JP2015048962A - Latent heat storage device and heat utilization method - Google Patents

Latent heat storage device and heat utilization method Download PDF

Info

Publication number
JP2015048962A
JP2015048962A JP2013179625A JP2013179625A JP2015048962A JP 2015048962 A JP2015048962 A JP 2015048962A JP 2013179625 A JP2013179625 A JP 2013179625A JP 2013179625 A JP2013179625 A JP 2013179625A JP 2015048962 A JP2015048962 A JP 2015048962A
Authority
JP
Japan
Prior art keywords
heat
flow rate
heat storage
heat medium
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013179625A
Other languages
Japanese (ja)
Other versions
JP5908877B2 (en
Inventor
岸浪 智之
Tomoyuki Kishinami
智之 岸浪
田玉 智明
Tomoaki Tadama
智明 田玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel Corp
Nippon Steel Nisshin Co Ltd
Nippon Steel Engineering Co Ltd
Original Assignee
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel and Sumitomo Metal Corp
Nisshin Steel Co Ltd
Nippon Steel and Sumikin Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kobe Steel Ltd, Nippon Steel and Sumitomo Metal Corp, Nisshin Steel Co Ltd, Nippon Steel and Sumikin Engineering Co Ltd filed Critical JFE Steel Corp
Priority to JP2013179625A priority Critical patent/JP5908877B2/en
Publication of JP2015048962A publication Critical patent/JP2015048962A/en
Application granted granted Critical
Publication of JP5908877B2 publication Critical patent/JP5908877B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

PROBLEM TO BE SOLVED: To increase an amount of heat utilization temporarily.SOLUTION: A latent heat storage device includes: a container having lower space for accommodating a latent heat storage body, and upper space which is space above the lower space and in which a heating medium having specific gravity smaller than that of the latent heat storage body accumulates; an inflow pipe having a discharge port for allowing the heating medium to flow into the latent heat storage body from the outside of the container on the outer peripheral surface; an outflow pipe having an inlet for allowing the heating medium in the upper space to flow out of the container on the outer peripheral surface; an inflow/outflow control unit for allowing the heating medium in the upper space to flow out of the container from the inlet of the outflow pipe so that a flow rate can vary, and allowing it to flow into the latent heat storage body from the discharge port of the inflow pipe so that the flow rate can vary via a waste heat area heat exchanger or a heat utilization area heat exchanger; and a liquid level sensor for detecting a liquid level of the heating medium in the upper space.

Description

本発明は、潜熱蓄熱装置および熱利用方法に関する。   The present invention relates to a latent heat storage device and a heat utilization method.

近年、省エネルギーや温室効果ガス(とりわけエネルギー起因の炭酸ガス)の排出削減が求められるなかで、工場などから発生する廃熱の活用が着目されている。
廃熱の活用においては、熱の需要と供給の時間的または空間的ミスマッチが問題となる。これを解消するための技術として、廃熱源からの熱を蓄熱体に熱エネルギーとして貯蔵し(貯熱)、需要に応じて熱エネルギーを取り出す(放熱)、蓄熱が挙げられる。
蓄熱には、蓄熱体の一次相転移に伴う転移熱を利用する潜熱蓄熱と、転移熱を利用せずに蓄熱体の温度変化により貯熱/放熱する顕熱蓄熱とがあるが、潜熱蓄熱は、一般的に、顕熱蓄熱に比べて蓄熱密度が大きく、放熱温度が一定であるという特徴がある。
潜熱蓄熱装置では、装置構造が簡易的であるという理由から、潜熱蓄熱体と熱媒体とを直接接触させる方法が、広く採用されている。このような潜熱蓄熱装置は、例えば特許文献1に開示されている。
In recent years, attention has been paid to the use of waste heat generated from factories and the like, while energy saving and emission reduction of greenhouse gases (especially energy-derived carbon dioxide) are required.
In utilizing waste heat, a temporal or spatial mismatch between the demand and supply of heat becomes a problem. As a technique for solving this, heat from a waste heat source is stored as heat energy in a heat storage body (heat storage), heat energy is taken out according to demand (heat dissipation), and heat storage is mentioned.
There are two types of heat storage: latent heat storage that uses the transition heat associated with the primary phase transition of the heat storage body and sensible heat storage that stores and dissipates heat by changing the temperature of the heat storage body without using the transition heat. Generally, the heat storage density is larger than the sensible heat storage, and the heat radiation temperature is constant.
In the latent heat storage device, a method of directly contacting the latent heat storage body and the heat medium is widely adopted because the device structure is simple. Such a latent heat storage device is disclosed in Patent Document 1, for example.

特開2005−188916号公報JP 2005-188916 A

潜熱蓄熱装置において熱利用する場合、概略的には、容器の外部から低温の熱媒体が高温の潜熱蓄熱体内に流入し、潜熱蓄熱体と熱交換して加熱されつつ、比重差によって浮上した後、再び容器の外部に流出する。そして、容器の外部に流出した高温の熱媒体が、熱利用に供される。
このとき、例えば、熱媒体の流量が速すぎると、潜熱蓄熱体との熱交換が不十分となって温まり切らずに外部に流出してしまい、熱利用の観点から好ましくない。このため、熱媒体の流量は、熱媒体と潜熱蓄熱体との熱交換速度によって上限が決定される。
したがって、何らかの理由で一時的に熱利用量を増大させたい場合であっても、容器の外部に流出する熱媒体の流量を、熱交換速度による上限を超えて大きくできず、対応できないという問題がある。
本発明は、以上の点を鑑みてなされたものであり、潜熱蓄熱装置において一時的に熱利用量を増大できることを目的とする。
When using heat in the latent heat storage device, generally, after a low-temperature heat medium flows into the high-temperature latent heat storage body from the outside of the container, heats up with the latent heat storage body, heats up, and rises due to the difference in specific gravity Then, it flows out of the container again. Then, the high-temperature heat medium that has flowed out of the container is used for heat utilization.
At this time, for example, if the flow rate of the heat medium is too fast, heat exchange with the latent heat storage body becomes insufficient, and the heat medium flows out to the outside without being heated, which is not preferable from the viewpoint of heat utilization. For this reason, the upper limit of the flow rate of the heat medium is determined by the heat exchange rate between the heat medium and the latent heat storage body.
Therefore, even if it is necessary to temporarily increase the amount of heat used for some reason, the flow rate of the heat medium flowing out of the container cannot be increased beyond the upper limit due to the heat exchange rate, and cannot be handled. is there.
This invention is made | formed in view of the above point, and it aims at being able to increase heat utilization temporarily in a latent heat storage apparatus.

本発明は、以下の(1)〜(4)を提供する。
(1)潜熱蓄熱体を収容する下方空間と、上記下方空間よりも上側の空間であって上記潜熱蓄熱体よりも比重の小さい熱媒体が溜まる上方空間と、を有する容器と、上記下方空間に配置されて上記容器の外部と連通し、上記熱媒体を上記容器の外部から上記潜熱蓄熱体内に流入するための吐出口を外周面に有する流入管と、上記上方空間に配置されて上記容器の外部と連通し、上記上方空間にある上記熱媒体を上記容器の外部に流出するための吸入口を外周面に有する流出管と、上記上方空間にある上記熱媒体を、上記流出管の上記吸入口から上記容器の外部に流量変動自在に流出させ、廃熱を発生する廃熱エリアに設置された廃熱エリア熱交換器または当該廃熱を利用する熱利用エリアに設置された熱利用エリア熱交換器を経由して、上記流入管の上記吐出口から流量変動自在に上記潜熱蓄熱体内に流入させる流出入制御部と、上記上方空間にある上記熱媒体の液位を検出する液位センサと、を備える潜熱蓄熱装置。
(2)上記上方空間における上記吸入口よりも上側の空間である有効空間の容積が、上記容器の全容積に対して、10〜40%である、上記(1)に記載の潜熱蓄熱装置。
The present invention provides the following (1) to (4).
(1) a container having a lower space for storing the latent heat storage body, an upper space above the lower space and storing a heat medium having a specific gravity smaller than that of the latent heat storage body, and a container in the lower space Arranged and communicated with the outside of the container, and an inflow pipe having an outlet on the outer peripheral surface for allowing the heat medium to flow into the latent heat storage body from the outside of the container, and disposed in the upper space of the container. An outflow pipe that communicates with the outside and has a suction port on the outer peripheral surface for allowing the heat medium in the upper space to flow out of the container, and the heat medium in the upper space to the suction pipe in the outflow pipe Heat utilization area heat installed in a waste heat area heat exchanger installed in a waste heat area that generates waste heat or flows out of the container to the outside of the container with variable flow rate, or in a heat utilization area that uses the waste heat Via the exchange, above Latent heat storage device comprising a inflow and outflow control unit to flow from the outlet of pipe to the flow rate change freely the latent heat storage body, a liquid level sensor for detecting the liquid level of the heating medium in the upper space, the.
(2) The latent heat storage device according to (1), wherein a volume of an effective space that is a space above the suction port in the upper space is 10 to 40% with respect to a total volume of the container.

(3)上記(1)または(2)に記載の潜熱蓄熱装置を用いた熱利用方法であって、上記液位センサにより検出される上記熱媒体の液位が上記吸入口よりも高い定常位置にある状態で、上記流出入制御部を制御して、上記上方空間にある上記熱媒体を流出させて、上記廃熱エリア熱交換器で熱交換させ、当該流出の流量と同じ流量で上記潜熱蓄熱体内に流入させる貯熱運転を行なう工程と、上記液位センサにより検出される上記熱媒体の液位が上記定常位置にある状態で、上記流出入制御部を制御して、上記上方空間にある上記熱媒体を上記熱媒体と上記潜熱蓄熱体との熱交換速度により上限が決定される第1の流量で流出させて、上記熱利用エリア熱交換器で熱交換させ、当該流出の流量と同じ流量で上記潜熱蓄熱体内に流入させる放熱運転を行なう工程と、上記流出入制御部を制御して、一時的に、上記上方空間にある上記熱媒体を上記第1の流量の上限よりも大きい第2の流量で流出させて上記熱利用エリア熱交換器で熱交換させ、上記潜熱蓄熱体内に上記第1の流量で流入させる臨時放熱運転を行なう工程と、を備える熱利用方法。
(4)上記臨時放熱運転において上記熱媒体を上記第2の流量で流出させる際に、上記液位センサに上記熱媒体の液位を検出させ、当該液位が上記吸入口よりも高いうちに、上記流出入制御部を制御して、上記容器の外部に流出する上記熱媒体の流量を、上記潜熱蓄熱体内に流入する上記熱媒体の流量以下の流量にする、上記(3)に記載の熱利用方法。
(3) A heat utilization method using the latent heat storage device according to (1) or (2) above, wherein the liquid level of the heat medium detected by the liquid level sensor is higher than the suction port. In this state, the inflow / outflow control unit is controlled to cause the heat medium in the upper space to flow out, to exchange heat in the waste heat area heat exchanger, and to cause the latent heat to flow at the same flow rate as the outflow rate. In the state of performing a heat storage operation for flowing into the heat storage body, and in a state where the liquid level of the heat medium detected by the liquid level sensor is in the steady position, the inflow / outflow control unit is controlled to enter the upper space. The heat medium is caused to flow out at a first flow rate whose upper limit is determined by a heat exchange rate between the heat medium and the latent heat storage body, and heat is exchanged in the heat utilization area heat exchanger. Dissipation heat that flows into the latent heat storage body at the same flow rate And a step of controlling the inflow / outflow control unit to temporarily cause the heat medium in the upper space to flow out at a second flow rate larger than the upper limit of the first flow rate, thereby causing the heat utilization area Performing a temporary heat radiation operation for exchanging heat with a heat exchanger and causing the latent heat storage body to flow at the first flow rate.
(4) When the heat medium is allowed to flow out at the second flow rate in the temporary heat radiation operation, the liquid level sensor detects the liquid level of the heat medium, and the liquid level is higher than the suction port. The flow rate of the heat medium flowing out of the container is controlled to be equal to or lower than the flow rate of the heat medium flowing into the latent heat storage body by controlling the inflow / outflow control unit. Heat utilization method.

本発明によれば、一時的に、熱交換速度による上限を超えた流量(第2の流量)で熱媒体を流出させて熱利用エリアの熱交換器で熱交換させることができるため、一時的に熱利用量を増大できる。   According to the present invention, the heat medium can be temporarily discharged at a flow rate (second flow rate) exceeding the upper limit due to the heat exchange rate, and heat exchange can be performed in the heat exchanger in the heat utilization area. In addition, the heat utilization can be increased.

一実施形態の潜熱蓄熱装置1について一部を切り欠いて示す側面図である。It is a side view showing a part of the latent heat storage device 1 according to one embodiment.

以下、本発明の一実施形態について、図1に基づいて説明する。ただし、本発明は、以下に説明する実施形態に限定されるものではない。   Hereinafter, an embodiment of the present invention will be described with reference to FIG. However, the present invention is not limited to the embodiments described below.

図1は、一実施形態の潜熱蓄熱装置1について一部を切り欠いて示す側面図である。図1では、後述する容器4の側面を切り欠いて示しており、容器4の内部が図示されている。また、後述する循環管13(循環管13a、循環管13b)の一部も切り欠いて示している。   FIG. 1 is a side view showing a latent heat storage device 1 according to an embodiment with a part cut away. In FIG. 1, a side surface of a container 4 described later is cut out, and the inside of the container 4 is illustrated. Further, a part of a circulation pipe 13 (circulation pipe 13a, circulation pipe 13b) to be described later is also cut out.

潜熱蓄熱装置1において、概略的には、熱媒体3が、流入管5から容器4内に流入し、潜熱蓄熱体2と直接接触して熱交換しつつ、比重差によって浮上した後、流出管6から容器4の外部に流出する。
このような潜熱蓄熱装置1は、例えば、ゴミ焼却場、発電所、製鉄所等の工場20で発生した廃熱を、工場20とは別の建屋である施設30においてエアコン等に利用する場合に用いられる。
以下、潜熱蓄熱装置1を詳細に説明する。
In the latent heat storage device 1, schematically, the heat medium 3 flows into the container 4 from the inflow pipe 5, floats by the specific gravity difference while directly exchanging heat with the latent heat storage body 2, and then the outflow pipe 6 flows out of the container 4.
Such a latent heat storage device 1 is used when, for example, waste heat generated in a factory 20 such as a garbage incineration plant, a power plant, or a steel mill is used for an air conditioner or the like in a facility 30 that is a building different from the factory 20. Used.
Hereinafter, the latent heat storage device 1 will be described in detail.

潜熱蓄熱装置1は、潜熱蓄熱容器である容器4を主体に構成されている。容器4には、潜熱蓄熱体2と熱媒体3とが収容されている。潜熱蓄熱体2としては、例えば、エリスリトール(融点:約118℃)、酢酸ナトリウム三水和物塩(融点:約58℃)等が挙げられる。熱媒体3は、例えば油であり、その具体例としては、鉱油系熱媒体油等が挙げられる。   The latent heat storage device 1 is mainly configured by a container 4 that is a latent heat storage container. The container 4 contains a latent heat storage body 2 and a heat medium 3. Examples of the latent heat storage body 2 include erythritol (melting point: about 118 ° C.), sodium acetate trihydrate salt (melting point: about 58 ° C.), and the like. The heat medium 3 is oil, for example, and specific examples thereof include mineral oil-based heat medium oil.

潜熱蓄熱体2と熱媒体3とは互いに混合せず、熱媒体3が潜熱蓄熱体2よりも比重が小さいため、容器4内では、上層に熱媒体3、下層に潜熱蓄熱体2と互いに分離して収容される。潜熱蓄熱体2と熱媒体3とが互いに混合しないため、潜熱蓄熱体2と熱媒体3との間には、それぞれを分離するための部材等は介在しておらず、潜熱蓄熱体2と熱媒体3とは直接接触している。   Since the latent heat storage body 2 and the heat medium 3 are not mixed with each other, and the heat medium 3 has a specific gravity smaller than that of the latent heat storage body 2, in the container 4, the heat medium 3 is separated into the upper layer and the latent heat storage body 2 is separated from the lower layer. To be accommodated. Since the latent heat storage body 2 and the heat medium 3 are not mixed with each other, no member or the like for separating the latent heat storage body 2 and the heat medium 3 is interposed between the latent heat storage body 2 and the heat medium 3. It is in direct contact with the medium 3.

容器4における潜熱蓄熱体2の収容空間である下方空間4aには、流入管5が配置されている。流入管5の外周面には、貫通孔である複数個の吐出口7が形成されている。容器4における下方空間4aの上側の空間である上方空間4bには、熱媒体3が溜まっており、流出管6が配置されている。流出管6の外周面にも、同様に、貫通孔である複数個の吸入口8が形成されている。流入管5および流出管6は、それぞれ、容器4の外部に連通しており、容器4の外部に配置された循環管13を介して、接続している。   An inflow pipe 5 is disposed in a lower space 4 a that is a space for accommodating the latent heat storage body 2 in the container 4. A plurality of discharge ports 7 that are through holes are formed on the outer peripheral surface of the inflow pipe 5. In the upper space 4b, which is the space above the lower space 4a in the container 4, the heat medium 3 is accumulated and the outflow pipe 6 is disposed. Similarly, a plurality of suction ports 8 that are through holes are formed on the outer peripheral surface of the outflow pipe 6. The inflow pipe 5 and the outflow pipe 6 communicate with the outside of the container 4 and are connected via a circulation pipe 13 disposed outside the container 4.

循環管13の途中には、流出入制御部としてのポンプ10が設置されている。流出管6および流入管5は、循環管13を介してポンプ10に接続している。ポンプ10の作動により、容器4の上方空間4bにある熱媒体3は、流出管6の吸入口8から吸入されて流出管6を流通して容器4の外部に流出し、循環管13を経由して、容器4内の流入管5に導入される。流入管5に導入された熱媒体3は、吐出口7から吐出して、容器4の下方空間4aに収容されている潜熱蓄熱体2内に流入する。熱媒体3の流出および流入の流量(速度)は、ポンプ10の調整によって変動自在である。   A pump 10 serving as an inflow / outflow control unit is installed in the middle of the circulation pipe 13. The outflow pipe 6 and the inflow pipe 5 are connected to the pump 10 via the circulation pipe 13. By the operation of the pump 10, the heat medium 3 in the upper space 4 b of the container 4 is sucked from the suction port 8 of the outflow pipe 6, flows through the outflow pipe 6, flows out of the container 4, and passes through the circulation pipe 13. Then, it is introduced into the inflow pipe 5 in the container 4. The heat medium 3 introduced into the inflow pipe 5 is discharged from the discharge port 7 and flows into the latent heat storage body 2 accommodated in the lower space 4 a of the container 4. The flow rate (speed) of outflow and inflow of the heat medium 3 can be varied by adjusting the pump 10.

循環管13は、より詳細には、後述する貯熱運転時に使用される循環管13aと、後述する放熱運転時に使用される循環管13bとに分岐している。循環管13aの途中には、廃熱を発生する廃熱エリアとしての工場20に設置された廃熱エリア熱交換器(以下、単に「熱交換器」という)12aが配設されている。循環管13bの途中には、廃熱を利用する熱利用エリアとしての施設30に設置された熱利用エリア熱交換器(以下、単に「熱交換器」という)12bが配設されている。   More specifically, the circulation pipe 13 is branched into a circulation pipe 13a used during a heat storage operation described later and a circulation pipe 13b used during a heat dissipation operation described later. In the middle of the circulation pipe 13a, a waste heat area heat exchanger (hereinafter simply referred to as "heat exchanger") 12a installed in the factory 20 as a waste heat area that generates waste heat is disposed. A heat utilization area heat exchanger (hereinafter simply referred to as “heat exchanger”) 12b installed in a facility 30 as a heat utilization area that uses waste heat is disposed in the middle of the circulation pipe 13b.

循環管13の途中には、弁14aおよび弁14b(以下、まとめて「弁14」ともいう)が設けられている。図1では、放熱運転時における弁14を実線で示しており、貯熱運転時における弁14を破線で示している。放熱運転時には、弁14は循環管13aを塞いでおり、ポンプ10の作動によって、熱媒体3は、循環管13bを通る。一方、貯熱運転時には、弁14は循環管13bを塞いでおり、ポンプ10の作動によって、熱媒体3は、循環管13aを通る。   In the middle of the circulation pipe 13, a valve 14 a and a valve 14 b (hereinafter, collectively referred to as “valve 14”) are provided. In FIG. 1, the valve 14 at the time of heat dissipation operation is indicated by a solid line, and the valve 14 at the time of heat storage operation is indicated by a broken line. During the heat radiation operation, the valve 14 closes the circulation pipe 13a, and the heat medium 3 passes through the circulation pipe 13b by the operation of the pump 10. On the other hand, during the heat storage operation, the valve 14 closes the circulation pipe 13b, and the heat medium 3 passes through the circulation pipe 13a by the operation of the pump 10.

循環管13における熱交換器12aおよび熱交換器12b(以下、まとめて「熱交換器12」ともいう)の下流側であって、流入管5の上流側には、流出入制御部としての流量調整タンク11が配設されている。流量調整タンク11は、ポンプ10の作動により循環管13を通る熱媒体3の一部を貯留して、流入管5に導入される熱媒体3の流量を減じたり、また、貯留した熱媒体3を放出して、流入管5に導入される熱媒体3の流量を増やしたりする。   On the downstream side of the heat exchanger 12a and the heat exchanger 12b (hereinafter collectively referred to as “heat exchanger 12”) in the circulation pipe 13 and on the upstream side of the inflow pipe 5, a flow rate as an inflow / outflow control unit is provided. An adjustment tank 11 is provided. The flow rate adjusting tank 11 stores a part of the heat medium 3 passing through the circulation pipe 13 by the operation of the pump 10 to reduce the flow rate of the heat medium 3 introduced into the inflow pipe 5 or the stored heat medium 3. Or the flow rate of the heat medium 3 introduced into the inflow pipe 5 is increased.

容器4には、上方空間4bに溜まった熱媒体3の液位(液面の位置)を検出する液位センサ9が設けられている。液位センサ9としては特に限定されず、例えば光学的な手段や超音波を用いて非接触で熱媒体3の液位を検出するセンサが好適に挙げられる。なお、液位センサ9は、吸入口8よりも高い液位が検出できればよいが、吸入口8の位置以下にある液位も検出できるものが好ましい。   The container 4 is provided with a liquid level sensor 9 that detects the liquid level (liquid level position) of the heat medium 3 accumulated in the upper space 4b. The liquid level sensor 9 is not particularly limited, and for example, a sensor that detects the liquid level of the heat medium 3 in a non-contact manner using optical means or ultrasonic waves is preferable. The liquid level sensor 9 only needs to be able to detect a liquid level higher than that of the suction port 8, but a sensor that can also detect a liquid level below the position of the suction port 8 is preferable.

次に、潜熱蓄熱装置1を用いた熱利用方法について説明する。本発明の熱利用方法は、通常運転(貯熱運転および放熱運転)を行なう工程のほか、さらに、臨時運転を行なう工程を備える。
まず、通常運転(貯熱運転および放熱運転)を説明する。貯熱運転を行なった後に放熱運転を行なうことで、工場20の廃熱を潜熱蓄熱体2に熱エネルギーとして貯蔵し、貯蔵した熱エネルギーを取り出して利用できる。
Next, a heat utilization method using the latent heat storage device 1 will be described. The heat utilization method of the present invention includes a step of performing a temporary operation in addition to a step of performing a normal operation (a heat storage operation and a heat dissipation operation).
First, normal operation (heat storage operation and heat radiation operation) will be described. By performing the heat dissipation operation after performing the heat storage operation, the waste heat of the factory 20 is stored as thermal energy in the latent heat storage body 2, and the stored thermal energy can be extracted and used.

<貯熱運転>
貯熱運転を開始する前の時点では、容器4は常温である。このため、容器4の下方空間4aに収容されている潜熱蓄熱体2は、例えばエリスリトールの場合には融点が118℃であるため、固相である。固相である潜熱蓄熱体2の上側の上方空間4bには、液相である熱媒体3が溜まっている。なお、上方空間4bが空である場合には、例えば容器4に設けられた図示しない栓から、液相の熱媒体3を導入すればよい。このとき、熱媒体3の液位は、液位センサ9により検出されており、吸入口8よりも高い所定の位置(以下、「定常位置」ともいう)となっている。
<Heat storage operation>
At the time before starting the heat storage operation, the container 4 is at room temperature. For this reason, the latent heat storage body 2 accommodated in the lower space 4a of the container 4 is a solid phase because the melting point is 118 ° C. in the case of erythritol, for example. In the upper space 4b above the latent heat storage body 2 that is a solid phase, a heat medium 3 that is a liquid phase is accumulated. When the upper space 4b is empty, the liquid phase heat medium 3 may be introduced from a stopper (not shown) provided in the container 4, for example. At this time, the liquid level of the heat medium 3 is detected by the liquid level sensor 9 and is a predetermined position higher than the suction port 8 (hereinafter also referred to as “steady position”).

貯熱運転では、熱媒体3の液位が吸入口8よりも高い定常位置にある状態で、弁14を動かして循環管13bを塞ぎ、熱媒体3が循環管13aを流通自在な状態にする。このとき、循環管13aの途中に配設されている熱交換器12aには、工場20で発生した廃熱(蒸気)が取り込まれている。
そして、ポンプ10を作動させて、上方空間4bに溜まっている熱媒体3を、吸入口8から吸入して流出管6を通して容器4の外部に流出させる。容器4の外部に流出した熱媒体3は、循環管13aを流通する過程で、熱交換器12aにおいて、取り込まれている蒸気と熱交換して加熱される。なお、熱交換器12aに取り込まれている蒸気は、熱交換により除熱され、適宜排気される。
In the heat storage operation, the valve 14 is moved to close the circulation pipe 13b in a state where the liquid level of the heat medium 3 is higher than the suction port 8, and the heat medium 3 makes the circulation pipe 13a flowable. . At this time, waste heat (steam) generated in the factory 20 is taken into the heat exchanger 12a disposed in the middle of the circulation pipe 13a.
Then, the pump 10 is operated to suck the heat medium 3 accumulated in the upper space 4 b from the suction port 8 and flow out of the container 4 through the outflow pipe 6. The heat medium 3 flowing out of the container 4 is heated by exchanging heat with the steam taken in the heat exchanger 12a in the process of flowing through the circulation pipe 13a. Note that the steam taken into the heat exchanger 12a is removed by heat exchange and appropriately discharged.

熱交換して加熱された熱媒体3(以下、便宜的に、熱交換した熱媒体3を「熱媒体3a」ともいう)は、続けて、ポンプ10の作動により、流量調整タンク11を経由して、流入管5を通り吐出口7から吐出して、容器4の下方空間4aに収容されている潜熱蓄熱体2に流入する。なお、通常の貯熱運転においては、流量調整タンク11による熱媒体3(熱媒体3a)の流量調整は行なわれない。
潜熱蓄熱体2内に流入した熱媒体3aは、比重が潜熱蓄熱体2よりも小さいため、上方空間4bの熱媒体3まで浮上して、熱媒体3に取り込まれる。熱媒体3aは、浮上中に、潜熱蓄熱体2と直接接触して熱交換する。すなわち、熱媒体3aに供給された熱は、潜熱蓄熱体2に伝導される。
The heat medium 3 heated by heat exchange (hereinafter, for convenience, the heat medium 3 that has been heat exchanged is also referred to as “heat medium 3a”) is continuously passed through the flow rate adjustment tank 11 by the operation of the pump 10. Then, it discharges from the discharge port 7 through the inflow pipe 5 and flows into the latent heat storage body 2 accommodated in the lower space 4 a of the container 4. In the normal heat storage operation, the flow rate adjustment of the heat medium 3 (heat medium 3a) by the flow rate adjustment tank 11 is not performed.
Since the specific gravity of the heat medium 3 a flowing into the latent heat storage body 2 is smaller than that of the latent heat storage body 2, the heat medium 3 a floats up to the heat medium 3 in the upper space 4 b and is taken into the heat medium 3. The heat medium 3a directly exchanges heat with the latent heat storage body 2 during the ascent. That is, the heat supplied to the heat medium 3 a is conducted to the latent heat storage body 2.

上述したように、貯熱運転の開始時点において、潜熱蓄熱体2は固相であるが、貯熱運転を継続することにより、容器4に収容されている潜熱蓄熱体2および熱媒体3の温度が上昇し、潜熱蓄熱体2の温度が融点に達すると、潜熱蓄熱体2は次第に融解し、融解の過程で、潜熱を貯熱する。こうして、工場20で発生した廃熱が、潜熱蓄熱装置1の潜熱蓄熱体2に貯熱される。   As described above, at the start of the heat storage operation, the latent heat storage body 2 is in a solid phase, but by continuing the heat storage operation, the temperature of the latent heat storage body 2 and the heat medium 3 accommodated in the container 4 is increased. When the temperature of the latent heat storage body 2 reaches the melting point, the latent heat storage body 2 gradually melts and stores latent heat in the melting process. Thus, the waste heat generated in the factory 20 is stored in the latent heat storage body 2 of the latent heat storage device 1.

このような貯熱運転においては、上述したように、流量調整タンク11は作動させないでポンプ10を作動させる。このため、流出管6を経由して上方空間4bから容器4の外部に流出する熱媒体3の流量(以下、「流出流量」ともいう)と、容器4の外部から流入管5を経由して容器4内の潜熱蓄熱体2に流入する熱媒体3(熱媒体3a)の流量(以下、「流入流量」ともいう)とは、同量である。
熱媒体3の流出流量と流入流量とが同量であるため、液位センサ9により検出される熱媒体3の液位は、貯熱運転の間、定常位置からほぼ不変である。
In such a heat storage operation, as described above, the pump 10 is operated without operating the flow rate adjusting tank 11. For this reason, the flow rate of the heat medium 3 flowing out from the upper space 4 b to the outside of the container 4 via the outflow pipe 6 (hereinafter also referred to as “outflow flow rate”) and the outside of the container 4 through the inflow pipe 5. The flow rate of the heat medium 3 (heat medium 3a) flowing into the latent heat storage body 2 in the container 4 (hereinafter also referred to as “inflow flow rate”) is the same amount.
Since the outflow rate and the inflow rate of the heat medium 3 are the same amount, the liquid level of the heat medium 3 detected by the liquid level sensor 9 is substantially unchanged from the steady position during the heat storage operation.

<放熱運転>
次に、通常の放熱運転を説明する。基本的な流れは、貯熱運転と同じである。
放熱運転の開始時点(貯熱運転の終了時点)では、容器4の下方空間4aに収容されている潜熱蓄熱体2は、部分的な場合を含めて液相であり、潜熱を貯熱している。また、上方空間4bに溜まっている熱媒体3も、潜熱蓄熱体2の融点と同程度の高温となっており、かつ、液位が吸入口8よりも高い定常位置にある。
<Heat dissipation operation>
Next, normal heat radiation operation will be described. The basic flow is the same as in the heat storage operation.
At the start of the heat radiation operation (the end of the heat storage operation), the latent heat storage body 2 accommodated in the lower space 4a of the container 4 is in a liquid phase including a partial case, and stores latent heat. . Further, the heat medium 3 accumulated in the upper space 4 b is also at a high temperature that is about the same as the melting point of the latent heat storage body 2, and the liquid level is higher than the suction port 8.

このような状態で、弁14を動かして循環管13aを塞ぎ、熱媒体3が循環管13bを流通自在な状態にする。このとき、循環管13aの途中に配設されている熱交換器12aには、施設30において、エアコンに使用される熱媒体である気体や液体等の流体が取り込まれている。
そして、ポンプ10を作動させて、上方空間4bに溜まっている高温の熱媒体3を、吸入口8から吸入して流出管6を通して容器4の外部に流出させる。容器4の外部に流出した熱媒体3は、循環管13bを流通する過程で、熱交換器12bに取り込まれている流体と熱交換して除熱される。熱交換器12bに取り込まれている流体は、熱を帯びた熱媒体3から熱伝導されて加熱され、施設30のエアコンの熱媒体として使用される。こうして、貯熱運転で潜熱蓄熱体2に貯熱された工場20の廃熱が、取り出されて利用される。
In such a state, the valve 14 is moved to close the circulation pipe 13a, and the heat medium 3 makes the circulation pipe 13b flowable. At this time, a fluid such as a gas or a liquid, which is a heat medium used for an air conditioner, is taken into the heat exchanger 12a disposed in the middle of the circulation pipe 13a in the facility 30.
Then, the pump 10 is operated, and the high-temperature heat medium 3 accumulated in the upper space 4 b is sucked from the suction port 8 and flows out of the container 4 through the outflow pipe 6. The heat medium 3 that has flowed out of the container 4 is removed from the heat by exchanging heat with the fluid taken into the heat exchanger 12b in the course of flowing through the circulation pipe 13b. The fluid taken in the heat exchanger 12b is heated by being conducted from the heat medium 3 having heat, and is used as a heat medium for the air conditioner of the facility 30. Thus, the waste heat of the factory 20 stored in the latent heat storage body 2 in the heat storage operation is extracted and used.

熱交換した低温の熱媒体3(熱媒体3a)は、続けて、ポンプ10の作動により、流量調整タンク11を経由して、流入管5を通り吐出口7から吐出して、潜熱蓄熱体2内に流入する。なお、通常の貯熱運転と同様に、通常の放熱運転においても、流量調整タンク11による熱媒体3(熱媒体3a)の流量調整は行なわれない。
潜熱蓄熱体2内に流入した低温の熱媒体3aは、潜熱蓄熱体2との比重差によって浮上する。このとき、低温の熱媒体3aは、浮上中に、潜熱蓄熱体2と熱交換し、液相の潜熱蓄熱体2から伝熱されて、高温の熱媒体3aと化して、上方空間4bにある高温の熱媒体3に取り込まれる。
The heat exchanged low-temperature heat medium 3 (heat medium 3a) is continuously discharged from the discharge port 7 through the inflow pipe 5 via the flow rate adjustment tank 11 by the operation of the pump 10, and the latent heat storage body 2 Flows in. Note that the flow rate adjustment of the heat medium 3 (heat medium 3a) by the flow rate adjustment tank 11 is not performed in the normal heat dissipation operation as in the normal heat storage operation.
The low-temperature heat medium 3 a that has flowed into the latent heat storage body 2 floats due to a specific gravity difference from the latent heat storage body 2. At this time, the low-temperature heat medium 3a exchanges heat with the latent heat storage body 2 during levitation, and is transferred from the liquid-phase latent heat storage body 2 to be converted into a high-temperature heat medium 3a, which is in the upper space 4b. It is taken into the high-temperature heat medium 3.

放熱運転を継続することにより、上方空間4bにある高温の熱媒体3を取り出して、連続的に熱利用できるが、放熱運転の期間が長くなると、容器4内の潜熱蓄熱体2および熱媒体3の温度は下降する。そして、潜熱蓄熱体2の温度が凝固点に達すると、潜熱蓄熱体2が次第に凝固し、潜熱を放熱する。   By continuing the heat radiation operation, the high-temperature heat medium 3 in the upper space 4b can be taken out and continuously utilized, but if the period of the heat radiation operation becomes longer, the latent heat storage body 2 and the heat medium 3 in the container 4 The temperature drops. When the temperature of the latent heat storage body 2 reaches the freezing point, the latent heat storage body 2 gradually solidifies and radiates the latent heat.

このような放熱運転においても、流量調整タンク11は作動させないでポンプ10を作動させるため、やはり、熱媒体3の流出流量と流入流量とは同量である。したがって、貯熱運転と同様、通常の放熱運転の間も、液位センサ9により検出される熱媒体3の液位は、定常位置からほぼ不変である。   Even in such a heat radiation operation, the pump 10 is operated without operating the flow rate adjusting tank 11, so that the outflow rate and the inflow rate of the heat medium 3 are the same amount. Therefore, as in the heat storage operation, the liquid level of the heat medium 3 detected by the liquid level sensor 9 is substantially unchanged from the steady position during the normal heat radiation operation.

もっとも、放熱運転における熱媒体3の流量(流出流量および流入流量)は、以下に説明するように、熱媒体3と潜熱蓄熱体2との熱交換速度によって上限が決定される。
まず、放熱運転においては、流入管5から流入した低温の熱媒体3aが、浮上中に潜熱蓄熱体2と熱交換し、高温となって上方空間4bにある高温の熱媒体3に取り込まれる。 しかし、このとき、熱媒体3aの流入速度が速すぎると、潜熱蓄熱体2との熱交換が不十分となって、高温とならないまま、上方空間4bにある熱媒体3に取り込まれてしまう。そうすると、上方空間4bにある熱媒体3の温度が低下し、低温の熱媒体3が流出することになる。低温の熱媒体3が流出すると、施設30での熱交換器12bにおける熱利用の観点から好ましくない。
このため、放熱運転における熱媒体3の流量は、流入管5から流入した低温の熱媒体3aが、その浮上中に潜熱蓄熱体2と十分に熱交換できて高温となる流量に設定する。このように、熱媒体3と潜熱蓄熱体2との熱交換速度によって上限が決定される熱媒体3の流量を「第1の流量」とする。「第1の流量」は、この上限の流量を含む、ある程度の幅を持った流量である。
放熱運転における熱媒体3の流出流量および流入流量は、「第1の流量」の範囲で、ともに同量とする。
However, the upper limit of the flow rate (outflow rate and inflow rate) of the heat medium 3 in the heat radiation operation is determined by the heat exchange rate between the heat medium 3 and the latent heat storage body 2 as described below.
First, in the heat radiation operation, the low-temperature heat medium 3a flowing in from the inflow pipe 5 exchanges heat with the latent heat storage body 2 during levitation, and is taken into the high-temperature heat medium 3 in the upper space 4b. However, at this time, if the inflow speed of the heat medium 3a is too high, heat exchange with the latent heat storage body 2 becomes insufficient, and the heat medium 3a is taken into the heat medium 3 in the upper space 4b without becoming high temperature. If it does so, the temperature of the heat carrier 3 in the upper space 4b will fall, and the low-temperature heat carrier 3 will flow out. If the low-temperature heat medium 3 flows out, it is not preferable from the viewpoint of heat utilization in the heat exchanger 12b in the facility 30.
For this reason, the flow rate of the heat medium 3 in the heat radiation operation is set to a flow rate at which the low-temperature heat medium 3a flowing in from the inflow pipe 5 can sufficiently exchange heat with the latent heat storage body 2 during its levitation. Thus, the flow rate of the heat medium 3 whose upper limit is determined by the heat exchange rate between the heat medium 3 and the latent heat storage body 2 is referred to as a “first flow rate”. The “first flow rate” is a flow rate having a certain width including the upper limit flow rate.
The outflow rate and the inflow rate of the heat medium 3 in the heat dissipation operation are both the same in the range of the “first flow rate”.

<臨時放熱運転>
ところで、貯熱運転の終了後または通常の放熱運転の途中において、例えば、冬の明け方に施設30内に設置されているエアコンの稼働台数や設定温度を上げたい場合など、一時的に熱利用量を増大させたい場合も想定される。その場合、熱媒体3の流量を「第1の流量」の上限よりも大きくすることを要するが、そうすると、上述したように、低温の熱媒体3が容器4から流出してしまうため、熱利用の観点から問題となる。
しかしながら、このとき、潜熱蓄熱装置1において、後述する臨時放熱運転を行えば、一時的に熱利用量を増大できる。以下、臨時放熱運転について説明する。
<Temporary heat dissipation operation>
By the way, after the end of the heat storage operation or in the middle of normal heat radiation operation, for example, when it is desired to increase the number of operating air conditioners installed in the facility 30 or the set temperature at dawn in winter, the amount of heat used temporarily It is also assumed that it is desired to increase the value. In this case, it is necessary to make the flow rate of the heat medium 3 larger than the upper limit of the “first flow rate”. However, as described above, the low-temperature heat medium 3 flows out of the container 4, and thus heat utilization is performed. It becomes a problem from the point of view.
However, at this time, in the latent heat storage device 1, if a temporary heat radiation operation described later is performed, the amount of heat utilization can be temporarily increased. Hereinafter, the temporary heat radiation operation will be described.

貯熱運転の終了後または通常の放熱運転の途中においては、上方空間4bの熱媒体3は、潜熱蓄熱体2の融点と同程度の高温となっており、かつ、液位が吸入口8よりも高い定常位置にある。
この状態で、まず、ポンプ10を調整して、上方空間4bからの熱媒体3の流出流量を、一時的に「第1の流量」の上限よりも大きい「第2の流量」にする。熱媒体3の流出流量を「第2の流量」にすれば、熱交換器12bにおいて、施設30内に設置されたエアコンの熱媒体である流体と熱交換できる熱媒体3の量も増大するため、施設30内に設置されたエアコンの稼働台数や設定温度を上げたい場合など、一時的な熱利用量の増大に対応できる。
After the end of the heat storage operation or in the middle of the normal heat radiation operation, the heat medium 3 in the upper space 4 b is at a high temperature that is about the same as the melting point of the latent heat storage body 2, and the liquid level is higher than the suction port 8. Is also in a high stationary position.
In this state, first, the pump 10 is adjusted so that the outflow rate of the heat medium 3 from the upper space 4b is temporarily set to a “second flow rate” that is larger than the upper limit of the “first flow rate”. If the outflow flow rate of the heat medium 3 is set to the “second flow rate”, the amount of the heat medium 3 that can exchange heat with the fluid that is the heat medium of the air conditioner installed in the facility 30 in the heat exchanger 12b also increases. In the case where it is desired to increase the number of operating air conditioners installed in the facility 30 and the set temperature, it is possible to cope with a temporary increase in heat usage.

ところで、熱媒体3の流出流量を「第2の流量」にすると、容器4に流入する熱媒体3aの流入流量も「第2の流量」となり得るが、このとき、流量調整タンク11を作動して熱媒体3の一部を貯留させ、熱媒体3aの流入流量を「第1の流量」にする。
これにより、熱媒体3aの流入流量は、最大でも、熱媒体3と潜熱蓄熱体2との熱交換速度により決定される上限の流量となるため、流量が速すぎて潜熱蓄熱体2との熱交換が不十分で高温とならないまま、上方空間4bにある熱媒体3に取り込まれることがなくなる。つまり、上方空間4bにある熱媒体3の温度が低下して、低温の熱媒体3が流出管6から流出することが防止される。このように、臨時放熱運転では「第2の流量」で流出させて、熱利用することができる。
なお、熱媒体3の流入流量は「第1の流量」にするが、ゼロにはしない。これは、流入管5の吐出口7から吐出する熱媒体3の流量をゼロにすると、潜熱蓄熱体2が吐出口7から逆流するおそれがあるからである。
By the way, if the outflow flow rate of the heat medium 3 is set to the “second flow rate”, the inflow flow rate of the heat medium 3a flowing into the container 4 can also be the “second flow rate”, but at this time, the flow rate adjustment tank 11 is operated. Then, a part of the heat medium 3 is stored, and the flow rate of the heat medium 3a is set to the “first flow rate”.
Thereby, since the inflow flow rate of the heat medium 3a is the maximum flow rate determined by the heat exchange speed between the heat medium 3 and the latent heat storage body 2, the flow rate is too high and the heat with the latent heat storage body 2 is increased. It is not taken into the heat medium 3 in the upper space 4b without being exchanged and becoming high temperature. That is, the temperature of the heat medium 3 in the upper space 4 b is prevented from decreasing and the low-temperature heat medium 3 is prevented from flowing out from the outflow pipe 6. As described above, in the temporary heat radiation operation, the heat can be used by flowing out at the “second flow rate”.
In addition, although the inflow flow rate of the heat medium 3 is set to the “first flow rate”, it is not set to zero. This is because if the flow rate of the heat medium 3 discharged from the discharge port 7 of the inflow pipe 5 is zero, the latent heat storage body 2 may flow backward from the discharge port 7.

臨時放熱運転では、熱媒体3の流出流量が流入流量よりも大きくなるため、上方空間4bにある熱媒体3の量が減少して熱媒体3の液位が低下する。
しかし、臨時放熱運転の開始前である貯熱運転の終了後または通常の放熱運転の途中においては、上述したように、熱媒体3の液位は吸入口8よりも高い定常位置にあるので、臨時放熱運転の開始後、しばらくは、高温の熱媒体3を流出できる。
In the temporary heat radiation operation, since the outflow rate of the heat medium 3 is larger than the inflow rate, the amount of the heat medium 3 in the upper space 4b is reduced and the liquid level of the heat medium 3 is lowered.
However, after the heat storage operation, which is before the start of the temporary heat radiation operation, or in the middle of the normal heat radiation operation, the liquid level of the heat medium 3 is at a steady position higher than the suction port 8 as described above. After the temporary heat radiation operation starts, the high-temperature heat medium 3 can flow out for a while.

もっとも、熱媒体3の液位の低下が進み、吸入口8よりも低くなると、熱媒体3を流出できなくなる。そこで、熱媒体3を「第2の流量」で流出させる際には、液位センサ9に熱媒体3の液位を検出させる。そして、熱媒体3の液位が吸入口8よりも高いうちに、再びポンプ10を調整し、熱媒体3の流出流量を、現状で「第1の流量」である流入流量以下の流量にする。例えば、流出流量を、「第1の流量」の範囲で、流入流量と同じにする。これにより、熱媒体3の液位が低下しすぎて熱媒体3が流出できなくなることが防止される。こうして、臨時放熱運転が終了する。   However, when the liquid level of the heat medium 3 is further lowered and becomes lower than the suction port 8, the heat medium 3 cannot flow out. Therefore, when the heat medium 3 flows out at the “second flow rate”, the liquid level sensor 9 detects the liquid level of the heat medium 3. Then, while the liquid level of the heat medium 3 is higher than that of the suction port 8, the pump 10 is adjusted again so that the outflow flow rate of the heat medium 3 is set to a flow rate equal to or lower than the inflow rate that is the “first flow rate”. . For example, the outflow rate is the same as the inflow rate in the range of the “first flow rate”. As a result, it is possible to prevent the liquid level of the heat medium 3 from being excessively lowered and the heat medium 3 from flowing out. Thus, the temporary heat radiation operation ends.

臨時放熱運転が終了した後、例えば、「第1の流量」の範囲で流出流量と流入流量とを同量にした場合には、上述した通常の放熱運転に移行することになる。
ところで、臨時放熱運転が終了した時点では、流量調整タンク11には、流入流量を減じるために貯留していた熱媒体3が貯えられている。そこで、臨時放熱運転の終了後に移行した放熱運転において流量調整タンク11の熱媒体3を放出してもよい。この場合、例えば、ポンプ10を調整して、容器4から外部に流出する熱媒体3の流出流量を「第1の流量」の上限よりも小さくしつつ、流量調整タンク11から熱媒体3を徐々に放出させ、容器4内の潜熱蓄熱体2に流入する熱媒体3の流入流量を「第1の流量」の上限以下の流量とすればよい。
また、臨時放熱運転の終了後に移行した放熱運転は、流量調整タンク11から熱媒体3を放出させずに通常どおりに行ない、放熱運転後の貯熱運転において、流量調整タンク11から熱媒体3を放出させるようにしてもよい。
After the temporary heat radiation operation is completed, for example, when the outflow flow rate and the inflow flow rate are made equal in the range of the “first flow rate”, the normal heat radiation operation described above is performed.
By the way, when the temporary heat radiation operation is completed, the heat medium 3 stored in order to reduce the inflow flow rate is stored in the flow rate adjustment tank 11. Therefore, the heat medium 3 in the flow rate adjustment tank 11 may be discharged in the heat dissipation operation that has been shifted to after the end of the temporary heat dissipation operation. In this case, for example, the heat medium 3 is gradually removed from the flow rate adjustment tank 11 while adjusting the pump 10 so that the flow rate of the heat medium 3 flowing out from the container 4 is smaller than the upper limit of the “first flow rate”. And the inflow flow rate of the heat medium 3 flowing into the latent heat storage body 2 in the container 4 may be set to a flow rate equal to or lower than the upper limit of the “first flow rate”.
In addition, the heat radiation operation that has been shifted to after the end of the temporary heat radiation operation is performed as usual without releasing the heat medium 3 from the flow rate adjustment tank 11, and the heat medium 3 is removed from the flow rate adjustment tank 11 in the heat storage operation after the heat radiation operation. You may make it discharge | release.

次に、上方空間4bにおける、流出管6の吸入口8の位置よりも上側の空間(以下、便宜的に「有効空間4b1」ともいう)について説明する。
有効空間4b1の容積は、容器4および下方空間4aの寸法が一定であれば、上方空間4bにおける流出管6の位置に応じて変動する。
ここで、流出管6の位置が高く、有効空間4b1の容積が小さすぎる場合、上述した臨時放熱運転の際に、高温のまま流出する熱媒体3の量が相対的に少なくなってしまう。このため、臨時放熱運転を長くできる観点からは、有効空間4b1の容積は大きい方が好ましい。
一方で、有効空間4b1の容積が大きすぎる場合、有効空間4b1の上部にある熱媒体3は、下方空間4aにある潜熱蓄熱体2からの熱を受けにくく、冷めやすい等の問題が生じるおそれがある。
そこで、有効空間4b1の容積は、容器4の全容積に対して、10〜40%が好ましく、20〜30%がより好ましい。この範囲であれば、臨時放熱運転を適宜に長くでき、かつ、熱媒体3も冷めにくくできる。
Next, the space above the position of the inlet 8 of the outflow pipe 6 in the upper space 4b (hereinafter also referred to as “effective space 4b1” for convenience) will be described.
If the dimensions of the container 4 and the lower space 4a are constant, the volume of the effective space 4b1 varies depending on the position of the outflow pipe 6 in the upper space 4b.
Here, when the position of the outflow pipe 6 is high and the volume of the effective space 4b1 is too small, the amount of the heat medium 3 flowing out at a high temperature becomes relatively small during the above-described temporary heat radiation operation. For this reason, it is preferable that the volume of the effective space 4b1 is large from the viewpoint of making the temporary heat radiation operation longer.
On the other hand, when the volume of the effective space 4b1 is too large, the heat medium 3 in the upper part of the effective space 4b1 is less likely to receive heat from the latent heat storage body 2 in the lower space 4a and may be easily cooled. is there.
Therefore, the volume of the effective space 4b1 is preferably 10 to 40% and more preferably 20 to 30% with respect to the total volume of the container 4. If it is this range, a temporary heat radiation driving | operation can be lengthened suitably and the heat medium 3 can also be hard to cool.

なお、流出管6の位置を変更して有効空間4b1の容積を設定するに際しては、流出管6の位置が低すぎると、吸入口8から熱媒体3を吸入する際に潜熱蓄熱体2を巻き込んで吸入してしまうおそれがあるため、潜熱蓄熱体2が混入しない程度に下方空間4bから離れた高さにあるのが好ましい。   When changing the position of the outflow pipe 6 to set the volume of the effective space 4b1, if the position of the outflow pipe 6 is too low, the latent heat storage body 2 is involved when the heat medium 3 is sucked from the suction port 8. Therefore, it is preferable to be at a height away from the lower space 4b to the extent that the latent heat storage body 2 is not mixed.

以上、本実施の形態では、1台の熱交換器12aまたは熱交換器12bに対して、1台の潜熱蓄熱装置1が設置された例を示したが、複数台の潜熱蓄熱装置1が設置されていてもよい。その場合、1台目の潜熱蓄熱装置1で貯熱運転を終えた後に放熱運転を行なっている最中に、2台目の潜熱蓄熱装置1で貯熱運転を行なうことで、1台目の潜熱蓄熱装置1による放熱運転の後、連続的に、2台目の潜熱蓄熱装置1による放熱運転を行なうことができるため、効率的に熱利用できる。   As described above, in the present embodiment, an example in which one latent heat storage device 1 is installed with respect to one heat exchanger 12a or heat exchanger 12b is shown, but a plurality of latent heat storage devices 1 are installed. May be. In that case, by performing the heat storage operation with the second latent heat storage device 1 while performing the heat radiation operation after the heat storage operation with the first latent heat storage device 1 is completed, Since the heat radiation operation by the second latent heat storage device 1 can be continuously performed after the heat radiation operation by the latent heat storage device 1, heat can be used efficiently.

以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.

図1に基づいて説明した潜熱蓄熱装置1を用いて、高温の熱媒体3を取り出して熱利用を行なった。
このとき、容器4の寸法は、長さ0.7m×幅0.7m×高さ1.0mで、有効空間4b1の容積は、容器4の全容積に対して30%であった。
また、潜熱蓄熱体2としてエリスリトール(融点:118℃)300kgを用い、熱媒体3として油(NeoSK−OIL L400(綜研テクニックス社製))を用いた。
なお、潜熱蓄熱体2と熱媒体3との熱交換速度によって決定される「第1の流量」の上限を、70L/minとした。
放熱運転および臨時放熱運転において熱利用に供されて容器4内に流入する熱媒体3の温度は、90℃で一定に保った。
Using the latent heat storage device 1 described based on FIG. 1, the high-temperature heat medium 3 was taken out and used for heat.
At this time, the dimensions of the container 4 were 0.7 m length × 0.7 m width × 1.0 m height, and the volume of the effective space 4 b 1 was 30% with respect to the total volume of the container 4.
Further, erythritol (melting point: 118 ° C.) 300 kg was used as the latent heat storage body 2, and oil (NeoSK-OIL L400 (manufactured by Soken Techniques)) was used as the heat medium 3.
The upper limit of the “first flow rate” determined by the heat exchange rate between the latent heat storage body 2 and the heat medium 3 was set to 70 L / min.
The temperature of the heat medium 3 used for heat utilization and flowing into the container 4 in the heat radiation operation and the temporary heat radiation operation was kept constant at 90 ° C.

(実験例1)
まず、通常の貯熱運転を行ない潜熱蓄熱体2を融解させた。
次に、通常の放熱運転として、ポンプ10を作動させ、容器4に収容されている熱媒体3を流出流量60L/minで容器4の外部に流出させて熱利用に供しつつ、流量調整タンク11を作動させないで、流出流量と同じ流入流量60L/minで容器4内に流入させた。このような放熱運転を30分間行なったが、この間、容器4の外部に流出した熱媒体3の平均温度は、114℃であった。
(Experimental example 1)
First, the normal heat storage operation was performed and the latent heat storage body 2 was melted.
Next, as a normal heat radiation operation, the pump 10 is operated, and the heat medium 3 accommodated in the container 4 is flowed out of the container 4 at an outflow flow rate of 60 L / min to be used for heat, and the flow rate adjusting tank 11 is used. Without being operated, it was caused to flow into the container 4 at the same inflow rate 60 L / min as the outflow rate. Such a heat radiation operation was performed for 30 minutes. During this period, the average temperature of the heat medium 3 flowing out of the container 4 was 114 ° C.

(実験例2)
まず、通常の貯熱運転を行ない潜熱蓄熱体2を融解させた。
次に、通常の放熱運転として、ポンプ10を作動させ、容器4に収容されている熱媒体3を流出流量120L/minで容器4の外部に流出させて熱利用に供しつつ、流量調整タンク11を作動させないで、流出流量と同じ流入流量120L/minで容器4内に流入させた。このような放熱運転を15分間行なったが、この間、容器4の外部に流出した熱媒体3の平均温度は、105℃であった。
(Experimental example 2)
First, the normal heat storage operation was performed and the latent heat storage body 2 was melted.
Next, as a normal heat radiation operation, the pump 10 is operated, and the heat medium 3 accommodated in the container 4 is flowed out of the container 4 at an outflow flow rate of 120 L / min to be used for heat, and the flow rate adjusting tank 11 is used. Without being operated, it was allowed to flow into the container 4 at the same inflow rate 120 L / min as the outflow rate. Such a heat radiation operation was performed for 15 minutes. During this period, the average temperature of the heat medium 3 flowing out of the container 4 was 105 ° C.

(実験例3)
まず、通常の貯熱運転を行ない潜熱蓄熱体3を融解させた。貯熱運転の終了後における容器4の熱媒体3の温度は115℃であった。
次に、液位センサ9に容器4内の熱媒体3の液位を検出させて、熱媒体3の液位が吸入口8よりも高く保たれていることを確認しながら、2分間の臨時放熱運転を行なった。具体的には、ポンプ10を作動させ、容器4に収容されている熱媒体3を流出流量120L/minで容器4の外部に流出させて熱利用に供しつつ、流量調整タンク11を作動させて、流入流量60L/minで容器4内に流入させた。この間、容器4の外部に流出した熱媒体3の温度は114℃であった。なお、容器4内の熱媒体3の液位は、臨時放熱運転中に低下を続けたが吸入口8よりは高く推移し、容器4の外部への熱媒体3の流出は終始可能であった。
臨時放熱運転の終了後、通常の放熱運転を行なった。具体的には、ポンプ10を調整して、熱媒体3を流出流量60L/minで容器4の外部に流出させて熱利用に供しつつ、臨時放熱運転時に流量調整タンク11に貯えられた熱媒体3を放出させないで、流出流量と同じ流入流量60L/minで容器4内に流入させた。このとき、容器4の外部に流出した熱媒体3の平均温度は、当初は114℃であったが、放熱の進行につれて低下した。
(Experimental example 3)
First, the normal heat storage operation was performed to melt the latent heat storage body 3. The temperature of the heat medium 3 in the container 4 after the heat storage operation was 115 ° C.
Next, the liquid level sensor 9 detects the liquid level of the heat medium 3 in the container 4 and confirms that the liquid level of the heat medium 3 is kept higher than the suction port 8 for 2 minutes. A heat dissipation operation was performed. Specifically, the pump 10 is operated, and the flow rate adjustment tank 11 is operated while the heat medium 3 accommodated in the container 4 flows out of the container 4 at an outflow flow rate of 120 L / min to be used for heat. , And flowed into the container 4 at an inflow rate of 60 L / min. During this time, the temperature of the heat medium 3 flowing out of the container 4 was 114 ° C. The liquid level of the heat medium 3 in the container 4 continued to decrease during the temporary heat radiation operation, but remained higher than the suction port 8, and the outflow of the heat medium 3 to the outside of the container 4 was possible throughout. .
After the temporary heat radiation operation was completed, normal heat radiation operation was performed. More specifically, the heat medium stored in the flow rate adjustment tank 11 during the temporary heat radiation operation while adjusting the pump 10 and flowing the heat medium 3 out of the container 4 at an outflow flow rate of 60 L / min for use in heat. 3 was not discharged, but was allowed to flow into the container 4 at the same inflow rate 60 L / min as the outflow rate. At this time, the average temperature of the heat medium 3 flowing out of the container 4 was initially 114 ° C., but decreased as the heat radiation progressed.

1:潜熱蓄熱装置
2:潜熱蓄熱体
3,3a:熱媒体
4:容器
4a:下方空間
4b:上方空間
4b1:有効空間
5:流入管
6:流出管
7:吐出口
8:吸入口
9:液位センサ
10:ポンプ(流出入制御部)
11:流量調整タンク(流出入制御部)
12:熱交換器
12a:熱交換器(廃熱エリア熱交換器)
12b:熱交換器(熱利用エリア熱交換器)
13,13a,13b:循環管(流出入制御部)
14,14a,14b:弁(流出入制御部)
20:工場(廃熱エリア)
30:施設(熱利用エリア)
1: Latent heat storage device 2: Latent heat storage body 3, 3a: Heat medium 4: Container 4a: Lower space 4b: Upper space 4b1: Effective space 5: Inflow pipe 6: Outflow pipe 7: Discharge port 8: Suction port 9: Liquid Position sensor 10: Pump (outflow control unit)
11: Flow rate adjustment tank (outflow / inflow control unit)
12: Heat exchanger 12a: Heat exchanger (waste heat area heat exchanger)
12b: Heat exchanger (Heat utilization area heat exchanger)
13, 13a, 13b: Circulation pipe (inflow / outflow control unit)
14, 14a, 14b: Valve (outflow control unit)
20: Factory (waste heat area)
30: Facility (heat utilization area)

Claims (4)

潜熱蓄熱体を収容する下方空間と、前記下方空間よりも上側の空間であって前記潜熱蓄熱体よりも比重の小さい熱媒体が溜まる上方空間と、を有する容器と、
前記下方空間に配置されて前記容器の外部と連通し、前記熱媒体を前記容器の外部から前記潜熱蓄熱体内に流入するための吐出口を外周面に有する流入管と、
前記上方空間に配置されて前記容器の外部と連通し、前記上方空間にある前記熱媒体を前記容器の外部に流出するための吸入口を外周面に有する流出管と、
前記上方空間にある前記熱媒体を、前記流出管の前記吸入口から前記容器の外部に流量変動自在に流出させ、廃熱を発生する廃熱エリアに設置された廃熱エリア熱交換器または当該廃熱を利用する熱利用エリアに設置された熱利用エリア熱交換器を経由して、前記流入管の前記吐出口から流量変動自在に前記潜熱蓄熱体内に流入させる流出入制御部と、
前記上方空間にある前記熱媒体の液位を検出する液位センサと、
を備える潜熱蓄熱装置。
A container having a lower space that accommodates the latent heat storage body, and an upper space that is a space above the lower space and in which a heat medium having a specific gravity smaller than that of the latent heat storage body is accumulated,
An inflow pipe which is disposed in the lower space and communicates with the outside of the container, and has an outlet on the outer peripheral surface for allowing the heat medium to flow into the latent heat storage body from the outside of the container;
An outflow pipe which is disposed in the upper space and communicates with the outside of the container, and has an inlet on the outer peripheral surface for allowing the heat medium in the upper space to flow out of the container;
A waste heat area heat exchanger installed in a waste heat area where the heat medium in the upper space flows out from the suction port of the outflow pipe to the outside of the container in a variable flow rate and generates waste heat, or An inflow / outflow control unit that flows into the latent heat storage body through the heat utilization area heat exchanger installed in the heat utilization area that uses waste heat from the discharge port of the inflow pipe so that the flow rate can be freely changed,
A liquid level sensor for detecting a liquid level of the heat medium in the upper space;
A latent heat storage device comprising:
前記上方空間における前記吸入口よりも上側の空間である有効空間の容積が、前記容器の全容積に対して、10〜40%である、請求項1に記載の潜熱蓄熱装置。   The latent heat storage device according to claim 1, wherein a volume of an effective space that is a space above the suction port in the upper space is 10 to 40% with respect to a total volume of the container. 請求項1または2に記載の潜熱蓄熱装置を用いた熱利用方法であって、
前記液位センサにより検出される前記熱媒体の液位が前記吸入口よりも高い定常位置にある状態で、前記流出入制御部を制御して、前記上方空間にある前記熱媒体を流出させて、前記廃熱エリア熱交換器で熱交換させ、当該流出の流量と同じ流量で前記潜熱蓄熱体内に流入させる貯熱運転を行なう工程と、
前記液位センサにより検出される前記熱媒体の液位が前記定常位置にある状態で、前記流出入制御部を制御して、前記上方空間にある前記熱媒体を前記熱媒体と前記潜熱蓄熱体との熱交換速度により上限が決定される第1の流量で流出させて、前記熱利用エリア熱交換器で熱交換させ、当該流出の流量と同じ流量で前記潜熱蓄熱体内に流入させる放熱運転を行なう工程と、
前記流出入制御部を制御して、一時的に、前記上方空間にある前記熱媒体を前記第1の流量の上限よりも大きい第2の流量で流出させて前記熱利用エリア熱交換器で熱交換させ、前記潜熱蓄熱体内に前記第1の流量で流入させる臨時放熱運転を行なう工程と、
を備える熱利用方法。
A heat utilization method using the latent heat storage device according to claim 1 or 2,
In a state where the liquid level of the heat medium detected by the liquid level sensor is in a steady position higher than the suction port, the inflow / outflow control unit is controlled to cause the heat medium in the upper space to flow out. A heat storage operation in which heat is exchanged in the waste heat area heat exchanger and is allowed to flow into the latent heat storage body at the same flow rate as the outflow, and
In the state where the liquid level of the heat medium detected by the liquid level sensor is in the steady position, the inflow / outflow control unit is controlled so that the heat medium in the upper space is replaced with the heat medium and the latent heat storage body. The heat dissipation operation is performed by causing the heat flow to flow out at a first flow rate that is determined by the heat exchange speed with the heat exchange area, exchanging heat with the heat utilization area heat exchanger, and flowing into the latent heat storage body at the same flow rate as the flow rate of the outflow. Performing steps;
The inflow / outflow control unit is controlled to temporarily cause the heat medium in the upper space to flow out at a second flow rate that is larger than the upper limit of the first flow rate, and to generate heat in the heat utilization area heat exchanger. Replacing the latent heat storage body and performing a temporary heat radiation operation to flow into the latent heat storage body at the first flow rate;
A heat utilization method comprising:
前記臨時放熱運転において前記熱媒体を前記第2の流量で流出させる際に、前記液位センサに前記熱媒体の液位を検出させ、当該液位が前記吸入口よりも高いうちに、前記流出入制御部を制御して、前記容器の外部に流出する前記熱媒体の流量を、前記潜熱蓄熱体内に流入する前記熱媒体の流量以下の流量にする、請求項3に記載の熱利用方法。   When the heat medium is caused to flow out at the second flow rate in the temporary heat dissipation operation, the liquid level sensor detects the liquid level of the heat medium, and the outflow is performed while the liquid level is higher than the suction port. The heat utilization method according to claim 3, wherein the flow rate of the heat medium flowing out of the container is controlled to be equal to or lower than the flow rate of the heat medium flowing into the latent heat storage body by controlling an input control unit.
JP2013179625A 2013-08-30 2013-08-30 Heat utilization method Active JP5908877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013179625A JP5908877B2 (en) 2013-08-30 2013-08-30 Heat utilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013179625A JP5908877B2 (en) 2013-08-30 2013-08-30 Heat utilization method

Publications (2)

Publication Number Publication Date
JP2015048962A true JP2015048962A (en) 2015-03-16
JP5908877B2 JP5908877B2 (en) 2016-04-26

Family

ID=52699139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013179625A Active JP5908877B2 (en) 2013-08-30 2013-08-30 Heat utilization method

Country Status (1)

Country Link
JP (1) JP5908877B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6818942B1 (en) * 2019-10-18 2021-01-27 三菱電機株式会社 Heat storage type water heater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241107A (en) * 2007-03-27 2008-10-09 Kurimoto Ltd Heat accumulator, and measuring method of accumulation amount of latent heat
JP2008298390A (en) * 2007-06-01 2008-12-11 Kobelco Eco-Solutions Co Ltd Heat effective use system
JP2010078177A (en) * 2008-09-24 2010-04-08 Kurimoto Ltd Heat storage device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241107A (en) * 2007-03-27 2008-10-09 Kurimoto Ltd Heat accumulator, and measuring method of accumulation amount of latent heat
JP2008298390A (en) * 2007-06-01 2008-12-11 Kobelco Eco-Solutions Co Ltd Heat effective use system
JP2010078177A (en) * 2008-09-24 2010-04-08 Kurimoto Ltd Heat storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6818942B1 (en) * 2019-10-18 2021-01-27 三菱電機株式会社 Heat storage type water heater

Also Published As

Publication number Publication date
JP5908877B2 (en) 2016-04-26

Similar Documents

Publication Publication Date Title
JP6244553B2 (en) Heat storage device and hot water generator provided with the same
JP5554454B2 (en) Air conditioning system
JP6874000B2 (en) Thermal server plant and its control method
JP6239333B2 (en) Hot water supply system and control method thereof
JP2017527768A5 (en)
JP6921971B2 (en) Local thermal energy consumption assembly and local thermal energy generation assembly for regional thermal energy distribution system
JP4057034B2 (en) Regenerative heat supply device and regenerative heat supply system using the same
JP5908877B2 (en) Heat utilization method
JP5594597B2 (en) Cooling system
CN207317264U (en) A kind of return-stroke type fused salt regenerative furnace of adaptive wind-warm syndrome
KR20160034420A (en) Engine exhaust heat recovery system
JP2009006395A (en) Exhaust heat recovering method and exhaust heat recovering device
JP2006308256A (en) Heat storage device and method of operating heat storage device
CN206310940U (en) A kind of double-refrigerant separate heat pipe residual neat recovering system
JP5575184B2 (en) Heating system
KR20160069659A (en) Super Critical Fluid Generating System Having Super Critical Fluid Storage
TWI618643B (en) Electric vehicle battery temperature management system
JP5762042B2 (en) Hot water production supply unit
JP5641106B2 (en) Water heater
JP5878541B2 (en) Means for supplying oil from a tank containing heavy oil fuel
CN205807896U (en) Double accumulation of energy lithium bromide chiller systems
CN205619564U (en) Can adjust conduction oil boiler pressure&#39;s structure
JP2012112567A (en) Latent heat storage material processing facility
JP2007285701A (en) Heat storage device and method of operating heat storage device
JP2013221718A (en) Storage type water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160324

R150 Certificate of patent or registration of utility model

Ref document number: 5908877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250