電材料である合金の空隙トンネル寸法の大きさ及び長さは、水素原子との親和性の高い金属元素の量と処理時間によって、又はデアロイング法により一部金属元素を酸、アルカリ溶解除去処理により、更にはフッ化アンモニウムや硫酸アンモニウム等の陽極酸化処理により制御できるので、使用される蓄電材料及びコンデンサ等の用途に応じて蓄電する電荷を調整することが可能である。
(3)本発明の蓄電材料の表面が15at.%以下の酸素欠陥構造を持つ酸化物アモルファス相であり、内部構造がその凹凸表面の負(正)電荷の集積に対してそれを電気的に中和する止(負)の電荷の酸素欠陥サイトで構成されていることから、絶縁破壊することなく巨大な電荷が蓄電することが可能である。
(4)本発明の蓄電材料は、比表面積(30,000−100,000m/g)を持つサブナノ/ナノメータ寸法のナノコンデンサが並列接合もしくは直列接合して電気分布定数回路と集中定数回路の各々の一方または両方から構成された極微小寸法の集積ナノ構造(セル)であることから、1mF/cmから10,000F/cmまでの任意の蓄電容量を持つコンデンサである。
(5)本発明のコンデンサは100−500,000Ωcmの電気抵抗率を持つ酸化物でできているため、lmV〜1,000Vまでの広範囲の耐電圧特性が可能となる。
(6)本発明の蓄電材料は、固体系のため、衝撃、地震等で破損の可能性はなく、また、耐食性も兼備している。更に、本発明のコンデンサは、従来の二次電池と異なり電気化学反応を伴わないため、充放電回数の制限がないこと、大電流の充放電に強く温度条件の厳しい環境下でも利用できる。
(7)従来のコンデンサは直流回路における蓄電を基本にしているが、本発明はサブナノ/ナノメータ寸法の凹凸もしくは渓谷空間を持つ酸化物層から構成されている為、極低温から500℃迄の広温度領域、1,000Vまでの広範囲の耐電圧、1nsから1msのごく短時間で、直流蓄電のみならず1mHz〜1MHzの急速充放電性を有しているので、交流蓄電機器への応用も可能となる。
The present invention has the following effects.
(1) Since the electricity storage material of the present invention can store and discharge electric charges, it can be used as a constituent material for capacitor-controlled electronic components.
(2) The size and length of the void tunnel size of the alloy which is the electricity storage material of the present invention depends on the amount of metal element having a high affinity with hydrogen atoms and the treatment time, or a part of the metal element is acidified by a dealing method. In addition, since it can be controlled by an alkali dissolution removal process and further by an anodizing process such as ammonium fluoride and ammonium sulfate, it is possible to adjust the charge to be stored according to the use of the storage material used and the capacitor.
(3) The surface of the electricity storage material of the present invention is 15 at. Oxide amorphous phase with an oxygen defect structure of less than%, and the internal structure has a negative (positive) charge oxygen defect site that electrically neutralizes it against the accumulation of negative (positive) charge on its uneven surface Therefore, a huge charge can be stored without dielectric breakdown.
(4) The electricity storage material of the present invention is an electric distributed constant circuit and a lumped constant circuit in which nano-capacitors with sub-nano / nanometer dimensions having a specific surface area (30,000-100,000 m 2 / g) are connected in parallel or in series. Since it is an extremely small dimension integrated nanostructure (cell) composed of one or both of them, it is a capacitor having an arbitrary storage capacity from 1 mF / cm 3 to 10,000 F / cm 3 .
(5) Since the capacitor of the present invention is made of an oxide having an electrical resistivity of 100 to 500,000 Ωcm, a wide range of withstand voltage characteristics from 1 mV to 1,000 V are possible.
(6) Since the electricity storage material of the present invention is solid, there is no possibility of breakage due to impact, earthquake, etc., and it also has corrosion resistance. Furthermore, unlike the conventional secondary battery, the capacitor according to the present invention does not involve an electrochemical reaction, so there is no limit on the number of times of charging / discharging, and it can be used in an environment that is resistant to large current charging / discharging and has severe temperature conditions.
(7) Although conventional capacitors are basically based on power storage in a DC circuit, the present invention is composed of an oxide layer having irregularities or valley spaces with sub-nano / nanometer dimensions, so that a wide range from extremely low temperatures to 500 ° C. Temperature range, wide withstand voltage up to 1,000V, 1ns to 1ms in a very short time, not only DC storage, but also rapid charging / discharging from 1mHz to 1MHz, so it can be applied to AC storage devices It becomes.

表1中の実施例1使用のナノコンデンサの酸化物表面図Table 1 Oxide surface view of nanocapacitors used in Example 1 in Table 1 アモルファス合金(Ti0.49Ni0.27Cu0.2598.51.5の交流インピーダンスの測定結果を表したナイキスト図Nyquist diagram showing measurement results of AC impedance of amorphous alloy (Ti 0.49 Ni 0.27 Cu 0.25 ) 98.5 H 1.5 表面をNiのデアロイン後陽極酸化したAl85NiCoアモルファス合金のキャパシタンスの173K,273K,573K,723Kでの周波数依存性Frequency dependence at 173K, 273K, 573K, and 723K of the capacitance of Al 85 Y 5 Ni 5 Co 2 amorphous alloy whose surface was anodized after Ni dearoin 表面をNiのデアロイン後陽極酸化したAl85NiCoアモルファス合金のキャパシタンスの50V,200V,500V,650Vでの周波数依存性Frequency dependence at 50V, 200V, 500V and 650V of the capacitance of Al 85 Y 5 Ni 5 Co 2 amorphous alloy whose surface was anodized after Ni dealoin. 表面をNiのデアロイン後陽極酸化したTi70Ni15Ge15アモルファス合金の1ms充電後の1μA,1mA,100mAの定電流における放電特性Discharge characteristics at constant currents of 1 μA, 1 mA, and 100 mA after 1 ms charge of Ti 70 Ni 15 Ge 15 amorphous alloy whose surface was anodized after Ni dealoin. 厚さ方向電極(a)と長さ方向電極(b)Thickness direction electrode (a) and length direction electrode (b) 表面酸化層をもつ薄帯を上下の電極でポリマー粘着テープを介して機械的に挟持させた積層体と表面方向の電極を並列に接合した巻き上げ方式及び捩巻き(螺旋巻き)方式Winding and twisting (spiral winding) methods in which a laminate with a thin ribbon with a surface oxide layer mechanically sandwiched between upper and lower electrodes via a polymer adhesive tape and electrodes in the surface direction are joined in parallel

以下、本発明の蓄電材料、蓄電材料を用いたコンデンサについて、更に詳しく説明する。  Hereinafter, the power storage material of the present invention and the capacitor using the power storage material will be described in more detail.

上記のとおり、本発明の蓄電材料は、結晶金属・合金薄帯もしくはアモルファス合金薄帯の両面もしくは片面が微細孔の蜂の巣状、凹凸もしくは渓谷空間を持つ絶縁酸化物層から構成されており、蓄電材料が100−500,000Ωcmの特定範囲の電気抵抗を持つことで、広範囲の電荷を電気二重層的に蓄電することができ、且つ蓄電及び放電を行うことができる特徴を持っている。  As described above, the electricity storage material of the present invention is composed of an insulating oxide layer having a honeycomb-like, uneven or valley space in which both sides or one side of a crystalline metal / alloy ribbon or an amorphous alloy ribbon has a fine hole. Since the material has an electric resistance in a specific range of 100 to 500,000 Ωcm, it has characteristics that a wide range of electric charges can be stored in an electric double layer, and that electric storage and discharge can be performed.

本発明において、「渓谷」とは、0.1〜50nm径でその深さが径の〜10倍の極小の谷を意味する。また、ナノメータオーダとは、1×10−9〜100×10−9mを意味し、サブナノメータとは、0.1〜0.9nmを意味する。In the present invention, “valley” means a very small valley having a diameter of 0.1 to 50 nm and a depth of 10 times the diameter. Further, the nanometer order means 1 × 10 −9 to 100 × 10 −9 m, and the sub-nanometer means 0.1 to 0.9 nm.

また、本発明の「集積ナノ構造」とは、10−30〜10−21程度に制御できる極微小サイズの構造を意味し、「蓄電材料」とは、絶縁層中の蜂の巣状、凹凸もしくは渓谷空間で繋がった塊を意味する。更に、本発明の「コンデンサ」とは、従来の電子回路に用いられる瞬時の充放電特性より電荷を蓄積させた後の放電性を持つ物理的蓄電体であるものを意味する。In addition, the “integrated nanostructure” of the present invention means a very small size structure that can be controlled to about 10 −30 to 10 −21 m 3 , and the “electric storage material” means a honeycomb-like or uneven structure in the insulating layer. Or it means a lump connected in the valley space. Further, the “capacitor” of the present invention means a physical power storage unit having a discharge property after accumulating electric charge due to instantaneous charge / discharge characteristics used in a conventional electronic circuit.

先ず、本発明で用いられる合金は、任意の寸法の原子空隙を持つ集積微細構造を自己組織化的に形成させ、且つ、一定範囲の電気抵抗を有することで、電荷の蓄電及び放電が速やかにできるものであれば特には限定されない。しかしながら、水素原子を侵入固溶可能な金属伝導島を構成するには、水素との親和性が高い金属元素と親和性が低い金属元素の両方を使用することが望ましい。  First, the alloy used in the present invention forms an integrated microstructure having atomic voids of an arbitrary size in a self-organized manner and has a certain range of electrical resistance, so that charge storage and discharge can be performed quickly. There is no particular limitation as long as it is possible. However, it is desirable to use both a metal element having a high affinity with hydrogen and a metal element having a low affinity in order to construct a metal conductive island capable of penetrating and dissolving hydrogen atoms.

この結果、アモルファス合金では〜4at.%の「自由体積」と呼ばれる空孔が存在し、その空孔は結晶中の原子欠陥より小さく均一であり、fF単位のキャパシタンスを持っている  As a result, for amorphous alloys, ~ 4 at. % Vacancies called “free volume”, which are smaller and more uniform than atomic defects in the crystal and have a capacitance of fF

水素との親和性が高い金属元素としては、VIb、Vb族金属が挙げられる。水素との親和性が低い金属元素としては、Niに代表されるVIII族元素、CuやZnに代表されるIb、IIb族元素が挙げられる。  Examples of metal elements having high affinity with hydrogen include VIb and Vb group metals. Examples of metal elements having low affinity with hydrogen include group VIII elements represented by Ni, and group Ib and IIb elements represented by Cu and Zn.

水素との親和性が高い金属と低い金属の合金としては、Ni−Nb−Zr、Ti−Ni−Cu、Zr−V、Mg−Ni、La−Al−Cu−Ni−Co−Ag等が挙げられ、強靭性と低廉安価であることから、Ni−Nb−Zr、Ti−Ni−Si系が好ましい。  Examples of alloys having high and low affinity for hydrogen include Ni—Nb—Zr, Ti—Ni—Cu, Zr—V, Mg—Ni, La—Al—Cu—Ni—Co—Ag, and the like. Ni-Nb-Zr and Ti-Ni-Si are preferred because of their toughness and low cost.

本発明の合金は結晶、準結晶、非晶質の何れであってもよいが、サブナノメートル寸法のごく微小空間を有する可能性が高いことから、アモルファスの方が好ましい。合金の結晶構造は、冷却速度を変化させることで調整でき、10K/s以上、好ましくは10K/s以上にすることで、均質な伝導島構造となり、10K/s以下とすることで、結晶となる。なお結晶は三次元的な構造対称性を持っているが、結晶に水素をある割合以上固溶させるとアモルファス化するものの脆弱化するため、水素添加量は適宜調整する必要がある。The alloy of the present invention may be crystalline, quasicrystalline, or amorphous, but is preferably amorphous because it is highly likely to have a very small space with sub-nanometer dimensions. The crystal structure of the alloy can be adjusted by changing the cooling rate, and when it is 10 6 K / s or more, preferably 10 8 K / s or more, it becomes a homogeneous conductive island structure and 10 6 K / s or less. By doing so, it becomes a crystal. The crystal has three-dimensional structural symmetry. However, if hydrogen is dissolved in a crystal in a certain proportion or more, it becomes amorphous but weakens, so the amount of hydrogen added needs to be adjusted appropriately.

本発明の蓄電材料である金属アモルファスから成るアモルファス合金または準結晶は、四面体、八面体、十二面体、二十面体等の金属多面体構造、金属伝導島及びその派生構造の組み合わせから、部分的もしくは全面的に構成されている。これらの合金に水素原子が吸収される時、水素原子は最初金属多面体間に侵入固溶しサブナノスケールの絶縁層(空間)を介した連続的クラスタ集合体を作る。それ以上はクラスタ中に固溶し、絶縁性のクーロン振動を起こす。その固溶限は水素原子との親和性がある元素によって異なるものの、水素原子がクラスタ間に最大固溶限界まで固溶した組織はサブナノ/ナノメータ寸法の均一な組織ネットワーク構造が系全体に作成されている理想的な蓄電材料となる。  The amorphous alloy or quasicrystal composed of amorphous metal, which is the electricity storage material of the present invention, is partially composed of a combination of metal polyhedron structures such as tetrahedron, octahedron, dodecahedron, icosahedron, etc., metal conduction island and its derived structure. Or it is composed entirely. When hydrogen atoms are absorbed by these alloys, the hydrogen atoms first intrude and dissolve between the metal polyhedra to form a continuous cluster aggregate through the sub-nanoscale insulating layer (space). Above that, it dissolves in the cluster and causes an insulating Coulomb vibration. Although the solid solubility limit differs depending on the element that has an affinity for hydrogen atoms, a uniform tissue network structure with sub-nano / nanometer dimensions is created in the entire system in the structure in which hydrogen atoms are dissolved to the maximum solid solution limit between clusters. It becomes an ideal electricity storage material.

合金にサブナノ/ナノメータ寸法のトンネル絶縁層を作成させる方法としては、電気分解法、スパッター法、水素の強制鑿岩圧入法、イオン注入法、デアロイング法が挙げられる。サブナノ/ナノメータ寸法の表面酸化物蜂の巣状、凹凸もしくは渓谷を作成させる方法には、陽極酸化法、スパッター法がある。  Examples of the method for forming a sub-nano / nanometer-sized tunnel insulating layer in the alloy include electrolysis, sputtering, forced hydrogen rock injection, ion implantation, and dealing. Examples of methods for forming sub-nano / nanometer-sized surface oxide honeycombs, irregularities, or valleys include an anodizing method and a sputtering method.

なお、本発明において、「デアロイング法」とは、合金リボンもしくは細線を酸ないしアルカリ溶液中に浸漬し、合金構成元素のうち電気化学的に卑な金属元素を一部または複数元素を溶解除去し、原子径サイズの原子空孔もしくはトンネルを作成する方法であって、水素原子を用いなくても、サブナノ/ナノメータ寸法の均一な組織ネットワーク構造が系全体に作成される方法を意味する。更に、従来のデアロイング法では単に元素を除去するだけであるが、本発明のデアロイング法は、活性金属元素を溶解と同時に酸化させて原子空孔もしくはトンネルに接する部分を絶縁層にさせることも併せて行う方法を意味する。  In the present invention, the “dealing method” refers to immersing an alloy ribbon or fine wire in an acid or alkali solution to dissolve and remove a part or a plurality of the electrochemically base metal elements from among the alloy constituent elements. This means a method for creating atomic vacancies or tunnels of atomic size, in which a uniform network structure of sub-nano / nanometer dimensions is created in the entire system without using hydrogen atoms. Furthermore, in the conventional dealloying method, the element is simply removed, but the dealloying method of the present invention also involves oxidizing the active metal element at the same time as dissolution to form a portion in contact with the atomic vacancy or tunnel as an insulating layer. Means how to do.

デアロイング法により合金にサブナノ/ナノメータ寸法のトンネル絶縁層を作成させる場合は、合金組成として、Si−Al−V、Si−Al−Fe−Ni−Cr、Ge−Al−Cr等が好ましい。活性金属を選択溶解酸化させる合金組成としてはTi−Cu、Ti−Zr−Cu−Pd、Ti−Ni−Si、Ti−Fe−Ge、Ti−Cu−Hf−Zr−Ni等のTi基合金、Al−Cr−Ge、Al−Si−Cr、Al−Cu−Ni、Al−Y−Ni−Co等々のAl基合金、La−Al−Cu−Ni−Co−Agが挙げられる。  When a tunnel insulating layer having a sub-nano / nanometer size is formed on an alloy by a dealing method, Si—Al—V, Si—Al—Fe—Ni—Cr, Ge—Al—Cr, or the like is preferable as the alloy composition. As alloy compositions for selectively dissolving and oxidizing active metals, Ti-based alloys such as Ti-Cu, Ti-Zr-Cu-Pd, Ti-Ni-Si, Ti-Fe-Ge, Ti-Cu-Hf-Zr-Ni, Examples include Al-based alloys such as Al-Cr-Ge, Al-Si-Cr, Al-Cu-Ni, Al-Y-Ni-Co, and La-Al-Cu-Ni-Co-Ag.

合金の空隙トンネル寸法の大きさ及び長さは、電気分解法の場合水素原子との親和性の高い金属元素の量と処理時間によって制御できる。水素原子との親和性の高い金属元素の量を多くすれば、トンネル寸法の大きさ、長さは平均で0.2〜0.3nmとなり、蓄電量は最大2,000F/cmになる。The size and length of the void tunnel dimension of the alloy can be controlled by the amount of metal element having a high affinity with hydrogen atoms and the treatment time in the case of electrolysis. If the amount of the metal element having a high affinity with the hydrogen atom is increased, the size and length of the tunnel dimension will be 0.2 to 0.3 nm on average, and the charged amount will be 2,000 F / cm 3 at the maximum.

絶縁性の酸化物薄膜の形成には陽極酸化法を用いるが、サブナノ/ナノメータ寸法の蜂の巣状、凹凸もしくは渓谷空間を作るには非特許文献7の硫酸溶液では約50nmの火山孔が限界であり比表面積増大による電気容量の増加は望めない。そこで少量のフッ化水素水を用いた電界溶液が0.5−10nmの内径を持つ凹凸孔の作成にとって重要である。凹凸孔寸法の大きさ、長さはフッ化水素水と弗化・酢酸アンモニウムのような還元抑制剤やグリセリン溶液の量的割合及び処理時間によって制御できるので、蓄電材料もしくはコンデンサの用途に応じて構成元素の種類とその組成及び処理時間を変化させねばならない。その厚さは余り厚いと重量が増すことによるエネルギー密度やパワー密度が低下し、反対に少ないと電気容量が減少し強度が低下するので0−100μmに限定され、望むらくは5−20μmが好適である。フッ化アンモニウムや硫酸アンモニウム等もしくはグリセリンを用いると、比表面積は最大100,0001m/gとなり蓄電量は〜10,000F/cmになる。したがって、本発明の蓄電材料をコンデンサ等に用いる際には、コンデンサが所期の蓄電特性を得られるよう、構成材料である蓄電材料の金属元素の組成及び処理時間を適宜調整すればよい。Anodization is used to form an insulating oxide thin film, but the volcanic hole of about 50 nm is the limit in the sulfuric acid solution of Non-Patent Document 7 in order to create a honeycomb, irregularity or valley space with sub-nano / nanometer dimensions. An increase in electric capacity due to an increase in specific surface area cannot be expected. Therefore, an electric field solution using a small amount of hydrogen fluoride water is important for making an uneven hole having an inner diameter of 0.5-10 nm. The size and length of the concave and convex holes can be controlled by the amount of reduction inhibitor such as hydrogen fluoride water and fluoride / ammonium acetate, and the quantitative ratio of the glycerin solution and the processing time. The type and composition of the constituent elements and the processing time must be changed. If the thickness is too thick, the energy density and power density due to the increase in weight will decrease. On the other hand, if the thickness is too small, the electric capacity will decrease and the strength will decrease, so it is limited to 0-100 μm, and preferably 5-20 μm. It is. When ammonium fluoride, ammonium sulfate or the like or glycerin is used, the specific surface area is 100,000 0001 m 2 / g at the maximum, and the charged amount is 10,000 F / cm 3 . Therefore, when the electricity storage material of the present invention is used for a capacitor or the like, the composition of the metal element and the treatment time of the electricity storage material that is a constituent material may be appropriately adjusted so that the capacitor can obtain the expected electricity storage characteristics.

陽極酸化法以外のもう1つの酸化物のサブナノ/ナノメータ寸法原子空間作成法は、酸化物のような絶縁物質を蒸着・スパッターリング方式で凹凸薄膜を作成する方法である。この方法は鋳型プロセス等のマスキング技術が必要である。  The oxide sub-nano / nanometer size atomic space creation method other than the anodic oxidation method is a method of creating an uneven thin film by an evaporation / sputtering method using an insulating material such as an oxide. This method requires a masking technique such as a mold process.

また、デアロイング法で合金にサブナノ/ナノメータ寸法のトンネル絶縁層を作成させる場合、合金の空隙トンネル寸法の大きさ及び長さは、酸濃度と浸漬時間で調整することができる。具体的には、酸を濃くすると短時間の処理となるが内部まで十分浸透できないため電気抵抗率を大きくできなくなり、浸漬時間を長くすると電気抵抗率は大きくできるが活性金属の酸化絶縁化は抑制される。酸としては、塩酸、硫酸、硝酸等が挙げられ、元素を溶解できる酸を適宜使い分ければよい。溶質原子量は少ないと比表面積が上がらず蓄電効果は弱く、反対に多いと比表面積が大きくなり蓄電効果は増大するものの試料そのものの強度が弱くなり崩壊するので、最適量が存在する。10−40vol.%が好適である。  In addition, when a tunnel insulating layer having a sub-nanometer / nanometer size is formed on an alloy by a dealing method, the size and length of the void tunnel size of the alloy can be adjusted by the acid concentration and the immersion time. Specifically, when the acid is concentrated, the treatment takes a short time, but the electrical resistivity cannot be increased because it cannot penetrate into the interior sufficiently. When the immersion time is increased, the electrical resistivity can be increased but the oxidation of the active metal is suppressed. Is done. Examples of the acid include hydrochloric acid, sulfuric acid, nitric acid and the like, and an acid capable of dissolving the element may be properly used. When the amount of solute atoms is small, the specific surface area does not increase and the storage effect is weak. On the other hand, when the amount of solute atoms is large, the specific surface area increases and the storage effect increases, but the strength of the sample itself becomes weak and collapses. 10-40 vol. % Is preferred.

本発明の蓄電材料は、100−500,000Ωcmの電気抵抗を有することが好ましい。電気抵抗が100Ωcmより小さいと、蓄電は容易になるものの放電特性が著しく悪く、また、500,000Ωcmより大きいと、放電性が極端に悪くなる。  The electricity storage material of the present invention preferably has an electric resistance of 100 to 500,000 Ωcm. If the electric resistance is smaller than 100 Ωcm, the electric storage is facilitated, but the discharge characteristics are remarkably deteriorated. If it is larger than 500,000 Ωcm, the discharge property is extremely deteriorated.

蓄電材料の電気抵抗は、合金構成元素の種類を選択し、更に絶縁層の厚さで調整することができる。低抵抗の制御には、合金中の水素との親和性が高い金属の割合を多くすると電気抵抗が1ケタから2ケタ上がり、水素との親和性が低い金属の割合を多くすると電気抵抗が小さくなる。高抵抗の場合は、表層酸化物としてAl,Ti,Zr等の元素を選択すると大きくなる。また、デアロイング法の場合は、良伝導性金属元素を溶解除去することで電気抵抗を調整することができる。  The electrical resistance of the electricity storage material can be adjusted by selecting the type of alloy constituent element and further by the thickness of the insulating layer. To control low resistance, increasing the proportion of metals with high affinity for hydrogen in the alloy increases the electrical resistance from one digit to two digits, and increasing the proportion of metals with low affinity for hydrogen decreases the electrical resistance. Become. In the case of high resistance, it becomes large when an element such as Al, Ti, Zr or the like is selected as the surface oxide. In the case of the dealloying method, the electric resistance can be adjusted by dissolving and removing the highly conductive metal element.

上記方法により作製された蓄電材料は、絶縁性物質層中にサブナノ/ナノメートル寸法の蜂の巣状、凹凸もしくは渓谷空間を持つ集積ナノ構造を自己組織的に形成させることから、約−269℃〜約500℃の温度で1mF/cmから10,000F/cmまでの広範囲容量の蓄電性を得ることができる。なお、電子部品がペースメーカ等、体内に入れて用いられる場合は、蓄電材料の容量を1aF〜1μF/cmに調整することが好ましい。蓄電容量は、電極間距離を変えることで、制御することが可能である。なお使用温度上限を500℃としたことはこれ以上の温度でアモルファス合金が結晶化し脆弱になるからである。The electricity storage material manufactured by the above method self-organizes to form an integrated nanostructure having sub-nano / nanometer-sized honeycomb-like, irregularities, or valley spaces in the insulating material layer. it can be at a temperature of 500 ° C. to obtain a power storage for extensive capacity from 1 mF / cm 3 to 10,000F / cm 3. Note that when the electronic component is used in a body such as a pacemaker, the capacity of the power storage material is preferably adjusted to 1 aF to 1 μF / cm 3 . The storage capacity can be controlled by changing the distance between the electrodes. The upper limit of the use temperature is 500 ° C. because the amorphous alloy crystallizes and becomes brittle at a temperature higher than this.

また、従来の電気二重層コンデンサはイオンの移動速度によって放電特性が遅延するので、交流周波数の上昇に伴って放電性が劣化し、100kHz以上では放電性はゼロとなる。しかしながら、本発明の蓄電材料は、電荷の媒体が電子なので充放電特性が俊敏であり、且つ、蓄電材料の電気抵抗を100−500,000Ωcmの電気抵抗範囲、望むらくは1,000−50,000Ωcmとすることで、放電特性が優れ、1mHz〜1MHzの高周波領域においても、充放電することが可能であり、交流蓄電機器への用途も拡がる。  In addition, since the discharge characteristics of the conventional electric double layer capacitor are delayed by the moving speed of ions, the discharge performance deteriorates as the AC frequency increases, and the discharge performance becomes zero at 100 kHz or higher. However, the power storage material of the present invention has a quick charge / discharge characteristic because the charge medium is an electron, and the electrical resistance of the power storage material ranges from 100 to 500,000 Ωcm, preferably 1,000 to 50, By setting it to 000 Ωcm, the discharge characteristics are excellent, and charging and discharging are possible even in a high frequency region of 1 mHz to 1 MHz, and the application to AC power storage devices is expanded.

更に、従来の電気二重層コンデンサでは電解液―電極界面における電界溶液中のイオン及び電極中の電荷担体(電子またはホール)を用いている為、比表面積が大きい活性炭を電極として利用し数F/cm級の静電容量を出しているが、耐圧は電解液の分解圧以下に制限されるため、約1V(水系電解液)、約3V(非水系電解液)と非常に低い。接続された個々のコンデンサの特性ばらつきに起因する過充電防止の工夫が必要であり、漏れ電流が非常に大きく周波数特性も悪い。加えて充電に数時間が必要である。更には溶液系のため、衝撃、地震等で破損後漏洩し環境汚染の可能性が高い等の欠点がある。本発明の蓄電材料は、大容量蓄電コンデンサは比表面積(30,000−100,000m/g)が上記活性炭(900−2,500m/g)より10−30倍大きい究極の電極を有し、表面が絶縁性酸化物の為1mV−1,000Vまでの広範囲の耐電圧特性が可能となる。Furthermore, since the conventional electric double layer capacitor uses ions in the electric field solution at the electrolyte-electrode interface and charge carriers (electrons or holes) in the electrode, activated carbon having a large specific surface area is used as the electrode, and several F / Although it has a capacitance of cm 3 , the withstand voltage is limited to below the decomposition pressure of the electrolytic solution, so it is very low, about 1 V (aqueous electrolytic solution) and about 3 V (non-aqueous electrolytic solution). It is necessary to devise measures for preventing overcharge caused by variations in characteristics of individual capacitors connected, and the leakage current is very large and the frequency characteristics are also poor. In addition, it takes several hours to charge. Furthermore, since it is a solution system, there is a drawback that it is leaked after being damaged by an impact, an earthquake or the like, and the possibility of environmental pollution is high. Electricity storage material according to the present invention, the high-capacity storage capacitor specific surface area (30,000-100,000m 2 / g) is have a 10-30 times greater ultimate electrode from the active carbon (900-2,500m 2 / g) In addition, since the surface is an insulating oxide, a wide range of withstand voltage characteristics up to 1 mV-1,000 V is possible.

本発明のコンデンサは、図6に示すように電極金属を蓄電材料の上下に粘着性ポリマーテープを介して挟持させるか長手方向に接続させることで作製できる。粘着性ポリマーテープの使用は該蓄電材料との接触を良くしかつ、表面微細孔の蜂の巣状、凹凸もしくは渓谷空間を覆うことで電子吸着性を改善させる為である。更に図7に示すように、それを薄く延ばして積み上げたり又は巻き上げたり、細線状にして螺旋巻きにした後、電極を接合することで本発明のコンデンサとなる。2つの蓄電材料を接合する際には、蓄電材料のアモルファス相を結晶化させないことが好ましく、蓄電材料を挟持する電極材のメッキ接合やスポット溶接もしくはファイバーレーザによる接続が好ましい。蓄電材料の電極を接続した後は、エポキシ、ウレタン等の公知の密封用樹脂で密封すればよい。また、セラミックス基板上に蓄電材料を塗布し、電極を接続し、樹脂で密封したりして作製してもよい。  As shown in FIG. 6, the capacitor of the present invention can be produced by sandwiching an electrode metal above and below the electricity storage material via an adhesive polymer tape or connecting it in the longitudinal direction. The use of the adhesive polymer tape is to improve the electron adsorbability by improving the contact with the electricity storage material and covering the honeycomb shape, unevenness or valley space of the surface micropores. Furthermore, as shown in FIG. 7, it is thinly extended and stacked or rolled up, or after making it into a thin line and spirally wound, the electrode is joined to obtain the capacitor of the present invention. When joining two power storage materials, it is preferable not to crystallize the amorphous phase of the power storage material, and it is preferable to use electrode bonding that sandwiches the power storage material, or spot welding or fiber laser connection. After the electrodes of the electricity storage material are connected, they may be sealed with a known sealing resin such as epoxy or urethane. Alternatively, it may be manufactured by applying a power storage material on a ceramic substrate, connecting electrodes, and sealing with a resin.

また、本発明の蓄電材料は、コンデンサ以外にも、バッテリ、太陽電池、体内埋め込み器具等の電子部品の製造に用いることができる。また本発明の蓄電材料から作製されたコンデンサと従来の電界二重層コンデンサやセラミックコンデンサと並列、直列接合することで、複合化・ハイブリッド化コンデンサを作製することもできる。  In addition to the capacitor, the electricity storage material of the present invention can be used for manufacturing electronic components such as batteries, solar cells, and implantable devices. In addition, a composite / hybridized capacitor can be manufactured by connecting a capacitor manufactured from the electricity storage material of the present invention in parallel and in series with a conventional electric field double layer capacitor or ceramic capacitor.

上記の蓄電材料やコンデンサは、次世代の物理的固体電子直接蓄電池として、各種の弱電、強電用蓄電システム、超高速集積・極大電力システム、具体的には半導体代替エレクトロニクス、各種の単電子トンネリングトランジスタ、電圧励起レーザ、メモリ素子、超高速集積・極低電力システム、車等移動体用の電源、交流蓄電器等の蓄電地に有用である。  The above power storage materials and capacitors are next-generation physical solid-state electronic direct storage batteries, various low-power, high-power storage systems, ultra-high-speed integrated / maximum power systems, specifically semiconductor alternative electronics, various single-electron tunneling transistors It is useful for voltage pumping lasers, memory devices, ultra-high-speed integrated / ultra-low power systems, power sources for moving objects such as cars, and storage locations such as AC capacitors.

特に、本発明の従来品との大きな相違点は1ns−1msの極めて短い充電時間である。その為、実用50,60Hzの交流をAD−DCコンバータを用いて脈流から擬似直流にすれば交流蓄電が可能となり送電線の廃止が可能となる。海岸地方もしくは外国での風力発電や洋上・海中発電での送電線の廃止は用地買収や漁業補償あるいは国際問題、ひいては設備費用の軽減や建設時間の短縮といった社会インフラにおいても福音となる。更には雷を含む大気電流の蓄電も可能となり発電所の削減や廃止が可能となる。雷の蓄電には1.〜1億Vの耐電圧、2.〜1億Aの耐電流、3.1ms以下の瞬間充電の3条件が必要であるが、瞬間充電は本特許の優先項目なので問題なく、電流は例えば1万本の分流によって防止できるので1,000Vまでの中規模雷は充電可能となる。  In particular, a significant difference from the conventional product of the present invention is an extremely short charging time of 1 ns-1 ms. Therefore, AC power can be stored and transmission lines can be abolished by converting practical 50, 60 Hz alternating current from pulsating flow to pseudo-direct current using an AD-DC converter. The abolition of wind power generation in coastal areas or in foreign countries, offshore and underwater power generation is also a gospel in social infrastructure such as land acquisition, fishery compensation or international problems, as well as reductions in equipment costs and construction time. Furthermore, it is possible to store atmospheric currents including lightning, and power plants can be reduced or eliminated. To store lightning 1. 1. Withstand voltage of ~ 100 million V Three conditions of current resistance of ~ 100 million A and instantaneous charging of 3.1 ms or less are necessary, but since instantaneous charging is a priority item of this patent, there is no problem, and current can be prevented by, for example, 10,000 shunts. Medium-scale lightning up to 000V can be charged.

以下に実施例を掲げ、本発明を具体的に説明するが、この実施例は単に本発明の説明のため、その具体的な態様の参考のために提供されているものである。これらの例示は本発明の特定の具体的な態様を説明するためのものであるが、本願で開示する発明の範囲を限定したり、あるいは制限することを表すものではない。  The present invention will be described in detail with reference to the following examples, which are provided merely for the purpose of illustrating the present invention and for reference to specific embodiments thereof. These exemplifications are for explaining specific specific embodiments of the present invention, but are not intended to limit or limit the scope of the invention disclosed in the present application.

発明の実施するための最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1〜10)
以下、本発明における各種金属組成の薄膜、薄帯の作成方法とサブナノ/ナノメートル寸法原子空間を形成する方法およびその結果としての蓄電容量さらには積層方法の実施例を説明する。
(Examples 1 to 10)
Hereinafter, examples of a method for forming thin films and ribbons of various metal compositions, a method of forming sub-nano / nanometer size atomic spaces, and a storage capacity as a result, and a stacking method will be described.

Ar雰囲気下で、表1の実施例1〜10組成のアーク溶解した合金インゴット(但し、この段階では、表1の合金組成中の「H」は含有されていない。a:アモルファス、c:結晶を意味する。なお0.05<x<0.3)から冷却速度〜10m/sの単ロール液体急冷法にて幅1mm、厚さ20−50μmのリボン状薄帯試料を、双ロール液体急冷法にて幅10mm、厚さ100μmのリボン状薄帯試料を作成した。水素のチャージは常温下、酸性法とアルカリ法で行った(請求項6)。水素ガス圧入法は5−10気圧の水素雰囲気中200〜300℃、3−5時間の条件で行った。表1には各種結晶・アモルファス合金の組成と表面酸化物、比表面積、蓄電容量、電気抵抗率を示してある。水素の定量は不活性ガス搬送溶融熱伝導度法によった。水素チャージにより金属クラスタ間に自己組織化的に水素は固溶し、〜4.1at.%の自由体積(原子空間)を有する集積微細構造(セル)が作成できる。なお、本発明が適用される材料は、上記請求項において包含される全ての金属元素が対象であり、表1に記載された材料に限定されるものではない。In an Ar atmosphere, an arc-melted alloy ingot of the compositions of Examples 1 to 10 in Table 1 (however, at this stage, “H” in the alloy composition of Table 1 is not contained. A: amorphous, c: crystal means. Note that 0.05 <x <0.3) the width 1mm by a single-roll liquid quenching method of cooling rate to 10 6 m / s from the ribbon-like thin strip sample having a thickness of 20-50 microns, a twin-roll A ribbon-shaped ribbon sample having a width of 10 mm and a thickness of 100 μm was prepared by a liquid quenching method. Hydrogen was charged by an acidic method and an alkali method at room temperature (claim 6). The hydrogen gas injection method was performed under conditions of 200 to 300 ° C. and 3 to 5 hours in a hydrogen atmosphere of 5 to 10 atm. Table 1 shows the composition, surface oxide, specific surface area, storage capacity, and electrical resistivity of various crystal / amorphous alloys. The determination of hydrogen was based on the inert gas transfer melting thermal conductivity method. Hydrogen is dissolved in a self-organized manner between metal clusters by hydrogen charge, and is about 4.1 at. An integrated microstructure (cell) having a% free volume (atomic space) can be created. The materials to which the present invention is applied are all metal elements included in the above claims, and are not limited to the materials listed in Table 1.

実施例1
表1中の番号1の試料の酸化物表面走査型電子顕微鏡写真を図1に示す。本試料の陽極酸化孔は平均約2nmのナノメートル寸法の大きさであることを示している(請求項1、2)。
Example 1
The oxide surface scanning electron micrograph of the sample of No. 1 in Table 1 is shown in FIG. This indicates that the anodized pores of this sample have an average size of about 2 nm and a nanometer dimension (claims 1 and 2).

実施例2
表1中の番号3の試料を用いて、LCRメータによる交流インピーダンス、キャパシタンス、インダクタンスを四端子法にて測定した。交流発信レベルは0.1mV〜30mVとし、発振周波数は1mHz〜1MHzの範囲で計測した。その測定結果を各々図2に示す。高周波領域で45°の勾配を持ち、低・中周波領域で真円を示すCole−Coleプロットが得られた。これは電気分布定数回路(挿入図左)と集中定数回路(挿入図右)を持つ抵抗RとキャパシタンスCの並列等価回路から構成されていることを示す例である(請求項5)。
Example 2
Using the sample of number 3 in Table 1, AC impedance, capacitance, and inductance by an LCR meter were measured by a four-terminal method. The AC transmission level was 0.1 mV to 30 mV, and the oscillation frequency was measured in the range of 1 mHz to 1 MHz. The measurement results are shown in FIG. A Cole-Cole plot having a 45 ° gradient in the high frequency region and showing a perfect circle in the low and medium frequency regions was obtained. This is an example showing that the circuit is composed of a parallel equivalent circuit of a resistor R and a capacitance C having an electric distributed constant circuit (left of the insertion diagram) and a lumped constant circuit (right of the insertion diagram).

実施例3
オシロスコープを用いた過渡現象法で−100〜500℃の温度領域、〜1,000Vの電圧領域で1mHz〜1MHzの周波数範囲のキャパシタンスを表1中の番号9の試料を用いて測定した。その結果を図3及び図4に示す。図3の1mHz−1kHzの周波数領域において温度には無関係に周波数が1桁上がるごとにキャパシタンスは1桁ずつ減少したが、1kHz以上の周波数領域においてはその減少度合いが温度低下に伴って緩慢になる(請求項9)。図4の耐電圧性において、電圧に無関係に100Hzまでは周波数が1桁上がるごとにキャパシタンスは1桁ずつ減少したが、100Hz以上の周波数では飽和した。その度合いは低電圧ほど顕著である(請求項12)。ちなみに、図3、図4の場合、充放電時間は1mHzで1ms、1kHz以上の周波数で15nsであった(請求項12)。
Example 3
Capacitance in a frequency range of 1 mHz to 1 MHz in a temperature range of −100 to 500 ° C. and a voltage range of −1,000 V was measured using a sample of No. 9 in Table 1 by a transient phenomenon method using an oscilloscope. The results are shown in FIGS. In the frequency region of 1 mHz-1 kHz in FIG. 3, the capacitance decreases by one digit every time the frequency increases by one digit regardless of the temperature, but in the frequency region of 1 kHz or more, the decrease degree becomes slow as the temperature decreases. (Claim 9). In the voltage resistance of FIG. 4, the capacitance decreased by one digit every time the frequency increased by one digit up to 100 Hz regardless of the voltage, but was saturated at a frequency of 100 Hz or more. The degree is more conspicuous as the voltage is lower (claim 12). Incidentally, in the case of FIGS. 3 and 4, the charge / discharge time was 1 ms at 1 mHz and 15 ns at a frequency of 1 kHz or more (claim 12).

実施例4
表面からNiのデアロイン後陽極酸化した表1中の試料番号2のTi70Ni15Ge15アモルファス合金の1ms充電後の1μA,1mA,100mAの定電流における放電特性を図5に図示する。蓄電容量、放電時間及び充放電周波数域はポテンシオスタット/ガルバノメータ法で測定した。充電後の急激なIRドロップ後、3曲線は直線的に減少し、直流放電特性を示している(請求項12)。
Example 4
FIG. 5 shows the discharge characteristics at constant currents of 1 μA, 1 mA, and 100 mA after charging for 1 ms of the Ti 70 Ni 15 Ge 15 amorphous alloy of Sample No. 2 in Table 1 that was anodized after Ni alloying from the surface. The storage capacity, discharge time, and charge / discharge frequency range were measured by the potentiostat / galvanometer method. After the rapid IR drop after charging, the three curves decrease linearly, indicating DC discharge characteristics (claim 12).

実施例5
表1に示したリボン状薄帯の上下を金属製電極で機械的に挟持させた厚さ方向電極(a)と長手方向に電極を接合させた長手方向電極(b)を図6に示す(請求項10)。
Example 5
FIG. 6 shows a thickness direction electrode (a) in which the upper and lower sides of the ribbon-like ribbon shown in Table 1 are mechanically sandwiched between metal electrodes and a longitudinal direction electrode (b) in which the electrodes are joined in the longitudinal direction ( Claim 10).

実施例6
表1に示したリボン状薄帯の上下を金属製電極で機械的に挟持させた各コンデンサを並列に電極接合させた積層体を図7に示す。1段縦7固、横7固の5段で合計245個のコンデンサの集積体である(請求項11)。
実施例1
Example 6
FIG. 7 shows a laminated body in which capacitors each having a ribbon-like ribbon shown in Table 1 that are mechanically sandwiched between metal electrodes are joined in parallel. This is an integrated body of 245 capacitors in total of 5 stages, 1 stage vertically 7 solid and 7 solid horizontally.
Example 1

表3に示すように、本発明のコンデンサは、合金から作製されているのにかかわらず、電荷の蓄積及び放電ができ、特に、デアロイング法により作製された蓄電材料を用いたコンデンサの放電特性が著しく良いことが確認された。
実施例2
実施例1の10の試料の製造方法、水溶液・気体成分、蒸着条件、製造条件を表2に示す。
実施例3
試料の重畳方法(図6)、電極の接合方法、密封方法を表3に示す。
表3に示すように、本発明のコンデンサは、酸化物表面に電荷の蓄積ができ、特に、弗化アンモニウムや酢酸アンモニウム等の陽極酸化法により作製された蓄電材料を用いたコンデンサの放電特性が著しく良いことが確認された。
As shown in Table 3, the capacitor of the present invention can accumulate and discharge electric charges regardless of whether it is made of an alloy, and in particular, has a discharge characteristic of a capacitor using an electricity storage material made by a dealloying method. It was confirmed that it was extremely good.
Example 2
Table 2 shows the manufacturing method, the aqueous solution / gas component, the vapor deposition conditions, and the manufacturing conditions of the ten samples of Example 1.
Example 3
Table 3 shows the sample superposition method (FIG. 6), electrode joining method, and sealing method.
As shown in Table 3, the capacitor of the present invention is capable of accumulating charges on the oxide surface, and in particular, has a discharge characteristic of a capacitor using an electricity storage material produced by an anodic oxidation method such as ammonium fluoride or ammonium acetate. It was confirmed that it was extremely good.

Claims (12)

結晶金属・合金薄帯もしくはアモルファス合金薄帯の両面もしくは片面が微細孔の蜂の巣状、凹凸もしくは渓谷空間を持ち、かつ電気抵抗が100−500,000Ωcmの絶縁性物質層から構成され、その微細空間に電気二重層的に電荷が蓄えられる集積ナノ構造(セル)であることを特徴とする蓄電材料。Both sides or one side of a crystalline metal / alloy ribbon or amorphous alloy ribbon is composed of an insulating material layer having a microporous honeycomb shape, unevenness or valley space, and an electrical resistance of 100-500,000 Ωcm, and the fine space A power storage material characterized by having an integrated nanostructure (cell) in which electric charges are stored in an electric double layer. 前記蓄電材料において、微細孔の蜂の巣状、凹凸もしくは渓谷空間が2×10−10〜10−8mの幅にあり、容量が1mF/cmから10,000F/cmまでに制御できる極微小サイズの集積ナノ構造(セル)であることを特徴とする請求項1記載の蓄電材料。In the electricity storage material, the microscopic honeycomb shape, unevenness or valley space has a width of 2 × 10 −10 to 10 −8 m, and the capacity can be controlled from 1 mF / cm 3 to 10,000 F / cm 3. The power storage material according to claim 1, wherein the power storage material is an integrated nanostructure (cell) having a size. 前記蓄電材料において、結晶金属・合金薄帯もしくはアモルファス合金薄帯の厚さが0−100−μmであることを特徴とする請求項1、2の何れか1項に記載の蓄電材料。3. The power storage material according to claim 1, wherein a thickness of the crystalline metal / alloy ribbon or the amorphous alloy ribbon is 0-100 μm. 前記蓄電材料において、表面が15at.%以下の酸素欠陥構造を持つ酸化物アモルファス相であり、内部構造がその凹凸表面の負(正)電荷の集積に対してそれを電気的に中和する正(負)の電荷の酸素欠陥サイトで構成されていることを特徴とする請求項1〜3の何れか1項に記載の蓄電材料。In the electricity storage material, the surface is 15 at. Oxide amorphous phase with an oxygen defect structure of less than% and the internal structure electrically neutralizes the negative (positive) charge accumulation on the rugged surface with positive (negative) oxygen defect sites It is comprised by these, The electrical storage material of any one of Claims 1-3 characterized by the above-mentioned. 前記蓄電材料において、サブナノ/ナノメータ寸法のナノコンデンサが並列接合もしくは直列接合して電気分布定数回路と集中定数回路の各々の一方または両方から構成された集積ナノ構造(セル)であることを特徴とする請求項1〜4の何れか1項に記載の蓄電材料。In the electricity storage material, the sub-nano / nanometer size nano-capacitor is an integrated nanostructure (cell) configured by one or both of an electric distributed constant circuit and a lumped constant circuit by parallel or serial connection. The power storage material according to any one of claims 1 to 4. 前記蓄電材料において、結晶金属・合金薄帯もしくはアモルファス合金薄帯を酸溶解処理によるデアロイング法、水素の強制鑿岩法あるいはイオン注入法によって蜂の巣状、凹凸もしくは渓谷の原子空間を形成し、その後両表面もしくは片表面を酸化させた集積ナノ構造(セル)であることを特徴とする請求項1〜5の何れか1項に記載の蓄電材料。In the electricity storage material, a crystalline metal / alloy ribbon or an amorphous alloy ribbon is formed into a honeycomb-like, uneven or valley atomic space by a de-alloying method by acid dissolution treatment, a hydrogen forced rock formation method or an ion implantation method, and then both The power storage material according to claim 1, wherein the power storage material is an integrated nanostructure (cell) obtained by oxidizing a surface or one surface. 前記蓄電材料において、酸溶液中の陽極酸化法よって結晶金属・合金もしくはアモルファス合金薄帯の両表面もしくは片表面にサブナノ/ナノメータ寸法の蜂の巣状、凹凸もしくは渓谷空間が作られた厚さ20−500nmの集積ナノ構造(セル)であることを特徴とする請求項1〜6の何れか1項に記載の蓄電材料。In the power storage material, a sub-nano / nanometer size honeycomb, unevenness or valley space is formed on both surfaces or one surface of a crystalline metal / alloy or amorphous alloy ribbon by an anodic oxidation method in an acid solution. The power storage material according to claim 1, wherein the power storage material is an integrated nanostructure (cell). 前記蓄電材料において、表面絶縁物質を物理的蒸着・スパッタリング法によって蜂の巣状、凹凸もしくは渓谷の原子空間を形成させた集積ナノ構造(セル)であることを特徴とする請求項1〜7の何れか1項に記載の蓄電材料。8. The integrated power storage material according to claim 1, wherein the storage material is an integrated nanostructure (cell) in which a surface insulating material is formed in a honeycomb shape, irregularities, or an atomic space of a valley by a physical vapor deposition / sputtering method. The electricity storage material according to Item 1. 前記蓄電材料において、ナノコンデンサ特性が極低温から500℃迄作動可能な集積ナノ構造(セル)であることを特徴とする請求項1〜8の何れか1項に記載の蓄電材料。The power storage material according to any one of claims 1 to 8, wherein the power storage material is an integrated nanostructure (cell) whose nanocapacitor characteristics are operable from a cryogenic temperature to 500 ° C. 請求項1〜9の何れか1項に記載の蓄電材料がその表面方向もしくは厚さ方向にプラス、マイナスの金属電極により、特に厚さ方向には有機物テープを介して粘着接合された集積ナノ構造(セル)であることを特徴とするコンデンサ。An integrated nanostructure in which the electricity storage material according to any one of claims 1 to 9 is adhesively bonded with a positive or negative metal electrode in the surface direction or thickness direction, in particular in the thickness direction via an organic tape. A capacitor characterized by being a (cell). 請求項1〜10の何れか1項に記載の蓄電材料が立方体を含む直方体、巻尺状、折り畳状、捩巻状体として成形され1fFの微弱電荷から10kFの巨大電荷までを瞬時に蓄電でき、1,000Vまでの広範囲の耐電圧特性を持つことを特徴とするコンデンサ。The power storage material according to any one of claims 1 to 10 is formed as a rectangular parallelepiped including a cube, a tape measure, a fold, or a spiral, and can instantaneously store a weak charge of 1 fF to a huge charge of 10 kF. A capacitor characterized by having a wide withstand voltage characteristic up to 1,000V. 請求項1〜11の何れか1項に記載の蓄電材料もしくはコンデンサが1nsから1msのごく短時間で〜1MHzの交流変換直流及び直流を蓄電できることを特徴とするコンデンサ。The capacitor | condenser characterized by the electricity storage material or capacitor | condenser of any one of Claims 1-11 being able to store | store AC conversion DC and DC of -1MHz in the very short time of 1 ns to 1 ms.
JP2013208610A 2013-09-16 2013-09-16 Power storage material having insulating high specific surface area and capacitor using power storage material Pending JP2015057808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013208610A JP2015057808A (en) 2013-09-16 2013-09-16 Power storage material having insulating high specific surface area and capacitor using power storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013208610A JP2015057808A (en) 2013-09-16 2013-09-16 Power storage material having insulating high specific surface area and capacitor using power storage material

Publications (1)

Publication Number Publication Date
JP2015057808A true JP2015057808A (en) 2015-03-26

Family

ID=52815797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013208610A Pending JP2015057808A (en) 2013-09-16 2013-09-16 Power storage material having insulating high specific surface area and capacitor using power storage material

Country Status (1)

Country Link
JP (1) JP2015057808A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016134934A (en) * 2015-01-15 2016-07-25 国立大学法人東北大学 Power storage device and manufacturing method thereof
JP2020068304A (en) * 2018-10-25 2020-04-30 国立大学法人東北大学 Coil-less manner material and coil-less manner
JPWO2021166813A1 (en) * 2020-02-18 2021-08-26

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016134934A (en) * 2015-01-15 2016-07-25 国立大学法人東北大学 Power storage device and manufacturing method thereof
JP2020068304A (en) * 2018-10-25 2020-04-30 国立大学法人東北大学 Coil-less manner material and coil-less manner
JP7229472B2 (en) 2018-10-25 2023-02-28 国立大学法人東北大学 Ultracapacitor materials and ultracapacitors
JPWO2021166813A1 (en) * 2020-02-18 2021-08-26
WO2021166813A1 (en) * 2020-02-18 2021-08-26 国立大学法人東北大学 Power storage material and ultra power storage body
JP7057577B2 (en) 2020-02-18 2022-04-20 国立大学法人東北大学 Power storage material and ultra power storage body

Similar Documents

Publication Publication Date Title
Swain et al. Construction of three-dimensional MnO2/Ni network as an efficient electrode material for high performance supercapacitors
Zhang et al. Recent progress in self‐supported metal oxide nanoarray electrodes for advanced lithium‐ion batteries
US10236135B2 (en) Ni(OH)2 nanoporous films as electrodes
Zhu et al. Graphene-anchored NiCoO2 nanoarrays as supercapacitor electrode for enhanced electrochemical performance
Zhang et al. Hierarchical carbon-decorated Fe3O4 on hollow CuO nanotube array: Fabrication and used as negative material for ultrahigh-energy density hybrid supercapacitor
Liang et al. Inorganic porous films for renewable energy storage
KR102227276B1 (en) Metal-oxide anchored graphene and carbon-nanotube hybrid foam
TW202030920A (en) Electrodeposited copper foil and electrode and lithium-ion secondary battery comprising the same
US9881746B2 (en) Flexible and transparent supercapacitors and fabrication using thin film carbon electrodes with controlled morphologies
US8216712B1 (en) Anodized metallic battery separator having through-pores
CN102263257B (en) High energy flexible electrode material and preparation method thereof and application thereof in storage battery
Li et al. 3D porous H-Ti3C2Tx films as free-standing electrodes for zinc ion hybrid capacitors
Zeng et al. Electrodeposition of hierarchical manganese oxide on metal nanoparticles decorated nanoporous gold with enhanced supercapacitor performance
CN114784358A (en) Apparatus and method for high voltage and solar applications
US8017270B2 (en) Electrochemical cell fabricated via liquid crystal templating
WO2010081769A1 (en) A process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes
Zhang et al. Graphene and maghemite composites based supercapacitors delivering high volumetric capacitance and extraordinary cycling stability
Hou et al. Non-aqueous nanoporous gold based supercapacitors with high specific energy
TW200834623A (en) Electrodes for electrochemical cells
KR20100132369A (en) Super capacitor and method of fabricating the same
JP2015057808A (en) Power storage material having insulating high specific surface area and capacitor using power storage material
JP2012253321A (en) Electricity storage material and electronic component using the same
Fu et al. Three-dimensional core-shell structure of CoMn2O4@ Ni‐Co‐S nanowires grown on nickel foam as binder free battery-type electrode
JP6498945B2 (en) Power storage device and manufacturing method thereof
Zhang et al. Enlarged capacitance of TiO 2 nanotube array electrodes treated by water soaking