JP2015046219A - Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery using the same - Google Patents

Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery using the same Download PDF

Info

Publication number
JP2015046219A
JP2015046219A JP2011288460A JP2011288460A JP2015046219A JP 2015046219 A JP2015046219 A JP 2015046219A JP 2011288460 A JP2011288460 A JP 2011288460A JP 2011288460 A JP2011288460 A JP 2011288460A JP 2015046219 A JP2015046219 A JP 2015046219A
Authority
JP
Japan
Prior art keywords
ion secondary
lithium ion
metal oxide
negative electrode
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011288460A
Other languages
Japanese (ja)
Inventor
暢宏 平野
Nobuhiro Hirano
暢宏 平野
尚士 細川
Naoshi Hosokawa
尚士 細川
名倉 健祐
Kensuke Nagura
健祐 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011288460A priority Critical patent/JP2015046219A/en
Priority to PCT/JP2012/008015 priority patent/WO2013099138A1/en
Publication of JP2015046219A publication Critical patent/JP2015046219A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode for lithium ion secondary batteries superior in battery characteristics including high output and high capacity.SOLUTION: A negative electrode for lithium ion secondary batteries comprises: a current collector; and a layer formed on the current collector and including an active material. The active material contains a carbon material and metal oxide; the metal oxide has an average particle diameter equal to or smaller than one tenth of that of the carbon material. The surface of the carbon material is at least partially covered with a metal oxide; the coverage of the metal oxide over the carbon material is 30-70%.

Description

本発明は、リチウムイオン二次電池用負極及び該リチウムイオン二次電池用負極を用いたリチウムイオン二次電池に関する。   The present invention relates to a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery using the negative electrode for a lithium ion secondary battery.

リチウムイオン二次電池は、携帯用電子機器や通信機器などの駆動電源として利用が広がっている。一般に、リチウムイオン二次電池では、負極板にリチウムの吸蔵・放出が可能な炭素材料を用い、正極板にLiCoOなどの遷移金属とリチウムの複合酸化物を活物質として用いており、これによって高出力、高容量の二次電池を実現している。 Lithium ion secondary batteries are widely used as drive power sources for portable electronic devices and communication devices. Generally, in a lithium ion secondary battery, a carbon material capable of occluding and releasing lithium is used for the negative electrode plate, and a composite oxide of lithium and a transition metal such as LiCoO 2 is used as the active material for the positive electrode plate. A high-power, high-capacity secondary battery is realized.

近年、電子機器および通信機器の多機能化に伴って、さらなる高出力、高容量化が望まれている。しかしながら出力特性及び入力特性が十分でないといった問題があり、特許文献1〜特許文献3では負極にリチウムを吸蔵・放出可能な炭素質材料とリチウムを吸蔵・放出可能な酸化物とを含むことで、入・出力特性に優れたリチウムイオン二次電池を提供することを目的としている。   In recent years, with higher functionality of electronic devices and communication devices, higher output and higher capacity are desired. However, there is a problem that output characteristics and input characteristics are not sufficient, and in Patent Documents 1 to 3, the negative electrode includes a carbonaceous material capable of occluding and releasing lithium and an oxide capable of occluding and releasing lithium, The object is to provide a lithium ion secondary battery with excellent input / output characteristics.

ところが、リチウムを吸蔵・放出可能な酸化物は、導電性が低いため、電池の内部抵抗が増加し、電池の高出力特性を低下させる要因となる。また、電池の作動電圧の設定範囲次第では活物質として機能しないため、電池の高容量化を阻害させる要因ともなり、高入出力、高容量化を図ることができない。   However, since the oxide capable of inserting and extracting lithium has low conductivity, the internal resistance of the battery is increased, which causes a decrease in the high output characteristics of the battery. Moreover, since it does not function as an active material depending on the setting range of the operating voltage of the battery, it becomes a factor that hinders the increase in capacity of the battery, and high input / output and high capacity cannot be achieved.

特開2001−126727号公報JP 2001-126727 A 特開2005−158719号公報JP 2005-158719 A 特開2010−123300号公報JP 2010-123300 A

負極活物質層としてリチウムを吸蔵・放出可能な炭素質材料とリチウムを吸蔵・放出可能な酸化物とを含み、高い入出力特性に優れた高容量リチウムイオン二次電池を提供することを目的としながら、リチウムを吸蔵・放出可能な酸化物は、導電性が低いため、電池の内部抵抗が増加し、電池の高出力特性を低下させる要因となる。また、リチウムを吸蔵・放出可能な酸化物は、電池の作動電圧の設定範囲次第では活物質として機能しないため、電池の高容量化を阻害させる要因ともなり、高入出力、高容量化を図ることができない。   An object of the present invention is to provide a high-capacity lithium ion secondary battery that includes a carbonaceous material capable of occluding and releasing lithium as an anode active material layer and an oxide capable of occluding and releasing lithium, and having excellent input / output characteristics. However, since the oxide capable of inserting and extracting lithium has low conductivity, the internal resistance of the battery is increased and the high output characteristic of the battery is deteriorated. In addition, an oxide capable of inserting and extracting lithium does not function as an active material depending on the setting range of the operating voltage of the battery. Therefore, it becomes a factor that hinders the increase in the capacity of the battery, so that high input / output and high capacity are achieved. I can't.

本発明は、かかる課題に鑑みなされたもので、その主な目的は、電池の高出力、高容量特性に優れたリチウムイオン二次電池用負極を提供することにある。   This invention is made | formed in view of this subject, The main objective is to provide the negative electrode for lithium ion secondary batteries excellent in the high output of a battery, and a high capacity | capacitance characteristic.

本発明に係るリチウムイオン二次電池用負極は、集電体と、集電体の上に形成された活物質を含む層からなり、活物質は、炭素材料とリチウムイオンを吸蔵・放出可能な金属酸化物とからなり、金属酸化物の平均粒径は、炭素材料の平均粒径の1/10以下であり、炭素材料の表面の少なくとも一部が金属酸化物で被覆されており、金属酸化物の炭素材料に対する被覆率が30%〜70%であることを特徴とする。   A negative electrode for a lithium ion secondary battery according to the present invention comprises a current collector and a layer containing an active material formed on the current collector, and the active material can occlude and release a carbon material and lithium ions. The metal oxide has an average particle size that is 1/10 or less of the average particle size of the carbon material, and at least a part of the surface of the carbon material is coated with the metal oxide. It is characterized in that the covering ratio of the product to the carbon material is 30% to 70%.

本発明は、電池出力をより向上させると共にサイクル特性をより高めることができるリチウム二次電池及びその使用方法を提供することができる。   INDUSTRIAL APPLICABILITY The present invention can provide a lithium secondary battery that can further improve battery output and further improve cycle characteristics, and a method for using the lithium secondary battery.

本発明の一実施形態におけるリチウムイオン二次電池用負極の構成を示した断面図Sectional drawing which showed the structure of the negative electrode for lithium ion secondary batteries in one Embodiment of this invention 本発明の一実施形態における負極を用いたリチウムイオン二次電池の構成を示した断面図Sectional drawing which showed the structure of the lithium ion secondary battery using the negative electrode in one Embodiment of this invention 活物質層を構成する炭素材料の配列と、金属酸化物の配列を模式的に示した断面図Sectional drawing which showed typically the arrangement of the carbon material which constitutes the active material layer, and the arrangement of the metal oxide 活物質層を構成する炭素材料の配列と、被覆率が30%より少ない金属酸化物の配列を模式的に示した断面図Sectional drawing which showed typically the arrangement | sequence of the carbon material which comprises an active material layer, and the arrangement | sequence of a metal oxide with a coverage rate less than 30% 活物質層を構成する炭素材料の配列と、被覆率が70%より多い金属酸化物の配列を模式的に示した断面図Sectional drawing which showed typically the arrangement | sequence of the carbon material which comprises an active material layer, and the arrangement | sequence of a metal oxide with a coverage of more than 70%

本発明を説明する前に、本発明を想到するに至った経緯をまず説明する。   Before explaining the present invention, the background to the idea of the present invention will be described first.

上述したように、チタン酸リチウムは、炭素材料に比べて導電性が低く容量も小さい。一方、チタン酸リチウム中のリチウムイオンの拡散速度は、炭素材料中のリチウムイオンの拡散速度よりも大きいという特性がある。   As described above, lithium titanate has a lower conductivity and a smaller capacity than a carbon material. On the other hand, the diffusion rate of lithium ions in lithium titanate is higher than the diffusion rate of lithium ions in the carbon material.

従って、炭素材料からなる活物質に、チタン酸リチウムを被覆した構造の負極は、リチウムイオン二次電池を高出力化したときに、より効率よくリチウムを負極活物質層全体に供給することができるため、炭素材料を含む活物質層上に、リチウムが析出するのを抑制する効果が期待できる。これにより、高出力化を図ったリチウムイオン二次電池において、リチウム析出に伴う内部短絡等の発生を効果的に防止することが可能となる。   Therefore, a negative electrode having a structure in which an active material made of a carbon material is coated with lithium titanate can supply lithium to the entire negative electrode active material layer more efficiently when the output of the lithium ion secondary battery is increased. Therefore, an effect of suppressing the precipitation of lithium on the active material layer containing the carbon material can be expected. This makes it possible to effectively prevent the occurrence of an internal short circuit or the like due to lithium deposition in a lithium ion secondary battery with high output.

一方、チタン酸リチウムは、炭素材料に比べて、導電性が低く、容量も小さいため、炭素材料を含む活物質層の容量低下を抑えるためには、チタン酸リチウムによる被覆量をできるだけ薄く形成する必要がある。   On the other hand, lithium titanate has a lower conductivity and a smaller capacity than carbon materials. Therefore, in order to suppress a decrease in capacity of an active material layer containing a carbon material, a coating amount with lithium titanate is formed as thin as possible. There is a need.

しかしながら、被覆層を薄膜化した場合、炭素材料からなる活物質層のみが近接し、チタン酸リチウムによる道筋が途切れてしまうとリチウムの活物質層全体への供給が遅延し、リチウムが析出するおそれがあり、特に、電池を高出力化した場合、安全性の低下や、サイクル特性の低下を招くおそれがある。   However, when the coating layer is thinned, if only the active material layer made of the carbon material is in close proximity and the route of lithium titanate is interrupted, the supply of lithium to the entire active material layer may be delayed and lithium may be deposited. In particular, when the output of the battery is increased, there is a possibility that the safety and the cycle characteristics may be deteriorated.

そこで本発明者等は、チタン酸リチウムを含む負極構造において、被覆層の最適化を検討していたところ、チタン酸リチウムが炭素材料とのマトリックスを形成するためには、活物質層を構成する炭素材料の粒径と、チタン酸リチウムの粒径との関係を考慮しなければならないことを見出し、本発明を想到するに至った。   Therefore, the present inventors have studied optimization of the coating layer in the negative electrode structure containing lithium titanate, and in order for lithium titanate to form a matrix with a carbon material, an active material layer is formed. It has been found that the relationship between the particle size of the carbon material and the particle size of lithium titanate must be taken into consideration, and the present invention has been conceived.

本発明に係るリチウムイオン二次電池用負極は、集電体と、集電体の上に形成された活物質を含む層からなり、活物質は、炭素材料とリチウムイオンを吸蔵・放出可能な金属酸化物とからなり、金属酸化物の平均粒径は、炭素材料の平均粒径の1/10以下であり、炭素材料の表面の少なくとも一部が金属酸化物で被覆されており、金属酸化物の炭素材料に対する被覆率が30%〜70%であることを特徴とし、被被覆材である炭素材料粒子径に対して十分に小さい粒子径の金属酸化物で被覆することにより、被覆材である金属酸化物の量を少なくすることが出来る。金属酸化物は電池の作動電圧の設定範囲次第では活物
質として機能しないため、その量を少なくすることで電池容量を低下させることなく電池出力を向上させるとともに、サイクル特性を高めることができる。
A negative electrode for a lithium ion secondary battery according to the present invention comprises a current collector and a layer containing an active material formed on the current collector, and the active material can occlude and release a carbon material and lithium ions. The metal oxide has an average particle size that is 1/10 or less of the average particle size of the carbon material, and at least a part of the surface of the carbon material is coated with the metal oxide. The covering ratio of the carbon material to the material is 30% to 70%, and the covering material is coated with a metal oxide having a particle diameter sufficiently smaller than the particle diameter of the carbon material to be coated. The amount of a certain metal oxide can be reduced. Since the metal oxide does not function as an active material depending on the setting range of the operating voltage of the battery, the battery output can be improved and the cycle characteristics can be improved without decreasing the battery capacity by reducing the amount of the metal oxide.

また、金属酸化物がチタン酸リチウムであると、リチウムを吸蔵・放出可能なので好ましい。   Further, it is preferable that the metal oxide is lithium titanate because lithium can be occluded / released.

また、金属酸化物の平均粒径が1μm以上であると、電解液との反応による副生ガスの発生を抑制するので好ましい。   Further, it is preferable that the average particle diameter of the metal oxide is 1 μm or more because generation of by-product gas due to reaction with the electrolytic solution is suppressed.

また、金属酸化物が活物質中に10wt%以上、30wt%以下含まれると、炭素材料を均一に被覆することができ、かつ電池容量を低下させることがないので好ましい。   Further, it is preferable that the metal oxide is contained in the active material in an amount of 10 wt% or more and 30 wt% or less because the carbon material can be uniformly coated and the battery capacity is not reduced.

さらに、炭素材料が黒鉛であると、リチウムを吸蔵・放出可能なので好ましい。   Further, it is preferable that the carbon material is graphite because lithium can be occluded / released.

以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。さらに、他の実施形態との組み合わせも可能である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following embodiment. Moreover, it can change suitably in the range which does not deviate from the range which has the effect of this invention. Furthermore, combinations with other embodiments are possible.

図1は、本発明の一実施形態におけるリチウムイオン二次電池用負極の構成を示した断面図である。   FIG. 1 is a cross-sectional view illustrating a configuration of a negative electrode for a lithium ion secondary battery according to an embodiment of the present invention.

図1に示すように、負極2は、集電体10と、集電体10の上に形成された活物質を含む活物質層11を備えている。   As shown in FIG. 1, the negative electrode 2 includes a current collector 10 and an active material layer 11 including an active material formed on the current collector 10.

ここで、活物質層11に含まれる活物質は炭素材料からなり、例えば、黒鉛、カーボンブラック、アセチレンブラック、炭素繊維等が挙げられる。また、保護層12に含まれる金属酸化物は、例えば、チタン酸リチウムの他、酸化モリブデン等が挙げられる。   Here, the active material contained in the active material layer 11 is made of a carbon material, and examples thereof include graphite, carbon black, acetylene black, and carbon fiber. Examples of the metal oxide included in the protective layer 12 include molybdenum oxide in addition to lithium titanate.

なお、活物質層11には、所定量の導電剤及び結着剤が含まれていてもよい。導電剤としては、黒鉛等の炭素材料が挙げられる。結着剤としては、ポリフッ化ビニリデン(PVDF)、フッ素系ゴム、スチレンブタジエンゴム(SBR)、ニトリルブタジエンゴム(NBR)、アクリルゴム(ACM)等が挙げられる。   The active material layer 11 may contain a predetermined amount of a conductive agent and a binder. Examples of the conductive agent include carbon materials such as graphite. Examples of the binder include polyvinylidene fluoride (PVDF), fluorine-based rubber, styrene butadiene rubber (SBR), nitrile butadiene rubber (NBR), acrylic rubber (ACM), and the like.

また、集電体10は、例えば、銅箔または銅合金箔を用いることができる。   Moreover, the collector 10 can use copper foil or copper alloy foil, for example.

図2は、本実施形態における負極を用いたリチウムイオン二次電池の構成を示した断面図である。   FIG. 2 is a cross-sectional view showing a configuration of a lithium ion secondary battery using the negative electrode in the present embodiment.

図2に示すように、正極1と負極2とがセパレータ3を介して捲回された電極群4が、非水電解液(不図示)とともに、電池ケース7に収容されている。正極1は、正極リード5を介して正極端子を兼ねる封口体8に接合され、負極2は、負極リード6を介して負極端子を兼ねる電池ケース7の底部に接合されている。そして、電池ケース7の開口部は、ガスケット9を介して、封口体8で封口されている。   As shown in FIG. 2, an electrode group 4 in which a positive electrode 1 and a negative electrode 2 are wound through a separator 3 is housed in a battery case 7 together with a non-aqueous electrolyte (not shown). The positive electrode 1 is joined to a sealing body 8 that also serves as a positive electrode terminal via a positive electrode lead 5, and the negative electrode 2 is joined to the bottom of a battery case 7 that also serves as a negative electrode terminal via a negative electrode lead 6. The opening of the battery case 7 is sealed with a sealing body 8 via a gasket 9.

本実施形態において、負極2以外のリチウムイオン二次電池100を構成する他の構成要素については、特に制限はなく、通常使用される部材等を用いることができる。   In this embodiment, there are no particular limitations on the other components constituting the lithium ion secondary battery 100 other than the negative electrode 2, and members that are normally used can be used.

次に、図3、図4および図5を参照しながら、金属酸化物の、炭素材料への被覆率との関係を説明する。   Next, the relationship between the coverage of the metal oxide on the carbon material will be described with reference to FIGS. 3, 4, and 5.

ここで、「平均粒径」とは、粒子の粒度分布において、累積体積が50%となる粒径(D50)を意味する。なお、粒子の粒度分布は、例えば、レーザー回折式の粒度分布測定装置によって測定することができる。   Here, the “average particle size” means a particle size (D50) at which the cumulative volume is 50% in the particle size distribution of the particles. The particle size distribution of the particles can be measured by, for example, a laser diffraction type particle size distribution measuring apparatus.

図3、図4および図5は、活物質層を構成する炭素材料の配列と、金属酸化物の配列を模式的に示した断面図である。なお、炭素材料と金属酸化物の粒子は、平均粒径の大きさを用いて表示している。   3, 4 and 5 are cross-sectional views schematically showing the arrangement of carbon materials and the arrangement of metal oxides constituting the active material layer. In addition, the particle | grains of a carbon material and a metal oxide are displayed using the magnitude | size of an average particle diameter.

図3に示すように、平均粒径Dの炭素材料21には平均粒径Dの金属酸化物20が、その表面を埋めるように配列して、被覆層が形成される。 As shown in FIG. 3, the average particle diameter D 2 of an average particle diameter D 1 of the metal oxide 20 in the carbon material 21, it is arranged so as to fill the surface coating layer is formed.

ここで、被覆層50%とすると、炭素材料21の表面に、金属酸化物20がその断面の投影面積として、半分の被覆層が形成されることを想定した場合であり、図3に示すように、隣接する炭素材料21の各々に金属酸化物20が50%の被覆層を形成しておれば、炭素材料21上に、金属酸化物20が連続して形成することができる。   Here, assuming that the covering layer is 50%, it is assumed that a half covering layer is formed on the surface of the carbon material 21 as the projected area of the cross section of the metal oxide 20, as shown in FIG. In addition, if a 50% coating layer of the metal oxide 20 is formed on each of the adjacent carbon materials 21, the metal oxide 20 can be continuously formed on the carbon material 21.

しかし、図4に示すように、金属酸化物20の炭素材料21への被覆率が30%以下に小さくなれば、隣接する炭素材料21上の、金属酸化物20が欠損する可能性が高く、活物質層11内でのリチウムの移動が抑制される。   However, as shown in FIG. 4, if the coverage of the metal oxide 20 on the carbon material 21 is reduced to 30% or less, the metal oxide 20 on the adjacent carbon material 21 is highly likely to be lost, The movement of lithium in the active material layer 11 is suppressed.

同様に、図5に示すように、金属酸化物20の炭素材料21への被覆率が70%以下に大きくなれば、隣接する炭素材料21上の、金属酸化物20が過剰に重なり合うために、炭素材料21間の抵抗層となる。   Similarly, as shown in FIG. 5, if the coverage of the metal oxide 20 on the carbon material 21 is increased to 70% or less, the metal oxide 20 on the adjacent carbon material 21 is excessively overlapped. It becomes a resistance layer between the carbon materials 21.

以上の考察から、炭素材料を含む活物質層11において、金属酸化物を含む負極2の構造において、金属酸化物20の炭素材料21に対する被覆率と、その被覆率に関与する金属酸化物20の平均粒径Dと、活物質層11を構成する炭素材料21の平均粒径Dを考慮しなければならない。 From the above consideration, in the active material layer 11 including the carbon material, in the structure of the negative electrode 2 including the metal oxide, the coverage of the metal oxide 20 with respect to the carbon material 21 and the metal oxide 20 involved in the coverage are as follows. the average particle diameter D 1, must be considered an average particle diameter D 2 of the carbon material 21 which constitutes the active material layer 11.

そこで、このような定性的な示唆に基づき、図1に示したような負極2を実際に作製し、上記の各パラメータとの関係を定量的に評価した。   Therefore, based on such qualitative suggestions, the negative electrode 2 as shown in FIG. 1 was actually produced, and the relationship with each of the above parameters was quantitatively evaluated.

表1は、その結果を示した表である。ここで、金属酸化物20は、チタン酸リチウム(LixTiyOz:LTO)を使用し、炭素材料21は、黒鉛を使用した。なお、リチウムイオン二次電池の正極活物質は、ニッケル酸リチウムを使用した。   Table 1 shows the results. Here, the metal oxide 20 used lithium titanate (LixTiyOz: LTO), and the carbon material 21 used graphite. Note that lithium nickelate was used as the positive electrode active material of the lithium ion secondary battery.

表1に示した電池1〜6では、黒鉛の平均粒径Dを21〜17μm、LTOの平均粒径Dを1〜2μm、金属酸化物の炭素材料に対する被覆率を30〜70%の範囲内で作製した負極をそれぞれ使用した。 In the batteries 1 to 6 shown in Table 1, the average particle diameter D2 of graphite is 21 to 17 [mu] m, the average particle diameter D1 of LTO is 1 to 2 [ mu] m, and the coverage of the metal oxide on the carbon material is 30 to 70%. Each negative electrode produced within the range was used.

表1の被覆率は、負極2の断面を電子顕微鏡写真で撮影し、炭素材料と金属酸化物の粒子径と被覆されている個数から計算で求めたものである。   The coverage shown in Table 1 was obtained by calculating from the particle diameters of the carbon material and the metal oxide and the number of the coated materials by taking a cross-section of the negative electrode 2 with an electron micrograph.

表1に示すように、電池1〜6に用いた負極では、LTOの平均粒径Dは黒鉛の平均粒径Dの1/10以下であり、被覆率を30〜70%にするには、LTOの比率は10〜30wt%となり、高い容量とサイクル特性を両立することができた。 As shown in Table 1, the negative electrode used in the battery 1-6, the average particle diameter D 1 of the LTO is less than 1/10 of the average particle diameter D 2 of graphite, to the coverage in the 30% to 70% The ratio of LTO was 10-30 wt%, and both high capacity and cycle characteristics could be achieved.

電池7では、LTOの平均粒径Dを、黒鉛の平均粒径Dの1/20以下にしたため、LTOの比率は20〜30%にすることで電池容量は高い容量を維持したが、被覆率が100%以上まで増加したために隣接する炭素材料の抵抗層となり、サイクル特性が劣化した。 In the battery 7, the average particle diameter D 1 of the LTO, for you 1/20 of the average particle diameter D 2 of the graphite, the battery capacity by a ratio of LTO is that 20 to 30 percent has been maintaining a high capacity, Since the coverage increased to 100% or more, it became a resistance layer of an adjacent carbon material, and the cycle characteristics deteriorated.

電池9でも同様に被覆率が100%以上まで増加したために、サイクル特性が劣化した。   Similarly, in the battery 9, since the coverage increased to 100% or more, the cycle characteristics deteriorated.

電池8では、LTO比率を10%以下、被覆率を20%以下に低減したために、容量低下は見られなかったものの、LTOによるマトリックスの効果が発揮されず、サイクル特性が劣化した、またこの電池を分解して観察したところ、負極表面へのリチウム析出が観察された。   In Battery 8, since the LTO ratio was reduced to 10% or less and the coverage was reduced to 20% or less, the capacity was not reduced, but the matrix effect by LTO was not exhibited, and the cycle characteristics were deteriorated. When lithium was decomposed and observed, lithium deposition on the negative electrode surface was observed.

電池10では、LTOの平均粒径Dを、黒鉛の平均粒径Dの1/4にしたため、LTOの被覆率を50%にするには比率が50%必要となり容量が低下した。 In the battery 10, the average particle diameter D 1 of the LTO, because of the 1/4 of the average particle diameter D 2 of the graphite, the coverage of LTO To 50% ratio is decreased capacity required 50%.

この結果から、LTOの平均粒径Dを、黒鉛の平均粒径Dの1/10以下に、被覆率を30〜70%にすることによって、活物質層11での金属酸化物20が炭素材料21を欠損することも過剰な抵抗層を作ることもなく効果的なマトリックスを構成して、LTOが活物質として機能し、かつ、リチウムイオンの拡散速度が大きいことから、電池の高出力、高容量化も同時に図ることができる。これにより、電池の高出力、高容量特性を低下させることのないリチウムイオン二次電池を実現することができる。 From this result, the average particle diameter D 1 of the LTO, 1/10 in the following average particle diameter D 2 of the graphite, by the coverage to 30% to 70%, the metal oxide 20 in the active material layer 11 is Since the LTO functions as an active material without losing the carbon material 21 or forming an excessive resistance layer, and the lithium ion diffusion rate is high, the high output of the battery The capacity can be increased at the same time. Thereby, it is possible to realize a lithium ion secondary battery that does not degrade the high output and high capacity characteristics of the battery.

なお、電解液との副反応によるガス発生抑制の観点から、LTOの平均粒径は1μm以上が好ましい。   From the viewpoint of suppressing gas generation due to side reaction with the electrolytic solution, the average particle size of LTO is preferably 1 μm or more.

ところで、図3に示した模式図では、金属酸化物20及び炭素材料21を、平均粒径(D50)の大きさを用いて表示したが、実際には、それぞれの粒径は、一定の粒度分布をもって分散している。もし、粒度分布が広がっていると、粒子径の大きな金属酸化物20が存在することにより、被覆率が低下するおそれがある。同様に、粒子径の大きな炭素材料21が存在することにより、被覆率が低下するおそれがあるため、LTOの90%積算粒子径(D90)が、4μm以下であることが好ましく、被覆率の低下のない、電池特性の高い電池を得ることができる。同じく、黒鉛の90%積算粒子径(D90)が、40μm以下であれば、被覆率の低下のない、電池特性の高い電池を得ることができる。   By the way, in the schematic diagram shown in FIG. 3, the metal oxide 20 and the carbon material 21 are displayed using the average particle size (D50), but in actuality, each particle size is a constant particle size. Distributed with distribution. If the particle size distribution is wide, the metal oxide 20 having a large particle size is present, which may reduce the coverage. Similarly, since the coverage may be reduced due to the presence of the carbon material 21 having a large particle size, the 90% cumulative particle size (D90) of LTO is preferably 4 μm or less, and the coverage is reduced. A battery having high battery characteristics can be obtained. Similarly, when the 90% cumulative particle diameter (D90) of graphite is 40 μm or less, a battery having high battery characteristics without a reduction in coverage can be obtained.

本実施形態における負極2は、通常用いる方法、例えば、ダイコート法、あるいはグラビアコート法等により、集電体10上に、活物質層11を塗布、乾燥して製造することができる。   The negative electrode 2 in this embodiment can be manufactured by applying and drying the active material layer 11 on the current collector 10 by a commonly used method such as a die coating method or a gravure coating method.

以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、もちろん、種々の改変が可能である。例えば、上記実施形態においては、負極2は、集電体10の片面に活物質層11及び保護層12を形成したが、集電体10の両面に形成してもよい。   As mentioned above, although this invention was demonstrated by suitable embodiment, such description is not a limitation matter and of course various modifications are possible. For example, although the active material layer 11 and the protective layer 12 are formed on one surface of the current collector 10 in the above embodiment, the negative electrode 2 may be formed on both surfaces of the current collector 10.

本発明は、自動車、電動バイク又は電動遊具等の駆動用電源として有用である。   The present invention is useful as a power source for driving automobiles, electric motorcycles, electric playground equipment and the like.

1 正極
2 負極
3 セパレータ
4 電極群
5 正極リード
6 負極リード
7 電池ケース
8 封口体
9 ガスケット
10 集電体
11 活物質層(第1の層)
12 保護層(第2の層)
20 金属酸化物(LTO)
21 炭素材料(黒鉛)
100 リチウムイオン二次電池
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Electrode group 5 Positive electrode lead 6 Negative electrode lead 7 Battery case 8 Sealing body 9 Gasket 10 Current collector 11 Active material layer (1st layer)
12 Protective layer (second layer)
20 Metal oxide (LTO)
21 Carbon material (graphite)
100 Lithium ion secondary battery

Claims (6)

集電体と、前記集電体の上に形成された活物質を含む層を備えたリチウムイオン二次電池用負極であって、
前記活物質は、炭素材料と金属酸化物とからなり、
前記金属酸化物の平均粒径は、前記炭素材料の平均粒径の1/10以下であり、
前記炭素材料の表面の少なくとも一部が前記金属酸化物で被覆されており、
前記金属酸化物の前記炭素材料に対する被覆率が30%以上、70%以下であるリチウムイオン二次電池用負極。
A negative electrode for a lithium ion secondary battery comprising a current collector and a layer containing an active material formed on the current collector,
The active material comprises a carbon material and a metal oxide,
The average particle diameter of the metal oxide is 1/10 or less of the average particle diameter of the carbon material,
At least part of the surface of the carbon material is coated with the metal oxide;
A negative electrode for a lithium ion secondary battery, wherein a coverage of the metal oxide with respect to the carbon material is 30% or more and 70% or less.
前記金属酸化物は、チタン酸リチウムである請求項1に記載のリチウムイオン二次電池用負極。   The negative electrode for a lithium ion secondary battery according to claim 1, wherein the metal oxide is lithium titanate. 前記金属酸化物の平均粒径は、1μm以上である請求項1または2に記載のリチウムイオン二次電池用負極。   3. The negative electrode for a lithium ion secondary battery according to claim 1, wherein the metal oxide has an average particle size of 1 μm or more. 前記金属酸化物は、前記活物質中に10wt%以上、30wt%以下含まれる請求項1〜3のいずれかに記載のリチウムイオン二次電池用負極。   The negative electrode for a lithium ion secondary battery according to any one of claims 1 to 3, wherein the metal oxide is contained in the active material in an amount of 10 wt% to 30 wt%. 前記炭素材料は、黒鉛である請求項1〜4のいずれかに記載のリチウムイオン二次電池用負極。   The negative electrode for a lithium ion secondary battery according to claim 1, wherein the carbon material is graphite. 請求項1〜5のいずれかに記載のリチウムイオン二次電池用負極を備えたリチウムイオン二次電池。   The lithium ion secondary battery provided with the negative electrode for lithium ion secondary batteries in any one of Claims 1-5.
JP2011288460A 2011-12-28 2011-12-28 Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery using the same Pending JP2015046219A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011288460A JP2015046219A (en) 2011-12-28 2011-12-28 Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery using the same
PCT/JP2012/008015 WO2013099138A1 (en) 2011-12-28 2012-12-14 Negative electrode for lithium ion secondary battery and lithium ion secondary battery having negative electrode for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011288460A JP2015046219A (en) 2011-12-28 2011-12-28 Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2015046219A true JP2015046219A (en) 2015-03-12

Family

ID=48696686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011288460A Pending JP2015046219A (en) 2011-12-28 2011-12-28 Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery using the same

Country Status (2)

Country Link
JP (1) JP2015046219A (en)
WO (1) WO2013099138A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018185931A (en) * 2017-04-25 2018-11-22 トヨタ自動車株式会社 Negative electrode active material particles for lithium ion secondary battery and manufacturing method thereof
US20190081348A1 (en) * 2017-09-11 2019-03-14 Toyota Jidosha Kabushiki Kaisha Negative electrode, lithium ion secondary battery, method of manufacturing negative electrode, and method of manufacturing lithium ion secondary battery
JP2020047387A (en) * 2018-09-14 2020-03-26 トヨタ自動車株式会社 Negative electrode for lithium ion secondary battery
WO2021095719A1 (en) * 2019-11-11 2021-05-20 昭和電工株式会社 Composite material, manufacturing method therefor, negative electrode material for lithium ion secondary battery, and the like

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110635106A (en) * 2019-10-23 2019-12-31 珠海格力电器股份有限公司 Pole piece, lithium ion battery and manufacturing method of pole piece

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063394A (en) * 2002-07-31 2004-02-26 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
WO2009002053A2 (en) * 2007-06-22 2008-12-31 Lg Chem, Ltd. Anode material of excellent conductivity and high power secondary battery employed with the same
JP2011090876A (en) * 2009-10-22 2011-05-06 Toyota Motor Corp Lithium secondary battery and method of manufacturing the same
JP5073105B2 (en) * 2010-06-30 2012-11-14 パナソニック株式会社 Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018185931A (en) * 2017-04-25 2018-11-22 トヨタ自動車株式会社 Negative electrode active material particles for lithium ion secondary battery and manufacturing method thereof
US10938025B2 (en) 2017-04-25 2021-03-02 Toyota Jidosha Kabushiki Kaisha Negative electrode active material particles for lithium ion secondary battery and method of producing the same
US20190081348A1 (en) * 2017-09-11 2019-03-14 Toyota Jidosha Kabushiki Kaisha Negative electrode, lithium ion secondary battery, method of manufacturing negative electrode, and method of manufacturing lithium ion secondary battery
US10818962B2 (en) * 2017-09-11 2020-10-27 Toyota Jidosha Kabushiki Kaisha Negative electrode, lithium ion secondary battery, method of manufacturing negative electrode, and method of manufacturing lithium ion secondary battery
JP2020047387A (en) * 2018-09-14 2020-03-26 トヨタ自動車株式会社 Negative electrode for lithium ion secondary battery
WO2021095719A1 (en) * 2019-11-11 2021-05-20 昭和電工株式会社 Composite material, manufacturing method therefor, negative electrode material for lithium ion secondary battery, and the like

Also Published As

Publication number Publication date
WO2013099138A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP2013073924A (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
US10535870B2 (en) Electrical device
JP6007315B2 (en) Nonaqueous electrolyte secondary battery
JP6120950B2 (en) Nonaqueous electrolyte secondary battery
JP2012104270A (en) All-solid state battery
JP6187602B2 (en) Electrical device
RU2539318C1 (en) ACTIVE MATERIAL WITH Si ALLOY FOR NEGATIVE ELECTRODE USED IN ELECTRICAL DEVICES
JP2010257893A (en) Bipolar type electrode and bipolar type secondary battery using this
JP2011029075A (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
JPWO2015111192A1 (en) Electrical device
JP7274300B2 (en) All-solid battery
JP2015046219A (en) Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery using the same
JP2018163806A (en) Nonaqueous electrolyte secondary battery
JP2013045515A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and production method therefor, positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2012128274A1 (en) Electrode for non-aqueous electrolyte secondary battery, and process for producing same
JP2013073928A (en) Method for manufacturing negative electrode for lithium ion secondary battery, and negative electrode for lithium ion secondary battery
US9640800B2 (en) Nonaqueous electrolyte secondary battery having a positive electrode including an aluminum foil and a positive electrode active material layer formed thereon
JP2016076348A (en) Secondary battery
JP6252604B2 (en) Electrical device
JP2017216149A (en) Nonaqueous electrolyte secondary battery
JP2017041407A (en) Lithium ion secondary battery
CN112840477B (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using same
JP2016106345A (en) Nonaqueous electrolyte secondary battery
WO2014199781A1 (en) Negative-electrode active material for use in electrical device and electrical device using same
JP6838359B2 (en) Non-aqueous electrolyte secondary battery