JP2015050447A - Seal material multilayer composite, sealed semiconductor device mounted substrate, sealed semiconductor device formed wafer, semiconductor device and semiconductor device manufacturing method - Google Patents

Seal material multilayer composite, sealed semiconductor device mounted substrate, sealed semiconductor device formed wafer, semiconductor device and semiconductor device manufacturing method Download PDF

Info

Publication number
JP2015050447A
JP2015050447A JP2013183603A JP2013183603A JP2015050447A JP 2015050447 A JP2015050447 A JP 2015050447A JP 2013183603 A JP2013183603 A JP 2013183603A JP 2013183603 A JP2013183603 A JP 2013183603A JP 2015050447 A JP2015050447 A JP 2015050447A
Authority
JP
Japan
Prior art keywords
semiconductor element
sealing
wafer
substrate
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013183603A
Other languages
Japanese (ja)
Inventor
晋 関口
Susumu Sekiguchi
晋 関口
塩原 利夫
Toshio Shiobara
利夫 塩原
秋葉 秀樹
Hideki Akiba
秀樹 秋葉
将一 長田
Masakazu Osada
将一 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2013183603A priority Critical patent/JP2015050447A/en
Publication of JP2015050447A publication Critical patent/JP2015050447A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a seal material multilayer composite which can inhibit deformation of a substrate or a wafer, or separation of a semiconductor device from the substrate even when sealing the large diameter or thin wafer or the large diameter substrate made of metal or the like; which can integrally seal, at a wafer level, a semiconductor device mounted surface of the substrate on which semiconductor devices are mounted or a semiconductor device formed surface of the wafer on which semiconductor devices are formed; and which has excellent in sealability such as heat resistance and excellent moisture resistance after sealing.SOLUTION: A seal material multilayer composite is for integrally sealing a semiconductor device mounted surface of a substrate on which one or more semiconductor devices are mounted or a semiconductor device formed surface of a wafer on which semiconductor devices are formed. The seal material multilayer composite includes a resin containing fiber base material containing cured or semi-cured cyanate ester resin, and an uncured resin layer formed on one surface of the resin containing fiber base material and made of uncured thermoset resin.

Description

本発明はウエハレベルで一括封止が可能な封止材に関し、さらに、封止材により封止された半導体素子形成ウエハ又は半導体素子を搭載した基板、該半導体素子形成ウエハを個片化した半導体装置、及び前記基板状の封止材を用いた半導体装置の製造方法に関する。   The present invention relates to a sealing material that can be collectively sealed at a wafer level, and further includes a semiconductor element forming wafer sealed with a sealing material, a substrate on which a semiconductor element is mounted, and a semiconductor in which the semiconductor element forming wafer is singulated. The present invention relates to a device and a method for manufacturing a semiconductor device using the substrate-shaped sealing material.

従来から半導体素子を搭載した基板の半導体素子搭載面、又は半導体素子を形成したウエハの半導体素子形成面のウエハレベルの封止は、種々の方式が提案、検討されており、スピンコーティングによる封止、スクリーン印刷による封止(特許文献1)や、フィルム支持体に熱溶融性エポキシ樹脂をコーティングさせた複合シートを用いた方法が例示される(特許文献2、3)。   Conventionally, various methods have been proposed and studied for wafer level sealing of a semiconductor element mounting surface of a substrate on which a semiconductor element is mounted, or a semiconductor element forming surface of a wafer on which a semiconductor element is formed. Sealing by spin coating Examples include sealing by screen printing (Patent Document 1) and a method using a composite sheet obtained by coating a film support with a hot-melt epoxy resin (Patent Documents 2 and 3).

なかでも、半導体素子を搭載した基板の半導体素子搭載面のウエハレベルの封止方法としては、金属、シリコンウエハ、又はガラス基板等の上部に両面接着層を有するフィルムを貼り付け、又は接着剤をスピンコート等で塗布した後、基板上に半導体素子を配列し接着、搭載させ半導体素子搭載面とし、その後、液状エポキシ樹脂やエポキシモールディングコンパウンド等で加熱下、加圧成形し封止することで、半導体素子搭載面を封止する方法が最近量産化されつつある(特許文献4)。また、同様に、半導体素子を形成したウエハの半導体素子形成面のウエハレベルの封止方法としても、液状エポキシ樹脂やエポキシモールディングコンパウンド等で加熱下、加圧成形し封止することで、半導体素子形成面を封止する方法が最近量産化されつつある。   Among them, as a wafer level sealing method for a semiconductor element mounting surface of a substrate on which a semiconductor element is mounted, a film having a double-sided adhesive layer is attached on top of a metal, silicon wafer, glass substrate or the like, or an adhesive is used. After applying by spin coating, etc., semiconductor elements are arranged on the substrate, bonded, and mounted to form a semiconductor element mounting surface, and then heated under pressure with a liquid epoxy resin or epoxy molding compound, etc. A method for sealing a semiconductor element mounting surface has recently been mass-produced (Patent Document 4). Similarly, as a wafer level sealing method for a semiconductor element forming surface of a wafer on which a semiconductor element is formed, the semiconductor element can be sealed by heating under pressure with a liquid epoxy resin or epoxy molding compound. Recently, a method for sealing the formation surface is being mass-produced.

しかしながら、上記のような方法では、直径200mm(8インチ)程度の小口径ウエハや金属等の小口径基板を使用した場合は現状でも大きな問題もなく封止できるが、直径300mm(12インチ)以上の半導体素子を搭載した大口径基板や半導体素子を形成した大口径ウエハを封止した場合では、封止硬化時のエポキシ樹脂等の収縮応力により基板やウエハに反りが生じることが大きな問題であった。また、半導体素子を搭載した大径基板の半導体素子搭載面をウエハレベルで封止する場合には、封止硬化時のエポキシ樹脂等の収縮応力により半導体素子が金属等の基板から剥離するといった問題が発生した。これらの問題から、半導体装置の一括封止による量産化を行うことは困難であった。   However, in the above-described method, when a small-diameter wafer having a diameter of about 200 mm (8 inches) or a small-diameter substrate such as metal can be used, sealing can be performed without any major problem, but the diameter is 300 mm (12 inches) or more. When a large-diameter substrate on which a semiconductor element is mounted or a large-diameter wafer on which a semiconductor element is formed is encapsulated, it is a major problem that the substrate or the wafer is warped due to shrinkage stress of epoxy resin or the like during sealing and curing. It was. Also, when the semiconductor element mounting surface of a large-diameter substrate on which a semiconductor element is mounted is sealed at the wafer level, there is a problem that the semiconductor element is peeled off from a substrate such as metal due to shrinkage stress of epoxy resin or the like during sealing and curing. There has occurred. Because of these problems, it has been difficult to mass-produce semiconductor devices by batch sealing.

このような半導体素子を搭載した基板や半導体素子を形成したウエハの大口径化に伴う問題を解決する方法として、フィラーを封止用樹脂組成物に90wt%(質量%)近く充填することや、封止用樹脂組成物の低弾性化で硬化時の収縮応力を小さくすることが挙げられている(特許文献1、2、3)。   As a method of solving the problems associated with the increase in the diameter of a substrate on which such a semiconductor element is mounted or a wafer on which the semiconductor element is formed, a filler is filled in the sealing resin composition with nearly 90 wt% (mass%), It is mentioned that the shrinkage stress at the time of curing is reduced by reducing the elasticity of the sealing resin composition (Patent Documents 1, 2, and 3).

しかし、エポキシ樹脂にフィラーを90wt%近く充填すると封止用樹脂組成物の粘度が上昇し、封止用樹脂組成物を流し込み成形、封止する時に基板に搭載された半導体素子に力が加わり、半導体素子が基板から剥離するといった問題が新たに発生した。また、封止用樹脂を低弾性化すると、封止された半導体素子を搭載した基板や半導体素子を形成したウエハの反りは改善されるが、耐熱性や耐湿性等の封止性能の低下の問題も新たに発生した。そのため、これらの解決方法では根本的な課題の解決に至っていなかった。   However, when the filler is filled in the epoxy resin close to 90 wt%, the viscosity of the sealing resin composition increases, and when the sealing resin composition is cast and molded, a force is applied to the semiconductor element mounted on the substrate, A new problem has occurred that the semiconductor element is peeled off the substrate. In addition, when the sealing resin is made less elastic, the warpage of the substrate on which the sealed semiconductor element is mounted and the wafer on which the semiconductor element is formed is improved, but the sealing performance such as heat resistance and moisture resistance is reduced. A new problem occurred. Therefore, these solutions have not led to a fundamental solution.

以上のように、大口径ウエハや金属等の大口径基板を封止した場合であっても、基板やウエハに反りが生じたり、半導体素子が金属等の基板から剥離したりすることなく、半導体素子を搭載した基板の半導体素子搭載面、又は半導体素子を形成したウエハの半導体素子形成面をウエハレベルで一括封止でき、かつ封止後には耐熱性や耐湿性等の封止性能に優れる封止材が求められていた。   As described above, even when a large-diameter wafer or a large-diameter substrate such as metal is sealed, the substrate or wafer is not warped, or the semiconductor element is not peeled off from the metal or other substrate. The semiconductor element mounting surface of the substrate on which the element is mounted or the semiconductor element forming surface of the wafer on which the semiconductor element is formed can be collectively sealed at the wafer level, and after sealing, the sealing is excellent in sealing performance such as heat resistance and moisture resistance. Stopping material was sought.

特開2002−179885号公報JP 2002-179885 A 特開2009−060146号公報JP 2009-060146 A 特開2007−001266号公報JP 2007-001266 A 特表2004−504723号公報JP-T-2004-504723

本発明は、上記問題を解決するためになされたものであり、大口径ウエハや薄型ウエハや金属等の大口径基板を封止した場合であっても、基板やウエハの反り、基板からの半導体素子の剥離を抑制でき、半導体素子を搭載した基板の半導体素子搭載面、又は半導体素子を形成したウエハの半導体素子形成面をウエハレベルで一括封止でき、かつ封止後には耐熱性や耐湿性等の封止性能に優れ、非常に汎用性が高い封止材積層複合体を提供することを目的とする。   The present invention has been made to solve the above problems, and even when a large-diameter substrate such as a large-diameter wafer, a thin wafer, or a metal is sealed, the substrate, the warp of the wafer, the semiconductor from the substrate, or the like. It is possible to suppress the peeling of the element, and the semiconductor element mounting surface of the substrate on which the semiconductor element is mounted or the semiconductor element forming surface of the wafer on which the semiconductor element is formed can be collectively sealed at the wafer level, and heat resistance and moisture resistance after sealing An object of the present invention is to provide a sealing material laminated composite having excellent sealing performance such as high versatility.

また、封止材積層複合体により封止された封止後半導体素子搭載基板及び封止後半導体素子形成ウエハ、該封止後半導体素子搭載基板及び該封止後半導体素子形成ウエハを個片化した半導体装置、及び前記封止材積層複合体を用いた半導体装置の製造方法を提供することを目的とする。   In addition, the post-sealing semiconductor element mounting substrate and the post-sealing semiconductor element mounting wafer sealed with the sealing material laminated composite, the post-sealing semiconductor element mounting substrate and the post-sealing semiconductor element formation wafer are separated into pieces. It is an object of the present invention to provide a semiconductor device and a method for manufacturing a semiconductor device using the sealing material laminate composite.

上記課題を解決するため、本発明では、
1個以上の半導体素子を搭載した基板の半導体素子搭載面、あるいは半導体素子を形成したウエハの半導体素子形成面を一括封止するための封止材積層複合体であって、
硬化又は半硬化のシアネートエステル樹脂を含有する樹脂含有繊維基材と、該樹脂含有繊維基材の片面上に形成され未硬化の熱硬化性樹脂からなる未硬化樹脂層とを有する封止材積層複合体を提供する。
In order to solve the above problems, in the present invention,
A sealing material laminated composite for collectively sealing a semiconductor element mounting surface of a substrate on which one or more semiconductor elements are mounted, or a semiconductor element forming surface of a wafer on which a semiconductor element is formed,
Sealing material laminate having a resin-containing fiber base material containing a cured or semi-cured cyanate ester resin, and an uncured resin layer made of an uncured thermosetting resin formed on one side of the resin-containing fiber base material Provide a complex.

このように、シアネートエステル樹脂を含有する樹脂含有繊維基材と、その片面上に形成された未硬化の熱硬化性樹脂からなる未硬化樹脂層とを有する封止材積層複合体であれば、膨張係数の非常に小さなシアネートエステル樹脂が、封止硬化時の未硬化樹脂層の収縮応力を抑制することができるため、大径や薄型のウエハや金属等の大径基板を封止した場合であっても、基板やウエハの反り、基板からの半導体素子の剥離を抑制でき、半導体素子を搭載した基板の半導体素子搭載面、又は半導体素子を形成したウエハの半導体素子形成面をウエハレベルで一括封止でき、かつ封止後には耐熱性や耐湿性等の封止性能に優れた非常に汎用性が高い基板を得ることができる。   Thus, if it is a sealing material laminated composite having a resin-containing fiber base material containing a cyanate ester resin and an uncured resin layer made of an uncured thermosetting resin formed on one surface thereof, Cyanate ester resin with a very low expansion coefficient can suppress the shrinkage stress of the uncured resin layer during sealing and curing, so when sealing large diameter substrates such as large and thin wafers and metals Even in such a case, the warpage of the substrate and the wafer and the peeling of the semiconductor element from the substrate can be suppressed, and the semiconductor element mounting surface of the substrate on which the semiconductor element is mounted or the semiconductor element forming surface of the wafer on which the semiconductor element is formed are collectively measured at the wafer level After sealing, a highly versatile substrate having excellent sealing performance such as heat resistance and moisture resistance can be obtained.

前記シアネートエステル樹脂が、
(A)下記一般式(1)で示されるシアネートエステル化合物又はそのオリゴマー

Figure 2015050447
(式中、R及びRは水素原子又は炭素数1〜4のアルキル基を示し、R
Figure 2015050447
のいずれかを示し、n=0〜30の整数である。Rは水素原子又はメチル基である。)
(B)下記一般式(2)で示される1分子中に2個以上の水酸基を持つフェノール化合物(b−1)又は下記一般式(3)で表されるジヒドロキシナフタレン化合物(b−2)、もしくはその両方
Figure 2015050447
(式中、R及びRは水素原子又は炭素数1〜4のアルキル基を示し、R
Figure 2015050447
のいずれかを示し、m=0〜30の整数である。Rは水素原子又はメチル基である。)
Figure 2015050447
を含有するものであり、該シアネートエステル樹脂の硬化後のガラス転移温度が200℃以上であり、熱膨張係数が5ppm/℃以下のものであることが好ましい。 The cyanate ester resin is
(A) Cyanate ester compound represented by the following general formula (1) or oligomer thereof
Figure 2015050447
(Wherein R 1 and R 2 represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 3 represents
Figure 2015050447
Or n is an integer of 0 to 30. R 4 is a hydrogen atom or a methyl group. )
(B) a phenol compound (b-1) having two or more hydroxyl groups in one molecule represented by the following general formula (2) or a dihydroxynaphthalene compound (b-2) represented by the following general formula (3), Or both
Figure 2015050447
(Wherein R 5 and R 6 represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 7 represents
Figure 2015050447
Or m is an integer of 0 to 30. R 4 is a hydrogen atom or a methyl group. )
Figure 2015050447
It is preferable that the cyanate ester resin has a glass transition temperature after curing of 200 ° C. or higher and a thermal expansion coefficient of 5 ppm / ° C. or lower.

このようなシアネートエステル樹脂であれば、200℃以下での熱膨張係数の変化がほとんどなく、熱膨張率の変化による半導体成形物への歪を抑えることができる。すなわち、歪による剥離現象や半導体素子への影響を抑えることができる。   With such a cyanate ester resin, there is almost no change in the coefficient of thermal expansion at 200 ° C. or less, and distortion to the semiconductor molded product due to the change in the coefficient of thermal expansion can be suppressed. That is, the peeling phenomenon due to strain and the influence on the semiconductor element can be suppressed.

前記未硬化樹脂層の厚みが20μm以上2000μm以下であることが好ましい。   It is preferable that the thickness of the uncured resin layer is 20 μm or more and 2000 μm or less.

このような厚みの未硬化樹脂層であれば、半導体素子を搭載した基板の半導体素子搭載面、又は半導体素子を形成したウエハの半導体素子形成面を封止するのに充分であり、かつ、封止された封止後半導体素子搭載基板及び封止後半導体素子形成ウエハが厚くなり過ぎることを抑制できるため好ましい。   An uncured resin layer having such a thickness is sufficient to seal the semiconductor element mounting surface of the substrate on which the semiconductor element is mounted, or the semiconductor element formation surface of the wafer on which the semiconductor element is formed, and sealing. The stopped post-sealing semiconductor element mounting substrate and the post-sealing semiconductor element formation wafer that are stopped can be prevented from becoming too thick.

前記未硬化樹脂層が、50℃未満で固形化し、かつ50℃以上150℃以下で溶融するものであることが好ましい。   The uncured resin layer is preferably solidified at less than 50 ° C. and melted at 50 ° C. or higher and 150 ° C. or lower.

このような未硬化樹脂層であれば、膨張係数の非常に小さなシアネートエステル樹脂がこれら樹脂を含む未硬化樹脂層の硬化時の収縮応力を抑制することができるため、大口径ウエハや金属等の大口径基板を封止した場合であっても、基板やウエハの反り、基板からの半導体素子の剥離をより確実に抑制でき、半導体素子を搭載した基板の半導体素子搭載面、又は半導体素子を形成したウエハの半導体素子形成面をウエハレベルで一括封止できる封止材積層複合体となり、かつこれら樹脂を含む未硬化樹脂層を有する複合体であれば、特に封止後には耐熱性や耐湿性等の封止性能に優れる封止材積層複合体となる。   With such an uncured resin layer, a cyanate ester resin having a very small expansion coefficient can suppress shrinkage stress at the time of curing of the uncured resin layer containing these resins. Even when a large-diameter substrate is sealed, warping of the substrate or wafer, and peeling of the semiconductor element from the substrate can be more reliably suppressed, and a semiconductor element mounting surface of the substrate on which the semiconductor element is mounted or a semiconductor element is formed. If it becomes a sealing material laminated composite which can encapsulate the semiconductor element formation surface of the wafer which was collectively at the wafer level, and if it is a composite having an uncured resin layer containing these resins, heat resistance and moisture resistance especially after sealing It becomes the sealing material laminated composite excellent in sealing performance, such as.

また、本発明は、
半導体素子を搭載した基板の半導体素子搭載面を封止した封止後半導体素子搭載基板であって、
前記封止材積層複合体の有する未硬化樹脂層により半導体素子を搭載した基板の半導体素子搭載面を被覆し、前記未硬化樹脂層を加熱、硬化することで、前記封止材積層複合体により一括封止された封止後半導体素子搭載基板を提供する。
The present invention also provides:
A semiconductor element mounting substrate after sealing in which a semiconductor element mounting surface of a substrate on which a semiconductor element is mounted is sealed,
By covering the semiconductor element mounting surface of the substrate on which the semiconductor element is mounted with the uncured resin layer of the encapsulant laminate composite, and heating and curing the uncured resin layer, the encapsulant laminate composite Provided is a semiconductor element mounting substrate after sealing that is collectively sealed.

このような封止後半導体素子搭載基板であれば、基板の反りが生じたり、基板から半導体素子が剥離したりすることが抑制された封止後半導体素子搭載基板となる。   Such a post-sealing semiconductor element mounting substrate is a post-sealing semiconductor element mounting substrate in which the warpage of the substrate or the semiconductor element peeling from the substrate is suppressed.

また、本発明は、
半導体素子を形成したウエハの半導体素子形成面を封止した封止後半導体素子形成ウエハであって、
前記封止材積層複合体の有する未硬化樹脂層により半導体素子を形成したウエハの半導体素子形成面を被覆し、前記未硬化樹脂層を加熱、硬化することで、前記封止材積層複合体により一括封止された封止後半導体素子形成ウエハを提供する。
The present invention also provides:
A semiconductor element formation wafer after sealing in which a semiconductor element formation surface of a wafer on which a semiconductor element is formed is sealed,
By covering the semiconductor element forming surface of the wafer on which the semiconductor element is formed with the uncured resin layer of the encapsulant laminate composite, and heating and curing the uncured resin layer, the encapsulant laminate composite Provided is a semiconductor element-formed wafer after sealing that is collectively sealed.

このような封止後半導体素子形成ウエハであれば、基板やウエハの反りが生じたりすることが抑制された封止後半導体素子形成ウエハとなる。   Such a post-sealing semiconductor element formation wafer is a post-sealing semiconductor element formation wafer in which the warpage of the substrate and wafer is suppressed.

さらに、本発明は、
前記封止後半導体素子搭載基板又は前記封止後半導体素子形成ウエハをダイシングして、個片化した半導体装置を提供する。
Furthermore, the present invention provides
Provided is a semiconductor device obtained by dicing the post-sealing semiconductor element mounting substrate or the post-sealing semiconductor element forming wafer into individual pieces.

このような半導体装置であれば、耐熱性や耐湿性等の封止性能に優れる封止材積層複合体により封止され、かつ反りが抑制された基板やウエハから半導体装置を製造できるため、高品質な半導体装置となる。   With such a semiconductor device, a semiconductor device can be manufactured from a substrate or wafer that is sealed with a sealing material laminate composite that is excellent in sealing performance such as heat resistance and moisture resistance, and warpage is suppressed. It becomes a quality semiconductor device.

さらに、本発明は、
半導体装置の製造方法であって、
前記封止材積層複合体の有する未硬化樹脂層により、半導体素子を搭載した基板の半導体素子搭載面、あるいは半導体素子を形成したウエハの半導体素子形成面を被覆する被覆工程、
前記未硬化樹脂層を加熱、硬化することで、前記半導体素子を搭載した基板の半導体素子搭載面、あるいは前記半導体素子を形成したウエハの半導体素子形成面を一括封止し、封止後半導体素子搭載基板あるいは封止後半導体素子形成ウエハとする封止工程、及び、
該封止後半導体素子搭載基板あるいは封止後半導体素子形成ウエハをダイシングし、個片化することで、半導体装置を製造する個片化工程を有する半導体装置の製造方法を提供する。
Furthermore, the present invention provides
A method for manufacturing a semiconductor device, comprising:
A coating step of covering the semiconductor element mounting surface of the substrate on which the semiconductor element is mounted, or the semiconductor element forming surface of the wafer on which the semiconductor element is formed, with the uncured resin layer of the sealing material laminate composite
By heating and curing the uncured resin layer, the semiconductor element mounting surface of the substrate on which the semiconductor element is mounted or the semiconductor element forming surface of the wafer on which the semiconductor element is formed is collectively sealed, and the semiconductor element after sealing A sealing step for forming a mounting substrate or a semiconductor element-formed wafer after sealing; and
Provided is a method for manufacturing a semiconductor device having a singulation process for manufacturing a semiconductor device by dicing the post-sealing semiconductor element mounting substrate or the post-sealing semiconductor element forming wafer into individual pieces.

このような半導体装置の製造方法であれば、より簡便に、充填不良なく半導体素子搭載面又は半導体素子形成面を被覆することができ、薄型で大口径ウエハや金属等の大口径基板を一括封止した場合であっても、基板やウエハの反り、基板からの半導体素子の剥離が抑制された封止後半導体素子搭載基板又は封止後半導体素子形成ウエハを得ることができ、さらに、このような基板又はウエハを個片化することで、耐熱性や耐湿性等の封止性能に優れた高品質な半導体装置を製造することができる。   With such a method for manufacturing a semiconductor device, the semiconductor element mounting surface or the semiconductor element forming surface can be covered more easily and without filling defects, and a large-diameter substrate such as a thin, large-diameter wafer or metal can be encapsulated. Even if it is stopped, it is possible to obtain a post-sealing semiconductor element mounting substrate or a post-sealing semiconductor element forming wafer in which warpage of the substrate or wafer and separation of the semiconductor element from the substrate are suppressed, and By separating individual substrates or wafers into individual pieces, a high-quality semiconductor device having excellent sealing performance such as heat resistance and moisture resistance can be manufactured.

以上説明したように、本発明の封止材積層複合体であれば、シアネートエステル樹脂を含有する樹脂含有繊維基材が硬化封止時の未硬化樹脂層の収縮応力を抑制することができるので、大口径ウエハや金属等の大口径基板を封止した場合であっても、基板やウエハに反りが生じたり、半導体素子が金属等の基板から剥離したりすることを抑制でき、半導体素子を搭載した基板の半導体素子搭載面、又は半導体素子を形成したウエハの半導体素子形成面をウエハレベルで一括封止でき、かつ封止後には耐熱性や耐湿性等の封止性能に優れ、非常に汎用性が高い基板を得ることができる。
また、本発明の封止材積層複合体により封止された封止後半導体素子搭載基板及び封止後半導体素子形成ウエハは、基板やウエハに反りが生じたり、半導体素子が金属等の基板から剥離したりすることが抑制されたものとなる。さらに、耐熱性や耐湿性等の封止性能に優れるシアネートエステル樹脂を用いた本発明の封止材積層複合体により封止され、かつ反りが抑制された封止後半導体素子搭載基板及び封止後半導体素子形成ウエハを個片化する工程を有する半導体装置の製造方法であれば、高品質な半導体装置を製造することができる。
As described above, since the resin-containing fiber base material containing the cyanate ester resin can suppress the shrinkage stress of the uncured resin layer at the time of curing and sealing, if the sealing material laminated composite of the present invention is used. Even when a large-diameter wafer or a large-diameter substrate such as a metal is sealed, it is possible to suppress warping of the substrate or the wafer or peeling of the semiconductor element from the metal-or the like substrate. The semiconductor element mounting surface of the mounted substrate or the semiconductor element formation surface of the wafer on which the semiconductor element is formed can be collectively sealed at the wafer level, and after sealing, it has excellent sealing performance such as heat resistance and moisture resistance, A highly versatile substrate can be obtained.
Further, the post-sealing semiconductor element mounting substrate and the post-sealing semiconductor element formation wafer sealed by the sealing material laminate composite of the present invention are warped on the substrate or the wafer, or the semiconductor element is made of a metal or other substrate. It becomes what was prevented from peeling. Further, the semiconductor element mounting substrate after sealing which is sealed by the sealing material laminated composite of the present invention using a cyanate ester resin excellent in sealing performance such as heat resistance and moisture resistance and warpage is suppressed, and sealing If it is a manufacturing method of the semiconductor device which has the process of separating a back semiconductor element formation wafer into pieces, a high quality semiconductor device can be manufactured.

本発明の封止材積層複合体の断面図の一例である。It is an example of sectional drawing of the sealing material laminated composite of this invention. 本発明の封止材積層複合体により封止された(a)封止後半導体素子搭載基板及び(b)封止後半導体素子形成ウエハの断面図の一例である。It is an example of sectional drawing of (a) the semiconductor element mounting substrate after sealing and (b) the semiconductor element formation wafer after sealing sealed by the sealing material laminated composite of this invention. (a)封止後半導体素子搭載基板から作製された本発明の半導体装置、及び(b)封止後半導体素子形成ウエハから作製された本発明の半導体装置の断面図の一例である。1A is an example of a cross-sectional view of a semiconductor device of the present invention manufactured from a semiconductor element mounting substrate after sealing, and FIG. 2B is a cross-sectional view of a semiconductor device of the present invention manufactured from a semiconductor element-formed wafer after sealing. 本発明の封止材積層複合体を用いて半導体素子を搭載した基板から半導体装置を製造する方法のフロー図の一例である。It is an example of the flowchart of the method of manufacturing a semiconductor device from the board | substrate which mounted the semiconductor element using the sealing material laminated composite of this invention.

以下、本発明の封止材積層複合体、該封止材積層複合体により封止された封止後半導体素子搭載基板又は封止後半導体素子形成ウエハ、該封止後半導体素子搭載基板又は該封止後半導体素子形成ウエハを個片化した半導体装置、及び前記封止材積層複合体を用いた半導体装置の製造方法について詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the encapsulating material laminated composite of the present invention, the post-sealing semiconductor element mounting substrate or the post-sealing semiconductor element forming wafer sealed by the encapsulating material laminated composite, the post-sealing semiconductor element mounting substrate or the A semiconductor device in which a semiconductor element-formed wafer is encapsulated after sealing and a method for manufacturing a semiconductor device using the sealing material laminate composite will be described in detail, but the present invention is not limited thereto.

前述のように、半導体素子を搭載した金属等の大口径基板や半導体素子を形成した大口径ウエハを封止した場合であっても、基板やウエハに反りが生じたり、半導体素子が金属等の基板から剥離したりすることが抑制でき、半導体素子を搭載した基板の半導体素子搭載面、又は半導体素子を形成したウエハの半導体素子形成面をウエハレベルで一括封止でき、かつ封止後には耐熱性や耐湿性等の封止性能に優れる汎用性の高い封止材が求められていた。   As described above, even when a large-diameter substrate such as a metal on which a semiconductor element is mounted or a large-diameter wafer on which a semiconductor element is formed is sealed, the substrate or the wafer is warped or the semiconductor element is Separation from the substrate can be suppressed, the semiconductor element mounting surface of the substrate on which the semiconductor element is mounted, or the semiconductor element formation surface of the wafer on which the semiconductor element is formed can be collectively sealed at the wafer level, and heat resistance after sealing There has been a demand for a highly versatile sealing material that is excellent in sealing performance such as heat resistance and moisture resistance.

本発明者らは、上記課題を達成するため鋭意検討を重ねた結果、硬化又は半硬化のシアネートエステル樹脂を含有する樹脂含有繊維基材と、該樹脂含有繊維基材の片面上に形成され未硬化の熱硬化性樹脂からなる未硬化樹脂層とを有する封止材積層複合体であれば、膨張係数の非常に小さなシアネートエステル樹脂を含有する樹脂含有繊維基材が未硬化樹脂層の硬化時の収縮応力を抑制することができることを見出し、この収縮応力の抑制作用により、大口径ウエハや金属等の大口径基板を封止した場合であっても、基板やウエハの反り、基板からの半導体素子の剥離を抑制できることを見出した。さらに、本発明の封止材積層複合体を用いれば半導体素子を搭載した基板の半導体素子搭載面、又は半導体素子を形成したウエハの半導体素子形成面をウエハレベルで一括封止でき、かつ封止後には耐熱性や耐湿性等の封止性能に優れ、非常に汎用性が高い封止材となることを見出して、本発明の封止材積層複合体を完成させた。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that a resin-containing fiber base material containing a cured or semi-cured cyanate ester resin is formed on one side of the resin-containing fiber base material. If the encapsulant laminate composite having an uncured resin layer made of a cured thermosetting resin, the resin-containing fiber base material containing a cyanate ester resin having a very small expansion coefficient is at the time of curing of the uncured resin layer. It is found that the shrinkage stress of the substrate can be suppressed, and even if a large-diameter substrate such as a large-diameter wafer or metal is sealed by the action of suppressing the shrinkage stress, the warpage of the substrate or wafer, the semiconductor from the substrate It has been found that peeling of the element can be suppressed. Furthermore, when the sealing material laminate composite of the present invention is used, the semiconductor element mounting surface of the substrate on which the semiconductor element is mounted or the semiconductor element forming surface of the wafer on which the semiconductor element is formed can be collectively sealed at the wafer level, and the sealing is performed. Later, it was found that the sealing material had excellent sealing performance such as heat resistance and moisture resistance and was very versatile, and the sealing material laminated composite of the present invention was completed.

また、本発明者らは、前記封止材積層複合体により一括封止された封止後半導体素子搭載基板及び封止後半導体素子形成ウエハであれば、基板やウエハの反りが生じたり、基板から半導体素子が剥離したりすることが抑制された封止後半導体素子搭載基板及び封止後半導体素子形成ウエハとなることを見出し、さらに、このように反りや半導体素子の剥離が抑制された封止後半導体素子搭載基板及び封止後半導体素子形成ウエハを個片化することで、高品質の半導体装置が得られることを見出し、本発明の封止後半導体素子搭載基板、封止後半導体素子形成ウエハ、及び半導体装置を完成させた。   In addition, the present inventors may warp the substrate or the wafer if it is a post-sealing semiconductor element mounting substrate and a post-sealing semiconductor element formation wafer that are collectively sealed by the sealing material laminated composite. It is found that a semiconductor element mounting substrate and a semiconductor element formation wafer after sealing in which the semiconductor element is prevented from being peeled off from the sealing, and further, the sealing in which the warpage and the peeling of the semiconductor element are suppressed in this way. It is found that a high-quality semiconductor device can be obtained by dividing the semiconductor element mounting substrate after sealing and the semiconductor element forming wafer after sealing into individual pieces, and the semiconductor element mounting substrate after sealing and the semiconductor element after sealing according to the present invention. A forming wafer and a semiconductor device were completed.

さらに、本発明者らは、前記封止材積層複合体を用いることで簡便に半導体素子搭載面又は半導体素子形成面を被覆できることを見出し、前記封止材積層複合体の未硬化樹脂層を加熱、硬化することで該半導体素子搭載面又は半導体素子形成面を一括封止できることを見出し、さらに、このように封止性能に優れるシアネートエステル樹脂を有する封止材積層複合体により封止され、反り、半導体素子の剥離が抑制された封止後半導体素子搭載基板又は封止後半導体素子形成ウエハをダイシングし、個片化することで、高品質な半導体装置を製造できることを見出して、本発明の半導体装置の製造方法を完成させた。   Furthermore, the present inventors have found that the semiconductor element mounting surface or the semiconductor element forming surface can be easily covered by using the sealing material multilayer composite, and heating the uncured resin layer of the sealing material multilayer composite. It is found that the semiconductor element mounting surface or the semiconductor element forming surface can be collectively sealed by curing, and is further sealed and warped by the sealing material laminated composite having the cyanate ester resin having excellent sealing performance. The present invention has found that a high-quality semiconductor device can be manufactured by dicing and separating a post-sealing semiconductor element mounting substrate or a post-sealing semiconductor element forming wafer in which peeling of the semiconductor element is suppressed, A semiconductor device manufacturing method has been completed.

即ち、本発明は、
1個以上の半導体素子を搭載した基板の半導体素子搭載面、あるいは半導体素子を形成したウエハの半導体素子形成面を一括封止するための封止材積層複合体であって、
硬化又は半硬化のシアネートエステル樹脂を含有する樹脂含有繊維基材と、該樹脂含有繊維基材の片面上に形成され未硬化の熱硬化性樹脂からなる未硬化樹脂層とを有する封止材積層複合体を提供する。
以下、本発明の封止材積層複合体の有する樹脂含有繊維基材及び未硬化樹脂層について詳述する。
That is, the present invention
A sealing material laminated composite for collectively sealing a semiconductor element mounting surface of a substrate on which one or more semiconductor elements are mounted, or a semiconductor element forming surface of a wafer on which a semiconductor element is formed,
Sealing material laminate having a resin-containing fiber base material containing a cured or semi-cured cyanate ester resin, and an uncured resin layer made of an uncured thermosetting resin formed on one side of the resin-containing fiber base material Provide a complex.
Hereinafter, the resin-containing fiber base material and the uncured resin layer which the sealing material laminated composite of the present invention has will be described in detail.

<樹脂含有繊維基材>
本発明で用いる樹脂含有繊維基材は、シアネートエステル樹脂を含有するものである。この樹脂含有繊維基材としては、例えば、繊維基材にシアネートエステル樹脂を含浸させて半硬化又は硬化したものや、シアネートエステル樹脂に繊維基材を含ませて半硬化又は硬化させたものを用いることができる。このような樹脂含有繊維基材は、膨張係数が非常に小さく、後に詳述する未硬化樹脂層を硬化させた際の収縮応力を抑制することができるため、大口径ウエハや金属等の大口径基板を封止した場合であっても、基板やウエハの反りや半導体素子の剥離を抑制できる封止材積層複合体を得ることができる。
<Resin-containing fiber substrate>
The resin-containing fiber base material used in the present invention contains a cyanate ester resin. As the resin-containing fiber base material, for example, a fiber base material impregnated with a cyanate ester resin and semi-cured or cured, or a cyanate ester resin containing a fiber base material and semi-cured or cured is used. be able to. Such a resin-containing fiber base material has a very small expansion coefficient and can suppress shrinkage stress when an uncured resin layer, which will be described in detail later, is cured, so that a large diameter of a large diameter wafer, metal, etc. Even when the substrate is sealed, it is possible to obtain a sealing material laminated composite that can suppress warpage of the substrate and wafer and peeling of the semiconductor element.

[繊維基材]
繊維基材として使用することができるものとしては、例えば、炭素繊維、ガラス繊維、石英ガラス繊維、金属繊維等の無機繊維、芳香族ポリアミド繊維、ポリイミド繊維、ポリアミドイミド繊維等の有機繊維、さらには炭化ケイ素繊維、炭化チタン繊維、ボロン繊維、アルミナ繊維等が例示され、製品特性に応じていかなるものも使用することができる。また、特に好ましい繊維基材としてはガラス繊維、石英繊維、炭素繊維等が例示される。中でも絶縁性の高いガラス繊維や石英ガラス繊維が繊維基材として、最も好ましい。
[Fiber base]
Examples of fiber base materials that can be used include inorganic fibers such as carbon fibers, glass fibers, quartz glass fibers, and metal fibers, organic fibers such as aromatic polyamide fibers, polyimide fibers, and polyamideimide fibers, and Examples thereof include silicon carbide fiber, titanium carbide fiber, boron fiber, and alumina fiber, and any of them can be used depending on the product characteristics. Moreover, glass fiber, quartz fiber, carbon fiber, etc. are illustrated as a particularly preferable fiber base material. Of these, highly insulating glass fibers and quartz glass fibers are most preferable as the fiber base material.

繊維基材の形態としては、特に制限はされないが、例えば、長繊維フィラメントを一定方向に引きそろえたロービング、繊維クロス、不織布等のシート状のもの、更にはチョップストランドマット等が例示され、このうち、積層体を容易に形成することができるものが好ましい。   The form of the fiber base material is not particularly limited, and examples thereof include a sheet-like material such as roving, fiber cloth, and nonwoven fabric in which long fiber filaments are aligned in a certain direction, and a chopped strand mat. Of these, those capable of easily forming a laminate are preferred.

[シアネートエステル樹脂]
シアネートエステル樹脂の成分としては、(A)成分のシアネートエステル化合物のシアネート基1モルに対して、(B)成分のフェノール化合物又はジヒドロキシナフタレンもしくは両方の水酸基を0.05〜0.4モルの割合で配合した樹脂組成物を好ましく用いることができる。
[Cyanate ester resin]
The component of the cyanate ester resin is a ratio of 0.05 to 0.4 mol of the phenolic compound of component (B) or dihydroxynaphthalene or both hydroxyl groups with respect to 1 mol of cyanate group of the cyanate ester compound of component (A). The resin composition blended in can be preferably used.

[(A)成分]
(シアネートエステル化合物又はそのオリゴマー)
本発明で用いるシアネートエステル樹脂の(A)成分として、下記一般式(1)で示されるシアネートエステル化合物又はそのオリゴマーを好ましく用いることができる。

Figure 2015050447

(式中、R及びRは水素原子又は炭素数1〜4のアルキル基を示し、R
Figure 2015050447
のいずれかを示し、n=0〜30の整数である。Rは水素原子又はメチル基である。) [(A) component]
(Cyanate ester compound or oligomer thereof)
As the component (A) of the cyanate ester resin used in the present invention, a cyanate ester compound represented by the following general formula (1) or an oligomer thereof can be preferably used.
Figure 2015050447

(Wherein R 1 and R 2 represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 3 represents
Figure 2015050447
Or n is an integer of 0 to 30. R 4 is a hydrogen atom or a methyl group. )

このシアネートエステル化合物は、1分子中にシアネート基を2個以上有するものであり、具体的には、多芳香環の2価フェノールのシアン酸エステル、例えばビス(3,5−ジメチル−4−シアネートフェニル)メタン、ビス(4−シアネートフェニル)メタン、ビス(3−メチル−4−シアネートフェニル)メタン、ビス(3−エチル−4−シアネートフェニル)メタン、ビス(4−シアネートフェニル)−1,1−エタン、ビス(4−シアネートフェニル)−2,2−プロパン、ジ(4−シアネートフェニル)エーテル、ジ(4−シアネートフェニル)チオエーテル、多価フェノールのポリシアン酸エステル、例えばフェノールノボラック型シアネートエステル、クレゾールノボラック型シアネートエステル、フェニルアラルキル型シアネートエステル、ビフェニルアラルキル型シアネートエステル、ナフタレンアラルキル型シアネートエステルなどが挙げられる。   This cyanate ester compound has two or more cyanate groups in one molecule. Specifically, cyanate ester of polyvalent aromatic dihydric phenol such as bis (3,5-dimethyl-4-cyanate). Phenyl) methane, bis (4-cyanatephenyl) methane, bis (3-methyl-4-cyanatephenyl) methane, bis (3-ethyl-4-cyanatephenyl) methane, bis (4-cyanatephenyl) -1,1 Ethane, bis (4-cyanatephenyl) -2,2-propane, di (4-cyanatephenyl) ether, di (4-cyanatephenyl) thioether, polyhydric acid ester of polyhydric phenol, such as phenol novolac type cyanate ester, Cresol novolac cyanate ester, phenyl aralkyl type Esters, biphenyl aralkyl type cyanate ester, and the like naphthalene aralkyl type cyanate ester.

前述のシアネートエステル化合物はフェノール類と塩化シアンを塩基性下、反応させることにより得ることができる。このようなシアネートエステル化合物は、その構造より軟化点が106℃の固形のものから、常温で液状のものまでの幅広い特性を有するものを得ることができ、その中から用途に合せて適宜選択することができる。このうち、シアネート基の当量が小さいもの、即ち官能基間分子量が小さいものは硬化収縮が小さく、低熱膨張、ガラス転移温度の高い硬化物を得ることができる。シアネート基当量が大きいものは若干ガラス転移温度が低下するが、トリアジン架橋間隔がフレキシブルになり、低弾性化、高強靭化、低吸水化が期待できる。シアネートエステル化合物中に結合あるいは残存している塩素は好ましくは50ppm以下、より好ましくは20ppm以下であることが好適である。50ppm以下であれば長期高温保管時熱分解により遊離した塩素あるいは塩素イオンが酸化されたCuフレームやCuワイヤー、Agメッキを腐食させ、剥離や電気的不良を引き起こす可能性がないため好ましい。また、樹脂の絶縁性も低下することがないため好ましい。   The aforementioned cyanate ester compound can be obtained by reacting phenols and cyanogen chloride under basic conditions. Such a cyanate ester compound can be obtained having a wide range of properties ranging from a solid having a softening point of 106 ° C. to a liquid at room temperature, from the structure, and is appropriately selected from among them in accordance with the application. be able to. Among these, those having a small equivalent of the cyanate group, that is, those having a low molecular weight between functional groups, have a small curing shrinkage, and a cured product having a low thermal expansion and a high glass transition temperature can be obtained. A glass having a large cyanate group equivalent has a slightly lower glass transition temperature, but the triazine crosslinking interval becomes flexible, and low elasticity, high toughness, and low water absorption can be expected. The chlorine bonded or remaining in the cyanate ester compound is preferably 50 ppm or less, more preferably 20 ppm or less. If it is 50 ppm or less, there is no possibility of causing corrosion or corrosion of a Cu frame, Cu wire, or Ag plating in which chlorine or chlorine ions liberated by thermal decomposition during long-term high-temperature storage are oxidized, thereby causing no peeling or electrical failure. Moreover, since the insulation of resin does not fall, it is preferable.

[(B)成分]
本発明で用いるシアネートエステル樹脂は、硬化剤として(B)成分を含有するものであることが好ましい。一般に、シアネートエステル化合物の硬化剤や硬化触媒としては、金属塩、金属錯体や活性水素を持つフェノール性水酸基や一級アミン類などが用いられるが、本発明では、フェノール化合物(b−1)やジヒドロキシナフタレン化合物(b−2)といったものが好適に用いられる。
[Component (B)]
The cyanate ester resin used in the present invention preferably contains a component (B) as a curing agent. In general, as a curing agent or a curing catalyst for a cyanate ester compound, a metal salt, a metal complex, a phenolic hydroxyl group having primary hydrogen or a primary amine is used. In the present invention, the phenol compound (b-1) or dihydroxy is used. A naphthalene compound (b-2) is preferably used.

(フェノール化合物(b−1))
(B)成分として、下記一般式(2)で示される1分子中に2個以上の水酸基を持つフェノール化合物(b−1)を好ましく用いることができる。

Figure 2015050447
(式中、R及びRは水素原子又は炭素数1〜4のアルキル基を示し、R
Figure 2015050447
のいずれかを示し、m=0〜30の整数である。Rは水素原子又はメチル基である。) (Phenol compound (b-1))
As the component (B), a phenol compound (b-1) having two or more hydroxyl groups in one molecule represented by the following general formula (2) can be preferably used.
Figure 2015050447
(Wherein R 5 and R 6 represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 7 represents
Figure 2015050447
Or m is an integer of 0 to 30. R 4 is a hydrogen atom or a methyl group. )

このフェノール化合物としては、1分子中に2個以上のフェノール性水酸基を持つフェノール樹脂、ビスフェノールF型樹脂、ビスフェノールA型樹脂,フェノールノボラック樹脂、フェノールアラルキル型樹脂、ビフェニルアラルキル型樹脂、ナフタレンアラルキル型樹脂が挙げられ、これらのうち1種又は2種以上を併用することができる。   As this phenol compound, phenol resin having two or more phenolic hydroxyl groups in one molecule, bisphenol F type resin, bisphenol A type resin, phenol novolac resin, phenol aralkyl type resin, biphenyl aralkyl type resin, naphthalene aralkyl type resin Of these, one or more of them can be used in combination.

このフェノール化合物(b−1)は、フェノール水酸基当量が小さいもの、例えば、水酸基当量120以下のものはシアネート基との反応性が高く、120℃以下の低温でも硬化反応が進行する。この場合はシアネート基に対する水酸基のモル比を小さくすると良い。好適な範囲はシアネート基1モルに対し0.05〜0.11モルである。この場合、硬化収縮が少なく、低熱膨張で高Tgの硬化物が得られる。   This phenol compound (b-1) has a small phenol hydroxyl group equivalent, for example, a hydroxyl group equivalent of 120 or less has high reactivity with a cyanate group, and the curing reaction proceeds even at a low temperature of 120 ° C. or less. In this case, it is preferable to reduce the molar ratio of the hydroxyl group to the cyanate group. A preferred range is 0.05 to 0.11 mole per mole of cyanate group. In this case, there is little cure shrinkage, and a cured product with low thermal expansion and high Tg can be obtained.

一方、フェノール水酸基当量が大きいもの、例えば水酸基当量175以上のものはシアネート基との反応が抑えられ保存性が良く、流動性が良い組成物が得られる。好適な範囲はシアネート基1モルに対し0.1〜0.4モルである。この場合、Tgは若干低下するが吸水率の低い硬化物が得られる。希望の硬化物特性と硬化性を得る為にこれらフェノール樹脂は2種類以上併用することもできる。   On the other hand, those having a large phenol hydroxyl group equivalent, for example, those having a hydroxyl group equivalent of 175 or more, can suppress the reaction with the cyanate group, provide a composition having good storage stability and good fluidity. The preferred range is 0.1 to 0.4 mole per mole of cyanate group. In this case, a cured product having a low water absorption is obtained although Tg is slightly reduced. In order to obtain desired cured product characteristics and curability, these phenol resins can be used in combination of two or more.

(ジヒドロキシナフタレン化合物(b−2))
(B)成分として、下記一般式(3)で表されるジヒドロキシナフタレン化合物(b−2)を好ましく用いることができる。

Figure 2015050447
(Dihydroxynaphthalene compound (b-2))
As the component (B), a dihydroxynaphthalene compound (b-2) represented by the following general formula (3) can be preferably used.
Figure 2015050447

上記のジヒドロキシナフタレンとしては、1,2−ジヒドロキシナフタレン、1,3−ジヒドロキシナフタレン、1,4−ジヒドロキシナフタレン、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、1,7−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレンなどが挙げられる。
融点が130℃の1,2−ジヒドロキシナフタレン、1,3−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレンは非常に反応性が高く少量でシアネート基の環化反応を促進する。融点が200℃以上の1,5−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレンは比較的反応が抑制される。
Examples of the dihydroxynaphthalene include 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 2 , 6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene and the like.
1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene and 1,6-dihydroxynaphthalene having a melting point of 130 ° C. are very reactive and promote the cyclization reaction of the cyanate group in a small amount. The reaction of 1,5-dihydroxynaphthalene and 2,6-dihydroxynaphthalene having a melting point of 200 ° C. or higher is relatively suppressed.

これらジヒドロキシナフタレン化合物(b−2)を単独で使用した場合、官能基間分子量が小さく、かつ剛直な構造である為硬化収縮が小さく、高Tgの硬化物が得られる。また水酸基当量の大きい1分子中に2個以上の水酸基を持つフェノール化合物(b−1)と併用することにより硬化性を調整することもできる。   When these dihydroxynaphthalene compounds (b-2) are used alone, the molecular weight between functional groups is small and the structure is rigid, so that the curing shrinkage is small and a cured product having a high Tg is obtained. Moreover, sclerosis | hardenability can also be adjusted by using together with the phenolic compound (b-1) which has a 2 or more hydroxyl group in 1 molecule with a large hydroxyl equivalent.

尚、上記フェノール化合物(b−1)及びジヒドロキシナフタレン化合物(b−2)中のハロゲン元素やアルカリ金属などが120℃、2気圧下での抽出で10ppm、特に5ppm以下であることが望ましい。   In addition, it is desirable that the halogen element, the alkali metal, and the like in the phenol compound (b-1) and the dihydroxynaphthalene compound (b-2) are 10 ppm, particularly 5 ppm or less when extracted at 120 ° C. under 2 atm.

本発明で用いるシアネートエステル樹脂は、上記のフェノール化合物(b−1)を単独で、又は上記のジヒドロキシナフタレン化合物(b−2)を単独で、もしくはフェノール化合物(b−1)及びジヒドロキシナフタレン化合物(b−2)の組み合わせを(B)成分として含有することが好ましい。   The cyanate ester resin used in the present invention is the above phenol compound (b-1) alone, the above dihydroxynaphthalene compound (b-2) alone, or the phenol compound (b-1) and the dihydroxynaphthalene compound ( It is preferable to contain the combination of b-2) as (B) component.

[無機充填剤]
本発明で用いるシアネートエステル樹脂には、さらに無機充填剤を配合することができる。配合される無機充填剤としては、例えば、ヒュームドシリカ(煙霧質シリカ)、沈降シリカ、溶融シリカ、結晶性シリカ等のシリカ類、アルミナ、窒化珪素、窒化アルミニウム、アルミノシリケート、ボロンナイトライド、ガラス繊維、三酸化アンチモン等が挙げられる。これら無機充填剤の平均粒径や形状は特に限定されない。
[Inorganic filler]
The cyanate ester resin used in the present invention may further contain an inorganic filler. Examples of the inorganic filler to be blended include fumed silica (fumed silica), precipitated silica, fused silica, crystalline silica and other silicas, alumina, silicon nitride, aluminum nitride, aluminosilicate, boron nitride, glass Examples thereof include fibers and antimony trioxide. The average particle diameter and shape of these inorganic fillers are not particularly limited.

また、シアネートエステル樹脂のガラス転移温度は200℃以上であることが好ましい。200℃以上であれば、200℃以下での熱膨張係数の変化がほとんどなく、熱膨張率の変化による半導体成形物への歪を抑えることができる。すなわち、歪による剥離現象や半導体素子への影響を抑えることができる。ガラス転移温度は200℃以上あれば良いが、好ましくはガラス転移温度が250℃以上である。   Moreover, it is preferable that the glass transition temperature of cyanate ester resin is 200 degreeC or more. If it is 200 degreeC or more, there will be almost no change of a thermal expansion coefficient in 200 degrees C or less, and the distortion to the semiconductor molding by the change of a thermal expansion coefficient can be suppressed. That is, the peeling phenomenon due to strain and the influence on the semiconductor element can be suppressed. The glass transition temperature may be 200 ° C. or higher, but the glass transition temperature is preferably 250 ° C. or higher.

さらに、樹脂含有繊維基材中のシアネートエステル樹脂のX−Y方向の線膨張係数は5ppm/℃以下であることが好ましく、より好ましくは1ppm/℃以上3ppm/℃以下、特に好ましくは2ppm/℃以上3ppm/℃以下である。シアネートエステル樹脂の線膨張係数が5ppm/℃以下であれば、半導体素子を搭載した基板又は半導体素子を形成したウエハとの膨張係数の差が大きくなることを抑制でき、そのためこれら基板又はウエハの反りをより確実に抑制することができる。特にウエハの口径が300mm以上で厚みが100μm以下の大口径薄膜状のウエハに対してはわずかな反りや歪応力が原因となって簡単に破壊される可能性が高いので線膨張係数は2ppm/℃−3ppm/℃程度であることが特に好ましい。尚、X−Y方向とは樹脂含有繊維基材の面方向をいう。また、X−Y方向の膨張係数は、樹脂含有繊維基材の面方向に任意にX軸、Y軸をとって測定した膨張係数をいう。   Furthermore, the linear expansion coefficient in the XY direction of the cyanate ester resin in the resin-containing fiber base material is preferably 5 ppm / ° C. or less, more preferably 1 ppm / ° C. or more and 3 ppm / ° C. or less, particularly preferably 2 ppm / ° C. It is 3 ppm / ° C. or less. If the linear expansion coefficient of the cyanate ester resin is 5 ppm / ° C. or less, it is possible to suppress an increase in the difference in expansion coefficient between the substrate on which the semiconductor element is mounted or the wafer on which the semiconductor element is formed. Can be more reliably suppressed. In particular, a large-diameter thin film wafer having a wafer diameter of 300 mm or more and a thickness of 100 μm or less is likely to be easily broken due to slight warpage or strain stress, so the linear expansion coefficient is 2 ppm / It is especially preferable that it is about -3 ppm / degreeC. In addition, XY direction means the surface direction of a resin containing fiber base material. Further, the expansion coefficient in the XY direction refers to an expansion coefficient measured by arbitrarily taking the X axis and the Y axis in the surface direction of the resin-containing fiber base material.

[樹脂含有繊維基材の作製方法]
樹脂含有繊維基材の作製方法の一例として、繊維基材にシアネートエステル樹脂を含浸させる方法について説明する。この方法は、溶剤法とホットメルト法のいずれの方法でも実施できる。溶剤法とはシアネートエステル樹脂を有機溶剤に溶解した樹脂ワニスを調製し、この樹脂ワニスを繊維基材に含浸させる方法であり、ホットメルト法とは固形のシアネートエステル樹脂を加熱して溶かし繊維基材に含浸させる方法である。
[Production method of resin-containing fiber substrate]
As an example of a method for producing a resin-containing fiber base material, a method for impregnating a fiber base material with a cyanate ester resin will be described. This method can be carried out by either a solvent method or a hot melt method. The solvent method is a method of preparing a resin varnish obtained by dissolving a cyanate ester resin in an organic solvent, and impregnating the resin varnish into a fiber base material. The hot melt method is a method in which a solid cyanate ester resin is heated and dissolved to dissolve the fiber base. This is a method of impregnating a material.

繊維基材に含浸したシアネートエステル樹脂を半硬化する方法としては、特に制限はされないが、繊維基材に含浸したシアネートエステル樹脂を加熱により脱溶媒等して半硬化する方法等が例示される。繊維基材に含浸したシアネートエステル樹脂を硬化する方法としては、特に制限はされないが、繊維基材に含浸したシアネートエステル樹脂を加熱により硬化する方法等が例示される。   The method of semi-curing the cyanate ester resin impregnated in the fiber base is not particularly limited, and examples thereof include a method of semi-curing the cyanate ester resin impregnated in the fiber base by removing the solvent by heating. The method for curing the cyanate ester resin impregnated in the fiber substrate is not particularly limited, and examples thereof include a method for curing the cyanate ester resin impregnated in the fiber substrate by heating.

尚、本発明において、半硬化とは、JIS K 6800「接着剤・接着用語」に定義されているようなB−ステージ(熱硬化性樹脂の硬化中間体、この状態での樹脂は加熱すると軟化し、ある種の溶剤に触れると膨潤するが、完全に溶融、溶解することはない)状態をいうものである。   In the present invention, semi-curing refers to a B-stage (a thermosetting resin curing intermediate, as defined in JIS K 6800 “Adhesives / Adhesion Terminology”). However, when it comes into contact with a certain solvent, it swells but does not completely melt or dissolve).

繊維基材にシアネートエステル樹脂を含浸させて、シアネートエステル樹脂を半硬化又は硬化した場合の樹脂含浸繊維基材の厚みは、使用する繊維クロス等の繊維基材の厚みによって決まり、厚い樹脂含浸繊維基材を作製する場合は繊維クロス等の繊維基材の使用枚数を多くし、積層して作製する。樹脂含有繊維基材の厚みは50μm〜1mmであることが好ましく、より好ましくは100μm〜500μmのものが望ましい。50μm以上であれば薄すぎて変形しやすくなることを抑制できるため好ましく、また1mm以下であれば半導体装置そのものが厚くなることを抑制できるため好ましい。   The thickness of the resin-impregnated fiber base material when the fiber base material is impregnated with cyanate ester resin and the cyanate ester resin is semi-cured or cured is determined by the thickness of the fiber base material such as fiber cloth used, and is thick resin-impregnated fiber When producing a base material, the number of used fiber base materials such as fiber cloth is increased and laminated. The thickness of the resin-containing fiber base material is preferably 50 μm to 1 mm, more preferably 100 μm to 500 μm. If it is 50 μm or more, it is preferable because it can be suppressed from being too thin and easily deformed, and if it is 1 mm or less, it is preferable because the semiconductor device itself can be suppressed from becoming thick.

このような樹脂含有繊維基材は、半導体素子を搭載した基板の半導体素子搭載面、又は半導体素子を形成したウエハの半導体素子形成面を一括封止したあとの反りを低減させ、一個以上の半導体素子を配列、接着させた基板を補強するために重要である。そのため、硬くて剛直な基材であることが望ましい。本発明で用いる樹脂含有繊維基材は、繊維基材に対して線膨張係数の低いシアネートエステル樹脂を含有させるため、従来のものに比べて封止硬化時の加熱の際の膨張をさらに抑制することができる、硬くて剛直な基材とすることができる。   Such a resin-containing fiber base material reduces the warpage after collectively sealing the semiconductor element mounting surface of the substrate on which the semiconductor element is mounted or the semiconductor element forming surface of the wafer on which the semiconductor element is formed. This is important for reinforcing the substrate on which the elements are arranged and bonded. Therefore, it is desirable that the base material is hard and rigid. Since the resin-containing fiber base material used in the present invention contains a cyanate ester resin having a low linear expansion coefficient with respect to the fiber base material, the expansion at the time of heating during sealing and curing is further suppressed as compared with the conventional one. It can be a hard and rigid substrate.

<未硬化樹脂層>
本発明の封止材積層複合体は未硬化樹脂層を有する。この未硬化樹脂層は、前述の樹脂含有繊維基材の片面上に形成された未硬化の熱硬化性樹脂からなるものである。この未硬化樹脂層は、半導体素子搭載面又は半導体素子形成面を封止するための樹脂層となる。
<Uncured resin layer>
The encapsulant laminate composite of the present invention has an uncured resin layer. This uncured resin layer is made of an uncured thermosetting resin formed on one side of the resin-containing fiber base material. This uncured resin layer becomes a resin layer for sealing the semiconductor element mounting surface or the semiconductor element formation surface.

未硬化樹脂層の厚みは20μm以上2000μm以下であることが好ましい。20μm以上であれば半導体素子を搭載した基板の半導体素子搭載面、又は半導体素子を形成したウエハの半導体素子形成面を封止するのに充分であり、薄すぎることによる充填性の不良が生じることを抑制できるため好ましく、2000μm以下であれば封止された封止後半導体素子搭載基板及び封止後半導体素子形成ウエハが厚くなり過ぎることが抑制できるため好ましい。   The thickness of the uncured resin layer is preferably 20 μm or more and 2000 μm or less. If it is 20 μm or more, it is sufficient to seal the semiconductor element mounting surface of the substrate on which the semiconductor element is mounted, or the semiconductor element forming surface of the wafer on which the semiconductor element is formed, and the filling property is poor due to being too thin. The thickness is preferably 2000 μm or less because it is possible to prevent the sealed semiconductor element mounting substrate and the semiconductor element formation wafer after sealing from becoming too thick.

未硬化樹脂層を形成する未硬化の熱硬化性樹脂としては、特に制限はされないが、通常、半導体素子の封止に使用される液状エポキシ樹脂や固形のエポキシ樹脂、シリコーン樹脂、エポキシ樹脂とシリコーン樹脂からなる混成樹脂、又は前述と同様のシアネートエステル樹脂からなる未硬化樹脂層であることが好ましい。特に、50℃未満で固形化し、かつ50℃以上150℃以下で溶融するエポキシ樹脂、シリコーン樹脂、エポキシシリコーン混成樹脂、及びシアネートエステル樹脂のいずれかを含むものであることが好ましい。このような熱硬化性樹脂であれば、樹脂含有繊維基材中の線膨張係数の非常に小さなシアネートエステル樹脂が上記の樹脂を含む未硬化樹脂層の硬化時の収縮応力を抑制することができるため、大口径ウエハや金属等の大口径基板を封止した場合であっても、基板やウエハの反り、基板からの半導体素子の剥離をより確実に抑制でき、半導体素子を搭載した基板の半導体素子搭載面、又は半導体素子を形成したウエハの半導体素子形成面をウエハレベルで一括封止できる封止材積層複合体となり、かつこれら樹脂を含む未硬化樹脂層を有する複合体であれば、特に封止後には耐熱性や耐湿性等の封止性能に優れる封止材積層複合体となる。
以下、熱硬化性樹脂として用いることのできる、エポキシ樹脂、シリコーン樹脂、エポキシ樹脂とシリコーン樹脂からなる混成樹脂、及びシアネートエステル樹脂について詳述する。
The uncured thermosetting resin that forms the uncured resin layer is not particularly limited, but is usually a liquid epoxy resin or solid epoxy resin, silicone resin, epoxy resin and silicone used for sealing semiconductor elements. A hybrid resin made of resin or an uncured resin layer made of the same cyanate ester resin as described above is preferable. In particular, it is preferable to include any of an epoxy resin, a silicone resin, an epoxy silicone hybrid resin, and a cyanate ester resin that are solidified at less than 50 ° C. and melted at 50 ° C. or higher and 150 ° C. or lower. With such a thermosetting resin, the cyanate ester resin having a very small linear expansion coefficient in the resin-containing fiber base material can suppress the shrinkage stress during curing of the uncured resin layer containing the resin. Therefore, even when a large-diameter wafer or a large-diameter substrate such as metal is sealed, the warpage of the substrate or wafer and the peeling of the semiconductor element from the substrate can be more reliably suppressed, and the semiconductor of the substrate on which the semiconductor element is mounted Especially if it is a composite having an uncured resin layer containing an element mounting surface or a semiconductor element forming surface of a wafer on which a semiconductor element is formed, which can be collectively sealed at the wafer level and has an uncured resin layer containing these resins After sealing, it becomes a sealing material laminated composite excellent in sealing performance such as heat resistance and moisture resistance.
Hereinafter, an epoxy resin, a silicone resin, a hybrid resin composed of an epoxy resin and a silicone resin, and a cyanate ester resin that can be used as a thermosetting resin will be described in detail.

[エポキシ樹脂]
エポキシ樹脂としては、特に制限はされないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、3,3’,5,5’−テトラメチル−4,4’−ビフェノール型エポキシ樹脂又は4,4’−ビフェノール型エポキシ樹脂のようなビフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、トリスフェニロールメタン型エポキシ樹脂、テトラキスフェニロールエタン型エポキシ樹脂、及びフェノールジシクロペンタジエンノボラック型エポキシ樹脂の芳香環を水素化したエポキシ樹脂、脂環式エポキシ樹脂など室温で液状や固体の公知のエポキシ樹脂が挙げられる。また、必要に応じて、上記以外のエポキシ樹脂を目的に応じて一定量併用することができる。
[Epoxy resin]
The epoxy resin is not particularly limited. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, 3,3 ′, 5,5′-tetramethyl-4,4′-biphenol type epoxy resin, or 4, Biphenol type epoxy resin such as 4'-biphenol type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, naphthalenediol type epoxy resin, trisphenylol methane type epoxy resin, tetrakispheni Examples thereof include known epoxy resins which are liquid or solid at room temperature, such as roll ethane type epoxy resins, epoxy resins obtained by hydrogenating aromatic rings of phenol dicyclopentadiene novolac type epoxy resins, and alicyclic epoxy resins. Moreover, if necessary, a certain amount of epoxy resins other than the above can be used in combination according to the purpose.

エポキシ樹脂からなる熱硬化性樹脂は、半導体素子を封止する樹脂層となることから塩素等のハロゲンイオン、またナトリウム等のアルカリイオンは極力減らしたものであることが好ましい。各イオンを減らす方法としては、イオン交換水50mlに試料10gを添加し、密封して120℃のオーブン中に20時間静置した後、加熱抽出する方法を挙げることができ、120℃での抽出でいずれのイオンも10ppm以下とすることが望ましい。   The thermosetting resin made of an epoxy resin is preferably a resin layer that seals the semiconductor element, so that halogen ions such as chlorine and alkali ions such as sodium are reduced as much as possible. As a method for reducing each ion, a method of adding 10 g of a sample to 50 ml of ion-exchanged water, sealing and leaving it in an oven at 120 ° C. for 20 hours, followed by heat extraction can be cited. Extraction at 120 ° C. It is desirable that all ions be 10 ppm or less.

エポキシ樹脂からなる熱硬化性樹脂にはさらにエポキシ樹脂の硬化剤を含ませることができる。このような硬化剤としてはフェノールノボラック樹脂、各種アミン誘導体、酸無水物や酸無水物基を一部開環させカルボン酸を生成させたものなどを使用することができる。なかでも本発明の封止材積層複合体を用いて製造される半導体装置の信頼性を確保するためにフェノールノボラック樹脂が望ましい。特に、エポキシ樹脂とフェノールノボラック樹脂の混合比をエポキシ基とフェノール性水酸基の比率が1:0.8〜1.3となるように混合することが好ましい。   The thermosetting resin made of an epoxy resin may further contain an epoxy resin curing agent. As such a curing agent, a phenol novolak resin, various amine derivatives, an acid anhydride or an acid anhydride group partially ring-opened and a carboxylic acid generated can be used. Among these, a phenol novolac resin is desirable in order to ensure the reliability of a semiconductor device manufactured using the encapsulant laminated composite of the present invention. In particular, it is preferable to mix the mixing ratio of the epoxy resin and the phenol novolac resin so that the ratio of the epoxy group to the phenolic hydroxyl group is 1: 0.8 to 1.3.

さらに、エポキシ樹脂と硬化剤の反応を促進するため、反応促進剤(触媒)としてイミダゾール誘導体、フォスフィン誘導体、アミン誘導体、有機アルミニウム化合物などの金属化合物等を使用しても良い。   Furthermore, in order to accelerate the reaction between the epoxy resin and the curing agent, a metal compound such as an imidazole derivative, a phosphine derivative, an amine derivative, or an organoaluminum compound may be used as a reaction accelerator (catalyst).

エポキシ樹脂からなる熱硬化性樹脂には、さらに必要に応じて各種の添加剤を配合することができる。例えば、樹脂の性質を改善する目的で種々の熱可塑性樹脂、熱可塑性エラストマー、有機合成ゴム、シリコーン系等の低応力剤、ワックス類、ハロゲントラップ剤等の添加剤を挙げることができ、目的に応じて添加配合することができる。   Various additives can be further blended in the thermosetting resin made of an epoxy resin as necessary. For example, various thermoplastic resins, thermoplastic elastomers, organic synthetic rubbers, silicone-based low-stress agents, waxes, halogen trapping agents, and the like can be used for the purpose of improving resin properties. It can be added and blended accordingly.

[シリコーン樹脂]
シリコーン樹脂としては、熱硬化性のシリコーン樹脂等が使用可能である。特に、シリコーン樹脂からなる未硬化樹脂層は付加硬化型シリコーン樹脂組成物を含むことが望ましい。付加硬化型シリコーン樹脂組成物としては、(i)非共役二重結合を有するオルガノポリシロキサン(例えば、アルケニル基含有ジオルガノポリシロキサン)、(ii)オルガノハイドロジェンポリシロキサン、及び(iii)白金系触媒を含むものが特に好ましい。
[Silicone resin]
As the silicone resin, a thermosetting silicone resin or the like can be used. In particular, it is desirable that the uncured resin layer made of a silicone resin contains an addition curable silicone resin composition. The addition-curable silicone resin composition includes (i) an organopolysiloxane having a non-conjugated double bond (for example, an alkenyl group-containing diorganopolysiloxane), (ii) an organohydrogenpolysiloxane, and (iii) a platinum series. Those containing a catalyst are particularly preferred.

(i)オルガノポリシロキサンは側鎖に(即ち、主鎖シロキサン単位中のケイ素原子に結合する非置換又は置換1価炭化水素基として)メチル基以外のフェニル基、ビニル基、トリフロロアルキル基等の官能基を含んでもよく、特に限定されるものではない。(ii)オルガノハイドロジェンポリシロキサン成分としては、一分子中にケイ素原子に結合した水素原子(SiH基)を2個以上有するオルガノハイドロジェンポリシロキサンが好ましい。一分子中にケイ素原子に結合した水素原子(SiH基)を2個以上有するオルガノハイドロジェンポリシロキサンであれば、架橋剤として作用し、(ii)成分中のSiH基と(i)成分のアルケニル基(例えば、ビニル基)等の非共役二重結合含有基とが付加反応することにより、硬化物を形成することができる。(iii)白金系触媒としては、例えば塩化白金酸、アルコール変性塩化白金酸、キレート構造を有する白金錯体等が挙げられる。これらは1種単独でも、2種以上の組み合わせでも使用することができる。   (I) The organopolysiloxane has a phenyl group other than a methyl group, a vinyl group, a trifluoroalkyl group, etc. in the side chain (that is, as an unsubstituted or substituted monovalent hydrocarbon group bonded to a silicon atom in the main chain siloxane unit). These functional groups may be included and are not particularly limited. (Ii) The organohydrogenpolysiloxane component is preferably an organohydrogenpolysiloxane having two or more hydrogen atoms (SiH groups) bonded to silicon atoms in one molecule. If the organohydrogenpolysiloxane has two or more hydrogen atoms (SiH groups) bonded to silicon atoms in one molecule, it acts as a crosslinking agent, and (ii) the SiH group in the component and the alkenyl in the component (i) A cured product can be formed by an addition reaction with a non-conjugated double bond-containing group such as a group (for example, a vinyl group). (Iii) Examples of the platinum-based catalyst include chloroplatinic acid, alcohol-modified chloroplatinic acid, platinum complexes having a chelate structure, and the like. These can be used singly or in combination of two or more.

熱硬化性樹脂としてシリコーン樹脂を用いる場合は、半導体素子を封止する樹脂層となることから塩素等のハロゲンイオン、またナトリウム等のアルカリイオンは極力減らしたものであることが好ましい。各イオンを減らす方法としては、エポキシ樹脂と同様の方法を例示でき、120℃での抽出でいずれのイオンも10ppm以下であることが望ましい。   In the case of using a silicone resin as the thermosetting resin, it is preferable that halogen ions such as chlorine and alkali ions such as sodium are reduced as much as possible because it becomes a resin layer for sealing the semiconductor element. As a method for reducing each ion, a method similar to that for the epoxy resin can be exemplified, and it is desirable that any ion is 10 ppm or less by extraction at 120 ° C.

[エポキシ樹脂とシリコーン樹脂からなる混成樹脂]
混成樹脂に含まれるエポキシ樹脂とシリコーン樹脂としては、前述のエポキシ樹脂と前述のシリコーン樹脂が挙げられる。
[Hybrid resin consisting of epoxy resin and silicone resin]
Examples of the epoxy resin and the silicone resin contained in the hybrid resin include the aforementioned epoxy resin and the aforementioned silicone resin.

混成樹脂からなる熱硬化性樹脂は、半導体素子を封止する樹脂層となることから塩素等のハロゲンイオン、またナトリウム等のアルカリイオンは極力減らしたものであることが好ましい。各イオンを減らす方法としては、エポキシ樹脂及びシリコーン樹脂と同様の方法を例示でき、120℃での抽出でいずれのイオンも10ppm以下であることが望ましい。   Since the thermosetting resin made of a hybrid resin becomes a resin layer for sealing a semiconductor element, halogen ions such as chlorine and alkali ions such as sodium are preferably reduced as much as possible. As a method of reducing each ion, the same method as that of the epoxy resin and the silicone resin can be exemplified, and it is desirable that any ion is 10 ppm or less by extraction at 120 ° C.

[シアネートエステル樹脂]
シアネートエステル樹脂としては、前述の樹脂含有繊維基材用のものと同様のものを例示できる。
[Cyanate ester resin]
As cyanate ester resin, the thing similar to the thing for the above-mentioned resin containing fiber base materials can be illustrated.

[無機充填剤]
上記の熱硬化性樹脂には無機充填剤を配合することができる。配合される無機充填剤としては、例えば、ヒュームドシリカ(煙霧質シリカ)、沈降シリカ、溶融シリカ、結晶性シリカ等のシリカ類、アルミナ、窒化珪素、窒化アルミニウム、アルミノシリケート、ボロンナイトライド、ガラス繊維、三酸化アンチモン等が挙げられる。これら無機充填剤の平均粒径や形状は特に限定されない。
[Inorganic filler]
An inorganic filler can be mix | blended with said thermosetting resin. Examples of the inorganic filler to be blended include fumed silica (fumed silica), precipitated silica, fused silica, crystalline silica and other silicas, alumina, silicon nitride, aluminum nitride, aluminosilicate, boron nitride, glass Examples thereof include fibers and antimony trioxide. The average particle diameter and shape of these inorganic fillers are not particularly limited.

特にエポキシ樹脂からなる熱硬化性樹脂に添加する無機充填剤としては、エポキシ樹脂と無機充填剤との結合強度を強くするため、シランカップリング剤、チタネートカップリング剤等のカップリング剤で予め表面処理したものを配合してもよい。   In particular, as an inorganic filler to be added to a thermosetting resin made of an epoxy resin, in order to increase the bonding strength between the epoxy resin and the inorganic filler, the surface is previously coated with a coupling agent such as a silane coupling agent or a titanate coupling agent. You may mix | blend what was processed.

このようなカップリング剤としては、例えば、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ官能性アルコキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等のアミノ官能性アルコキシシラン、γ−メルカプトプロピルトリメトキシシラン等のメルカプト官能性アルコキシシラン等を用いることが好ましい。なお、表面処理に用いるカップリング剤の配合量及び表面処理方法については特に制限されるものではない。   Examples of such a coupling agent include epoxy functions such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. Functional alkoxysilanes such as N-β (aminoethyl) -γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, and γ-mercapto It is preferable to use a mercapto functional alkoxysilane such as propyltrimethoxysilane. The amount of coupling agent used for the surface treatment and the surface treatment method are not particularly limited.

シリコーン樹脂組成物からなる熱硬化性樹脂やシアネートエステル樹脂からなる熱硬化性樹脂に添加する場合も、無機質充填剤の表面を上記のようなカップリング剤で処理したものを配合しても良い。   Also when adding to the thermosetting resin which consists of a silicone resin composition, and the thermosetting resin which consists of cyanate ester resin, you may mix | blend what processed the surface of the inorganic filler with the above coupling agents.

無機充填剤の配合量は、熱硬化性樹脂の総質量100質量部に対し、100〜1300質量部が好ましく、特に200〜1000質量部が好ましい。100質量部以上であれば十分な強度を得ることができ、1300質量部以下であれば増粘による流動性の低下が抑制され、流動性低下による充填性の不良が抑制され、結果としてウエハに形成された半導体素子及び基板上に配列・搭載された半導体素子を良好に封止することができる。なお、この無機充填剤は、熱硬化性樹脂を構成する組成物全体の50〜95質量%、特に60〜90質量%の範囲で含有することが好ましい。   The blending amount of the inorganic filler is preferably 100 to 1300 parts by mass, and particularly preferably 200 to 1000 parts by mass with respect to 100 parts by mass of the total mass of the thermosetting resin. If it is 100 parts by mass or more, sufficient strength can be obtained, and if it is 1300 parts by mass or less, a decrease in fluidity due to thickening is suppressed, and a poor filling property due to a decrease in fluidity is suppressed. The formed semiconductor elements and the semiconductor elements arranged and mounted on the substrate can be satisfactorily sealed. In addition, it is preferable to contain this inorganic filler in 50-95 mass% of the whole composition which comprises a thermosetting resin, especially 60-90 mass%.

<封止材積層複合体>
本発明の封止材積層複合体の断面図の一例を図1に示す。本発明の封止材積層複合体10は、硬化又は半硬化のシアネートエステル樹脂を含有する樹脂含有繊維基材1と、樹脂含有繊維基材1の片面上に形成された未硬化の熱硬化性樹脂からなる未硬化樹脂層2とを有するものである。
<Sealing material laminate composite>
An example of a cross-sectional view of the sealing material laminate composite of the present invention is shown in FIG. The sealing material laminate composite 10 of the present invention includes a resin-containing fiber substrate 1 containing a cured or semi-cured cyanate ester resin and an uncured thermosetting formed on one side of the resin-containing fiber substrate 1. And an uncured resin layer 2 made of resin.

[封止材積層複合体の作製方法]
シアネートエステル樹脂を含有する樹脂含有繊維基材を使用して本発明の封止材積層複合体を作製する際は、樹脂含有繊維基材の片面上に、減圧又は真空下で、印刷やディスペンス等で熱硬化性樹脂をさらに塗布し、加熱することで、50℃以下で固形な未硬化樹脂層を形成し、封止材積層複合体を作製する。
[Method for producing sealing material laminated composite]
When producing a sealing material laminated composite of the present invention using a resin-containing fiber base material containing a cyanate ester resin, printing, dispensing, etc. on one side of the resin-containing fiber base material under reduced pressure or vacuum Then, a thermosetting resin is further applied and heated to form a solid uncured resin layer at 50 ° C. or lower to produce a sealing material laminated composite.

さらに、樹脂含有繊維基材の片面上に未硬化の熱硬化性樹脂をプレス成形、印刷するなど、従来のエポキシ熱硬化性樹脂やシリコーン熱硬化性樹脂等で用いられてきた各種の方法で未硬化樹脂層を形成することができる。形成後、通常では180℃程度の温度で4〜8時間ポストキュアさせることが好ましい。   In addition, uncured thermosetting resin is press-molded and printed on one side of the resin-containing fiber base material, and various methods that have been used in conventional epoxy thermosetting resins and silicone thermosetting resins are used. A cured resin layer can be formed. After the formation, it is usually preferable to post-cure at a temperature of about 180 ° C. for 4 to 8 hours.

その他、樹脂含有繊維基材の片面上に未硬化の熱硬化性樹脂からなる未硬化樹脂層を形成する方法としては、室温で固体の熱硬化性樹脂を加熱しながら加圧する方法や熱硬化性樹脂組成物にアセトン等の極性溶剤を適量添加することで液状化し印刷などで薄膜を形成し、溶剤を減圧下で加熱するなどの方法で除去することで均一に樹脂含有繊維基材の片面上に未硬化樹脂層を形成することができる。   In addition, as a method of forming an uncured resin layer made of an uncured thermosetting resin on one surface of a resin-containing fiber base material, a method of applying pressure while heating a solid thermosetting resin at room temperature or thermosetting By adding an appropriate amount of polar solvent such as acetone to the resin composition, it is liquefied to form a thin film by printing, etc., and the solvent is removed by a method such as heating under reduced pressure to uniformly remove the resin-containing fiber substrate on one side An uncured resin layer can be formed.

いずれの方法でも樹脂含有繊維基材の片面上に、ボイドや揮発成分のない、厚みが20〜2000μm、特には30〜500μm程度の未硬化の熱硬化性樹脂からなる未硬化樹脂層を形成することができる。   In any method, an uncured resin layer made of an uncured thermosetting resin having a thickness of 20 to 2000 μm, particularly about 30 to 500 μm, having no voids or volatile components is formed on one surface of the resin-containing fiber base material. be able to.

[半導体素子を搭載した基板及び半導体素子を形成したウエハ]
本発明の封止材積層複合体は半導体素子を搭載した基板の半導体素子搭載面、及び半導体素子を形成したウエハの半導体素子形成面を一括封止するための複合体である。半導体素子を搭載した基板としては、例えば図2(a)中の一個以上の半導体素子3を接着剤4で無機、金属あるいは有機の基板5上に搭載したものが挙げられる。また、半導体素子を形成したウエハとしては、例えば図2(b)中のウエハ7上に半導体素子6が形成されたものが挙げられる。尚、半導体素子を搭載した基板とは、基板5としてシリコンウエハ等の各種ウエハ、有機基板、ガラス基板、金属基板等を用いたものや、半導体素子を搭載し配列等した半導体素子アレイを含むものである。
[Substrate on which semiconductor element is mounted and wafer on which semiconductor element is formed]
The encapsulant laminate composite of the present invention is a composite for collectively sealing a semiconductor element mounting surface of a substrate on which a semiconductor element is mounted and a semiconductor element forming surface of a wafer on which the semiconductor element is formed. Examples of the substrate on which the semiconductor element is mounted include a substrate in which one or more semiconductor elements 3 in FIG. 2A are mounted on an inorganic, metal or organic substrate 5 with an adhesive 4. Moreover, as a wafer in which the semiconductor element was formed, for example, a wafer in which the semiconductor element 6 is formed on the wafer 7 in FIG. In addition, the board | substrate which mounts a semiconductor element includes what used various wafers, such as a silicon wafer, an organic substrate, a glass substrate, a metal substrate, etc. as the board | substrate 5, and the semiconductor element array which mounted the semiconductor element and arranged. .

<封止後半導体素子搭載基板及び封止後半導体素子形成ウエハ>
本発明の封止材積層複合体により封止された封止後半導体素子搭載基板及び封止後半導体素子形成ウエハの断面図の一例を図2(a)及び(b)に示す。本発明の封止後半導体素子搭載基板11は、封止材積層複合体10の未硬化樹脂層2(図1参照)により半導体素子3を搭載した基板5の半導体素子搭載面を被覆し、未硬化樹脂層2(図1参照)を加熱、硬化することで硬化後の樹脂層2’とし、封止材積層複合体10により一括封止されたものである(図2(a))。また、本発明の封止後半導体素子形成ウエハ12は、封止材積層複合体10の未硬化樹脂層2(図1参照)により半導体素子6を形成したウエハ7の半導体素子形成面を被覆し、未硬化樹脂層2(図1参照)を加熱、硬化することで硬化後の樹脂層2’とし、封止材積層複合体10により一括封止されたものである(図2(b))。
<Semiconductor element mounting substrate after sealing and semiconductor element forming wafer after sealing>
FIGS. 2A and 2B show examples of cross-sectional views of the post-sealing semiconductor element mounting substrate and the post-sealing semiconductor element forming wafer sealed with the sealing material laminate composite of the present invention. The post-sealing semiconductor element mounting substrate 11 of the present invention covers the semiconductor element mounting surface of the substrate 5 on which the semiconductor element 3 is mounted with the uncured resin layer 2 (see FIG. 1) of the sealing material laminated composite 10. The cured resin layer 2 (see FIG. 1) is heated and cured to obtain a cured resin layer 2 ′, which is collectively sealed by the sealing material laminate composite 10 (FIG. 2 (a)). Further, the post-sealing semiconductor element forming wafer 12 of the present invention covers the semiconductor element forming surface of the wafer 7 on which the semiconductor element 6 is formed by the uncured resin layer 2 (see FIG. 1) of the encapsulating material laminate composite 10. The uncured resin layer 2 (see FIG. 1) is heated and cured to form a cured resin layer 2 ′, which is collectively sealed by the sealing material laminated composite 10 (FIG. 2B). .

このように、封止材積層複合体の未硬化樹脂層により、半導体素子を搭載した基板の半導体素子搭載面又は半導体素子を形成したウエハの半導体素子形成面を被覆し、未硬化樹脂層を加熱、硬化することで、封止材積層複合体により一括封止された封止後半導体素子搭載基板又は封止後半導体素子形成ウエハであれば、基板やウエハの反りが生じたり、基板から半導体素子が剥離したりすることが抑制された封止後半導体素子搭載基板又は封止後半導体素子形成ウエハとなる。   As described above, the uncured resin layer of the encapsulant laminate composite covers the semiconductor element mounting surface of the substrate on which the semiconductor element is mounted or the semiconductor element forming surface of the wafer on which the semiconductor element is formed, and the uncured resin layer is heated. If the substrate is a post-sealing semiconductor element mounting substrate or a post-sealing semiconductor element formation wafer that is collectively sealed by the encapsulant laminate composite, the substrate or the wafer is warped or the semiconductor element is It becomes a post-sealing semiconductor element mounting substrate or a post-sealing semiconductor element forming wafer in which the peeling is suppressed.

<半導体装置>
本発明の半導体装置の一例を図3(a)、(b)に示す。本発明の半導体装置13、14は前述の封止後半導体素子搭載基板11(図2参照)又は前述の封止後半導体素子形成ウエハ12(図2参照)をダイシングして、個片化したものである。このように、耐熱性や耐湿性等の封止性能に優れるシアネートエステル樹脂を有する封止材積層複合体10により封止され、かつ基板やウエハの反り、基板からの半導体素子3の剥離が抑制された封止後半導体素子搭載基板11(図2参照)又は封止後半導体素子形成ウエハ12(図2参照)をダイシングし、個片化して作製された半導体装置13、14は高品質な半導体装置となる。封止後半導体素子搭載基板11(図2(a)参照)をダイシングして個片化した場合、半導体装置13は基板5上に接着剤4を介して半導体素子3が搭載され、その上から硬化後の樹脂層2’とシアネートエステル樹脂からなる支持基材1を有する封止材積層複合体10により封止された半導体装置となる(図3(a))。また、封止後半導体素子形成ウエハ12(図2(b)参照)をダイシングして個片化した場合、半導体装置14はウエハ7に半導体素子6が形成され、その上から硬化後の樹脂層2’とシアネートエステル樹脂からなる支持基材1を有する封止材積層複合体10により封止された半導体装置となる(図3(b))。
<Semiconductor device>
An example of the semiconductor device of the present invention is shown in FIGS. The semiconductor devices 13 and 14 of the present invention are obtained by dicing the above-described post-sealing semiconductor element mounting substrate 11 (see FIG. 2) or the above-described post-sealing semiconductor element forming wafer 12 (see FIG. 2) into individual pieces. It is. As described above, the sealing material laminated composite 10 having a cyanate ester resin excellent in sealing performance such as heat resistance and moisture resistance is sealed, and the warpage of the substrate and the wafer and the peeling of the semiconductor element 3 from the substrate are suppressed. The semiconductor devices 13 and 14 manufactured by dicing and dicing the sealed semiconductor element mounting substrate 11 (see FIG. 2) or the sealed semiconductor element forming wafer 12 (see FIG. 2) are high-quality semiconductors. It becomes a device. When the semiconductor element mounting substrate 11 (see FIG. 2A) after sealing is diced into individual pieces, the semiconductor device 13 is mounted on the substrate 5 via the adhesive 4, and the semiconductor element 3 is mounted thereon. It becomes a semiconductor device sealed by the sealing material laminated composite 10 which has the support base material 1 which consists of resin layer 2 'and cyanate ester resin after hardening (FIG. 3 (a)). Further, when the semiconductor element forming wafer 12 after sealing (see FIG. 2B) is diced into individual pieces, the semiconductor device 14 has the semiconductor element 6 formed on the wafer 7, and the cured resin layer is formed thereon. It becomes a semiconductor device sealed by the sealing material laminated composite 10 which has the support base material 1 which consists of 2 'and cyanate ester resin (FIG.3 (b)).

<半導体装置の製造方法>
本発明は、半導体装置を製造する方法であって、
前記封止材積層複合体の有する未硬化樹脂層により、半導体素子を搭載した基板の半導体素子搭載面、あるいは半導体素子を形成したウエハの半導体素子形成面を被覆する被覆工程、
前記未硬化樹脂層を加熱、硬化することで、前記半導体素子を搭載した基板の半導体素子搭載面、あるいは前記半導体素子を形成したウエハの半導体素子形成面を一括封止し、封止後半導体素子搭載基板あるいは封止後半導体素子形成ウエハとする封止工程、及び
該封止後半導体素子搭載基板あるいは該封止後半導体素子形成ウエハをダイシングし、個片化することで、半導体装置を製造する個片化工程を有する半導体装置の製造方法を提供する。
以下、図4を用いて本発明の半導体装置の製造方法について説明する。
<Method for Manufacturing Semiconductor Device>
The present invention is a method of manufacturing a semiconductor device,
A coating step of covering the semiconductor element mounting surface of the substrate on which the semiconductor element is mounted, or the semiconductor element forming surface of the wafer on which the semiconductor element is formed, with the uncured resin layer of the sealing material laminate composite
By heating and curing the uncured resin layer, the semiconductor element mounting surface of the substrate on which the semiconductor element is mounted or the semiconductor element forming surface of the wafer on which the semiconductor element is formed is collectively sealed, and the semiconductor element after sealing A sealing step of forming a mounting substrate or a post-sealing semiconductor element forming wafer, and dicing the post-sealing semiconductor element mounting substrate or the post-sealing semiconductor element forming wafer into individual pieces to manufacture a semiconductor device Provided is a method for manufacturing a semiconductor device having an individualization step.
Hereinafter, the manufacturing method of the semiconductor device of the present invention will be described with reference to FIG.

[被覆工程]
本発明の半導体装置の製造方法に係る被覆工程は、シアネートエステル樹脂を含有する樹脂含有繊維基材1と未硬化樹脂層2を有する封止材積層複合体10の未硬化樹脂層2により、接着剤4を介して半導体素子3を搭載した基板5の半導体素子搭載面、又は半導体素子(不図示)を形成したウエハ(不図示)の半導体素子形成面を被覆する工程である(図4(A))。
[Coating process]
The covering process according to the method for manufacturing a semiconductor device of the present invention is performed by bonding the uncured resin layer 2 of the encapsulant laminate composite 10 having the resin-containing fiber base material 1 containing the cyanate ester resin and the uncured resin layer 2. This is a step of covering the semiconductor element mounting surface of the substrate 5 on which the semiconductor element 3 is mounted or the semiconductor element forming surface of the wafer (not illustrated) on which the semiconductor element (not illustrated) is formed via the agent 4 (FIG. 4A). )).

[封止工程]
本発明の半導体装置の製造方法に係る封止工程は、封止材積層複合体10の未硬化樹脂層2を加熱、硬化して硬化後の樹脂層2’とすることで、半導体素子3を搭載した基板5の半導体素子搭載面又は半導体素子(不図示)を形成したウエハ(不図示)の半導体素子形成面を一括封止し、封止後半導体素子搭載基板11又は封止後半導体素子形成ウエハ(不図示)とする工程である(図4(B))。
[Sealing process]
In the sealing process according to the method for manufacturing a semiconductor device of the present invention, the uncured resin layer 2 of the encapsulating material laminate composite 10 is heated and cured to form a cured resin layer 2 ′. A semiconductor element mounting surface of a mounted substrate 5 or a semiconductor element forming surface of a wafer (not shown) on which a semiconductor element (not shown) is formed is collectively sealed, and a semiconductor element mounting substrate 11 after sealing or a semiconductor element formation after sealing is formed. This is a process for forming a wafer (not shown) (FIG. 4B).

[個片化工程]
本発明の半導体装置の製造方法に係る個片化工程は、封止後半導体素子搭載基板11又は封止後半導体素子形成ウエハ(不図示)をダイシングし、個片化することで、半導体装置13、14(図3(b)参照)を製造する工程である(図4(C)、(D))。
[Individualization process]
The singulation process according to the method for manufacturing a semiconductor device of the present invention is performed by dicing the encapsulated semiconductor element mounting substrate 11 or the encapsulated semiconductor element forming wafer (not shown) into individual pieces, thereby obtaining the semiconductor device 13. , 14 (see FIG. 3B) (FIGS. 4C and 4D).

以下、より具体的に説明する。前述の被覆工程、封止工程においては、ソルダーレジストフィルムや各種絶縁フィルム等のラミネーションに使用されている真空ラミネータ装置等を使用することで、ボイドも反りもない被覆、封止を行うことができる。ラミネーションの方式としてはロールラミネーションやダイアフラム式真空ラミネーション、エアー加圧式ラミネーション等いずれの方式も使用することができる。なかでも、真空ラミネーションとエアー加圧式の併用が好ましい。   More specific description will be given below. In the above-described coating process and sealing process, by using a vacuum laminator apparatus or the like used for lamination of a solder resist film or various insulating films, it is possible to perform coating and sealing without voids or warping. . As a lamination method, any method such as roll lamination, diaphragm vacuum lamination, and air pressurization lamination can be used. Especially, combined use of vacuum lamination and an air pressurization type is preferable.

ここでは例として、ニチゴーモートン社製の真空ラミネーション装置を用いて、厚み50μmのシアネートエステル樹脂を含有する樹脂含有繊維基材と片面に厚み50μmの未硬化の熱硬化性エポキシ樹脂からなる未硬化樹脂層を有する封止材積層複合体で、厚み70μm、直径300mm(12インチ)のシリコンウエハを封止する場合について説明する。   Here, as an example, an uncured resin comprising a resin-containing fiber substrate containing a cyanate ester resin having a thickness of 50 μm and an uncured thermosetting epoxy resin having a thickness of 50 μm on one side using a vacuum lamination apparatus manufactured by Nichigo Morton. A case of sealing a silicon wafer having a thickness of 70 μm and a diameter of 300 mm (12 inches) with a sealing material laminated composite having layers will be described.

上下にヒーターが内蔵され150℃に設定されたプレートのうち、上側プレートにはダイアフラムラバーが減圧された状態でヒーターと密着している。下側プレート上に300mm(12インチ)のシリコンウエハをセットし、その上に片面に封止材積層複合体の未硬化樹脂層面をシリコンウエハの半導体形成面に合わせてセットする。その後、下側プレートが上昇し、下側プレート上にセットされたシリコンウエハを囲むように設置されたOリングにより上下のプレートが密着して真空チャンバーが形成され、該真空チャンバー内が減圧される。真空チャンバー内が十分に減圧されたら、上側プレートのダイアフラムラバーとヒーターの間から真空ポンプにつながる配管の弁を閉じ、圧縮空気を送り込む。それにより、上側のダイアフラムラバーが膨張しシリコンウエハと封止材積層複合体を上側のダイアフラムラバーと下側のプレートで挟み、真空ラミネーションを行うと同時に未硬化樹脂層の熱硬化性エポキシ樹脂の硬化が進行し、封止が完了する。硬化時間としては3〜20分程度あれば十分である。真空ラミネーションが完了したら真空チャンバー内を常圧に戻し、下側プレートを下降させ、封止したシリコンウエハを取り出す。上記工程によりボイドや反りのないウエハの封止を行うことができる。取り出したシリコンウエハは通常、150〜180℃の温度で1〜4時間ポストキュアすることで電気特性や機械特性を安定化させることができる。   Of the plates set at 150 ° C. with built-in heaters at the top and bottom, the upper plate is in close contact with the heater with the diaphragm rubber being decompressed. A 300 mm (12 inch) silicon wafer is set on the lower plate, and the uncured resin layer surface of the encapsulating material laminate composite is set on one side of the silicon wafer so as to match the semiconductor formation surface of the silicon wafer. Thereafter, the lower plate rises, and the upper and lower plates are brought into close contact with each other by an O-ring installed so as to surround the silicon wafer set on the lower plate, whereby the vacuum chamber is depressurized. . When the inside of the vacuum chamber is sufficiently depressurized, the piping valve connected to the vacuum pump is closed between the diaphragm rubber on the upper plate and the heater, and compressed air is sent in. As a result, the upper diaphragm rubber expands, the silicon wafer and the sealing material laminated composite are sandwiched between the upper diaphragm rubber and the lower plate, vacuum lamination is performed, and at the same time, the thermosetting epoxy resin of the uncured resin layer is cured. Advances and sealing is completed. A curing time of about 3 to 20 minutes is sufficient. When vacuum lamination is completed, the inside of the vacuum chamber is returned to normal pressure, the lower plate is lowered, and the sealed silicon wafer is taken out. By the above process, the wafer can be sealed without voids or warping. The taken-out silicon wafer is usually post-cured at a temperature of 150 to 180 [deg.] C. for 1 to 4 hours to stabilize electrical characteristics and mechanical characteristics.

上記の真空ラミネーション装置を用いた被覆、封止工程は例示した熱硬化性エポキシ樹脂に限らず、シリコーン樹脂、エポキシとシリコーンの混成樹脂、及びシアネートエステル樹脂の場合にも用いることができる。   The coating and sealing process using the above vacuum lamination apparatus is not limited to the illustrated thermosetting epoxy resin, but can also be used in the case of a silicone resin, a mixed resin of epoxy and silicone, and a cyanate ester resin.

このような半導体装置の製造方法であれば、被覆工程においては封止材積層複合体の未硬化樹脂層により簡便に、充填不良なく半導体素子搭載面又は半導体素子形成面を被覆することができる。また、封止材積層複合体を使用するので、シアネートエステル樹脂を含有する樹脂含有繊維基材が未硬化樹脂層の硬化時の収縮応力を抑制できるため、封止工程においては半導体素子搭載面又は半導体素子形成面を一括封止することができ、薄型の大口径ウエハや金属等の大口径基板を封止した場合であっても、基板やウエハの反り、基板からの半導体素子の剥離が抑制された封止後半導体素子搭載基板又は封止後半導体素子形成ウエハを得ることができる。さらに、個片化工程においては耐熱性や耐湿性等の封止性能に優れる封止材積層複合体により封止され、かつ反りが抑制された封止後半導体素子搭載基板又は封止後半導体素子形成ウエハから半導体装置をダイシングし、個片化することができるため、高品質な半導体装置を製造することができる半導体装置の製造方法となる。   With such a method of manufacturing a semiconductor device, the semiconductor element mounting surface or the semiconductor element forming surface can be easily covered without filling defects with the uncured resin layer of the encapsulating material laminate composite in the covering step. Moreover, since the encapsulating material laminate composite is used, the resin-containing fiber base material containing the cyanate ester resin can suppress the shrinkage stress at the time of curing of the uncured resin layer. The semiconductor element formation surface can be collectively sealed, and even when a thin large-diameter wafer or a large-diameter substrate such as metal is sealed, the warpage of the substrate or wafer and the separation of the semiconductor element from the substrate are suppressed. Thus, a post-sealing semiconductor element mounting substrate or a post-sealing semiconductor element forming wafer can be obtained. Further, in the singulation process, the post-sealing semiconductor element mounting substrate or the post-sealing semiconductor element is sealed with a sealing material laminated composite excellent in sealing performance such as heat resistance and moisture resistance and warpage is suppressed. Since the semiconductor device can be diced from the formed wafer and separated into individual pieces, the semiconductor device manufacturing method can manufacture a high-quality semiconductor device.

以下、本発明の封止材積層複合体を用いた半導体装置の製造方法について実施例及び比較例を示し、本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown about the manufacturing method of the semiconductor device using the sealing material laminated composite of this invention, and this invention is demonstrated in detail, this invention is not limited to these.

[実施例1]
[樹脂含有繊維基材の作製]
シアネートエステル化合物1 プリマセット PT−60 (ロンザ製シアネート基当量119)90質量部、フェノール化合物 TD−2131 (DIC製フェノール性水酸基当量110)10質量部をメチルエチルケトン(MEK)500質量部に溶解し均一な溶液を調製した。溶融球状シリカ(微粉末)920質量部を添加し、高速混合機で均一に混合し、シアネートエステル樹脂組成物のMEK分散液を製造した。
このシアネ−トエステル樹脂組成物のMEK分散液に繊維基材として石英ガラスクロス(信越石英製、厚さ:50μm)を浸漬することにより、MEK分散液をガラスクロスに含浸させた。その後、石英ガラスクロスを60℃で2時間放置することによりMEKを揮発させた。MEKを揮発させた後の石英ガラスクロスの両面には、室温(25℃)で固体の皮膜が形成されていた。該石英ガラスクロスを熱プレス機にて150℃で10分間加圧成形して成形品を得、更にこれを150℃で1時間2次硬化させて、含浸させたシアネートエステル樹脂を硬化させた樹脂含有繊維基材(I−a)を得た。得られた樹脂含有繊維基材のX−Y方向の線膨張係数は3ppm/℃であった。
[Example 1]
[Preparation of resin-containing fiber substrate]
Cyanate ester compound 1 Primaset PT-60 (Lonza cyanate group equivalent 119) 90 parts by mass, phenol compound TD-2131 (DIC phenolic hydroxyl group equivalent 110) 10 parts by mass dissolved in methyl ethyl ketone (MEK) 500 parts by mass Solution was prepared. 920 parts by mass of fused spherical silica (fine powder) was added and mixed uniformly with a high-speed mixer to produce a MEK dispersion of cyanate ester resin composition.
The glass cloth was impregnated with the MEK dispersion by immersing quartz glass cloth (manufactured by Shin-Etsu Quartz, thickness: 50 μm) as a fiber substrate in the MEK dispersion of the cyanate ester resin composition. Then, MEK was volatilized by leaving quartz glass cloth for 2 hours at 60 degreeC. A solid film was formed on both surfaces of the quartz glass cloth after volatilizing MEK at room temperature (25 ° C.). The quartz glass cloth is subjected to pressure molding at 150 ° C. for 10 minutes with a hot press machine to obtain a molded product, which is then secondarily cured at 150 ° C. for 1 hour to cure the impregnated cyanate ester resin. The containing fiber base material (Ia) was obtained. The obtained resin-containing fiber base material had a linear expansion coefficient in the XY direction of 3 ppm / ° C.

[熱硬化性樹脂組成物の作製]
クレゾールノボラック型エポキシ樹脂(EOCN1020 日本化薬製)60質量部、フェノールノボラック樹脂(H−4 群栄化学製)30質量部、球状シリカ(龍森製平均粒径7μm)400質量部、触媒TPP(トリフェニルホスフィン 北興化学工業製)0.2質量部、シランカップリング剤(KBM403 信越化学工業製)0.5質量部を高速混合装置で十分混合した後、連続混練装置で加熱混練してシート化し冷却した。シートを粉砕し顆粒状の粉末としてエポキシ樹脂からなる熱硬化性樹脂組成物(I−b)を得た。
[Preparation of thermosetting resin composition]
60 parts by mass of cresol novolac type epoxy resin (EOCN1020 made by Nippon Kayaku), 30 parts by mass of phenol novolac resin (made by H-4 Gunei Chemical), 400 parts by mass of spherical silica (average particle size 7 μm made by Tatsumori), catalyst TPP ( Triphenylphosphine (made by Hokuko Chemical Co., Ltd.) 0.2 parts by mass and silane coupling agent (KBM403, manufactured by Shin-Etsu Chemical Co., Ltd.) 0.5 parts by mass are sufficiently mixed with a high-speed mixing device, then heated and kneaded with a continuous kneader to form a sheet. Cooled down. The sheet was pulverized to obtain a thermosetting resin composition (Ib) made of an epoxy resin as a granular powder.

[封止材積層複合体の作製]
エポキシ樹脂組成物(I−b)の顆粒粉末を樹脂含有繊維基材(I−a)上に均一に分散させた。上下の金型温度を80℃にし、上金型にはフッ素樹脂コートしたPETフィルム(剥離フィルム)をセットして金型内を真空レベルまで減圧し、未硬化樹脂層の厚みが80μmになるように3分間圧縮成形して封止材積層複合体(I−c)を作製した。成形後、直径300mm(12インチ)の円板状に切断した。
[Production of encapsulant laminate composite]
The granule powder of the epoxy resin composition (Ib) was uniformly dispersed on the resin-containing fiber substrate (Ia). The upper and lower mold temperatures are set to 80 ° C., a fluororesin-coated PET film (peeling film) is set on the upper mold, and the inside of the mold is depressurized to a vacuum level so that the thickness of the uncured resin layer becomes 80 μm. Then, compression molding was performed for 3 minutes to produce a sealing material laminated composite (Ic). After molding, it was cut into a disk shape having a diameter of 300 mm (12 inches).

[半導体素子が形成されたウエハの被覆及び封止]
次に、ニチゴーモートン社製のプレート温度を130℃に設定した真空ラミネーション装置を用いて被覆、封止した。まず、下側プレートに半導体素子が形成された300mm(12インチ)で厚みが70μmのシリコンウエハをセットし、その上に剥離フィルムを除去した封止材積層複合体(I−c)の未硬化樹脂層であるエポキシ樹脂(I−b)面をシリコンウエハの半導体素子形成面に合わせて被覆した。その後、プレートを閉じ5分間真空圧縮成形することで硬化封止した。硬化封止後、封止材積層複合体(I−c)により封止されたシリコンウエハを更に150℃で2時間ポストキュアして、封止後半導体素子形成ウエハ(I−d)を得た。
[Coating and sealing of wafer on which semiconductor element is formed]
Next, coating and sealing were performed using a vacuum lamination apparatus in which the plate temperature manufactured by Nichigo Morton was set to 130 ° C. First, a 300 mm (12 inch) silicon wafer having a thickness of 70 μm with a semiconductor element formed on the lower plate is set, and the uncured sealing material composite (Ic) from which the release film is removed is uncured. The epoxy resin (Ib) surface, which is a resin layer, was coated in accordance with the semiconductor element formation surface of the silicon wafer. Then, the plate was closed and cured by sealing by vacuum compression molding for 5 minutes. After curing and sealing, the silicon wafer sealed with the sealing material laminated composite (Ic) was further post-cured at 150 ° C. for 2 hours to obtain a semiconductor element-formed wafer (Id) after sealing. .

[実施例2]
[樹脂含有繊維基材の作製]
実施例1と同様にシアネートエステル樹脂組成物のMEK分散液を製造した。このシアネ−トエステル樹脂組成物のMEK分散液を繊維基材であるガラスクロスに含浸させて、ガラスクロスを60℃で2時間放置することによりMEKを揮発させて、含浸させたシアネートエステル樹脂を半硬化させた樹脂含有繊維基材(II−a)を得た。尚、MEKを揮発させた後の石英ガラスクロスの両面には、室温(25℃)で固体の皮膜が形成されていた。
[Example 2]
[Preparation of resin-containing fiber substrate]
A MEK dispersion of the cyanate ester resin composition was produced in the same manner as in Example 1. The MEK dispersion of this cyanate ester resin composition is impregnated into a glass cloth as a fiber base material, and the glass cloth is allowed to stand at 60 ° C. for 2 hours to volatilize MEK. A cured resin-containing fiber substrate (II-a) was obtained. A solid film was formed on both surfaces of the quartz glass cloth after volatilizing MEK at room temperature (25 ° C.).

[熱硬化性樹脂組成物の作製]
クレゾールノボラック型エポキシ樹脂(EOCN1020 日本化薬製)60質量部、フェノールノボラック樹脂(H−4 群栄化学製)30質量部、球状シリカ(龍森製平均粒径7μm)300質量部、触媒TPP(トリフェニルホスフィン 北興化学工業製)0.2質量部、シランカップリング剤(KBM403 信越化学工業製)0.5質量部を高速混合装置で十分混合した後、連続混練装置で加熱混練してシート化し冷却した。シートを粉砕し顆粒状の粉末としてエポキシ樹脂組成物(II−b)を得た。
[Preparation of thermosetting resin composition]
60 parts by mass of cresol novolac type epoxy resin (EOCN1020 made by Nippon Kayaku), 30 parts by mass of phenol novolac resin (made by H-4 Gunei Chemical Co., Ltd.), 300 parts by mass of spherical silica (average particle size 7 μm made by Tatsumori), catalyst TPP ( Triphenylphosphine (made by Hokuko Chemical Co., Ltd.) 0.2 parts by mass and silane coupling agent (KBM403, manufactured by Shin-Etsu Chemical Co., Ltd.) 0.5 parts by mass are sufficiently mixed with a high-speed mixing device, then heated and kneaded with a continuous kneader to form a sheet. Cooled down. The sheet was pulverized to obtain an epoxy resin composition (II-b) as a granular powder.

[封止材積層複合体の作製]
樹脂含有繊維基材(II−a)を減圧下で加熱圧縮できる圧縮成形装置の下金型上にセットし、その上にエポキシ樹脂組成物(II−b)の顆粒粉末を均一に分散させた。上下の金型温度を80℃にし、上金型にはフッ素樹脂コートしたPETフィルム(剥離フィルム)をセットして金型内を真空レベルまで減圧し、未硬化樹脂層の厚みが80μmになるように3分間圧縮成形して封止材積層複合体(II−c)を作製した。成形後、直径300mm(12インチ)の円板状に切断した。
[Production of encapsulant laminate composite]
The resin-containing fiber base material (II-a) was set on a lower mold of a compression molding apparatus capable of heating and compressing under reduced pressure, and the granular powder of the epoxy resin composition (II-b) was uniformly dispersed thereon. . The upper and lower mold temperatures are set to 80 ° C., a fluororesin-coated PET film (peeling film) is set on the upper mold, and the inside of the mold is depressurized to a vacuum level so that the thickness of the uncured resin layer becomes 80 μm. The mixture was compression molded for 3 minutes to prepare a sealing material laminated composite (II-c). After molding, it was cut into a disk shape having a diameter of 300 mm (12 inches).

[半導体素子が形成されたウエハの被覆及び封止]
次に、ニチゴーモートン社製のプレート温度を130℃に設定した真空ラミネーション装置を用いて被覆、封止した。まず、下側プレートに半導体素子が形成された300mm(12インチ)で厚みが70μmのシリコンウエハをセットし、その上に剥離フィルムを除去した封止材積層複合体(II−c)の未硬化樹脂層であるエポキシ樹脂(II−b)面をシリコンウエハの半導体素子形成面に合わせて被覆した。その後、プレートを閉じ5分間真空圧縮成形することで硬化封止した。硬化封止後、封止材積層複合体(II−c)により封止されたシリコンウエハを更に150℃で2時間ポストキュアして、封止後半導体素子形成ウエハ(II−d)を得た。
[Coating and sealing of wafer on which semiconductor element is formed]
Next, coating and sealing were performed using a vacuum lamination apparatus in which the plate temperature manufactured by Nichigo Morton was set to 130 ° C. First, a 300 mm (12 inch) silicon wafer having a thickness of 70 μm with a semiconductor element formed on the lower plate was set, and the uncured encapsulant laminate (II-c) from which the release film was removed was removed. The epoxy resin (II-b) surface, which is a resin layer, was covered with the semiconductor element formation surface of the silicon wafer. Then, the plate was closed and cured by sealing by vacuum compression molding for 5 minutes. After curing and sealing, the silicon wafer sealed with the sealing material laminated composite (II-c) was further post-cured at 150 ° C. for 2 hours to obtain a semiconductor element-formed wafer (II-d) after sealing. .

[実施例3]
[樹脂含有繊維基材の作製]
シアネートエステル化合物2 プリマセット PT−60 (ロンザ製シアネート基当量119)78質量部、フェノール化合物*MEH−7800SS (明和化成製フェノール性水酸基当量175)22質量部をMEK500質量部に溶解し、均一な溶液を調製した。溶融球状シリカ(微粉末)920質量部を添加し、高速混合機で均一に混合し、シアネートエステル樹脂組成物のMEK分散液を製造した。
このMEK分散液を用いて実施例1と同様の手順で、シアネートエステル樹脂を含有する樹脂含有繊維基材(III−a)を得た。
[Example 3]
[Preparation of resin-containing fiber substrate]
Cyanate ester compound 2 Primaset PT-60 (Lonza cyanate group equivalent 119) 78 parts by mass, phenol compound * MEH-7800SS (Maywa Kasei phenolic hydroxyl group equivalent 175) 22 parts by mass dissolved in MEK 500 parts by mass, uniform A solution was prepared. 920 parts by mass of fused spherical silica (fine powder) was added and mixed uniformly with a high-speed mixer to produce a MEK dispersion of cyanate ester resin composition.
Using this MEK dispersion, a resin-containing fiber substrate (III-a) containing a cyanate ester resin was obtained in the same procedure as in Example 1.

[熱硬化性樹脂組成物の作製]
クレゾールノボラック型エポキシ樹脂(EOCN1020 日本化薬製)60質量部、フェノールノボラック樹脂(H−4 群栄化学製)30質量部、球状シリカ(龍森製平均粒径7μm)400質量部、触媒TPP(トリフェニルホスフィン 北興化学工業製)0.2質量部、シランカップリング剤(KBM403 信越化学工業製)0.5質量部を高速混合装置で十分混合した後、連続混練装置で加熱混練してシート化し冷却した。シートを粉砕し顆粒状の粉末としてエポキシ樹脂組成物(III−b)を得た。
[Preparation of thermosetting resin composition]
60 parts by mass of cresol novolac type epoxy resin (EOCN1020 made by Nippon Kayaku), 30 parts by mass of phenol novolac resin (made by H-4 Gunei Chemical), 400 parts by mass of spherical silica (average particle size 7 μm made by Tatsumori), catalyst TPP ( Triphenylphosphine (made by Hokuko Chemical Co., Ltd.) 0.2 parts by mass and silane coupling agent (KBM403, manufactured by Shin-Etsu Chemical Co., Ltd.) 0.5 parts by mass are sufficiently mixed with a high-speed mixing device, then heated and kneaded with a continuous kneader to form a sheet. Cooled down. The sheet was pulverized to obtain an epoxy resin composition (III-b) as a granular powder.

[封止材積層複合体の作製]
樹脂含有繊維基材(III−a)を減圧下で加熱圧縮できる圧縮成形装置の下金型上にセットし、その上にエポキシ樹脂組成物(III−b)の顆粒粉末を均一に分散させた。上下の金型温度を80℃にし、上金型にはフッ素樹脂コートしたPETフィルム(剥離フィルム)をセットして金型内を真空レベルまで減圧し、未硬化樹脂層の厚みが80μmになるように3分間圧縮成形して封止材積層複合体(III−c)を作製した。成形後、直径300mm(12インチ)の円板状に切断した。
[Production of encapsulant laminate composite]
The resin-containing fiber base material (III-a) was set on the lower mold of a compression molding apparatus capable of heating and compressing under reduced pressure, and the granular powder of the epoxy resin composition (III-b) was uniformly dispersed thereon. . The upper and lower mold temperatures are set to 80 ° C., a fluororesin-coated PET film (peeling film) is set on the upper mold, and the inside of the mold is depressurized to a vacuum level so that the thickness of the uncured resin layer becomes 80 μm. Then, compression molding was performed for 3 minutes to produce a sealing material laminated composite (III-c). After molding, it was cut into a disk shape having a diameter of 300 mm (12 inches).

[半導体素子が搭載された基板の被覆及び封止]
次に、ニチゴーモートン社製のプレート温度を170℃に設定した真空ラミネーション装置を用いて被覆、封止した。まず、下側プレートに300mm(12インチ)で厚みが100μmの金属基板上に高温で接着力が低下する接着剤を介して、個片化した半導体素子である400個のシリコンチップ(形状:5mm×7mm、厚み100μm)を整列し搭載した金属基板をセットし、その上に剥離フィルムを除去した封止材積層複合体(III−c)の未硬化樹脂層であるエポキシ樹脂組成物(III−b)面を金属基板の半導体素子搭載面に合わせて被覆した。その後、プレートを閉じ5分間真空圧縮成形することで硬化封止した。硬化封止後、170℃で4時間ポストキュアして、封止後半導体素子搭載基板(III−d)を得た。
[Coating and sealing of substrates on which semiconductor elements are mounted]
Next, it coat | covered and sealed using the vacuum lamination apparatus which set the plate temperature by Nichigo Morton company to 170 degreeC. First, 400 silicon chips (shape: 5 mm), which are individual semiconductor elements, are bonded to a lower plate on a metal substrate having a thickness of 300 mm (12 inches) and a thickness of 100 μm via an adhesive whose adhesive strength decreases at high temperatures. An epoxy resin composition (III-) which is an uncured resin layer of the encapsulant laminate composite (III-c) in which a metal substrate on which an array of x7 mm and a thickness of 100 μm are aligned and mounted is set and a release film is removed thereon b) The surface was covered with the semiconductor element mounting surface of the metal substrate. Then, the plate was closed and cured by sealing by vacuum compression molding for 5 minutes. After curing and sealing, post-curing was performed at 170 ° C. for 4 hours to obtain a semiconductor element mounting substrate (III-d) after sealing.

[実施例4]
[熱硬化性樹脂組成物の作製]
多官能型エポキシ樹脂(EPPN−502H日本化薬製)60質量部、フェノールノボラック樹脂(DL−100 明和化成製)30質量部、球状シリカ(アドマテック製平均粒径1.5μm)400質量部、触媒TPP(トリフェニルホスフィン 北興化学工業製)0.2質量部、シランカップリング剤(KBM403 信越化学工業製)0.5質量部を高速混合装置で十分混合した後、連続混練装置で加熱混練してシート化し冷却した。シートを粉砕し顆粒状の粉末としてエポキシ樹脂組成物(IV−b)を得た。
[Example 4]
[Preparation of thermosetting resin composition]
60 parts by mass of a polyfunctional epoxy resin (EPPN-502H made by Nippon Kayaku), 30 parts by mass of a phenol novolac resin (DL-100 by Meiwa Kasei), 400 parts by mass of spherical silica (average particle size of Admatech by 1.5 μm), catalyst After 0.2 parts by mass of TPP (triphenylphosphine manufactured by Hokuko Chemical Co., Ltd.) and 0.5 parts by mass of silane coupling agent (KBM403 manufactured by Shin-Etsu Chemical Co., Ltd.) are sufficiently mixed with a high-speed mixing device, the mixture is heated and kneaded with a continuous kneading device. Sheeted and cooled. The sheet was pulverized to obtain an epoxy resin composition (IV-b) as a granular powder.

[封止材積層複合体の作製]
樹脂含有繊維基材(III−a)を減圧下で加熱圧縮できる圧縮成形装置の下金型上にセットし、その上にエポキシ樹脂組成物(IV−b)の顆粒粉末を均一に分散させた。上下の金型温度を80℃にし、上金型にはフッ素樹脂コートしたPETフィルム(剥離フィルム)をセットして金型内を真空レベルまで減圧し、樹脂厚みが80μmになるように3分間圧縮成形して封止材積層複合体(IV−c)を作製した。成形後、直径300mm(12インチ)の円板状に切断した。
[Production of encapsulant laminate composite]
The resin-containing fiber base material (III-a) was set on the lower mold of a compression molding apparatus capable of heating and compressing under reduced pressure, and the granular powder of the epoxy resin composition (IV-b) was uniformly dispersed thereon. . Set the upper and lower mold temperatures to 80 ° C, set the upper mold with a fluororesin-coated PET film (peeling film), depressurize the mold to the vacuum level, and compress for 3 minutes so that the resin thickness becomes 80 µm Molding was performed to produce a sealing material laminated composite (IV-c). After molding, it was cut into a disk shape having a diameter of 300 mm (12 inches).

[半導体素子が搭載された基板の被覆及び封止]
次に、アピックヤマダ社製のプレート温度を175℃に設定した真空コンプレション成形装置を用いて被覆、封止した。まず、上側プレートに300mm(12インチ)で厚みが100μmの金属基板上に高温で接着力が低下する接着剤を介して、個片化した半導体素子である400個のシリコンチップ(形状:5mm×7mm、厚み100μm)を整列し搭載した金属基板をセットし、その上に剥離フィルムを除去した封止材積層複合体(IV−c)の未硬化樹脂層であるエポキシ樹脂(IV−b)面を金属基板の半導体素子搭載面に合わせて被覆した。その後、プレートを閉じ5分間真空圧縮成形することで硬化封止した。硬化封止後、170℃で4時間ポストキュアして、封止後半導体素子搭載基板(IV−d)を得た。
[Coating and sealing of substrates on which semiconductor elements are mounted]
Next, it coat | covered and sealed using the vacuum compression molding apparatus which set the plate temperature by Apic Yamada Co., Ltd. to 175 degreeC. First, 400 silicon chips (shape: 5 mm ×× 5 mm × 12 mm) are bonded to an upper plate through an adhesive whose adhesive strength decreases at a high temperature on a metal substrate having a thickness of 300 mm (12 inches) and a thickness of 100 μm. 7 mm, thickness 100 μm) An epoxy resin (IV-b) surface, which is an uncured resin layer of a sealing material laminated composite (IV-c), on which a metal substrate having an aligned and mounted structure is set and a release film is removed thereon Was coated according to the semiconductor element mounting surface of the metal substrate. Then, the plate was closed and cured by sealing by vacuum compression molding for 5 minutes. After curing and sealing, post-curing was performed at 170 ° C. for 4 hours to obtain a semiconductor element mounting substrate (IV-d) after sealing.

[比較例1]
[半導体素子が搭載された基板]
直径300mm(8インチ)で厚みが500μmの金属基板上に、高温で接着力が低下する接着剤を介して、個片化した半導体素子である400個のシリコンチップ(形状:5mm×7mm、厚み125μm)を整列し搭載した。
[Comparative Example 1]
[Substrate on which semiconductor elements are mounted]
400 silicon chips (shape: 5 mm × 7 mm, thickness) which are separated semiconductor elements on a metal substrate having a diameter of 300 mm (8 inches) and a thickness of 500 μm via an adhesive whose adhesive strength decreases at high temperature 125 μm) were aligned and mounted.

[熱硬化性樹脂組成物の作製]
クレゾールノボラック型エポキシ樹脂(EOCN1020 日本化薬製)60質量部、フェノールノボラック樹脂(H−4 群栄化学製)30質量部、球状シリカ(龍森製平均粒径7ミクロン)850質量部、触媒TPP(トリフェニルホスフィン 北興化学工業製)0.2質量部、シランカップリング剤(KBM403 信越化学工業製)0.5質量部を高速混合装置で十分混合した後、熱ロ−ルにて加熱混練してシート化し冷却した。シートを粉砕し顆粒状の粉末としてエポキシ樹脂組成物(V−b)を得た。
[Preparation of thermosetting resin composition]
60 parts by mass of a cresol novolac type epoxy resin (EOCN1020 made by Nippon Kayaku), 30 parts by mass of a phenol novolac resin (made by H-4 Gunei Chemical), 850 parts by mass of spherical silica (average particle size 7 microns made by Tatsumori), catalyst TPP (Triphenylphosphine manufactured by Hokuko Chemical Co., Ltd.) 0.2 parts by mass and silane coupling agent (KBM403 manufactured by Shin-Etsu Chemical Co., Ltd.) 0.5 parts by mass are sufficiently mixed with a high-speed mixing device, and then heated and kneaded with a heat roll. And then cooled. The sheet was pulverized to obtain an epoxy resin composition (Vb) as a granular powder.

[半導体素子が搭載された基板の被覆及び封止]
この基板を減圧下で加熱圧縮できる圧縮成形装置の下金型上にセットし、その上にエポキシ樹脂組成物(V−b)の顆粒粉末を均一に分散させた。上下の金型温度を170℃にし、上金型にはフッ素樹脂コートしたPETフィルム(剥離フィルム)をセットして金型内を真空レベルまで減圧し、未硬化樹脂層の厚みが50μmになるように3分間圧縮成形し、硬化封止した。硬化封止後、170℃で4時間ポストキュアして、封止後半導体素子搭載基板(V−d)を得た。
[Coating and sealing of substrates on which semiconductor elements are mounted]
This substrate was set on a lower mold of a compression molding apparatus that can be heated and compressed under reduced pressure, and the granular powder of the epoxy resin composition (Vb) was uniformly dispersed thereon. The upper and lower mold temperatures are set to 170 ° C., a fluororesin-coated PET film (release film) is set on the upper mold, and the inside of the mold is depressurized to a vacuum level, so that the thickness of the uncured resin layer becomes 50 μm. For 3 minutes, and cured and sealed. After curing and sealing, post-curing was performed at 170 ° C. for 4 hours to obtain a semiconductor element mounting substrate (Vd) after sealing.

以上、実施例1〜4、比較例1において封止された封止後半導体素子形成ウエハ(I−d)〜(II−d)、及び封止後半導体素子搭載基板(III−d)、(IV−d)、(V−d)の反り、外観、樹脂と基板の接着状態、金属基板からの半導体素子の剥離の有無を調査した。その結果を表1に示す。ここで、外観についてはボイド、未充填の有無をしらべ、これらがなければ良好とした。また、接着状態については成形時に剥離がなければ良好とした。結果を表1に示す。   As described above, the sealed semiconductor element formation wafers (Id) to (II-d) sealed in Examples 1 to 4 and Comparative Example 1, and the sealed semiconductor element mounting substrate (III-d), ( IV-d), (Vd) warpage, appearance, adhesion state between resin and substrate, and presence / absence of peeling of semiconductor element from metal substrate were investigated. The results are shown in Table 1. Here, as for the appearance, it was determined whether or not there were voids and unfilled. The adhesion state was determined to be good if there was no peeling during molding. The results are shown in Table 1.

また、上記実施例1〜4、及び比較例1の封止後半導体素子搭載基板及び封止後半導体素子形成ウエハをダイシングして、個片化し以下の耐熱性試験と耐湿性試験を行った。耐熱性試験では、この試験片に対してヒートサイクル試験(−25℃で10分保持、125℃で10分保持を1000サイクル繰り返す)を行い、試験後にも導通がとれるかを評価した。また、耐湿性試験では、この試験片に対して温度85℃、相対湿度85%の条件下で回路の両極に10Vの直流電圧を印加し、マイグレーションテスター(IMV社製、MIG−86)を用いて短絡が生じるかを評価した。結果を表1に示す。   Moreover, the post-sealing semiconductor element mounting substrate and the post-sealing semiconductor element formation wafer of Examples 1 to 4 and Comparative Example 1 were diced into individual pieces, and the following heat resistance test and moisture resistance test were performed. In the heat resistance test, a heat cycle test (holding at -25 ° C. for 10 minutes and holding at 125 ° C. for 10 minutes for 1000 cycles) was performed on the test piece, and it was evaluated whether continuity could be obtained after the test. In the moisture resistance test, a DC test voltage of 10 V was applied to both electrodes of the circuit under the conditions of a temperature of 85 ° C. and a relative humidity of 85% for this test piece, and a migration tester (IMV, MIG-86) was used. Thus, it was evaluated whether a short circuit occurred. The results are shown in Table 1.

Figure 2015050447
Figure 2015050447

上記の結果から、実施例1〜4は、ボイドや未充填といったものも発生せずしっかりと封止され、基板の反りも小さかった。比較例1は、基板の反りも大きく、未充填の箇所も確認された。また、これらの封止後半導体素子搭載基板及び封止後半導体素子形成ウエハをダイシング、個片化して、ヒートサイクル試験及び耐湿性試験を行った結果、実施例1〜4は、封止材と半導体素子との間での剥離は発生せず、封止材の耐湿性も良好だったため、導通が問題なくとれ、かつ短絡も生じない高品質な半導体装置であった。比較例1は、ヒートサイクル試験及び耐湿性試験中に半導体装置が劣化し、試験後に評価できる状態ではなかった。   From the above results, Examples 1 to 4 were firmly sealed without generating voids or unfilled, and the warpage of the substrate was small. In Comparative Example 1, the warpage of the substrate was large, and unfilled portions were also confirmed. In addition, as a result of dicing and dividing the post-sealing semiconductor element mounting substrate and the post-sealing semiconductor element forming wafer into pieces, and performing a heat cycle test and a moisture resistance test, Examples 1 to 4 Separation with the semiconductor element did not occur, and the moisture resistance of the sealing material was good, so that the semiconductor device was a high-quality semiconductor device that could be conducted without any problem and that would not cause a short circuit. In Comparative Example 1, the semiconductor device deteriorated during the heat cycle test and the moisture resistance test, and was not in a state that could be evaluated after the test.

上記の結果から、本発明の封止材積層複合体であれば、基板やウエハの反り、基板からの半導体素子の剥離を抑制でき、半導体素子を搭載した基板の半導体素子搭載面、又は半導体素子を形成したウエハの半導体素子形成面をウエハレベルで一括封止でき、かつ封止後には耐熱性や耐湿性等の封止性能に優れた封止後半導体素子搭載基板及び封止後半導体素子形成ウエハが得られることが明らかになった。   From the above results, the sealing material laminated composite of the present invention can suppress the warpage of the substrate or wafer, the peeling of the semiconductor element from the substrate, and the semiconductor element mounting surface of the substrate on which the semiconductor element is mounted, or the semiconductor element The semiconductor element formation surface of the wafer on which the wafer is formed can be collectively sealed at the wafer level, and after sealing, the semiconductor element mounting substrate after sealing and the semiconductor element formation after sealing have excellent sealing performance such as heat resistance and moisture resistance. It became clear that a wafer was obtained.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

1…樹脂含有繊維基材、 2…未硬化樹脂層、 2’…硬化後の樹脂層、
3…半導体素子、 4…接着剤、 5…基板、 6…半導体素子、 7…ウエハ、
10…封止材積層複合体、 11…封止後半導体素子搭載基板、
12…封止後半導体素子形成ウエハ、 13…半導体装置、 14…半導体装置。
DESCRIPTION OF SYMBOLS 1 ... Resin containing fiber base material, 2 ... Uncured resin layer, 2 '... Resin layer after hardening,
3 ... Semiconductor element, 4 ... Adhesive, 5 ... Substrate, 6 ... Semiconductor element, 7 ... Wafer,
10 ... Sealing material laminated composite, 11 ... Semiconductor element mounting substrate after sealing,
12 ... Semiconductor element formation wafer after sealing, 13 ... Semiconductor device, 14 ... Semiconductor device.

Claims (8)

1個以上の半導体素子を搭載した基板の半導体素子搭載面、あるいは半導体素子を形成したウエハの半導体素子形成面を一括封止するための封止材積層複合体であって、
硬化又は半硬化のシアネートエステル樹脂を含有する樹脂含有繊維基材と、該樹脂含有繊維基材の片面上に形成され未硬化の熱硬化性樹脂からなる未硬化樹脂層とを有するものであることを特徴とする封止材積層複合体。
A sealing material laminated composite for collectively sealing a semiconductor element mounting surface of a substrate on which one or more semiconductor elements are mounted, or a semiconductor element forming surface of a wafer on which a semiconductor element is formed,
It has a resin-containing fiber base material containing a cured or semi-cured cyanate ester resin, and an uncured resin layer made of an uncured thermosetting resin formed on one side of the resin-containing fiber base material. An encapsulant laminated composite characterized by the above.
前記シアネートエステル樹脂が、
(A)下記一般式(1)で示されるシアネートエステル化合物又はそのオリゴマー
Figure 2015050447
(式中、R及びRは水素原子又は炭素数1〜4のアルキル基を示し、R
Figure 2015050447
のいずれかを示し、n=0〜30の整数である。Rは水素原子又はメチル基である。)
(B)下記一般式(2)で示される1分子中に2個以上の水酸基を持つフェノール化合物(b−1)又は下記一般式(3)で表されるジヒドロキシナフタレン化合物(b−2)、もしくはその両方
Figure 2015050447
(式中、R及びRは水素原子又は炭素数1〜4のアルキル基を示し、R
Figure 2015050447
のいずれかを示し、m=0〜30の整数である。Rは水素原子又はメチル基である。)
Figure 2015050447
を含有するものであり、該シアネートエステル樹脂の硬化後のガラス転移温度が200℃以上であり、熱膨張係数が5ppm/℃以下のものであることを特徴とする請求項1に記載の封止材積層複合体。
The cyanate ester resin is
(A) Cyanate ester compound represented by the following general formula (1) or oligomer thereof
Figure 2015050447
(Wherein R 1 and R 2 represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 3 represents
Figure 2015050447
Or n is an integer of 0 to 30. R 4 is a hydrogen atom or a methyl group. )
(B) a phenol compound (b-1) having two or more hydroxyl groups in one molecule represented by the following general formula (2) or a dihydroxynaphthalene compound (b-2) represented by the following general formula (3), Or both
Figure 2015050447
(Wherein R 5 and R 6 represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 7 represents
Figure 2015050447
Or m is an integer of 0 to 30. R 4 is a hydrogen atom or a methyl group. )
Figure 2015050447
2. The sealing according to claim 1, wherein the cyanate ester resin has a glass transition temperature after curing of 200 ° C. or higher and a thermal expansion coefficient of 5 ppm / ° C. or lower. Material laminated composite.
前記未硬化樹脂層の厚みが20μm以上2000μm以下であることを特徴とする請求項1又は請求項2に記載の封止材積層複合体。   The thickness of the said uncured resin layer is 20 micrometers or more and 2000 micrometers or less, The sealing material laminated composite of Claim 1 or Claim 2 characterized by the above-mentioned. 前記未硬化樹脂層が、50℃未満で固形化し、かつ50℃以上150℃以下で溶融するものであることを特徴とする請求項1乃至請求項3のいずれか1項に記載の封止材積層複合体。   The sealing material according to any one of claims 1 to 3, wherein the uncured resin layer is solidified at less than 50 ° C and melts at 50 ° C or more and 150 ° C or less. Laminated composite. 半導体素子を搭載した基板の半導体素子搭載面を封止した封止後半導体素子搭載基板であって、
請求項1乃至請求項4のいずれか1項に記載の封止材積層複合体の有する未硬化樹脂層により半導体素子を搭載した基板の半導体素子搭載面を被覆し、前記未硬化樹脂層を加熱、硬化することで、前記封止材積層複合体により一括封止されたものであることを特徴とする封止後半導体素子搭載基板。
A semiconductor element mounting substrate after sealing in which a semiconductor element mounting surface of a substrate on which a semiconductor element is mounted is sealed,
A semiconductor element mounting surface of a substrate on which a semiconductor element is mounted is covered with an uncured resin layer of the encapsulating material laminate composite according to any one of claims 1 to 4, and the uncured resin layer is heated. A semiconductor element mounting substrate after sealing, wherein the substrate is sealed by the sealing material laminate composite by curing.
半導体素子を形成したウエハの半導体素子形成面を封止した封止後半導体素子形成ウエハであって、
請求項1乃至請求項4のいずれか1項に記載の封止材積層複合体の有する未硬化樹脂層により半導体素子を形成したウエハの半導体素子形成面を被覆し、前記未硬化樹脂層を加熱、硬化することで、前記封止材積層複合体により一括封止されたものであることを特徴とする封止後半導体素子形成ウエハ。
A semiconductor element formation wafer after sealing in which a semiconductor element formation surface of a wafer on which a semiconductor element is formed is sealed,
A semiconductor element formation surface of a wafer on which a semiconductor element is formed is covered with an uncured resin layer of the encapsulating material laminate composite according to any one of claims 1 to 4, and the uncured resin layer is heated. A post-encapsulation semiconductor element-formed wafer characterized by being cured and collectively encapsulated by the encapsulant laminate composite.
請求項5に記載の封止後半導体素子搭載基板又は請求項6に記載の封止後半導体素子形成ウエハをダイシングして、個片化したものであることを特徴とする半導体装置。   A semiconductor device, wherein the post-sealing semiconductor element mounting substrate according to claim 5 or the post-sealing semiconductor element formation wafer according to claim 6 is diced into individual pieces. 半導体装置の製造方法であって、
請求項1乃至請求項4のいずれか1項に記載の封止材積層複合体の有する未硬化樹脂層により、半導体素子を搭載した基板の半導体素子搭載面、あるいは半導体素子を形成したウエハの半導体素子形成面を被覆する被覆工程、
前記未硬化樹脂層を加熱、硬化することで、前記半導体素子を搭載した基板の半導体素子搭載面、あるいは前記半導体素子を形成したウエハの半導体素子形成面を一括封止し、封止後半導体素子搭載基板あるいは封止後半導体素子形成ウエハとする封止工程、及び、
該封止後半導体素子搭載基板あるいは封止後半導体素子形成ウエハをダイシングし、個片化することで、半導体装置を製造する個片化工程を有することを特徴とする半導体装置の製造方法。
A method for manufacturing a semiconductor device, comprising:
A semiconductor element mounting surface of a substrate on which a semiconductor element is mounted or a semiconductor of a wafer on which the semiconductor element is formed by an uncured resin layer of the encapsulating material laminate composite according to claim 1. A coating process for coating the element forming surface;
By heating and curing the uncured resin layer, the semiconductor element mounting surface of the substrate on which the semiconductor element is mounted or the semiconductor element forming surface of the wafer on which the semiconductor element is formed is collectively sealed, and the semiconductor element after sealing A sealing step for forming a mounting substrate or a semiconductor element-formed wafer after sealing; and
A method of manufacturing a semiconductor device, comprising: a step of dividing a semiconductor device mounting substrate or a post-sealing semiconductor element forming wafer into individual pieces by dicing the individual wafers.
JP2013183603A 2013-09-05 2013-09-05 Seal material multilayer composite, sealed semiconductor device mounted substrate, sealed semiconductor device formed wafer, semiconductor device and semiconductor device manufacturing method Pending JP2015050447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013183603A JP2015050447A (en) 2013-09-05 2013-09-05 Seal material multilayer composite, sealed semiconductor device mounted substrate, sealed semiconductor device formed wafer, semiconductor device and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013183603A JP2015050447A (en) 2013-09-05 2013-09-05 Seal material multilayer composite, sealed semiconductor device mounted substrate, sealed semiconductor device formed wafer, semiconductor device and semiconductor device manufacturing method

Publications (1)

Publication Number Publication Date
JP2015050447A true JP2015050447A (en) 2015-03-16

Family

ID=52700172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013183603A Pending JP2015050447A (en) 2013-09-05 2013-09-05 Seal material multilayer composite, sealed semiconductor device mounted substrate, sealed semiconductor device formed wafer, semiconductor device and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP2015050447A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074221A1 (en) * 2016-10-17 2018-04-26 株式会社ダイセル Sheet-shaped prepreg
KR20190039106A (en) 2016-08-08 2019-04-10 다이요 잉키 세이조 가부시키가이샤 Semiconductor sealing material
JP2019156956A (en) * 2018-03-12 2019-09-19 日本ゼオン株式会社 Method for producing composite material sheet
CN110291688A (en) * 2017-02-14 2019-09-27 古河电气工业株式会社 Optical element packaging part and optical element module
CN113330560A (en) * 2019-01-28 2021-08-31 株式会社大赛璐 Curable film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088354A (en) * 1994-06-17 1996-01-12 Hitachi Ltd Semiconductor device and manufacture thereof
JP2009256626A (en) * 2008-03-28 2009-11-05 Sekisui Chem Co Ltd Epoxy-based resin composition, prepreg, cured product, sheet-like molded form, laminated board, and multi-layer laminated board
JP2011099072A (en) * 2009-11-09 2011-05-19 Sumitomo Bakelite Co Ltd Resin composition, insulating layer, prepreg, laminate, print wiring board and semiconductor device
JP2011184650A (en) * 2010-03-11 2011-09-22 Nitto Denko Corp Resin composition for electronic component encapsulation and electronic component device using the same
JP2012089630A (en) * 2010-10-18 2012-05-10 Sumitomo Bakelite Co Ltd Film for semiconductor and semiconductor device
JP2012151451A (en) * 2010-12-27 2012-08-09 Shin Etsu Chem Co Ltd Fiber containing resin substrate, after-sealing semiconductor element mounting substrate and after-sealing semiconductor element formation wafer, semiconductor device, and method of manufacturing semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088354A (en) * 1994-06-17 1996-01-12 Hitachi Ltd Semiconductor device and manufacture thereof
JP2009256626A (en) * 2008-03-28 2009-11-05 Sekisui Chem Co Ltd Epoxy-based resin composition, prepreg, cured product, sheet-like molded form, laminated board, and multi-layer laminated board
JP2011099072A (en) * 2009-11-09 2011-05-19 Sumitomo Bakelite Co Ltd Resin composition, insulating layer, prepreg, laminate, print wiring board and semiconductor device
JP2011184650A (en) * 2010-03-11 2011-09-22 Nitto Denko Corp Resin composition for electronic component encapsulation and electronic component device using the same
JP2012089630A (en) * 2010-10-18 2012-05-10 Sumitomo Bakelite Co Ltd Film for semiconductor and semiconductor device
JP2012151451A (en) * 2010-12-27 2012-08-09 Shin Etsu Chem Co Ltd Fiber containing resin substrate, after-sealing semiconductor element mounting substrate and after-sealing semiconductor element formation wafer, semiconductor device, and method of manufacturing semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190039106A (en) 2016-08-08 2019-04-10 다이요 잉키 세이조 가부시키가이샤 Semiconductor sealing material
WO2018074221A1 (en) * 2016-10-17 2018-04-26 株式会社ダイセル Sheet-shaped prepreg
JP2018065892A (en) * 2016-10-17 2018-04-26 株式会社ダイセル Sheet-like prepreg
KR20190069408A (en) * 2016-10-17 2019-06-19 주식회사 다이셀 Sheet-like prepreg
KR102402277B1 (en) * 2016-10-17 2022-05-26 주식회사 다이셀 sheet prepreg
US11479637B2 (en) 2016-10-17 2022-10-25 Daicel Corporation Sheet-shaped prepreg
CN110291688A (en) * 2017-02-14 2019-09-27 古河电气工业株式会社 Optical element packaging part and optical element module
JP2019156956A (en) * 2018-03-12 2019-09-19 日本ゼオン株式会社 Method for producing composite material sheet
JP7119440B2 (en) 2018-03-12 2022-08-17 日本ゼオン株式会社 Composite sheet manufacturing method
CN113330560A (en) * 2019-01-28 2021-08-31 株式会社大赛璐 Curable film

Similar Documents

Publication Publication Date Title
JP5851824B2 (en) Fiber-containing resin substrate, post-sealing semiconductor element mounting substrate, post-sealing semiconductor element forming wafer, semiconductor device, and manufacturing method of semiconductor device
JP5934078B2 (en) Fiber-containing resin substrate and method for manufacturing semiconductor device
JP5977717B2 (en) Semiconductor encapsulating substrate encapsulating material, semiconductor encapsulating substrate encapsulating material manufacturing method, and semiconductor device manufacturing method
TWI555144B (en) A sealing material layer composite body, a sealed semiconductor element carrying substrate, and a sealing semiconductor element forming a wafer, a semiconductor device, and a semiconductor device manufacturing method
US20180247834A1 (en) Method for manufacturing semiconductor apparatus
JP6603174B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2015050447A (en) Seal material multilayer composite, sealed semiconductor device mounted substrate, sealed semiconductor device formed wafer, semiconductor device and semiconductor device manufacturing method
JP2014103176A (en) Sealing material with support base material, substrate having sealed semiconductor element mounted thereon, wafer having sealed semiconductor element formed thereon, semiconductor device, and method for manufacturing semiconductor device
JP6185342B2 (en) Encapsulant laminated composite, post-sealing semiconductor element mounting substrate or post-sealing semiconductor element forming wafer, and method for manufacturing semiconductor device
JP6463662B2 (en) Semiconductor encapsulating substrate encapsulating material, semiconductor encapsulating substrate encapsulating material manufacturing method, and semiconductor device manufacturing method
KR20150109272A (en) Substrate containing sealing material for sealing semiconductor, semiconductor device, and method for manufacturing semiconductor device
JP5770662B2 (en) Fiber-containing resin substrate, post-sealing semiconductor element mounting substrate, and semiconductor device manufacturing method
JP6117715B2 (en) Vacuum lamination apparatus and semiconductor device manufacturing method
JP6800113B2 (en) Fiber-containing resin substrate, semiconductor element mounting substrate after sealing, semiconductor element forming wafer after sealing, semiconductor element mounting sheet after sealing, semiconductor device, and manufacturing method of semiconductor device
JP6001515B2 (en) SEALING MATERIAL LAMINATED COMPOSITE, SEMICONDUCTOR SEMICONDUCTOR MOUNTING BOARD, SEMICONDUCTOR SEMICONDUCTOR FORMED WAFER, SEMICONDUCTOR DEVICE, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
JP5542848B2 (en) SEALING MATERIAL LAMINATE COMPOSITE, SEMICONDUCTOR SEMICONDUCTOR MOUNTING WAFER, SEMICONDUCTOR SEMICONDUCTOR FORMED WAFER, SEMICONDUCTOR DEVICE, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
JP2014103178A (en) Fiber-containing resin substrate, sealed semiconductor element mounted substrate and sealed semiconductor element formation wafer, semiconductor device, and semiconductor device manufacturing method
JP2020136450A (en) Sealant, semiconductor device sealed by the same, and method for manufacturing semiconductor package with the sealant
JP2015133526A (en) Fiber containing resin substrate, sealed semiconductor element mounting substrate, and method of manufacturing semiconductor device
JP2015154011A (en) Semiconductor device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170124