JP2015053442A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2015053442A
JP2015053442A JP2013186422A JP2013186422A JP2015053442A JP 2015053442 A JP2015053442 A JP 2015053442A JP 2013186422 A JP2013186422 A JP 2013186422A JP 2013186422 A JP2013186422 A JP 2013186422A JP 2015053442 A JP2015053442 A JP 2015053442A
Authority
JP
Japan
Prior art keywords
resin
semiconductor element
conductive adhesive
wiring pattern
based conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013186422A
Other languages
Japanese (ja)
Other versions
JP6064845B2 (en
Inventor
裕史 川島
Yuji Kawashima
裕史 川島
進吾 須藤
Shingo Sudo
進吾 須藤
和彦 作谷
Kazuhiko Sakutani
和彦 作谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013186422A priority Critical patent/JP6064845B2/en
Publication of JP2015053442A publication Critical patent/JP2015053442A/en
Application granted granted Critical
Publication of JP6064845B2 publication Critical patent/JP6064845B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device which has high reliability for a heat cycle.SOLUTION: A semiconductor device comprises: an insulation layer 5 composed of a resin-based material; a metal wiring pattern 4 which is formed on a surface of the insulation layer 5 and has holes 41; and a semiconductor element 2 having a rear face which is electrically connected with the wiring pattern 4 by a resin-based conductive adhesive 7 and bonded to a surface of the insulation layer 5 by a resin-based conductive adhesive 7 filled in the holes 41. Since temperature dependencies of linear expansion coefficients of the insulation layer 5 composed of the resin-based material and the resin-based conductive adhesive 7 can be approximate, a stress generated at a bonded interface in a heat cycle is decreased and a semiconductor device in which the semiconductor element 2 is hard to peel and which has high reliability for a heat cycle.

Description

この発明は、半導体装置に関するものであり、特に半導体素子を搭載したモジュールの構造に関するものである。   The present invention relates to a semiconductor device, and more particularly to a structure of a module on which a semiconductor element is mounted.

一般的な半導体装置は、放熱板上に、表面に金属製の配線パターンを有する絶縁層を接合し、配線パターン上に半導体素子の裏面をはんだ付け搭載した構造となっている。   A general semiconductor device has a structure in which an insulating layer having a metal wiring pattern is bonded on a heat sink, and the back surface of a semiconductor element is soldered and mounted on the wiring pattern.

近年、半導体装置の高温動作が望まれる一方で、はんだの融点は200℃〜300℃であり、半導体素子を搭載する際の接着剤にはんだを用いた場合は200℃以上の高温動作が難しいため、接着剤の高温耐熱性が要求されていた。   In recent years, high temperature operation of semiconductor devices is desired, but the melting point of solder is 200 ° C. to 300 ° C., and it is difficult to operate at 200 ° C. or higher when solder is used as an adhesive for mounting semiconductor elements. The high temperature heat resistance of the adhesive was required.

そこで、耐熱性が300℃以上と高温であるAgペーストなどの熱硬化性樹脂を用いた樹脂系導電性接着剤を、配線パターン上に設けられた合金材からなるダイパッドに半導体素子を搭載する際の接着剤として用いる方法が開示されている(例えば、特許文献1参照)。   Therefore, when a semiconductor element is mounted on a die pad made of an alloy material provided on a wiring pattern, a resin-based conductive adhesive using a thermosetting resin such as Ag paste having a heat resistance of 300 ° C. or higher is high. A method of using it as an adhesive is disclosed (for example, see Patent Document 1).

特開2011−181787号公報JP 2011-181787 A

半導体装置では、半導体素子の裏面側の電位を制御するため、従来、半導体素子の裏面全面が樹脂系導電性接着剤などの接着剤によって配線パターンに接着される。しかしながら、樹脂系導電性接着剤と合金材など金属とは、使用温度範囲において線膨張係数が異なる。そのため、高温状態と低温状態とが繰り返されるヒートサイクル時に、樹脂系導電性接着剤と金属との界面に発生する応力が大きくなる。その結果、樹脂系導電性接着剤が金属から剥がれやすくなるなど、ヒートサイクルに対する信頼性が低いという問題があった。   In a semiconductor device, in order to control the potential on the back side of a semiconductor element, the entire back surface of the semiconductor element is conventionally bonded to a wiring pattern with an adhesive such as a resin-based conductive adhesive. However, the resin-based conductive adhesive and the metal such as an alloy material have different linear expansion coefficients in the operating temperature range. Therefore, the stress generated at the interface between the resin-based conductive adhesive and the metal increases during the heat cycle in which the high temperature state and the low temperature state are repeated. As a result, there is a problem that the reliability with respect to the heat cycle is low such that the resin-based conductive adhesive is easily peeled off from the metal.

この発明は、上述のような問題を解決するためになされたもので、ヒートサイクルに対する信頼性が高い半導体装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and an object thereof is to provide a semiconductor device having high reliability with respect to heat cycle.

この発明に係る半導体装置は、樹脂系材料から成る絶縁層と、絶縁層の表面に形成され、孔部を有する金属製の配線パターンと、樹脂系導電性接着剤によって配線パターンと電気的に接続された裏面が、孔部に充填された樹脂系導電性接着剤によって絶縁層の表面に接着された半導体素子と、を備えたことを特徴とする。   A semiconductor device according to the present invention is electrically connected to a wiring pattern by an insulating layer made of a resin-based material, a metal wiring pattern formed on the surface of the insulating layer and having a hole, and a resin-based conductive adhesive. And a semiconductor element bonded to the surface of the insulating layer with a resin-based conductive adhesive filled in the hole.

この発明に係る半導体装置によれば、樹脂系材料から成る絶縁層と、絶縁層の表面に形成され、孔部を有する金属製の配線パターンと、樹脂系導電性接着剤によって配線パターンと電気的に接続された裏面が、孔部に充填された樹脂系導電性接着剤によって絶縁層の表面に接着された半導体素子と、を備えたため、樹脂系材料から成る絶縁層と樹脂系導電性接着剤との線膨張係数を使用温度範囲において近くできるので、ヒートサイクル時に孔部底面の接着界面に発生する応力が低くなり、樹脂系導電性接着剤と絶縁層との接着部が剥がれにくく、ヒートサイクルに対する信頼性を高くすることができる。   According to the semiconductor device of the present invention, an insulating layer made of a resin-based material, a metal wiring pattern formed on the surface of the insulating layer and having a hole, and a wiring pattern and an electric circuit by a resin-based conductive adhesive. And a semiconductor element bonded to the surface of the insulating layer with a resin-based conductive adhesive filled in the hole, so that the insulating layer made of a resin-based material and the resin-based conductive adhesive Because the thermal expansion coefficient can be close to the operating temperature range, the stress generated at the adhesive interface at the bottom of the hole during heat cycle is reduced, and the adhesive part between the resin-based conductive adhesive and the insulating layer is less likely to peel off. Can be made more reliable.

この発明の実施の形態1に係る半導体装置を示す断面図である。1 is a cross-sectional view showing a semiconductor device according to Embodiment 1 of the present invention. この発明の実施の形態1に係る半導体装置を示す上面図である。1 is a top view showing a semiconductor device according to a first embodiment of the present invention. この発明の実施の形態1に係る半導体装置の一部を示す上面図である。1 is a top view showing a part of a semiconductor device according to a first embodiment of the present invention. この発明の実施の形態1に係る半導体装置の変形例を示す上面図である。It is a top view which shows the modification of the semiconductor device which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る半導体装置の変形例の一部を示す上面図である。It is a top view which shows a part of modification of the semiconductor device which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る半導体装置の配線パターンが形成された絶縁層と樹脂系導電性接着剤との界面付近の拡大断面図である。It is an expanded sectional view of the interface vicinity of the insulating layer in which the wiring pattern of the semiconductor device concerning Embodiment 1 of this invention was formed, and resin-type conductive adhesive. この発明の実施の形態2に係る半導体装置を示す上面図である。It is a top view which shows the semiconductor device which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る半導体装置の一部を示す上面図である。It is a top view which shows a part of semiconductor device concerning Embodiment 2 of this invention. この発明の実施の形態2に係る半導体装置の変形例の一部を示す上面図である。It is a top view which shows a part of modification of the semiconductor device concerning Embodiment 2 of this invention. この発明の実施の形態3に係る半導体装置を示す断面図である。It is sectional drawing which shows the semiconductor device which concerns on Embodiment 3 of this invention. この発明の実施の形態3に係る半導体装置を示す上面図である。It is a top view which shows the semiconductor device which concerns on Embodiment 3 of this invention. この発明の実施の形態3に係る半導体装置の一部を示す上面図である。It is a top view which shows a part of semiconductor device concerning Embodiment 3 of this invention.

実施の形態1.
まず、この発明の実施の形態1における半導体装置の構成を説明する。図1は、この発明の実施の形態1における半導体装置を示す断面図である。図1に示すように、本実施の形態に係る半導体装置は、放熱板6の表面に設けられた絶縁層5と、絶縁層5の表面に設けられた配線パターン4と、配線パターン4と絶縁層5との表面に樹脂系導電性接着剤7を介して裏面が接着されることによって搭載された半導体素子2と、を備える。さらに、パワーリード9と制御用リード10を備えたインサートケース8が半導体素子2を取り囲み、半導体素子2の表面側に設けられた表面電極と制御用リード10とが、また、配線パターン4とパワーリード9とが、ボンディングワイヤ11によってそれぞれ電気的に接続されている。尚、配線パターン4は樹脂系導電性接着剤7によって半導体素子2の裏面側に設けられた裏面電極と電気的に接続されている。つまり、半導体素子2の裏面は樹脂系導電性接着剤7によって配線パターン4と電気的に接続されている。
Embodiment 1 FIG.
First, the configuration of the semiconductor device according to the first embodiment of the present invention will be described. 1 is a cross-sectional view showing a semiconductor device according to a first embodiment of the present invention. As shown in FIG. 1, the semiconductor device according to the present embodiment includes an insulating layer 5 provided on the surface of the heat sink 6, a wiring pattern 4 provided on the surface of the insulating layer 5, and insulation from the wiring pattern 4. And a semiconductor element 2 mounted by adhering the back surface to the surface of the layer 5 via a resin-based conductive adhesive 7. Further, an insert case 8 having a power lead 9 and a control lead 10 surrounds the semiconductor element 2. The surface electrode provided on the surface side of the semiconductor element 2 and the control lead 10 are connected to the wiring pattern 4 and the power. Leads 9 are electrically connected to each other by bonding wires 11. The wiring pattern 4 is electrically connected to the back electrode provided on the back side of the semiconductor element 2 by the resin-based conductive adhesive 7. That is, the back surface of the semiconductor element 2 is electrically connected to the wiring pattern 4 by the resin conductive adhesive 7.

図1で示される半導体装置は、放熱板6が露出し、インサートケース8によって囲まれた内部はポッティング樹脂などの封止用樹脂12によって封止されている。本実施の形態では、放熱板6はアルミからなるとするが、銅等その他の金属であっても良い。   In the semiconductor device shown in FIG. 1, the heat radiating plate 6 is exposed, and the inside surrounded by the insert case 8 is sealed with a sealing resin 12 such as potting resin. In the present embodiment, the heat radiating plate 6 is made of aluminum, but may be other metals such as copper.

本実施の形態における半導体装置の半導体素子2は、裏面が配線パターン4と絶縁層5との双方に接着される。つまり、半導体素子2の裏面の面積は、配線パターン4との接着面積より大きく、樹脂間接着領域40に設けられた樹脂系導電性接着剤7によって直接絶縁層5と接着される。図1において、樹脂間接着領域40は点線で囲まれた領域である。図1のように、樹脂間接着領域40は、断面視において半導体素子2の裏面の両端部に設けられる。   The back surface of the semiconductor element 2 of the semiconductor device in the present embodiment is bonded to both the wiring pattern 4 and the insulating layer 5. That is, the area of the back surface of the semiconductor element 2 is larger than the bonding area with the wiring pattern 4 and is directly bonded to the insulating layer 5 by the resin-based conductive adhesive 7 provided in the inter-resin bonding region 40. In FIG. 1, an inter-resin adhesion region 40 is a region surrounded by a dotted line. As shown in FIG. 1, the inter-resin adhesion regions 40 are provided at both ends of the back surface of the semiconductor element 2 in a cross-sectional view.

本実施の形態では、絶縁層5は樹脂系材料からなり、樹脂成分はエポキシを主成分とする。樹脂成分としては、エポキシ以外にもポリイミド、ポリウレタン、シリコーン、フェノール等を用いても良い。また、フィラーとして、例えばSiO(Silicon dioxide)、BN(Boron Nitride)、AlN(Aluminum Nitride)などの化合物フィラーを含有してもよい。このような、化合物フィラーが充填された絶縁層5は高い放熱特性を示す。 In the present embodiment, the insulating layer 5 is made of a resin material, and the resin component is mainly composed of epoxy. As the resin component, polyimide, polyurethane, silicone, phenol or the like may be used besides epoxy. Further, as a filler, for example, SiO 2 (Silicon dioxide), BN (Boron Nitride), may contain a compound filler such as AlN (Aluminum Nitride). Such an insulating layer 5 filled with a compound filler exhibits high heat dissipation characteristics.

また、本実施の形態では、樹脂系導電性接着剤7として、エポキシなどの樹脂成分と、銀フィラーなどの導電性成分とが一体となったAgペーストが用いられる。樹脂成分としては、エポキシ以外にもポリイミド、ポリウレタン、シリコーン、フェノール等が挙げられる。導電性成分としては、銀成分の他に、銅、カーボン、金等の成分が挙げられる。導電性成分としてAgを用いると、熱伝導性が優れ、低コストである樹脂系導電性接着剤7が得られる。   In the present embodiment, an Ag paste in which a resin component such as epoxy and a conductive component such as silver filler are integrated is used as the resin-based conductive adhesive 7. Examples of the resin component include polyimide, polyurethane, silicone, phenol and the like in addition to epoxy. Examples of the conductive component include components such as copper, carbon, and gold in addition to the silver component. When Ag is used as the conductive component, the resin-based conductive adhesive 7 having excellent thermal conductivity and low cost can be obtained.

樹脂系導電性接着剤7は、半導体素子2の裏面に接着されるだけでなく、図1のように、半導体素子2の側面に回り込んでフィレット(裾拡がり部)を形成している。このように、樹脂系導電性接着剤7が半導体素子2の側面にフィレットを形成することによって樹脂系導電性接着剤7と半導体素子2との接着面積が大きくなるので、半導体素子2の密着性が向上される。   The resin-based conductive adhesive 7 is not only bonded to the back surface of the semiconductor element 2, but also wraps around the side surface of the semiconductor element 2 to form a fillet (hem spreading portion) as shown in FIG. 1. As described above, since the resin-based conductive adhesive 7 forms a fillet on the side surface of the semiconductor element 2, the adhesion area between the resin-based conductive adhesive 7 and the semiconductor element 2 is increased. Is improved.

図2に、本実施の形態に係る半導体装置の上面図を示す。また、図3に、本実施の形態に係る半導体装置の、半導体素子2を搭載する前段階における上面図を示す。   FIG. 2 shows a top view of the semiconductor device according to the present embodiment. FIG. 3 shows a top view of the semiconductor device according to the present embodiment before the semiconductor element 2 is mounted.

図2のように、2つの半導体素子2が搭載されるとする。図3の上面視において、半導体素子2が搭載される前段階で、配線パターン4に、半導体素子2が配置される領域の一部を含めるように孔部41が形成されている。孔部41は配線パターン4が形成される際に、パターニング及びエッチングによって形成される。配線パターン4は、例えば銅などの金属で構成される。   Assume that two semiconductor elements 2 are mounted as shown in FIG. In the top view of FIG. 3, the hole 41 is formed in the wiring pattern 4 so as to include a part of the region where the semiconductor element 2 is arranged before the semiconductor element 2 is mounted. The hole 41 is formed by patterning and etching when the wiring pattern 4 is formed. The wiring pattern 4 is made of a metal such as copper, for example.

図3において、孔部41のうち、半導体素子2が搭載される樹脂間接着領域40は点線で囲まれる領域となる。このように、孔部41は半導体素子2が搭載される樹脂間接着領域40よりも外側に大きく形成されている。   In FIG. 3, the inter-resin adhesion region 40 in which the semiconductor element 2 is mounted is a region surrounded by a dotted line in the hole 41. Thus, the hole 41 is formed larger outside the inter-resin adhesion region 40 where the semiconductor element 2 is mounted.

また、孔部41は、搭載される半導体素子2の角部と対向する位置に、L字型の形状で4箇所設けられている。   Further, four holes 41 are provided in an L-shape at positions facing the corners of the semiconductor element 2 to be mounted.

図3の上面視において、孔部41は配線パターン4を貫通して設けられるため、孔部41の内部には絶縁層5が露出しており、孔部41に樹脂系導電性接着剤7を充填して半導体素子2を搭載すると、樹脂間接着領域40内の樹脂系導電性接着剤7によって半導体素子2の裏面と絶縁層5の表面とが接着される。つまり、半導体素子2は配線パターン4の表面上と、配線パターン4の孔部41を介して絶縁層5の表面上と、に配置されて、樹脂系導電性接着剤7によって接着される。   In the top view of FIG. 3, since the hole 41 is provided through the wiring pattern 4, the insulating layer 5 is exposed inside the hole 41, and the resin-based conductive adhesive 7 is applied to the hole 41. When the semiconductor element 2 is filled and mounted, the back surface of the semiconductor element 2 and the surface of the insulating layer 5 are bonded by the resin-based conductive adhesive 7 in the inter-resin bonding region 40. That is, the semiconductor element 2 is disposed on the surface of the wiring pattern 4 and on the surface of the insulating layer 5 through the hole 41 of the wiring pattern 4, and is adhered by the resin conductive adhesive 7.

図3の配線パターン4上の半導体素子2の搭載位置と孔部41とに樹脂系導電性接着剤7を塗布し、半導体素子2が接着され、アルミワイヤなどのボンディングワイヤ11によって各電気的接続が施された構成が、図2で示される本実施の形態に係る半導体装置の上面視に相当する。   A resin conductive adhesive 7 is applied to the mounting position of the semiconductor element 2 and the hole 41 on the wiring pattern 4 in FIG. 3, the semiconductor element 2 is adhered, and each electrical connection is made by a bonding wire 11 such as an aluminum wire. The configuration given is equivalent to a top view of the semiconductor device according to the present embodiment shown in FIG.

次に、本実施の形態における半導体装置の製造方法について説明する。   Next, a method for manufacturing a semiconductor device in the present embodiment will be described.

放熱板6と接合した配線パターン4上と配線パターン4の孔部41内の絶縁層5上とに、樹脂系導電性接着剤7であるAgペーストをディスペンサ(液体定量吐出装置)やスタンプ方式により塗布する。次に、半導体素子2を、塗布したAgペースト上に載せ(マウント工程)、一定荷重をかけてAgペーストを広げる。その後、100℃以上の温度でAgペーストを熱硬化させて半導体素子2を接着する。さらに、インサートケース8を接着剤で取り付け、各ボンディングワイヤ11をワイヤボンドする。最後に、インサートケース8内にポッティング樹脂である封止樹脂12を塗布し、熱硬化させることで封止が完了し、図1及び図2に示す本実施の形態に係る半導体装置が得られる。   On the wiring pattern 4 joined to the heat sink 6 and on the insulating layer 5 in the hole 41 of the wiring pattern 4, Ag paste, which is a resin-based conductive adhesive 7, is dispensed by a dispenser (liquid dispensing device) or a stamp method. Apply. Next, the semiconductor element 2 is placed on the applied Ag paste (mounting process), and the Ag paste is spread by applying a certain load. Thereafter, the Ag paste is thermally cured at a temperature of 100 ° C. or higher to bond the semiconductor element 2. Further, the insert case 8 is attached with an adhesive, and the bonding wires 11 are wire-bonded. Finally, sealing resin 12 which is potting resin is applied in insert case 8 and thermally cured to complete sealing, and the semiconductor device according to the present embodiment shown in FIGS. 1 and 2 is obtained.

本実施の形態に係る半導体装置によれば、半導体素子2が樹脂系導電性接着剤7によって樹脂系材料からなる絶縁層5と接着されるため、ヒートサイクルに対する信頼性を向上することが出来る。   According to the semiconductor device according to the present embodiment, since the semiconductor element 2 is bonded to the insulating layer 5 made of a resin-based material by the resin-based conductive adhesive 7, the reliability with respect to the heat cycle can be improved.

ヒートサイクルに対する信頼性に関係する特性は線膨張係数であるが、導電性成分であるフィラーを含有する樹脂系導電性接着剤7と、化合物フィラーなどのフィラーが充填された樹脂系材料からなる絶縁層5とは、それぞれのフィラーの充填量によって線膨張係数を調整することができる。   The characteristic related to the reliability with respect to the heat cycle is the linear expansion coefficient, but the insulation is made of a resin-based conductive adhesive 7 containing a filler as a conductive component and a resin-based material filled with a filler such as a compound filler. With the layer 5, the linear expansion coefficient can be adjusted by the filling amount of each filler.

樹脂系導電性接着剤7と配線パターン4との線膨張係数を室温で同じにしたとしても、それぞれの線膨張係数の温度依存性が異なるため、室温以外の線膨張係数が異なる。そのため、ヒートサイクル時には樹脂系導電性接着剤7と配線パターン4との線膨張係数の異なる温度領域において、樹脂系導電性接着剤7と配線パターン4との接着界面に応力が発生し、樹脂系導電性接着剤7と配線パターン4との接着部が剥がれやすい。   Even if the linear expansion coefficients of the resin-based conductive adhesive 7 and the wiring pattern 4 are the same at room temperature, the linear expansion coefficients other than room temperature are different because the temperature dependence of the respective linear expansion coefficients is different. Therefore, during the heat cycle, stress is generated at the bonding interface between the resin-based conductive adhesive 7 and the wiring pattern 4 in a temperature region where the linear expansion coefficients of the resin-based conductive adhesive 7 and the wiring pattern 4 are different, and the resin system The adhesive portion between the conductive adhesive 7 and the wiring pattern 4 is easily peeled off.

つまり、従来のように半導体素子2の裏面全面が配線パターン4上に配置され、樹脂系導電性接着剤7によって、配線パターン4のみに接着されていた場合、ガラス転移点温度などの影響により樹脂系導電性接着剤7と配線パターン4の線膨張係数の温度依存性の差が大きく異なるので、ヒートサイクル時に発生する部材同士の歪が大きくなる。その結果、樹脂系導電性接着剤7に発生する応力が大きくなるため、樹脂系導電性接着剤7が配線パターン4から剥がれやすく、ヒートサイクルに対する信頼性が低い。   That is, when the entire back surface of the semiconductor element 2 is disposed on the wiring pattern 4 and is adhered only to the wiring pattern 4 with the resin-based conductive adhesive 7 as in the prior art, the resin is affected by the glass transition temperature or the like. Since the difference in temperature dependence of the linear expansion coefficient between the system conductive adhesive 7 and the wiring pattern 4 is greatly different, the distortion between the members generated during the heat cycle increases. As a result, since the stress generated in the resin-based conductive adhesive 7 is increased, the resin-based conductive adhesive 7 is easily peeled off from the wiring pattern 4, and the reliability with respect to the heat cycle is low.

一方、本実施の形態によれば、半導体素子2は、樹脂系導電性接着剤7によって樹脂系材料からなる絶縁層5と接着される。樹脂系導電性接着剤7であるAgペーストと、樹脂系の絶縁層5は、いずれも樹脂成分からなるために異なる温度においても同等の線膨張係数を得ることが出来る。そのため、樹脂系導電性接着剤7と絶縁層5とが接着された部分ではヒートサイクル時に発生する部材同士の歪が小さくなるので、ヒートサイクルに対する信頼性が向上するという効果が得られる。尚、樹脂系導電性接着剤7と絶縁層5の樹脂成分が近いと、効果はより大きくなる。   On the other hand, according to the present embodiment, the semiconductor element 2 is bonded to the insulating layer 5 made of a resin-based material by the resin-based conductive adhesive 7. Since the Ag paste that is the resin-based conductive adhesive 7 and the resin-based insulating layer 5 are both made of a resin component, the same linear expansion coefficient can be obtained even at different temperatures. Therefore, in the part where the resin-based conductive adhesive 7 and the insulating layer 5 are bonded, the distortion between the members generated during the heat cycle is reduced, so that the effect of improving the reliability with respect to the heat cycle is obtained. In addition, when the resin component of the resin-type conductive adhesive 7 and the insulating layer 5 is close, the effect becomes greater.

ヒートサイクルに対する信頼性に関係する特性は、上述した線膨張係数以外にも、弾性率が関係する。   The property relating to the reliability with respect to the heat cycle is related to the elastic modulus in addition to the linear expansion coefficient described above.

例えば、フィラーの充填量によって樹脂系導電性接着剤7の室温における線膨張係数を16ppm/℃と、配線パターン4の銅の線膨張係数と同じにしたとしても、ヒートサイクル時に温度を変化させると、室温以外の温度においては線膨張係数が異なる。そのため、ヒートサイクル時に樹脂系導電性接着剤7と配線パターン4との接着界面に応力が発生する。   For example, even if the linear expansion coefficient of the resin-based conductive adhesive 7 at room temperature is set to 16 ppm / ° C., which is the same as the copper linear expansion coefficient of the wiring pattern 4, depending on the filling amount of the filler, The linear expansion coefficient differs at temperatures other than room temperature. Therefore, stress is generated at the bonding interface between the resin-based conductive adhesive 7 and the wiring pattern 4 during the heat cycle.

銅の弾性率が120GPaであるのに対し、樹脂系導電性接着剤7の弾性率は10〜50GPaと大きく異なる。ヒートサイクル時に発生した界面の応力を緩和するために、弾性率の小さい樹脂系導電性接着剤7は、変形することによって界面の応力を緩和しようとするが、弾性率の大きい銅は変形しにくいので、接着している樹脂系導電性接着剤7の変形を妨げる。その結果、応力が緩和されずに、配線パターン4と樹脂系導電性接着剤7との界面において剥離などが生じやすい。   Whereas the elastic modulus of copper is 120 GPa, the elastic modulus of the resin-based conductive adhesive 7 is greatly different from 10 to 50 GPa. In order to relieve the stress at the interface generated during the heat cycle, the resin-based conductive adhesive 7 having a low elastic modulus tries to relieve the stress at the interface by deformation, but copper having a high elastic modulus is difficult to deform. Therefore, deformation of the resin-based conductive adhesive 7 that is bonded is prevented. As a result, the stress is not relaxed, and peeling or the like is likely to occur at the interface between the wiring pattern 4 and the resin-based conductive adhesive 7.

ヒートサイクル時以外にも、樹脂系導電性接着剤7を熱硬化する際に、樹脂系導電性接着剤7と配線パターン4との界面に応力が発生し、残応力として存在する。この残応力についても、樹脂系導電性接着剤7が樹脂系導電性接着剤7の弾性率より高い弾性率を有する配線パターン4と接着している場合には、樹脂系導電性接着剤7に存在する残応力は解消することができず、ヒートサイクル負荷によって剥離が進行する要因となり得る。一方、本実施の形態に係る半導体装置において、樹脂系導電性接着剤7は配線パターン4よりも弾性率の小さい絶縁層5と接着しているので、絶縁層5と接着している界面で残応力を解消するための変形が生じやすいため、残応力を緩和することができ、ヒートサイクル負荷に対する耐性を向上できる。   In addition to the heat cycle, when the resin-based conductive adhesive 7 is thermoset, stress is generated at the interface between the resin-based conductive adhesive 7 and the wiring pattern 4 and exists as a residual stress. As for this residual stress, when the resin-based conductive adhesive 7 is bonded to the wiring pattern 4 having an elastic modulus higher than that of the resin-based conductive adhesive 7, the resin-based conductive adhesive 7 The existing residual stress cannot be eliminated, and it can be a factor that the peeling progresses due to the heat cycle load. On the other hand, in the semiconductor device according to the present embodiment, since the resin-based conductive adhesive 7 is bonded to the insulating layer 5 having a smaller elastic modulus than the wiring pattern 4, it remains at the interface bonded to the insulating layer 5. Since deformation for eliminating stress is likely to occur, residual stress can be relaxed and resistance to heat cycle load can be improved.

本実施の形態に係る半導体装置において、樹脂系導電性接着剤7と絶縁層5とが接着されるのは、図1で示されるように半導体素子2の角部に対向する位置である。半導体素子2の接着部分において、ヒートサイクル時に発生する応力が最も高くなるのは、半導体素子2の角部である。本実施の形態では、最も応力の高くなる半導体素子2の角部に対向する位置に合わせて孔部41を設け、半導体素子2の角部を、樹脂系導電性接着剤7を介して絶縁層5に接着させる。その結果、最も密着性の低い、剥がれやすい部分の密着性を高めてヒートサイクルにおける信頼性を向上させる事ができる。   In the semiconductor device according to the present embodiment, the resin-based conductive adhesive 7 and the insulating layer 5 are bonded to the corners of the semiconductor element 2 as shown in FIG. In the bonded portion of the semiconductor element 2, the stress generated during the heat cycle is highest at the corners of the semiconductor element 2. In the present embodiment, the hole 41 is provided at a position facing the corner of the semiconductor element 2 where the stress is highest, and the corner of the semiconductor element 2 is connected to the insulating layer via the resin conductive adhesive 7. Adhere to 5. As a result, it is possible to improve the heat cycle reliability by increasing the adhesion of the part having the lowest adhesion and being easily peeled off.

また、従来の半導体装置の製造方法において、半導体素子2を配線パターン4に接着する際に一般的に行われるマウント工程では、半導体素子2に荷重を加えることで、半導体素子2の裏面に対して樹脂系導電性接着剤7の濡れ拡がりを進める。   Further, in a conventional semiconductor device manufacturing method, in a mounting process generally performed when the semiconductor element 2 is bonded to the wiring pattern 4, a load is applied to the semiconductor element 2, whereby a back surface of the semiconductor element 2 is applied. The wetting and spreading of the resin-based conductive adhesive 7 is promoted.

このとき、半導体素子2のピックアップ位置が重心とずれていたり、半導体素子2と配線パターン4の接着面に角度が付いていたりした場合には、半導体素子2の上面全体に均等に荷重が加わらず偏りが生じる結果、半導体素子2と配線パターン4との接着面に角度が付くことがあった。   At this time, if the pickup position of the semiconductor element 2 is shifted from the center of gravity, or the bonding surface of the semiconductor element 2 and the wiring pattern 4 is angled, a load is not applied evenly to the entire upper surface of the semiconductor element 2. As a result of the occurrence of bias, an angle may be formed on the bonding surface between the semiconductor element 2 and the wiring pattern 4.

このような場合、マウント工程後における半導体素子2と配線パターン4との間の樹脂系導電性接着剤7の厚みが不均一となり、一部薄くなる場合が生じる。従来、樹脂系導電性接着剤7は半導体素子2の裏面全体と配線パターン4とを接着しているが、これらとの線膨張係数の温度依存性が異なるという特性ミスマッチにより、ヒートサイクル負荷時に樹脂系導電性接着剤7に応力が発生する。特に、樹脂系導電性接着剤7の厚みが薄い部分では、特性ミスマッチによる応力を緩和しきれずにクラックや剥離が生じる場合があった。   In such a case, the thickness of the resin-based conductive adhesive 7 between the semiconductor element 2 and the wiring pattern 4 after the mounting process becomes non-uniform and partly thins. Conventionally, the resin-based conductive adhesive 7 bonds the entire back surface of the semiconductor element 2 and the wiring pattern 4, but due to the characteristic mismatch that the temperature dependence of the coefficient of linear expansion differs from that of the resin element, the resin conductive adhesive 7 is resin during heat cycle loading. Stress is generated in the system conductive adhesive 7. In particular, in the portion where the thickness of the resin-based conductive adhesive 7 is thin, the stress due to the characteristic mismatch cannot be alleviated, and cracks and peeling may occur.

従来のように、樹脂系導電性接着剤7が半導体素子2の裏面全体と配線パターン4とを接着している場合、半導体素子2の傾きによって樹脂系導電性接着剤7の厚みが最も薄くなる部分は、ヒートサイクル時に応力が特に高くなる半導体素子2の角部に対向する位置であり、当該部分で樹脂系導電性接着剤7が配線パターン4から剥がれやすかった。   When the resin-based conductive adhesive 7 bonds the entire back surface of the semiconductor element 2 and the wiring pattern 4 as in the prior art, the thickness of the resin-based conductive adhesive 7 is the smallest due to the inclination of the semiconductor element 2. The portion is a position facing the corner portion of the semiconductor element 2 where the stress is particularly high during the heat cycle, and the resin-based conductive adhesive 7 was easily peeled off from the wiring pattern 4 at the portion.

一方、本実施の形態に係る半導体装置は、図1及び図3に示すように、半導体素子2の中央部の裏面は樹脂系導電性接着剤7を介して配線パターン4と接着され、半導体素子2の角部の裏面は、配線パターン4に設けられた孔部41に充填された樹脂系導電性接着剤7を介して絶縁層5と接着されている。   On the other hand, in the semiconductor device according to the present embodiment, as shown in FIGS. 1 and 3, the back surface of the central portion of the semiconductor element 2 is bonded to the wiring pattern 4 via the resin-based conductive adhesive 7. The back surface of the corner portion 2 is bonded to the insulating layer 5 through a resin-based conductive adhesive 7 filled in the hole 41 provided in the wiring pattern 4.

そのため、マウント時に半導体素子2と配線パターン4との接着面に角度が付くことがあっても、半導体素子2の裏面の角部は絶縁層5上に配置され、樹脂系導電性接着剤7によって絶縁層5と接着される。すなわち、従来、最も剥がれやすい部分であった半導体素子2の角部は、本実施の形態においては、樹脂系導電性接着剤7によって絶縁層5と接着されているので、密着性が高く、樹脂系導電性接着剤7の剥がれを抑制することができる。   Therefore, even if the bonding surface between the semiconductor element 2 and the wiring pattern 4 may be angled at the time of mounting, the corner portion of the back surface of the semiconductor element 2 is disposed on the insulating layer 5 and the resin-based conductive adhesive 7 Bonded with the insulating layer 5. That is, conventionally, the corner of the semiconductor element 2 that is the most easily peeled portion is bonded to the insulating layer 5 by the resin-based conductive adhesive 7 in the present embodiment, so that the adhesion is high and the resin The peeling of the system conductive adhesive 7 can be suppressed.

さらに、半導体素子2の角部に対向する位置に配線パターン4の孔部41が設けられ、半導体素子2の中央部は配線パターン4上に配置され、接着されているので、半導体素子2の角部と絶縁層5とを接着する樹脂系導電性接着剤7の厚みは、少なくとも配線パターン4の厚み以上を確保することができる。そのため、最も応力が高い半導体素子2の角部における樹脂系導電性接着剤7を厚くすることができるので、半導体素子2と絶縁層5との間でより一層強固な接着性を実現することが可能となる。その結果、ヒートサイクル負荷時でも、特に応力が高くなる半導体素子2の角部の樹脂系導電性接着剤7への応力を緩和することができる。   Further, the hole 41 of the wiring pattern 4 is provided at a position facing the corner of the semiconductor element 2, and the central part of the semiconductor element 2 is disposed on and bonded to the wiring pattern 4. The thickness of the resin-based conductive adhesive 7 that bonds the portion and the insulating layer 5 can ensure at least the thickness of the wiring pattern 4. Therefore, since the resin-based conductive adhesive 7 at the corner of the semiconductor element 2 having the highest stress can be thickened, it is possible to realize stronger adhesion between the semiconductor element 2 and the insulating layer 5. It becomes possible. As a result, even when the heat cycle is applied, the stress on the resin-based conductive adhesive 7 at the corner of the semiconductor element 2 where the stress is particularly high can be relaxed.

従来、半導体素子2が樹脂系導電性接着剤7を介して配線パターン4とのみ接着していた場合、接着後の樹脂系導電性接着剤7の厚みは約5〜50μmであった。一方、配線パターンの厚みは、例えば18〜200μmが用いられるが、電力用など大電流を要する用途で用いられる場合、105μmが主として用いられている。この場合、本実施の形態によれば、従来5〜50μmであった半導体素子2の角部を接着する樹脂系導電性接着剤7の厚みを、110〜155μmと2倍以上に厚膜化でき、ヒートサイクルに対する樹脂系導電性接着剤7への応力を大幅に緩和することが可能である。   Conventionally, when the semiconductor element 2 is bonded only to the wiring pattern 4 through the resin-based conductive adhesive 7, the thickness of the resin-based conductive adhesive 7 after bonding is about 5 to 50 μm. On the other hand, the thickness of the wiring pattern is, for example, 18 to 200 [mu] m, but 105 [mu] m is mainly used when used in applications that require a large current such as for power. In this case, according to the present embodiment, the thickness of the resin-based conductive adhesive 7 for bonding the corners of the semiconductor element 2 which has conventionally been 5 to 50 μm can be increased to 110 to 155 μm and more than twice as thick. The stress on the resin-based conductive adhesive 7 with respect to the heat cycle can be greatly relieved.

尚、図1では半導体素子2の角部のみを、樹脂系導電性接着剤7によって絶縁層5と接着させたが、半導体素子2の外周辺全部を接着させても良い。図4に、半導体素子2の外周の位置に沿って、孔部41を設けた場合の半導体装置の上面図を示す。また、図5に、半導体素子2の周辺部を孔部41とした場合の、半導体素子2を搭載する前の半導体装置の上面図を示す。   In FIG. 1, only the corners of the semiconductor element 2 are bonded to the insulating layer 5 with the resin conductive adhesive 7, but the entire outer periphery of the semiconductor element 2 may be bonded. FIG. 4 shows a top view of the semiconductor device when the hole 41 is provided along the outer peripheral position of the semiconductor element 2. FIG. 5 shows a top view of the semiconductor device before mounting the semiconductor element 2 when the peripheral portion of the semiconductor element 2 is the hole 41.

図3で示す4箇所の孔部41が、図5では、半導体素子2の外周に沿って連続しており、半導体素子2が接着される部分の配線パターン4と、半導体素子2が接着されない部分の配線パターン4とが孔部41によって分離される。つまり、図4のように、半導体素子2は孔部41によって取り囲まれ、半導体素子2の裏面における外周の部分は、樹脂系導電性接着剤7によって絶縁層5と接着されている。図4において、半導体素子2が接着される部分の配線パターン4と、半導体素子2が接着されない部分の配線パターン4とは、樹脂系導電性接着剤7によって電気的に接続されている。   The four hole portions 41 shown in FIG. 3 are continuous along the outer periphery of the semiconductor element 2 in FIG. 5, and the wiring pattern 4 where the semiconductor element 2 is bonded and the portion where the semiconductor element 2 is not bonded The wiring pattern 4 is separated by the hole 41. That is, as shown in FIG. 4, the semiconductor element 2 is surrounded by the hole 41, and the outer peripheral portion of the back surface of the semiconductor element 2 is bonded to the insulating layer 5 by the resin-based conductive adhesive 7. In FIG. 4, the wiring pattern 4 where the semiconductor element 2 is bonded and the wiring pattern 4 where the semiconductor element 2 is not bonded are electrically connected by a resin-based conductive adhesive 7.

ヒートサイクル時に発生する応力は、半導体素子2の角部の頂点が最も高いが、半導体素子2の外周辺にはその次に高い応力が発生する。そのため、角部に加えて、半導体素子2の中央部よりも高い応力が発生する外周辺についても、絶縁層5の表面上に配置され、樹脂系導電性接着剤7を介して絶縁層5と接着されることによって半導体素子2が絶縁層5に強固に密着されるので、本実施の形態の効果がより大きく得られる。また、半導体素子2が樹脂系導電性接着剤7を介して絶縁層5と接着される面積が増えることも、密着性の一層の向上につながる。   The stress generated during the heat cycle is highest at the top of the corner of the semiconductor element 2, but the next highest stress is generated in the outer periphery of the semiconductor element 2. Therefore, in addition to the corner portion, the outer periphery where higher stress is generated than the central portion of the semiconductor element 2 is also arranged on the surface of the insulating layer 5, and the insulating layer 5 is connected via the resin-based conductive adhesive 7. Since the semiconductor element 2 is firmly adhered to the insulating layer 5 by bonding, the effect of the present embodiment can be obtained more greatly. Further, an increase in the area where the semiconductor element 2 is bonded to the insulating layer 5 via the resin conductive adhesive 7 also leads to further improvement in adhesion.

尚、図5の場合、孔部41の体積が図3に比べて大きくなるので、孔部41に樹脂系導電性接着剤7を充填し、半導体素子2の側面にフィレットを形成して安定的に搭載するためには、図3よりも多くの樹脂系導電性接着剤7を塗布する必要がある。そこで、半導体素子2を搭載する前に、樹脂系導電性接着剤7を半導体素子2の搭載領域に十分に広げておくと、半導体素子2の側面にフィレットを安定して形成することが出来る。例えば、樹脂系導電性接着剤7を塗布する際にスタンプ方式を用いると、広い領域に樹脂系導電性接着剤7を塗布することが出来る。フィレットを形成するためには、予め、半導体素子2が配置されない部分の配線パターン4にまではみ出して樹脂系導電性接着剤7を塗布しておくことが望ましい。   In the case of FIG. 5, since the volume of the hole 41 is larger than that of FIG. 3, the hole 41 is filled with the resin-based conductive adhesive 7, and a fillet is formed on the side surface of the semiconductor element 2 to be stable. Therefore, it is necessary to apply more resin-based conductive adhesive 7 than in FIG. Therefore, if the resin-based conductive adhesive 7 is sufficiently spread over the mounting region of the semiconductor element 2 before mounting the semiconductor element 2, the fillet can be stably formed on the side surface of the semiconductor element 2. For example, if a stamp method is used when applying the resin-based conductive adhesive 7, the resin-based conductive adhesive 7 can be applied to a wide area. In order to form a fillet, it is desirable to apply the resin-based conductive adhesive 7 in advance to the wiring pattern 4 where the semiconductor element 2 is not disposed.

図3や図5で説明したように、半導体素子2の裏面の角部や、角部を含む外周辺を樹脂系導電性接着剤7によって絶縁層5と接着させることが最も効果的であるが、半導体素子2の角部や外周辺に孔部41がない場合、例えば半導体素子2の中央部のみに孔部41が形成された場合であっても、半導体素子2の裏面の一部が樹脂系導電性接着剤7を介して絶縁層5と接着されたことによって密着性が向上し、ヒートサイクルに対する信頼性が高くなる効果は得られる。   As described with reference to FIGS. 3 and 5, it is most effective to bond the corners on the back surface of the semiconductor element 2 and the outer periphery including the corners to the insulating layer 5 with the resin-based conductive adhesive 7. In the case where the hole 41 is not provided at the corner or the outer periphery of the semiconductor element 2, for example, even when the hole 41 is formed only in the center of the semiconductor element 2, a part of the back surface of the semiconductor element 2 is made of resin Adhesiveness is improved by being adhered to the insulating layer 5 via the system conductive adhesive 7, and an effect of increasing reliability with respect to the heat cycle is obtained.

次に、配線パターン4の酸化に対する効果について説明する。アルミや銅からなる熱伝導率が高い金属である放熱板6に、配線パターン4となる金属箔付の絶縁層5を接着する際、熱圧着が実施される。   Next, the effect on the oxidation of the wiring pattern 4 will be described. When the insulating layer 5 with a metal foil to be the wiring pattern 4 is bonded to the heat radiating plate 6 which is a metal having high thermal conductivity made of aluminum or copper, thermocompression bonding is performed.

配線パターン4となる金属箔は、一方の片面が凹凸形状で、他方の片面が鏡面形状の電界銅箔などを用いる。金属箔付の絶縁層5は、例えば電解銅の凹凸面に、絶縁層5の材料である樹脂系の液体を塗り広げた後、樹脂を半硬化することで形成する。その後、放熱板6に金属箔付の絶縁層5を熱圧着によって貼付け、一体化する。最後に金属箔をパターニングし、部分的にエッチングすることで配線パターン4を形成する。   The metal foil used as the wiring pattern 4 uses an electric field copper foil or the like having one side having an uneven shape and the other side having a mirror shape. The insulating layer 5 with metal foil is formed, for example, by spreading a resin-based liquid, which is a material of the insulating layer 5, on the uneven surface of electrolytic copper and then semi-curing the resin. Thereafter, the insulating layer 5 with metal foil is attached to the heat sink 6 by thermocompression bonding and integrated. Finally, the metal foil is patterned and partially etched to form the wiring pattern 4.

絶縁層5と放熱板6とを熱圧着する際、配線パターン4が高温に晒されて酸化してしまう場合がある。このとき、厚い銅酸化膜が形成され、樹脂系導電性接着剤7を酸化した配線パターン4に接着すると、銅酸化膜と銅との界面で剥離が生じ、半導体素子2が剥がれてしまう場合がある。   When the insulating layer 5 and the heat sink 6 are thermocompression bonded, the wiring pattern 4 may be exposed to high temperature and oxidized. At this time, when a thick copper oxide film is formed and adhered to the wiring pattern 4 obtained by oxidizing the resin-based conductive adhesive 7, peeling may occur at the interface between the copper oxide film and copper, and the semiconductor element 2 may be peeled off. is there.

本実施の形態を用いれば、半導体素子2の裏面の一部を、樹脂系導電性接着剤7を介して絶縁層5に接着させることで配線パターン4が酸化した場合にも、樹脂系導電性接着剤7と絶縁層5との密着性が高いため、樹脂系導電性接着剤7が剥がれにくくなる効果が得られる。   If this embodiment is used, even when the wiring pattern 4 is oxidized by adhering a part of the back surface of the semiconductor element 2 to the insulating layer 5 through the resin conductive adhesive 7, the resin conductive Since the adhesiveness between the adhesive 7 and the insulating layer 5 is high, an effect that the resin-based conductive adhesive 7 is difficult to peel is obtained.

また、配線パターン4が酸化した場合、ヒートサイクル時などに発生する応力が最も高くなる部分から剥離しやすい。半導体素子2の裏面において、最も応力が高くなるのは角部である。本実施の形態では、最も応力の高くなる半導体素子2の角部に合わせて孔部41を設け、半導体素子2の角部の裏面を、樹脂系導電性接着剤7を介して絶縁層5に接着させることで、銅酸化膜と銅との界面に発生する応力を低減できるので、配線パターン4が酸化した場合も安定した接合品質が得られ、ヒートサイクルに対する信頼性を高くすることができる。   Further, when the wiring pattern 4 is oxidized, the wiring pattern 4 is easily peeled off from the portion where the stress generated during the heat cycle is highest. On the back surface of the semiconductor element 2, the corner has the highest stress. In the present embodiment, holes 41 are provided in accordance with the corners of the semiconductor element 2 having the highest stress, and the back surfaces of the corners of the semiconductor element 2 are connected to the insulating layer 5 via the resin-based conductive adhesive 7. By bonding, stress generated at the interface between the copper oxide film and copper can be reduced, so that stable bonding quality can be obtained even when the wiring pattern 4 is oxidized, and reliability with respect to heat cycle can be increased.

さらに、配線パターン4の保管に設備投資が必要なく、また、管理コストが削減できる。例えば、配線パターン4の酸化を防ぐために防錆処理等が行われることがあるが、本実施の形態では不要となり、コスト削減の効果が得られる。   Furthermore, no capital investment is required to store the wiring pattern 4, and the management cost can be reduced. For example, a rust prevention treatment or the like may be performed to prevent the wiring pattern 4 from being oxidized, but it is not necessary in the present embodiment, and an effect of cost reduction is obtained.

本実施の形態に係る半導体装置では、アンカー効果による密着性向上の効果も得られる。金属箔付の絶縁層5を形成する過程において、絶縁層5と接着する側の金属箔の表面は凹凸形状である。そのため、金属箔と絶縁層5を接着した後、パターニングにより配線パターン4を形成すると、金属箔がエッチングされた絶縁層5の表面にも金属箔の凹凸形状が転写される。   In the semiconductor device according to the present embodiment, the effect of improving the adhesion due to the anchor effect is also obtained. In the process of forming the insulating layer 5 with the metal foil, the surface of the metal foil to be bonded to the insulating layer 5 has an uneven shape. Therefore, when the wiring pattern 4 is formed by patterning after bonding the metal foil and the insulating layer 5, the uneven shape of the metal foil is also transferred to the surface of the insulating layer 5 where the metal foil is etched.

図6に、配線パターン4が形成された絶縁層5と樹脂系導電性接着剤7との界面付近の拡大断面図を示す。半導体素子2が接着される領域の、絶縁層5の表面と樹脂系導電性接着剤7との界面は、図6で示されるような凹凸形状となる。このため、凹凸によって接着面積が増大する効果や、アンカー効果により、絶縁層5と樹脂系導電性接着剤7との間で非常に高い接着強度が得られる。   FIG. 6 shows an enlarged cross-sectional view of the vicinity of the interface between the insulating layer 5 on which the wiring pattern 4 is formed and the resin-based conductive adhesive 7. The interface between the surface of the insulating layer 5 and the resin-based conductive adhesive 7 in the region to which the semiconductor element 2 is bonded has an uneven shape as shown in FIG. For this reason, very high adhesive strength can be obtained between the insulating layer 5 and the resin-based conductive adhesive 7 due to the effect of increasing the bonding area due to the unevenness and the anchor effect.

本実施の形態に係る半導体装置では、半導体素子2の裏面の一部を配線パターン4条に配置し、樹脂系導電性接着剤7によって電気的に接続しているため、半導体素子2が裏面に裏面電極を備え、縦方向に電流を通電する縦型の半導体素子にも用いることが出来る。   In the semiconductor device according to the present embodiment, a part of the back surface of the semiconductor element 2 is arranged on the four wiring patterns and is electrically connected by the resin-based conductive adhesive 7. It can also be used for a vertical semiconductor element that has a back electrode and supplies current in the vertical direction.

特に、電力用途で使用される縦型の半導体装置の場合は大電流を流す必要があるので、導体発熱による損失の観点から、半導体素子2の裏面には比較的厚膜の配線パターン4が設けられていることが望ましい。半導体素子2の裏面の一部が配線パターン4と接着されていれば、樹脂系導電性接着剤7の厚みも厚くなるので、半導体素子2の裏面から流れてくる電流が、厚い配線パターン4又は樹脂系導電性接着剤7を通ってパワーリード9まで流れる電流経路において、導体発熱による損失が小さくなる効果が得られる。   In particular, in the case of a vertical semiconductor device used for power applications, it is necessary to flow a large current. Therefore, from the viewpoint of loss due to conductor heat generation, a relatively thick wiring pattern 4 is provided on the back surface of the semiconductor element 2. It is desirable that If a part of the back surface of the semiconductor element 2 is bonded to the wiring pattern 4, the thickness of the resin-based conductive adhesive 7 is increased, so that the current flowing from the back surface of the semiconductor element 2 is increased by the thick wiring pattern 4 or In the current path flowing through the resin-based conductive adhesive 7 to the power lead 9, an effect of reducing loss due to heat generation of the conductor can be obtained.

縦型の半導体素子2でない場合、すなわち横型の半導体素子2であったとしても、半導体素子2の裏面を配線パターン4と電気的に接続することで半導体素子2の裏面の電位を、たとえば接地など、配線パターン4と同電位にすることができ、裏面の電位が浮遊することを抑制できる。   Even if the semiconductor element 2 is not the vertical semiconductor element 2, that is, the horizontal semiconductor element 2, the back surface of the semiconductor element 2 is electrically connected to the wiring pattern 4 so that the potential of the back surface of the semiconductor element 2 is, for example, grounded. The potential of the wiring pattern 4 can be made the same, and the back surface potential can be suppressed from floating.

また、本実施の形態では、半導体素子2を搭載する際の接着剤として、Agペーストなどの放熱性の高い樹脂系導電性接着剤7を用いたので、接着剤として非導電性の樹脂材料を用いる場合に比較して、放熱性を損なうこともない。   In the present embodiment, since the resin-based conductive adhesive 7 having high heat dissipation such as Ag paste is used as the adhesive for mounting the semiconductor element 2, a non-conductive resin material is used as the adhesive. Compared with the case of using, heat dissipation is not impaired.

さらに、ヒートサイクル時における界面の応力を低減できる範囲、つまり、樹脂系導電性接着剤7と絶縁層5のフィラーの充填量を同程度にしながら充填量を増加することができるが、フィラーの充填量を増加すると熱伝導率が向上するので、熱抵抗が低減され、放熱性が高まるのでより信頼性が高くなり、半導体装置の動作寿命をのばすことが可能になる。さらに、冷却系統の簡素化などにより、半導体装置の小型化が可能となる。   Further, the amount of filling can be increased while the filling amount of the filler in the resin-based conductive adhesive 7 and the insulating layer 5 can be increased to the same extent that the stress at the interface during the heat cycle can be reduced. When the amount is increased, the thermal conductivity is improved, so that the thermal resistance is reduced and the heat dissipation is increased, so that the reliability is improved and the operating life of the semiconductor device can be extended. Further, the semiconductor device can be miniaturized by simplifying the cooling system.

尚、本実施の形態では半導体素子2を搭載する際に樹脂系導電性接着剤7を用いているが、非樹脂成分であるはんだなどを接着剤として用いる場合に比べて耐熱性が高く、はんだに比べて高温で動作可能である。   In the present embodiment, the resin-based conductive adhesive 7 is used when mounting the semiconductor element 2, but the heat resistance is higher than that in the case where solder or the like, which is a non-resin component, is used as the adhesive. It can operate at a higher temperature than

高温動作を必要としない半導体装置においても、従来、半導体素子2をはんだで接着した後の工程において、パワーリード9や制御用リード10と外部機器とを接続する際には通常、はんだが用いられる。このとき、半導体装置の温度がはんだの融点まで高温化されるので、半導体素子2を接着していたはんだが溶け、半導体素子2の搭載位置がずれたり、接着が不安定となって剥がれやすくなったりするなどの問題があった。   Even in a semiconductor device that does not require high-temperature operation, conventionally, solder is usually used when connecting the power lead 9 or the control lead 10 to an external device in the process after the semiconductor element 2 is bonded with solder. . At this time, since the temperature of the semiconductor device is raised to the melting point of the solder, the solder to which the semiconductor element 2 is bonded melts, the mounting position of the semiconductor element 2 is shifted, and the bonding becomes unstable and easily peels off. There was a problem such as.

本実施の形態では、樹脂系導電性接着剤7は半導体素子2を接着するために100℃以上の温度で熱硬化した後は、後工程ではんだの融点まで高温化されても溶けないので、安定した密着性が得られる。   In the present embodiment, the resin-based conductive adhesive 7 does not melt even if it is heated to the melting point of the solder in the subsequent step after thermosetting at a temperature of 100 ° C. or higher in order to bond the semiconductor element 2. Stable adhesion can be obtained.

また、本実施の形態では、半導体素子2としてSi(シリコン)を主成分とするものや、SiC(シリコンカーバイド)やGaN(ガリウムナイトライド)などの化合物を主成分とするものを用いても良い。ワイドバンドギャップ半導体であるSiCやGaNは、高温動作が期待されているため、高温ヒートサイクルに対する信頼性の高い半導体装置が得られる本実施の形態を採用する効果が大きい。本実施の形態を、ワイドバンドギャップ半導体を用いた半導体装置に適用すると、高温動作を行うヒートサイクル負荷の大きい場合にも、信頼性の高い特性を実現することが出来る。   In the present embodiment, the semiconductor element 2 may be composed mainly of Si (silicon), or composed mainly of a compound such as SiC (silicon carbide) or GaN (gallium nitride). . Since SiC and GaN, which are wide band gap semiconductors, are expected to operate at high temperatures, the effect of adopting the present embodiment in which a highly reliable semiconductor device for high temperature heat cycles is obtained is great. When this embodiment mode is applied to a semiconductor device using a wide bandgap semiconductor, a highly reliable characteristic can be realized even when the heat cycle load for high-temperature operation is large.

また、半導体素子2としてはMOSFET(Metal−Oxide−Semiconductor Field Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)、JFET(Junction−Field−Effect−Transistor)やダイオードなどを用いることが出来る。   The semiconductor element 2 may be a MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor), an IGBT (Insulated Gate Bipolar Transistor), a JFET (Junction-Field-Effect-Transistor), or the like.

実施の形態2.
図7は、本実施の形態2に係る半導体装置を示す上面図である。また、図8は、本実施の形態2に係る半導体装置の半導体素子2を搭載する前を示す上面図である。本実施の形態における半導体装置においては、半導体素子2の裏面と接着される領域において、配線パターン4と孔部41との境界線が円弧状であることを特徴とする。それ以外については、実施の形態1と同様である。本実施の形態によれば、ヒートサイクル時に樹脂系導電性接着剤7に発生する応力がより緩和され、半導体装置の信頼性がより向上する。
Embodiment 2. FIG.
FIG. 7 is a top view showing the semiconductor device according to the second embodiment. FIG. 8 is a top view showing a state before mounting the semiconductor element 2 of the semiconductor device according to the second embodiment. The semiconductor device according to the present embodiment is characterized in that the boundary line between the wiring pattern 4 and the hole 41 is arcuate in the region bonded to the back surface of the semiconductor element 2. The rest is the same as in the first embodiment. According to the present embodiment, the stress generated in the resin-based conductive adhesive 7 during the heat cycle is further relaxed, and the reliability of the semiconductor device is further improved.

本実施の形態では、図8に示すように上面視において、半導体素子2の角部が搭載される部分の配線パターン4と孔部41との境界線が円弧状となっている。図8のような形状により、孔部41は半導体素子2が接着される辺が湾曲形状となる。つまり、半導体素子2が配置され、接着される領域において、配線パターン4と孔部41との境界線が頂点のない曲線形状となっている。   In the present embodiment, as shown in FIG. 8, the boundary line between the wiring pattern 4 and the hole 41 in the portion where the corner of the semiconductor element 2 is mounted has an arc shape when viewed from above. With the shape as shown in FIG. 8, the side of the hole 41 to which the semiconductor element 2 is bonded has a curved shape. That is, in the region where the semiconductor element 2 is arranged and bonded, the boundary line between the wiring pattern 4 and the hole 41 has a curved shape without a vertex.

実施の形態1で説明した図3のように、配線パターン4が半導体素子2と接着される領域において、孔部41と配線パターン4との境界が頂点を有する形状である場合、当該頂点に接する樹脂系導電性接着剤7に発生する応力は、その他の部分に比べて局所的に高くなり、ヒートサイクル時にクラックや剥離が生じやすくなる。   As shown in FIG. 3 described in the first embodiment, in the region where the wiring pattern 4 is bonded to the semiconductor element 2, when the boundary between the hole 41 and the wiring pattern 4 has a shape having a vertex, the vertex contacts the vertex. The stress generated in the resin-based conductive adhesive 7 is locally higher than other portions, and cracks and peeling are likely to occur during the heat cycle.

本実施の形態では、半導体素子2と接着される配線パターン4と孔部41との境界は頂点を有さず、円弧状となっているので、樹脂系導電性接着剤7に局所的に応力が発生することを抑制することができ、ヒートサイクルに対する信頼性をより向上することが可能となる。   In the present embodiment, the boundary between the wiring pattern 4 bonded to the semiconductor element 2 and the hole 41 does not have an apex and has an arc shape, so that the resin-based conductive adhesive 7 is locally stressed. Can be suppressed, and the reliability with respect to the heat cycle can be further improved.

本実施の形態では、配線パターン4の4箇所に孔部41を設ける構造としたが、図8で示される孔部41が、搭載される半導体素子2の外周辺に沿って連続していても良い。図9に、本実施の形態に係る半導体装置の変形例において、半導体素子2が搭載される前の上面図を示す。図9では、半導体素子2と接着される配線パターン4と孔部41との境界線が円形状となっている。   In the present embodiment, the hole 41 is provided at four locations of the wiring pattern 4, but the hole 41 shown in FIG. 8 may be continuous along the outer periphery of the semiconductor element 2 to be mounted. good. FIG. 9 shows a top view of the modified example of the semiconductor device according to the present embodiment before the semiconductor element 2 is mounted. In FIG. 9, the boundary line between the wiring pattern 4 bonded to the semiconductor element 2 and the hole 41 has a circular shape.

図9の場合、樹脂系導電性接着剤7への局所的な応力の発生が抑制される効果に加え、半導体素子2が樹脂系導電性接着剤7を介して絶縁層5と接着される面積も増え、ヒートサイクルに対する密着性をより高くすることが出来る。   In the case of FIG. 9, in addition to the effect of suppressing the generation of local stress on the resin-based conductive adhesive 7, the area where the semiconductor element 2 is bonded to the insulating layer 5 via the resin-based conductive adhesive 7. The adhesion to the heat cycle can be further increased.

尚、本発明の実施の形態2では本発明の実施の形態1と相違する部分について説明し、同一または対応する部分についての説明は省略した。   In the second embodiment of the present invention, portions different from the first embodiment of the present invention are described, and descriptions of the same or corresponding portions are omitted.

実施の形態3.
図10は、本実施の形態3に係る半導体装置を示す断面図である。本実施の形態における半導体装置においては、半導体素子2の裏面全面が、樹脂系導電性接着剤7によって絶縁層5の表面上に配置されている。それ以外については、実施の形態1と同様である。本実施の形態によれば、半導体素子2が絶縁層5と直接接着される面積が増加するので、強固な接着が得られ、ヒートサイクルに対してより高い信頼性を確保できる。
Embodiment 3 FIG.
FIG. 10 is a cross-sectional view showing the semiconductor device according to the third embodiment. In the semiconductor device according to the present embodiment, the entire back surface of the semiconductor element 2 is disposed on the surface of the insulating layer 5 by the resin-based conductive adhesive 7. The rest is the same as in the first embodiment. According to the present embodiment, since the area where the semiconductor element 2 is directly bonded to the insulating layer 5 is increased, strong bonding can be obtained and higher reliability can be ensured for the heat cycle.

図11に、本実施の形態に係る半導体装置の上面図を示す。また、図12に、本実施の形態に係る半導体装置において、半導体素子2を搭載する前の上面図を示す。   FIG. 11 shows a top view of the semiconductor device according to the present embodiment. FIG. 12 shows a top view of the semiconductor device according to the present embodiment before the semiconductor element 2 is mounted.

図12の上面視において、配線パターン4には、半導体素子2の搭載位置に半導体素子2より面積の大きい孔部41が設けられる。つまり、図12のように、半導体素子2が搭載される領域及びその周辺部の配線パターン4をパターニングによりすべて取り除いて、絶縁層5が露出した孔部41を設ける。次に、孔部41に樹脂系導電性接着剤7が充填された後、図11のように、孔部41内に入るように半導体素子2が搭載される。つまり、半導体素子2は孔部41内に配置される。樹脂系導電性接着剤7は配線パターン4の孔部41内に充填され、配線パターン4にも接合されるので、配線パターン4と半導体素子2の裏面とは、樹脂系導電性接着剤7を介して互いに電気的に接続される。   In the top view of FIG. 12, the wiring pattern 4 is provided with a hole 41 having a larger area than the semiconductor element 2 at the mounting position of the semiconductor element 2. That is, as shown in FIG. 12, the wiring pattern 4 in the region where the semiconductor element 2 is mounted and the peripheral portion thereof is completely removed by patterning to provide the hole 41 where the insulating layer 5 is exposed. Next, after the hole 41 is filled with the resin conductive adhesive 7, the semiconductor element 2 is mounted so as to enter the hole 41 as shown in FIG. 11. That is, the semiconductor element 2 is disposed in the hole 41. Since the resin-based conductive adhesive 7 is filled in the hole 41 of the wiring pattern 4 and is also bonded to the wiring pattern 4, the wiring-based pattern 4 and the back surface of the semiconductor element 2 are bonded with the resin-based conductive adhesive 7. Are electrically connected to each other.

本実施の形態では、実施の形態1のように半導体素子2の裏面は配線パターン4の上には配置されないので、樹脂系導電性接着剤7の厚みが、配線パターン4の厚み以上となる効果は得られない。しかしながら、半導体素子2が樹脂系導電性接着剤7を介して絶縁層5と接着される面積が増加する分、ヒートサイクルに対する密着性が向上する効果が得られる。   In the present embodiment, since the back surface of the semiconductor element 2 is not disposed on the wiring pattern 4 as in the first embodiment, the thickness of the resin-based conductive adhesive 7 is equal to or greater than the thickness of the wiring pattern 4. Cannot be obtained. However, as the area where the semiconductor element 2 is bonded to the insulating layer 5 via the resin conductive adhesive 7 is increased, the effect of improving the adhesion to the heat cycle is obtained.

さらに、孔部41に樹脂系導電性接着剤7を充填し、孔部41の内部に半導体素子2を埋め込むような形で配置するので、半導体素子2の側面にフィレットを容易に形成することができる。形成された十分なフィレットにより、半導体素子2の密着性がより強固となる。   Furthermore, since the hole 41 is filled with the resin conductive adhesive 7 and the semiconductor element 2 is embedded in the hole 41, the fillet can be easily formed on the side surface of the semiconductor element 2. it can. Adhesiveness of the semiconductor element 2 is further strengthened by the formed fillet.

固体中の熱伝導には、部材自身の熱抵抗と、部材間の界面の熱抵抗が影響する。実施の形態1において半導体素子2から放熱板6までの放熱経路では、半導体素子2から放熱板6までの間に、樹脂系導電性接着剤7、配線パターン4、絶縁層5が存在する領域があり、さらに、それぞれの界面熱抵抗が発生する。配線パターン4は銅で形成されているので熱抵抗は小さいが、樹脂系導電性接着剤7と配線パターン4との界面、及び配線パターン4と絶縁層5との界面に界面熱抵抗が生じる。   The heat resistance in the solid is affected by the thermal resistance of the member itself and the thermal resistance at the interface between the members. In the first embodiment, in the heat dissipation path from the semiconductor element 2 to the heat sink 6, there is a region where the resin conductive adhesive 7, the wiring pattern 4, and the insulating layer 5 exist between the semiconductor element 2 and the heat sink 6. Furthermore, each interface thermal resistance is generated. Since the wiring pattern 4 is made of copper, the thermal resistance is small, but interface thermal resistance is generated at the interface between the resin-based conductive adhesive 7 and the wiring pattern 4 and at the interface between the wiring pattern 4 and the insulating layer 5.

一方、本実施の形態では、半導体素子2から放熱板6までの間に、樹脂系導電性接着剤7、絶縁層5のみが存在するので、界面熱抵抗が発生するのは樹脂系導電性接着剤7と絶縁層5との界面のみとなるので、界面熱抵抗が減少し、熱抵抗を低減することができる。すなわち、放熱経路における界面熱抵抗を低減することができるため、全体の熱抵抗を低減でき、半導体素子2の動作寿命をのばすことが出来る。また、放熱特性が向上するので、発熱密度の高い小面積の半導体素子2を搭載することができ、半導体装置の小型化が可能となる。   On the other hand, in this embodiment, since only the resin-based conductive adhesive 7 and the insulating layer 5 exist between the semiconductor element 2 and the heat radiating plate 6, the interface thermal resistance is generated by the resin-based conductive adhesive. Since only the interface between the agent 7 and the insulating layer 5 is provided, the interfacial thermal resistance is reduced, and the thermal resistance can be reduced. That is, since the interface thermal resistance in the heat dissipation path can be reduced, the overall thermal resistance can be reduced, and the operating life of the semiconductor element 2 can be extended. In addition, since the heat dissipation characteristics are improved, the semiconductor element 2 having a small area with high heat generation density can be mounted, and the semiconductor device can be miniaturized.

尚、本発明の実施の形態3では本発明の実施の形態1と相違する部分について説明し、同一または対応する部分についての説明は省略した。   In the third embodiment of the present invention, portions different from the first embodiment of the present invention are described, and descriptions of the same or corresponding portions are omitted.

2 半導体素子、4 配線パターン、5 絶縁層、6 放熱板、7 樹脂系導電性接着剤、8 インサートケース、9 パワーリード、10 制御用リード、11 ボンディングワイヤ、12 封止用樹脂、40 樹脂間接着領域、41 孔部。   2 semiconductor element, 4 wiring pattern, 5 insulating layer, 6 heat sink, 7 resin conductive adhesive, 8 insert case, 9 power lead, 10 control lead, 11 bonding wire, 12 sealing resin, 40 resin indirect Landing area, 41 hole.

Claims (9)

樹脂系材料から成る絶縁層と、
前記絶縁層の表面に形成され、孔部を有する金属製の配線パターンと、
樹脂系導電性接着剤によって前記配線パターンと電気的に接続された裏面が、前記孔部に充填された前記樹脂系導電性接着剤によって前記絶縁層の表面に接着された半導体素子と、
を備えた半導体装置。
An insulating layer made of a resin-based material;
A metal wiring pattern formed on the surface of the insulating layer and having a hole; and
A semiconductor element in which a back surface electrically connected to the wiring pattern by a resin-based conductive adhesive is bonded to the surface of the insulating layer by the resin-based conductive adhesive filled in the hole;
A semiconductor device comprising:
前記半導体素子は、前記裏面の一部が前記配線パターンの表面に配置され、かつ、前記裏面の一部が前記樹脂系導電性接着剤によって前記配線パターンの表面に接着されたこと
を特徴とする請求項1に記載の半導体装置。
The semiconductor element is characterized in that a part of the back surface is disposed on the surface of the wiring pattern and a part of the back surface is adhered to the surface of the wiring pattern by the resin-based conductive adhesive. The semiconductor device according to claim 1.
前記配線パターンは、前記半導体素子の角部と対向する位置に前記孔部が設けられたこと
を特徴とする請求項2に記載の半導体装置。
The semiconductor device according to claim 2, wherein the wiring pattern is provided with the hole portion at a position facing a corner portion of the semiconductor element.
前記配線パターンは、前記半導体素子の外周と対向する位置に前記半導体素子を取り囲むように前記孔部が設けられたこと
を特徴とする請求項2に記載の半導体装置。
The semiconductor device according to claim 2, wherein the wiring pattern is provided with the hole so as to surround the semiconductor element at a position facing the outer periphery of the semiconductor element.
前記配線パターンは、前記半導体素子が配置される領域において、前記孔部との境界線が円弧状であること
を特徴とする請求項2乃至4のいずれか1項に記載の半導体装置。
5. The semiconductor device according to claim 2, wherein the wiring pattern has a circular arc boundary line with the hole in a region where the semiconductor element is disposed.
前記配線パターンは、上面視において前記半導体素子の面積より大きい面積の前記孔部を有し、
前記半導体素子は、前記孔部内に配置されたこと
を特徴とする請求項1に記載の半導体装置。
The wiring pattern has the hole having an area larger than the area of the semiconductor element in a top view;
The semiconductor device according to claim 1, wherein the semiconductor element is disposed in the hole.
前記絶縁層は、前記樹脂系導電性接着剤によって前記半導体素子が接着される表面が凹凸形状であること
を特徴とする請求項1乃至6のいずれか1項に記載の半導体装置。
The semiconductor device according to claim 1, wherein a surface of the insulating layer to which the semiconductor element is bonded by the resin-based conductive adhesive has an uneven shape.
前記半導体素子は、側面に前記樹脂系導電性接着剤のフィレットが形成されること
を特徴とする請求項1乃至7のいずれか1項に記載の半導体装置。
The semiconductor device according to claim 1, wherein a fillet of the resin-based conductive adhesive is formed on a side surface of the semiconductor element.
前記樹脂系導電性接着剤が、Agペーストであること
を特徴とする請求項1乃至8のいずれか1項に記載の半導体装置。
The semiconductor device according to any one of claims 1 to 8, wherein the resin-based conductive adhesive is an Ag paste.
JP2013186422A 2013-09-09 2013-09-09 Semiconductor device Active JP6064845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013186422A JP6064845B2 (en) 2013-09-09 2013-09-09 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013186422A JP6064845B2 (en) 2013-09-09 2013-09-09 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2015053442A true JP2015053442A (en) 2015-03-19
JP6064845B2 JP6064845B2 (en) 2017-01-25

Family

ID=52702233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013186422A Active JP6064845B2 (en) 2013-09-09 2013-09-09 Semiconductor device

Country Status (1)

Country Link
JP (1) JP6064845B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019047112A (en) * 2017-09-04 2019-03-22 ローム株式会社 Semiconductor device
JP2020098826A (en) * 2018-12-17 2020-06-25 トヨタ自動車株式会社 Semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54167667U (en) * 1978-05-15 1979-11-26
JPH04130740A (en) * 1990-09-21 1992-05-01 Matsushita Electric Works Ltd Semiconductor package
JPH0529490A (en) * 1991-07-24 1993-02-05 Denki Kagaku Kogyo Kk Circuit board for mounting semiconductor
JPH06314707A (en) * 1993-04-28 1994-11-08 Sanyo Electric Co Ltd Hybrid integrated circuit
JPH08186194A (en) * 1994-12-28 1996-07-16 Matsushita Electric Works Ltd Chip carrier
JP2008028040A (en) * 2006-07-19 2008-02-07 Sanken Electric Co Ltd Semiconductor device and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54167667U (en) * 1978-05-15 1979-11-26
JPH04130740A (en) * 1990-09-21 1992-05-01 Matsushita Electric Works Ltd Semiconductor package
JPH0529490A (en) * 1991-07-24 1993-02-05 Denki Kagaku Kogyo Kk Circuit board for mounting semiconductor
JPH06314707A (en) * 1993-04-28 1994-11-08 Sanyo Electric Co Ltd Hybrid integrated circuit
JPH08186194A (en) * 1994-12-28 1996-07-16 Matsushita Electric Works Ltd Chip carrier
JP2008028040A (en) * 2006-07-19 2008-02-07 Sanken Electric Co Ltd Semiconductor device and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019047112A (en) * 2017-09-04 2019-03-22 ローム株式会社 Semiconductor device
JP7208725B2 (en) 2017-09-04 2023-01-19 ローム株式会社 semiconductor equipment
JP2020098826A (en) * 2018-12-17 2020-06-25 トヨタ自動車株式会社 Semiconductor device
JP7151452B2 (en) 2018-12-17 2022-10-12 株式会社デンソー semiconductor equipment

Also Published As

Publication number Publication date
JP6064845B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
TWI485817B (en) Microelectronic packages with enhanced heat dissipation and methods of manufacturing
US9171773B2 (en) Semiconductor device
JP7031172B2 (en) Semiconductor device
WO2014097798A1 (en) Semiconductor device
JP2007234690A (en) Power semiconductor module
JP2016018866A (en) Power module
JP6057926B2 (en) Semiconductor device
JP2011243839A (en) Power semiconductor device
JP5091459B2 (en) Manufacturing method of high heat radiation type electronic component storage package
JP6305176B2 (en) Semiconductor device and manufacturing method
JP4967701B2 (en) Power semiconductor device
JP5126201B2 (en) Semiconductor module and manufacturing method thereof
JP6890520B2 (en) Power semiconductor device
JP2014154613A (en) Semiconductor device and manufacturing method of the same
JP2015130457A (en) Semiconductor device
JP6192561B2 (en) Power semiconductor device
JP6064845B2 (en) Semiconductor device
JP2007329387A (en) Semiconductor device
EP2608257B1 (en) Semiconductor device and method for manufacturing same
JP5083294B2 (en) Power semiconductor device
JP2008211168A (en) Semiconductor device and semiconductor module
JP6157320B2 (en) Power semiconductor device, power semiconductor module, and method of manufacturing power semiconductor device
JP2014107519A (en) Semiconductor device and manufacturing method of the same
JP2018116960A (en) Power semiconductor device
JP2017135144A (en) Semiconductor module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161205

R151 Written notification of patent or utility model registration

Ref document number: 6064845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250