JP2015030767A - Heat resistant resin non-foam sheet and container - Google Patents

Heat resistant resin non-foam sheet and container Download PDF

Info

Publication number
JP2015030767A
JP2015030767A JP2013159646A JP2013159646A JP2015030767A JP 2015030767 A JP2015030767 A JP 2015030767A JP 2013159646 A JP2013159646 A JP 2013159646A JP 2013159646 A JP2013159646 A JP 2013159646A JP 2015030767 A JP2015030767 A JP 2015030767A
Authority
JP
Japan
Prior art keywords
mass
resistant resin
heat
styrene
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013159646A
Other languages
Japanese (ja)
Other versions
JP6353638B2 (en
Inventor
山口 泰生
Yasuo Yamaguchi
泰生 山口
和広 好岡
Kazuhiro Yoshioka
和広 好岡
雅史 塚田
Masashi Tsukada
雅史 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Styrene Co Ltd
Original Assignee
Toyo Styrene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Styrene Co Ltd filed Critical Toyo Styrene Co Ltd
Priority to JP2013159646A priority Critical patent/JP6353638B2/en
Publication of JP2015030767A publication Critical patent/JP2015030767A/en
Application granted granted Critical
Publication of JP6353638B2 publication Critical patent/JP6353638B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Package Specialized In Special Use (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat resistant resin non-foam sheet excellent in the balance of heat resistance, strength, moldability and oil resistance and capable of especially preferably being used as a food container for microwave ovens.SOLUTION: The heat resistant resin non-foam sheet is made of 97-15 pts.mass of a styrene methacrylic acid copolymer including 2-13 mass% of methacrylic acid, 3-25 pts.mass of polyphenylene ether and 0-60 pts.mass of polystyrene and has a weight average molecular weight (Mw) of 160,000 or more, where the total mixed amount of respective resin components in the heat resistant resin is 100 pts.mass.

Description

本発明は、耐熱性、強度、成形性、耐油性のバランスに優れ、特に電子レンジ用食品容器として好適に使用できる耐熱性樹脂非発泡シートを提供する。   The present invention provides a heat-resistant resin non-foamed sheet that has an excellent balance of heat resistance, strength, moldability, and oil resistance, and that can be suitably used particularly as a food container for microwave ovens.

ポリスチレン系樹脂シートは剛性に優れ、且つ比較的安価であることから、惣菜容器や弁当容器等の食品包装容器として幅広く使用されている。一方で、近年の電子レンジの普及により、こうした食品包装容器には、レンジアップによって変形の生じない高い耐熱性が求められている。   Polystyrene resin sheets are excellent in rigidity and relatively inexpensive, and are therefore widely used as food packaging containers such as sugar beet containers and lunch boxes. On the other hand, with the recent widespread use of microwave ovens, such food packaging containers are required to have high heat resistance that does not deform due to range up.

しかしながら、周知の如くポリスチレン系樹脂単独での耐熱性は低いため、電子レンジで加熱調理や再加熱を行った場合、接触する高温の油や沸騰水によって著しい熱変形を生じる。   However, as is well known, since the heat resistance of polystyrene resin alone is low, when heat cooking or reheating is performed in a microwave oven, significant thermal deformation occurs due to high temperature oil or boiling water that comes into contact.

ポリスチレン系樹脂シートの耐熱性を改善する方法として、特許文献1にはスチレンとアクリル酸、メタクリル酸または無水マレイン酸との共重合体よりなる2軸延伸シートが開示されている。しかしながら、これらのシートでは耐熱性を上げるためにアクリル酸、メタクリル酸、無水マレイン酸の比率を上げた場合の脆性が問題となる。また、スチレン−メタクリル酸共重合体の脆性を改良する方法として、特許文献2にはスチレン−ブタジエン共重合体などのエラストマー成分を配合する方法が開示されているが、脆性改良には比較的多くのエラストマー成分が必要となり、耐熱性と剛性が低下する問題があった。   As a method for improving the heat resistance of a polystyrene-based resin sheet, Patent Document 1 discloses a biaxially stretched sheet made of a copolymer of styrene and acrylic acid, methacrylic acid or maleic anhydride. However, these sheets have a problem of brittleness when the ratio of acrylic acid, methacrylic acid, and maleic anhydride is increased in order to increase heat resistance. As a method for improving the brittleness of a styrene-methacrylic acid copolymer, Patent Document 2 discloses a method of blending an elastomer component such as a styrene-butadiene copolymer. Thus, there is a problem that heat resistance and rigidity are lowered.

さらに、ポリスチレン系樹脂シートの耐熱性と靱性を両立させる方法として特許文献3には一般ポリスチレンとポリフェニレンエーテルからなる2軸延伸シートが開示されており、特許文献4にはスチレン系樹脂とポリフェニレンエーテルのブレンド樹脂を表層に有する積層シートが開示されている。しかしながら、これらの方法では耐熱性を上げるために、多くのポリフェニレンエーテルが必要となり、食品用途として使用する場合、ポリフェニレンエーテル特有の臭気が問題となる。臭気を改善する方法として、特許文献5にはゼオライト等を含有する方法が開示されているが、大量の無機物が存在するために靱性の低下やシートの外観不良が問題となる。   Further, Patent Document 3 discloses a biaxially stretched sheet made of general polystyrene and polyphenylene ether as a method for achieving both heat resistance and toughness of a polystyrene resin sheet, and Patent Document 4 discloses a styrene resin and polyphenylene ether. A laminated sheet having a blend resin as a surface layer is disclosed. However, these methods require a large amount of polyphenylene ether in order to increase heat resistance, and when used for food applications, the odor peculiar to polyphenylene ether becomes a problem. As a method for improving odor, Patent Document 5 discloses a method containing zeolite or the like. However, since a large amount of an inorganic substance is present, a decrease in toughness and a poor appearance of a sheet are problematic.

特開昭62−25031号公報JP-A 62-25031 特開平3−269040号公報JP-A-3-269040 特開平2−55122号公報JP-A-2-55122 特開平5−24155号公報Japanese Patent Laid-Open No. 5-24155 特開2008−94919公報JP 2008-94919 A

本発明者らは、上記に記載したポリスチレン系樹脂を用いた非発泡シートの耐熱性と、強度、成形性、耐油性のバランスに優れるという課題を達成するため、鋭意研究を進めたところ、特定の組成を持つスチレン−メタクリル酸共重合体とポリフェニレンエーテルを組み合わせ、特定の重量平均分子量(Mw)とする事で、耐熱性、強度、成形性、耐油性のバランスに優れる耐熱性樹脂非発泡シートが得られる事を見出し、本発明の完成に至った。   The present inventors have conducted extensive research to achieve the problem of excellent balance between heat resistance and strength, moldability, and oil resistance of the non-foamed sheet using the polystyrene resin described above. A heat-resistant resin non-foamed sheet excellent in the balance of heat resistance, strength, moldability, and oil resistance by combining a styrene-methacrylic acid copolymer having a composition of 5 and polyphenylene ether to a specific weight average molecular weight (Mw). Has been found, and the present invention has been completed.

即ち、本発明は、下記(1)〜(6)に示すところである。
(1)メタクリル酸の含有量が2〜13質量%であるスチレン−メタクリル酸共重合体97〜15質量部、ポリフェニレンエーテル3〜25質量部、ポリスチレン0〜60質量部からなり、重量平均分子量(Mw)が16万以上である耐熱性樹脂非発泡シート。ただし、この耐熱性樹脂中の各樹脂成分の混合量は、合計100質量部とする。
(2)Z平均分子量(Mz)/重量平均分子量(Mw)が1.6以上である前記(1)記載の耐熱性樹脂非発泡シート。
(3)前記耐熱性樹脂がゴム補強材を1〜10質量部含む事を特徴とする前記(1)〜(2)記載の耐熱性樹脂非発泡シート。
(4)前記ゴム補強材がハイインパクトポリスチレンであることを特徴とする前記(3)記載の耐熱性樹脂非発泡シート。
(5)前記ハイインパクトポリスチレンのゴム分が5〜12質量%である事を特徴とする前記(4)記載の耐熱性樹脂非発泡シート。
(6)前記(1)〜(5)記載の耐熱性樹脂非発泡シートを成形してなる食品包装用容器。
That is, the present invention is as shown in the following (1) to (6).
(1) A styrene-methacrylic acid copolymer having a methacrylic acid content of 2 to 13% by mass, 97 to 15 parts by mass, 3 to 25 parts by mass of a polyphenylene ether, and 0 to 60 parts by mass of polystyrene. A heat-resistant resin non-foamed sheet having a Mw) of 160,000 or more. However, the total amount of each resin component in the heat resistant resin is 100 parts by mass.
(2) The heat-resistant resin non-foamed sheet according to (1), wherein the Z average molecular weight (Mz) / weight average molecular weight (Mw) is 1.6 or more.
(3) The heat resistant resin non-foamed sheet according to (1) to (2), wherein the heat resistant resin contains 1 to 10 parts by mass of a rubber reinforcing material.
(4) The heat-resistant resin non-foamed sheet according to (3), wherein the rubber reinforcing material is high impact polystyrene.
(5) The heat-resistant resin non-foamed sheet according to (4), wherein the rubber content of the high-impact polystyrene is 5 to 12% by mass.
(6) A food packaging container formed by molding the heat-resistant resin non-foamed sheet according to (1) to (5).

本発明の耐熱性樹脂非発泡シートは耐熱性と強度、成形性、耐油性のバランスに優れるため、シートを薄肉軽量化した場合でも十分な耐熱性と強度を有する食品容器を提供する事が出来る。また、油と接触しても割れの発生が無く、特に電子レンジ用食品容器として好適に使用することができる。   Since the heat-resistant resin non-foamed sheet of the present invention has an excellent balance of heat resistance and strength, moldability, and oil resistance, it is possible to provide a food container having sufficient heat resistance and strength even when the sheet is thin and light. . Moreover, even if it contacts with oil, there is no generation | occurrence | production of a crack and it can be conveniently used especially as a food container for microwave ovens.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のスチレン−メタクリル酸共重合体はスチレンモノマーとメタクリル酸モノマーを熱、或いは過酸化物触媒によるラジカル重合により共重合させる事で得られ、重合方式としては塊状重合、溶液重合、懸濁重合等、公知のスチレン重合方式を用いる事が出来る。スチレン−メタクリル酸共重合体中のメタクリル酸の含有量は2〜13質量%であり、好ましくは2〜7質量%、更に好ましくは3〜6質量%である。メタクリル酸の含有量が2質量%未満では耐熱性の向上効果が得られず、耐油性も低下する。また、メタクリル酸の含有量が13質量%を超える場合、耐熱性樹脂非発泡シートの強度と成形性が不十分となるため好ましくない。メタクリル酸の含有量は、重合工程における原料液のメタクリル酸濃度によって調整出来る。   The styrene-methacrylic acid copolymer of the present invention can be obtained by copolymerizing a styrene monomer and a methacrylic acid monomer by heat or radical polymerization with a peroxide catalyst. The polymerization method is bulk polymerization, solution polymerization, suspension polymerization. For example, a known styrene polymerization method can be used. The content of methacrylic acid in the styrene-methacrylic acid copolymer is 2 to 13% by mass, preferably 2 to 7% by mass, and more preferably 3 to 6% by mass. When the content of methacrylic acid is less than 2% by mass, the effect of improving heat resistance cannot be obtained, and the oil resistance is also lowered. Moreover, when content of methacrylic acid exceeds 13 mass%, since the intensity | strength and moldability of a heat resistant resin non-foamed sheet will become inadequate, it is unpreferable. Content of methacrylic acid can be adjusted with the methacrylic acid density | concentration of the raw material liquid in a superposition | polymerization process.

本発明のスチレン−メタクリル酸共重合体の重量平均分子量(Mw)は16万以上であることが好ましく、20万以上であることがより好ましく、22万以上であることが特に好ましい。Mwが16万未満では耐熱性樹脂非発泡シートの強度と成形性が不十分となる。スチレン−メタクリル酸共重合体のMwは重合工程での反応温度、滞留時間、重合開始剤の種類及び添加量、連鎖移動剤の種類及び添加量、重合時に使用する溶媒の種類及び量等によって調整する事が出来る。   The weight average molecular weight (Mw) of the styrene-methacrylic acid copolymer of the present invention is preferably 160,000 or more, more preferably 200,000 or more, and particularly preferably 220,000 or more. If Mw is less than 160,000, the strength and formability of the heat-resistant resin non-foamed sheet will be insufficient. Mw of styrene-methacrylic acid copolymer is adjusted by reaction temperature, residence time, type and amount of polymerization initiator in polymerization process, type and amount of chain transfer agent, type and amount of solvent used during polymerization, etc. I can do it.

本発明のポリフェニレンエーテルは、フェノール化合物の酸化カップリングにより製造される。ポリフェニレンエーテルの酸化カップリング反応触媒としては、特に制限はないが、銅、マンガン、コバルト等の重金属化合物の少なくとも1種を用いる(米国特許第4,042,056号、同第3,306,874号、同第3,306,875号公報等参照)。
フェノールの具体例としては、フェノール、o−,m−,p−クレゾール、2,6−、2,5−、2,4−または3,5−ジメチルフェノール、2−メチル−6−フェニルフェノール、2,6−ジフェニルフェノール、2,6−ジエチルフェノール、2−メチル−6−t−ブチルフェノールなどが挙げられる。上記フェノール化合物は二種以上を共重合してもよく、さらに得られるホモポリマーもしくはコポリマーを二種以上混合使用してよい。上記フェノール化合物の中でも特に2,6−ジメチルフェノールが好適であり、従って本発明においてはこれを重合して得られるポリ(2,6−ジメチルー1,4−フェニレン)エーテルが良好な結果を与える。
本発明における上記ポリフェニレンエーテルの分子量は、特に限定はしないが好適なのは極限粘度が0.3dl/g以上(温度25℃、溶媒クロロホルム中)のものである。0.3dl/g未満では機械的強度が劣る。また、好ましくは極限粘度0.3〜0.6dl/gである。
The polyphenylene ether of the present invention is produced by oxidative coupling of a phenol compound. The oxidative coupling reaction catalyst of polyphenylene ether is not particularly limited, but at least one heavy metal compound such as copper, manganese, cobalt and the like is used (US Pat. Nos. 4,042,056 and 3,306,874). No. 3,306,875, etc.).
Specific examples of phenol include phenol, o-, m-, p-cresol, 2,6-, 2,5-, 2,4- or 3,5-dimethylphenol, 2-methyl-6-phenylphenol, 2,6-diphenylphenol, 2,6-diethylphenol, 2-methyl-6-t-butylphenol and the like can be mentioned. Two or more of the phenol compounds may be copolymerized, and two or more homopolymers or copolymers obtained may be used in combination. Among the above phenol compounds, 2,6-dimethylphenol is particularly preferable. Therefore, in the present invention, poly (2,6-dimethyl-1,4-phenylene) ether obtained by polymerizing this gives good results.
The molecular weight of the polyphenylene ether in the present invention is not particularly limited, but preferably has an intrinsic viscosity of 0.3 dl / g or more (at a temperature of 25 ° C. in a solvent chloroform). If it is less than 0.3 dl / g, the mechanical strength is inferior. The intrinsic viscosity is preferably 0.3 to 0.6 dl / g.

本発明のポリスチレンはスチレンのホモポリマーであり、ラジカル重合、アニオン重合等公知の方法によって得られる。分子量は特に限定しないが、重量平均分子量(Mw)が20万以上であることが好ましい。   The polystyrene of the present invention is a homopolymer of styrene and can be obtained by known methods such as radical polymerization and anionic polymerization. Although molecular weight is not specifically limited, It is preferable that a weight average molecular weight (Mw) is 200,000 or more.

本発明の耐熱性樹脂は前記スチレン−メタクリル酸共重合体、ポリフェニレンエーテル、ポリスチレンをブレンドして得られる。これら樹脂は比較的良好な相溶性を有するが、特にポリフェニレンエーテルと他の成分のガラス転移温度差が大きいため分散が不十分となり易く、その場合、本発明の効果が得られない場合がある。よって、シート押出機に導入する前に溶融コンパウンドしておくことが望ましい。溶融コンパウンドの方法としては、スチレン−メタクリル酸共重合体、ポリフェニレンエーテル、ポリスチレンを全てコンパウンドする方法と、ポリフェニレンエーテル、ポリスチレンのみをコンパウンドし、シート押出機に導入する前にスチレン−メタクリル酸共重合体とペレット状態でドライブレンドする方法等が挙げられる。   The heat resistant resin of the present invention is obtained by blending the styrene-methacrylic acid copolymer, polyphenylene ether, and polystyrene. These resins have relatively good compatibility. However, since the glass transition temperature difference between polyphenylene ether and other components is particularly large, dispersion tends to be insufficient, and in this case, the effects of the present invention may not be obtained. Therefore, it is desirable to melt and compound before introducing into the sheet extruder. As a method of melt compounding, there are a method of compounding all of styrene-methacrylic acid copolymer, polyphenylene ether and polystyrene, and a compound of styrene-methacrylic acid copolymer before compounding only polyphenylene ether and polystyrene and introducing them into a sheet extruder. And a method of dry blending in a pellet state.

本発明の耐熱性樹脂は当該樹脂組成物100質量部中にスチレン−メタクリル酸共重合体を97〜15質量部含み、より好ましくは97〜50質量部であり、更に好ましくは97〜75質量部である。スチレン−メタクリル酸共重合体が97質量部を超えると耐熱性の改良効果が得られない場合があり、15質量部未満では強度と成形性、耐油性が不十分である。   The heat resistant resin of the present invention contains 97 to 15 parts by mass of styrene-methacrylic acid copolymer in 100 parts by mass of the resin composition, more preferably 97 to 50 parts by mass, and still more preferably 97 to 75 parts by mass. It is. If the styrene-methacrylic acid copolymer exceeds 97 parts by mass, the effect of improving heat resistance may not be obtained, and if it is less than 15 parts by mass, the strength, moldability and oil resistance are insufficient.

本発明の耐熱性樹脂は当該樹脂組成物100質量部中にポリフェニレンエーテルを3〜25質量部含み、より好ましくは3〜15質量部であり、更に好ましくは3〜9質量部である。ポリフェニレンエーテルが3質量部未満の場合、耐熱性が不十分であり、25質量部を超える場合、成形性が低下するとともに、臭気が悪化するため消臭剤が必要となり、結果として耐熱性樹脂非発泡シートの強度が低下する。なお、ポリフェニレンエーテルとしては、変性PPEと称されるポリフェニレンエーテルと他の樹脂をアロイ化したものも用いることができるが、その場合は変性PPEに含まれるポリフェニレンエーテルの含有量を上記範囲に調整する。   The heat resistant resin of the present invention contains 3 to 25 parts by mass of polyphenylene ether in 100 parts by mass of the resin composition, more preferably 3 to 15 parts by mass, and further preferably 3 to 9 parts by mass. When the polyphenylene ether is less than 3 parts by mass, the heat resistance is insufficient, and when it exceeds 25 parts by mass, the moldability is deteriorated and the odor is deteriorated, so a deodorant is required. The strength of the foam sheet decreases. As the polyphenylene ether, a polyphenylene ether called modified PPE and an alloy of other resins can be used. In that case, the content of the polyphenylene ether contained in the modified PPE is adjusted to the above range. .

本発明の耐熱性樹脂は当該樹脂組成物100質量部中にポリスチレンを0〜60質量部含む。ポリスチレンを含有させる事により、スチレン−メタクリル酸共重合体とポリフェニレンエーテルの分散性を改善する事が出来るが、60質量部を超える場合、強度と耐熱性、耐油性が低下するため好ましくない。   The heat resistant resin of the present invention contains 0 to 60 parts by mass of polystyrene in 100 parts by mass of the resin composition. By containing polystyrene, the dispersibility of the styrene-methacrylic acid copolymer and the polyphenylene ether can be improved, but when it exceeds 60 parts by mass, the strength, heat resistance and oil resistance are lowered, which is not preferable.

本発明の耐熱性樹脂の重量平均分子量(Mw)は16万以上であり、好ましくは18万以上であり、さらに好ましくは20万以上である。Mwが16万未満では十分な強度と成形性が得られない。   The weight average molecular weight (Mw) of the heat resistant resin of the present invention is 160,000 or more, preferably 180,000 or more, and more preferably 200,000 or more. If Mw is less than 160,000, sufficient strength and formability cannot be obtained.

本発明の耐熱性樹脂のZ平均分子量(Mz)と重量平均分子量(Mw)の比(Mz/Mw)は1.6以上である事が好ましい。Mz/Mwが1.6未満の場合、成形性が低下する。   The ratio (Mz / Mw) of the Z average molecular weight (Mz) and the weight average molecular weight (Mw) of the heat resistant resin of the present invention is preferably 1.6 or more. When Mz / Mw is less than 1.6, moldability is lowered.

本発明の耐熱性樹脂は当該樹脂100質量部中にゴム補強材を1〜10質量部含むことが好ましい。ゴム補強材とは、スチレンとブタジエンを構成単位として持つゴム質ポリマーであって、具体的には、ハイインパクトポリスチレン、スチレン−ブタジエン共重合体、スチレン−ブタジエン−スチレン共重合体、スチレン−エチレン−ブチレン−スチレン共重合体、メタクリル酸メチル−ブタジエン−スチレン共重合体等が挙げられる。中でも耐熱性と補強効果のバランスの面でハイインパクトポリスチレンが好ましい。ハイインパクトポリスチレンのゴム分は5〜12質量%が好ましく、7〜12質量%がより好ましい。
なお、ハイインパクトポリスチレン中のゴム分は、ハイインパクトポリスチレンをクロロホルムに溶解させ、一定量の一塩化ヨウ素/四塩化炭素溶液を加え暗所に約1時間放置後、ヨウ化カリウム溶液を加え、過剰の一塩化ヨウ素を0.1Nチオ硫酸ナトリウム/エタノール水溶液で滴定し、付加した一塩化ヨウ素量から求めることができる。
The heat resistant resin of the present invention preferably contains 1 to 10 parts by mass of a rubber reinforcing material in 100 parts by mass of the resin. The rubber reinforcing material is a rubbery polymer having styrene and butadiene as structural units, specifically, high impact polystyrene, styrene-butadiene copolymer, styrene-butadiene-styrene copolymer, styrene-ethylene- Examples include butylene-styrene copolymer and methyl methacrylate-butadiene-styrene copolymer. Among them, high impact polystyrene is preferable in terms of the balance between heat resistance and reinforcing effect. The rubber content of the high impact polystyrene is preferably 5 to 12% by mass, and more preferably 7 to 12% by mass.
In addition, the rubber content in high-impact polystyrene is obtained by dissolving high-impact polystyrene in chloroform, adding a certain amount of iodine monochloride / carbon tetrachloride solution and leaving it in the dark for about 1 hour. The iodine monochloride can be titrated with 0.1N sodium thiosulfate / ethanol aqueous solution, and the amount of iodine monochloride added can be determined.

本発明の耐熱性樹脂には添加剤として、リン系、フェノール系、アミン系等の安定剤、ステアリン酸、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム等の高級脂肪酸、及びその塩やエチレンビスステアリルアミド等の滑剤、流動パラフィン等の可塑剤、ゼオライト、活性炭、リン酸ジルコニウム等の消臭剤、顔料、染色剤、帯電防止剤、防曇剤、紫外線吸収剤等を添加する事ができる。   The heat-resistant resin of the present invention includes additives such as phosphorus-based, phenol-based, and amine-based stabilizers, higher fatty acids such as stearic acid, zinc stearate, calcium stearate, and magnesium stearate, and salts thereof and ethylene bisstearyl. Lubricants such as amides, plasticizers such as liquid paraffin, deodorizers such as zeolite, activated carbon and zirconium phosphate, pigments, dyeing agents, antistatic agents, antifogging agents, ultraviolet absorbers and the like can be added.

本発明の耐熱性樹脂には、本発明の耐熱性樹脂非発泡シートの製膜時に発生するトリミング屑や、シートを二次成形した際に発生するスケルトンと呼ばれる打抜き屑、容器使用後の廃棄物、または、それらのリサイクルペレットを配合することができる。また、本発明の耐熱性樹脂非発泡シート以外のポリスチレン系樹脂延伸シートやポリスチレン系樹脂発泡シート等から作成したリサイクル原料についても、本発明の効果を損なわない範囲で配合することができる。   The heat-resistant resin of the present invention includes trimming waste generated when the heat-resistant resin non-foamed sheet of the present invention is formed, punching waste called skeleton generated when the sheet is secondarily formed, waste after use of the container Or, those recycled pellets can be blended. In addition, recycled raw materials prepared from a polystyrene resin stretched sheet other than the heat-resistant resin non-foamed sheet of the present invention, a polystyrene resin foamed sheet, and the like can be blended within a range that does not impair the effects of the present invention.

本発明の耐熱性樹脂のビカット軟化温度は110〜130℃が好ましく、更に好ましくは115〜125℃である。ビカット軟化温度が110℃未満の場合、耐熱性樹脂非発泡シートを熱成形して得られる容器の耐レンジアップ変形が不十分となる。ビカット軟化温度が130℃を超える場合、成形性が低下する。   The Vicat softening temperature of the heat resistant resin of the present invention is preferably 110 to 130 ° C, more preferably 115 to 125 ° C. When the Vicat softening temperature is less than 110 ° C., the range-resistant deformation of the container obtained by thermoforming the heat-resistant resin non-foamed sheet becomes insufficient. When Vicat softening temperature exceeds 130 degreeC, a moldability will fall.

本発明の耐熱性樹脂には、耐熱性を上げるために、スチレン−メタクリル酸メチル共重合体、スチレン−メタクリル酸−メタクリル酸メチル共重合体、スチレン−無水マレイン酸共重合体、スチレン−マレイミド共重合体等のポリスチレン系樹脂、ポリプロピレン、プロピレン−α−オレフィン共重合体等のポリオレフィン系樹脂、ポリL−乳酸、ポリD−乳酸、ポリD、L−乳酸等の脂肪族ポリエステル系樹脂を本発明の効果を損なわない範囲で配合することができる。   In order to increase the heat resistance, the heat resistant resin of the present invention includes a styrene-methyl methacrylate copolymer, a styrene-methacrylic acid-methyl methacrylate copolymer, a styrene-maleic anhydride copolymer, and a styrene-maleimide copolymer. Polystyrene resins such as polymers, polyolefin resins such as polypropylene and propylene-α-olefin copolymers, and aliphatic polyester resins such as poly L-lactic acid, poly D-lactic acid, poly D, and L-lactic acid. It can mix | blend in the range which does not impair the effect.

本発明の耐熱性樹脂非発泡シートの製造方法としては、特に制限がなく、公知の方法が用いられる。例えば、溶融樹脂をTダイから押出した後、延伸ロールで流れ方向のみに延伸をかける1軸延伸法や、Tダイから押出したシートをロール群の速度比により1軸延伸した後、垂直方向に延伸する逐次2軸延伸法、テンターで同時2軸延伸する方法などが挙げられる。延伸倍率は、少なくとも1方向において、1.5〜7倍であることが好ましい。   There is no restriction | limiting in particular as a manufacturing method of the heat resistant resin non-foamed sheet of this invention, A well-known method is used. For example, after extruding a molten resin from a T die, a uniaxial stretching method in which stretching is performed only in the flow direction with a stretching roll, or a sheet extruded from a T die is uniaxially stretched according to the speed ratio of the roll group, and then vertically Examples thereof include a sequential biaxial stretching method of stretching and a method of simultaneous biaxial stretching with a tenter. The draw ratio is preferably 1.5 to 7 times in at least one direction.

本発明の耐熱性樹脂非発泡シートは、本発明の効果を損なわない範囲でポリスチレン等のスチレン系樹脂と多層化することができる。例えば、スチレン系樹脂からなるシートの両表層に本発明の耐熱性樹脂を積層する方法があり、3層ダイを使用した共押出法や、単層シートを別々に作成した後に各シートを貼りあわせる方法など、公知の方法を用いることができる。   The heat-resistant resin non-foamed sheet of the present invention can be multilayered with a styrene resin such as polystyrene as long as the effects of the present invention are not impaired. For example, there is a method of laminating the heat-resistant resin of the present invention on both surface layers of a sheet made of styrene resin, and a co-extrusion method using a three-layer die or a single-layer sheet is prepared separately, and then each sheet is bonded. A known method such as a method can be used.

本発明の耐熱性樹脂非発泡シートには、その片面もしくは両面に熱可塑性樹脂シート又はフィルムを積層することにより、成形性、強度、剛性を改良することができる。上記、シートやフィルムを構成する熱可塑性樹脂としてはポリスチレン、ハイインパクトポリスチレン(HIPS)等のポリスチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂、高密度ポリエチレン、低密度ポリエチレン、直鎖低密度ポリエチレン、エチレン−酢酸ビニル共重合体等が挙げられる。また、逆に、本発明の耐熱性樹脂非発泡シートをHIPSシートやPSPにラミネートすることで、シートの耐熱性や強度を上げることも可能である。   Formability, strength, and rigidity can be improved by laminating a thermoplastic resin sheet or film on one or both sides of the heat-resistant resin non-foamed sheet of the present invention. As the thermoplastic resin constituting the sheet or film, polystyrene resin such as polystyrene and high impact polystyrene (HIPS), polypropylene resin, polyester resin, high density polyethylene, low density polyethylene, linear low density polyethylene, ethylene -Vinyl acetate copolymer etc. are mentioned. Conversely, the heat resistance and strength of the sheet can be increased by laminating the heat-resistant resin non-foamed sheet of the present invention on a HIPS sheet or PSP.

本発明の耐熱性樹脂非発泡シートには、必要に応じて、シートの表面に、防曇処理、帯電防止処理、コロナ処理、印刷処理等の表面処理を施すことができる。   If necessary, the heat-resistant resin non-foamed sheet of the present invention can be subjected to surface treatment such as anti-fogging treatment, antistatic treatment, corona treatment, and printing treatment.

本発明の耐熱性樹脂非発泡シートの厚さは0.01〜1.5mmであることが好ましく、0.1〜1.0mmであることがより好ましい。耐熱性樹脂非発泡シートの厚さが0.01mm未満では、2次成形後の容器の強度や耐熱性が低下する。耐熱性樹脂発泡シートの厚さが1.5mmを超える場合、2次成形時にシートの温度ムラが発生しやすく、成形性が悪化する。   The thickness of the heat-resistant resin non-foamed sheet of the present invention is preferably 0.01 to 1.5 mm, and more preferably 0.1 to 1.0 mm. When the thickness of the heat-resistant resin non-foamed sheet is less than 0.01 mm, the strength and heat resistance of the container after the secondary molding are lowered. When the thickness of the heat resistant resin foam sheet exceeds 1.5 mm, temperature unevenness of the sheet is likely to occur during secondary molding, and the moldability deteriorates.

本発明の耐熱性樹脂非発泡シートは真空成形法、圧空成形法、マッチドモールド法、リバースドロー法、エアストリップ法、リッジ法、プラグアンドリッジ法、熱盤成形法等などの公知の成形法により、トレー、惣菜容器、弁当容器、蓋材など各種形状の容器に成形することができる。   The heat-resistant resin non-foamed sheet of the present invention is formed by a known molding method such as vacuum molding, pressure molding, matched molding, reverse draw, air strip, ridge, plug and ridge, hot plate molding, etc. It can be formed into containers of various shapes such as trays, side dish containers, lunch boxes, and lids.

本発明の耐熱性樹脂非発泡シートを成形して得られる容器は、食品を入れた状態で電子レンジ加熱調理を行っても、熱による容器の変形が発生しないので、電子レンジ用食品容器として好適に使用できる。   The container obtained by molding the heat-resistant resin non-foamed sheet of the present invention is suitable as a food container for a microwave oven because it does not cause deformation of the container due to heat even when cooking in a microwave oven with food in it. Can be used for

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to these Examples.

<スチレン−メタクリル酸共重合体の製造>
(1)スチレン−メタクリル酸共重合体S−1の製造
下記第1〜第3反応器を直列に接続して重合工程を構成した。
<Production of styrene-methacrylic acid copolymer>
(1) Production of Styrene-Methacrylic Acid Copolymer S-1 The following first to third reactors were connected in series to constitute a polymerization step.

第1反応器:容積39Lの攪拌翼付完全混合型反応器
第2反応器:容積39Lの攪拌翼付完全混合型反応器
第3反応器:容積16Lのスタティックミキサー付プラグフロー反応器
First reactor: 39 L capacity complete mixing reactor with stirring blades Second reactor: 39 L capacity mixing mixing reactor with stirring blades Third reactor: 16 L capacity plug flow reactor with static mixer

各反応器の条件は以下の通りとした。   The conditions of each reactor were as follows.

第1反応器:[反応温度] 120℃
第2反応器:[反応温度] 128℃
第3反応器:[反応温度] 流れ方向に125〜135℃の温度勾配がつくように調整
First reactor: [reaction temperature] 120 ° C
Second reactor: [reaction temperature] 128 ° C
Third reactor: [Reaction temperature] Adjusted so that a temperature gradient of 125 to 135 ° C is applied in the flow direction.

原料液としては、以下のものを用いた。   The following were used as the raw material liquid.

スチレン97質量%、メタクリル酸3質量%のモノマー構成100質量部に対してエチルベンゼン10質量部、重合開始剤として2,2ビス(4,4−t−ブチルパーオキシシクロへキシル)プロパン0.025質量部を混合した原料液   10 parts by mass of ethylbenzene with respect to 100 parts by mass of the monomer composition of 97% by mass of styrene and 3% by mass of methacrylic acid, 0.025 of 2,2bis (4,4-t-butylperoxycyclohexyl) propane as a polymerization initiator Raw material liquid mixed with parts by mass

原料液を12.0kg/hrの供給速度で120℃に設定した第1反応器に連続的に供給し重合した後、次いで128℃に設定した第2反応器に連続的に装入し重合した。第2反応器出口での重合転化率は65%であった。更に125〜135℃の温度勾配がつくように調整した第3反応器にて重合転化率が70%になるまで重合を進行させた。
この重合液を直列に2段より構成される予熱器付き真空脱揮槽に導入し、未反応スチレン及びエチルベンゼンを分離した後、ストランド状に押し出して冷却した後切断してペレット化した。なお、1段目の予熱器の温度は200℃に設定し、真空脱揮槽の圧力は66.7kPaとし、2段目の予熱器の温度は240℃に設定し、真空脱揮槽の圧力は0.9kPaとした。得られたスチレン−メタクリル酸共重合体S−1の特性を表1に示す。
The raw material liquid was continuously supplied to the first reactor set at 120 ° C. at a supply rate of 12.0 kg / hr for polymerization, and then charged continuously into the second reactor set at 128 ° C. for polymerization. . The polymerization conversion rate at the outlet of the second reactor was 65%. Further, the polymerization was advanced in a third reactor adjusted so as to have a temperature gradient of 125 to 135 ° C. until the polymerization conversion reached 70%.
This polymerization solution was introduced into a vacuum devolatilization tank equipped with a preheater composed of two stages in series, and unreacted styrene and ethylbenzene were separated, then extruded into a strand, cooled, cut and pelletized. The temperature of the first stage preheater is set to 200 ° C., the pressure of the vacuum devolatilization tank is set to 66.7 kPa, the temperature of the second stage preheater is set to 240 ° C., and the pressure of the vacuum devolatilization tank is set. Was 0.9 kPa. The characteristics of the obtained styrene-methacrylic acid copolymer S-1 are shown in Table 1.

(2)スチレン−メタクリル酸共重合体S−2の製造
以下の原料液を用いた以外はS−1の製造と同様にした。その特性を表1に示す。
(2) Manufacture of styrene-methacrylic acid copolymer S-2 Except having used the following raw material liquids, it carried out similarly to manufacture of S-1. The characteristics are shown in Table 1.

<原料液>
スチレン95.5質量%、メタクリル酸4.5質量%のモノマー構成100質量部に対してエチルベンゼン10質量部、重合開始剤として2,2ビス(4,4−t−ブチルパーオキシシクロへキシル)プロパン0.025質量部を混合した原料液
<Raw material liquid>
10 parts by mass of ethylbenzene and 2,2 bis (4,4-t-butylperoxycyclohexyl) as a polymerization initiator with respect to 100 parts by mass of the monomer composition of 95.5% by mass of styrene and 4.5% by mass of methacrylic acid Raw material liquid mixed with 0.025 parts by mass of propane

(3)スチレン−メタクリル酸共重合体S−3の製造
以下の原料液を用い第1〜3反応器の温度条件を以下のように変更した以外はS−1の製造と同様にした。その特性を表1に示す。
(3) Production of Styrene-Methacrylic Acid Copolymer S-3 Except that the following raw material liquid was used and the temperature conditions of the first to third reactors were changed as follows, the production was the same as that of S-1. The characteristics are shown in Table 1.

<原料液>
スチレン93質量%、メタクリル酸7質量%のモノマー構成100質量部に対してエチルベンゼン10質量部、重合開始剤として2,2ビス(4,4−t−ブチルパーオキシシクロへキシル)プロパン0.02質量部を混合した原料液
<Raw material liquid>
10 parts by mass of ethylbenzene with respect to 100 parts by mass of the monomer composition of 93% by mass of styrene and 7% by mass of methacrylic acid, 0.02 of 2,2bis (4,4-t-butylperoxycyclohexyl) propane as a polymerization initiator Raw material liquid mixed with parts by mass

<条件>
第1反応器:[反応温度] 128℃
第2反応器:[反応温度] 138℃
第3反応器:[反応温度] 流れ方向に125〜138℃の温度勾配がつくように調整
<Conditions>
First reactor: [reaction temperature] 128 ° C
Second reactor: [reaction temperature] 138 ° C
Third reactor: [Reaction temperature] Adjusted so that a temperature gradient of 125 to 138 ° C is applied in the flow direction.

(4)スチレン−メタクリル酸共重合体S−4の製造
以下の原料液を用い第1〜3反応器の温度条件を以下のように変更した以外はS−1の製造と同様にした。その特性を表1に示す。
(4) Production of Styrene-Methacrylic Acid Copolymer S-4 Except that the temperature conditions of the first to third reactors were changed as follows using the following raw material liquid, the production was the same as the production of S-1. The characteristics are shown in Table 1.

<原料液>
スチレン88.5質量%、メタクリル酸11.5質量%のモノマー構成100質量部に対してエチルベンゼン10質量部、重合開始剤として2,2ビス(4,4−t−ブチルパーオキシシクロへキシル)プロパン0.03質量部、連鎖移動剤としてαメチルスチレンダイマー0.3質量部を混合した原料液
<Raw material liquid>
10 parts by mass of ethylbenzene and 2,2 bis (4,4-t-butylperoxycyclohexyl) as a polymerization initiator with respect to 100 parts by mass of the monomer composition of styrene 88.5% by mass and methacrylic acid 11.5% by mass Raw material liquid in which 0.03 part by mass of propane and 0.3 part by mass of α-methylstyrene dimer as a chain transfer agent are mixed

<条件>
第1反応器:[反応温度] 124℃
第2反応器:[反応温度] 138℃
第3反応器:[反応温度] 流れ方向に125〜138℃の温度勾配がつくように調整
<Conditions>
First reactor: [reaction temperature] 124 ° C
Second reactor: [reaction temperature] 138 ° C
Third reactor: [Reaction temperature] Adjusted so that a temperature gradient of 125 to 138 ° C is applied in the flow direction.

(5)スチレン−メタクリル酸共重合体S−5の製造
以下の原料液を用いた以外はS−1の製造と同様にした。その特性を表1に示す。
(5) Manufacture of styrene-methacrylic acid copolymer S-5 Except having used the following raw material liquids, it carried out similarly to manufacture of S-1. The characteristics are shown in Table 1.

<原料液>
スチレン99.1質量%、メタクリル酸0.9質量%のモノマー構成100質量部に対してエチルベンゼン10質量部、重合開始剤として2,2ビス(4,4−t−ブチルパーオキシシクロへキシル)プロパン0.02質量部を混合した原料液
<Raw material liquid>
10 parts by mass of ethylbenzene and 2,2 bis (4,4-t-butylperoxycyclohexyl) as a polymerization initiator with respect to 100 parts by mass of the monomer composition of 99.1% by mass of styrene and 0.9% by mass of methacrylic acid Raw material liquid mixed with 0.02 parts by mass of propane

Figure 2015030767
Figure 2015030767

<実施例1〜14、比較例1〜5>
上記の方法で製造したスチレン−メタクリル酸共重合体(S−1〜5)とポリスチレン、ポリフェニレンエーテル、ゴム補強材を表2〜4に示す質量部比率にてヘンシェルミキサーで混合し、230〜260℃に設定した二軸押出機(神戸製鋼所製、KTX30α)にて溶融コンパウンドした。ソリッド物性を表2〜4に示す。
<Examples 1-14, Comparative Examples 1-5>
The styrene-methacrylic acid copolymer (S-1 to 5) produced by the above method, polystyrene, polyphenylene ether, and rubber reinforcing material are mixed by a Henschel mixer at a mass part ratio shown in Tables 2 to 4, and 230 to 260. It melt-compounded with the twin-screw extruder (Kobe Steel Works make, KTX30 (alpha)) set to ° C. The solid physical properties are shown in Tables 2-4.

なお、ポリスチレン、ポリフェニレンエーテル、ゴム補強材としては以下のものを用いた。
<ポリスチレン>
GPPS 商品名:「トーヨースチロール HRM12」 東洋スチレン社製
Mw=25万、Mz/Mw=2.04
<ポリフェニレンエーテル>
商品名:「IUPIACE PX100L」 三菱エンジニアリングプラスチックス社製
極限粘度0.41g/dl
商品名:「IUPIACE PX100F」 三菱エンジニアリングプラスチックス社製
極限粘度0.36g/dl
商品名:「ノリルEFN4230」 サビックイノベーティブプラスチックス社製
ポリフェニレンエーテル/ポリスチレン=70/30
<ゴム補強材>
HIPS1 商品名:「トーヨースチロール H870」 東洋スチレン社製
ゴム分9.2%、ゴム粒子径2.8μm
HIPS2 商品名:「トーヨースチロール E640N」 東洋スチレン社製
ゴム分6.2%、ゴム粒子径2.5μm
SBS 商品名:「タフプレン 125」 旭化成ケミカルズ社製
ゴム分40%
The following materials were used as polystyrene, polyphenylene ether, and rubber reinforcement.
<Polystyrene>
GPPS product name: “Toyostyrene HRM12” manufactured by Toyo Styrene Co., Ltd. Mw = 250,000, Mz / Mw = 2.04
<Polyphenylene ether>
Product name: “IUPACE PX100L” Intrinsic viscosity 0.41 g / dl manufactured by Mitsubishi Engineering Plastics
Product name: “IUPACE PX100F” Intrinsic viscosity 0.36 g / dl, manufactured by Mitsubishi Engineering Plastics
Product name: “Noryl EFN 4230” Polyphenylene ether / polystyrene = 70/30 manufactured by Subic Innovative Plastics
<Rubber reinforcement>
HIPS1 Product name: “Toyostyrene H870” manufactured by Toyo Styrene Co., Ltd., rubber content 9.2%, rubber particle diameter 2.8 μm
HIPS2 Product name: “Toyostyrene E640N” manufactured by Toyo Styrene Co., Ltd., rubber content 6.2%, rubber particle diameter 2.5 μm
SBS product name: “Tufprene 125” Asahi Kasei Chemicals Corporation Rubber 40%

次に、前記の溶融コンパウンドした樹脂をスクリュー径40mmのシート押出機に供給した。樹脂溶融ゾーンの温度は220〜250℃に設定し、Tダイより吐出量10kg/hで溶融押出した後、連続して延伸ロールにて流れ方向に3.5倍延伸した後、テンターで垂直方向に4.0倍延伸し、厚み0.25mmの2軸延伸シートを得た。得られたシートの特性を表2〜4に示す。   Next, the melt-compounded resin was supplied to a sheet extruder having a screw diameter of 40 mm. The temperature of the resin melting zone is set to 220 to 250 ° C., melt-extruded from the T die at a discharge rate of 10 kg / h, continuously stretched 3.5 times in the flow direction by a stretching roll, and then vertically oriented by a tenter. And a biaxially stretched sheet having a thickness of 0.25 mm was obtained. The characteristic of the obtained sheet | seat is shown to Tables 2-4.

なお、各種物性、性能評価は以下の方法で行った。   Various physical properties and performance evaluation were performed by the following methods.

(1)スチレン−メタクリル酸共重合体中のメタクリル酸含有量
室温にて、共重合体0.5gを秤量し、トルエン/エタノール=8/2(体積比)の混合溶液に溶解後、水酸化カリウム1mol/エタノール溶液にて中和滴定を行い終点を検出し、水酸化カリウムエタノール溶液の使用量より、メタクリル酸の質量基準の含有量を算出する。なお、電位差自動検出装置(京都電子工業社製、AT−510)により測定した。
(2)分子量
重量平均分子量(Mw)及びZ平均分子量(Mz)、数平均分子量(Mn)は、ゲルパーミエイションクロマトグラフィ―(GPC)を用いて、次の条件で測定した。
GPC機種:昭和電工社製Shodex GPC−101
カラム:ポリマーラボラトリーズ社製PLgel 10μm MIXED−B,300×7.5mm
移動相:テトラヒドロフラン 1.0ml/min
試料濃度:0.2質量%
温度:オーブン40℃、注入口35℃、検出器35℃
検出器:示差屈折計
単分散ポリスチレンの溶出曲線により各溶出時間における分子量を算出し、ポリスチレン換算の分子量として算出した。
(1) Methacrylic acid content in styrene-methacrylic acid copolymer At room temperature, 0.5 g of the copolymer was weighed and dissolved in a mixed solution of toluene / ethanol = 8/2 (volume ratio), and then hydroxylated. Neutralization titration is performed with 1 mol of potassium / ethanol solution to detect the end point, and the content of methacrylic acid based on mass is calculated from the amount of potassium hydroxide ethanol solution used. In addition, it measured with the electrical potential difference automatic detection apparatus (Kyoto Electronics Industry Co., Ltd. make, AT-510).
(2) Molecular weight The weight average molecular weight (Mw), the Z average molecular weight (Mz), and the number average molecular weight (Mn) were measured using gel permeation chromatography (GPC) under the following conditions.
GPC model: Shodex GPC-101 manufactured by Showa Denko
Column: Polymer Laboratories PLgel 10 μm MIXED-B, 300 × 7.5 mm
Mobile phase: tetrahydrofuran 1.0 ml / min
Sample concentration: 0.2% by mass
Temperature: 40 ° C oven, 35 ° C inlet, 35 ° C detector
Detector: differential refractometer The molecular weight at each elution time was calculated from the elution curve of monodisperse polystyrene, and was calculated as the molecular weight in terms of polystyrene.

ソリッド物性は以下の方法により評価した。
(3)メルトマスフローレイト
JIS K7210に基づき200℃、49N荷重の条件により求めた。
(4)ビカット軟化温度
射出成型機を用いて試験片を作成し、JIS K7206に基づき50N荷重の条件により求めた。
(5)荷重たわみ温度
射出成型機を用いて試験片を作成し、JIS K7191に基づき1.8MPa応力の条件により求めた。
(6)シャルピー衝撃強さ
射出成型機を用いて試験片を作成し、JIS K7111により求めた。
The solid physical properties were evaluated by the following methods.
(3) Melt Mass Flow Rate Determined under conditions of 200 ° C. and 49 N load based on JIS K7210.
(4) Vicat softening temperature A test piece was prepared using an injection molding machine, and obtained under conditions of 50 N load based on JIS K7206.
(5) Deflection temperature under load A test piece was prepared using an injection molding machine, and obtained under conditions of 1.8 MPa stress based on JIS K7191.
(6) Charpy impact strength A test piece was prepared using an injection molding machine and determined according to JIS K7111.

シート特性は以下の方法により評価した。
(7)デュポン衝撃強度
デュポン衝撃試験機(東洋精機社製)を使用し、1/2インチ半球状撃芯、荷重100gにて測定を行った。結果はJIS K7211の50%破壊エネルギー値(単位:J)で表示した。
(8)熱成形性
単発成形機を用いてシートを口径φ100mm、深さ60mmの深絞り丼形状容器に熱成形した。成形条件についてはヒーター温度230℃で加熱時間を一定にし、容器の亀裂発生状態を観察した。成形容器100個のうち、亀裂が観察される容器の数が0個の場合を◎、5個未満の場合を○、5個以上10個未満の場合を△、10個以上の場合を×として深絞り性を評価した。
Sheet characteristics were evaluated by the following methods.
(7) DuPont impact strength A DuPont impact tester (manufactured by Toyo Seiki Co., Ltd.) was used, and measurement was performed with a 1/2 inch hemispherical strike core and a load of 100 g. The result was expressed as a 50% fracture energy value (unit: J) of JIS K7211.
(8) Thermoformability Using a single molding machine, the sheet was thermoformed into a deep-drawn bowl-shaped container having a diameter of 100 mm and a depth of 60 mm. Regarding the molding conditions, the heating time was kept constant at a heater temperature of 230 ° C., and the crack generation state of the container was observed. Out of 100 molded containers, the case where the number of containers in which cracks are observed is 0, ◎ if less than 5, ○ if 5 or less, and △ if 10 or more, × Deep drawability was evaluated.

容器特性は以下の方法により評価した。
(9)耐レンジアップ変形
単発成形機を用いてシートを縦210mm、横200mm、深さ25mmの弁当容器に熱成形した。成形条件についてはヒーター温度230℃一定とし、表面の荒れが発生しない加熱時間を適宜調整した。得られた弁当容器を、出力1500Wの電子レンジで70秒加熱し、表面状態を観察し、容器の変形が全く無いものを◎、容器の一部にわずかに変形が見られるものを○、容器の形状が崩れるか穴あきや割れが発生するものを×とし耐熱性を評価した。
(10)耐油性
前記の弁当容器の内側全面にサラダ油を塗布し、容器開口部から底部にかけてポリエチレンフィルムで二重にラップした後、常温で放置し、割れが発生するまでの時間を確認した。24時間以上割れの発生しないものを◎、5時間以上割れの発生の無いものを○、5時間未満で割れが発生するものを×とした。
(11)臭気
前記の弁当容器を1cm角に切断し、切断後の容器片、各々約30g分を容量500mLの集気瓶に入れた後、ガラス板で蓋をした。常温で10分間放置した後、臭い嗅ぎを行い、ほとんど臭いの無いものを◎、微かに臭いがあるものを○、強い臭いがあるものを×とした。
The container characteristics were evaluated by the following method.
(9) Range-resistant deformation Using a single molding machine, the sheet was thermoformed into a lunch box having a length of 210 mm, a width of 200 mm, and a depth of 25 mm. As for the molding conditions, the heater temperature was kept constant at 230 ° C., and the heating time during which surface roughness did not occur was appropriately adjusted. The obtained lunch box is heated in a microwave oven with an output of 1500 W for 70 seconds, the surface state is observed, ◎ if there is no deformation of the container, ◎ if the container is slightly deformed, ○ The heat resistance was evaluated as x when the shape of the material collapsed or a hole or crack occurred.
(10) Oil resistance Salad oil was applied to the entire inner surface of the lunch box, wrapped twice with a polyethylene film from the container opening to the bottom, and allowed to stand at room temperature to check the time until cracking occurred. The case where cracks did not occur for 24 hours or more was evaluated as ◎, the case where cracks did not occur for 5 hours or more, and the case where cracks occurred in less than 5 hours were evaluated as x.
(11) Odor The above-mentioned lunch box was cut into 1 cm square, and about 30 g of each cut piece was placed in a 500 mL capacity air collection bottle, and then covered with a glass plate. After leaving it at room temperature for 10 minutes, it was smelled, and ◎ indicates that it has almost no odor, ○ indicates that it has a slight odor, and × indicates that it has a strong odor.

Figure 2015030767
Figure 2015030767

Figure 2015030767
Figure 2015030767

Figure 2015030767
Figure 2015030767

実施例のシートは、比較例に比べて成形性、強度が大幅に改善されており、そのシートを熱成形して得られた容器は耐レンジアップ変形、耐油性に優れる。   The sheets of the examples have greatly improved moldability and strength as compared with the comparative examples, and the container obtained by thermoforming the sheets is excellent in range-up deformation and oil resistance.

本発明の耐熱性樹脂発泡シートは耐熱性と、強度、成形性、耐油性のバランスに優れるため、電子レンジ用食品容器として好適に使用できる。   Since the heat-resistant resin foam sheet of the present invention is excellent in the balance between heat resistance, strength, moldability and oil resistance, it can be suitably used as a food container for microwave ovens.

Claims (6)

メタクリル酸の含有量が2〜13質量%であるスチレン−メタクリル酸共重合体97〜15質量部、ポリフェニレンエーテル3〜25質量部、ポリスチレン0〜60質量部からなり、重量平均分子量(Mw)が16万以上である耐熱性樹脂非発泡シート。ただし、この耐熱性樹脂中の各樹脂成分の混合量は、合計100質量部とする。   It consists of 97 to 15 parts by mass of a styrene-methacrylic acid copolymer having a methacrylic acid content of 2 to 13% by mass, 3 to 25 parts by mass of polyphenylene ether, and 0 to 60 parts by mass of polystyrene, and has a weight average molecular weight (Mw). Heat-resistant resin non-foamed sheet that is 160,000 or more. However, the total amount of each resin component in the heat resistant resin is 100 parts by mass. Z平均分子量(Mz)/重量平均分子量(Mw)が1.6以上である請求項1記載の耐熱樹脂非発泡シート。   The heat resistant resin non-foamed sheet according to claim 1, wherein Z average molecular weight (Mz) / weight average molecular weight (Mw) is 1.6 or more. 前記耐熱性樹脂、合計100質量部に対し、ゴム補強材を1〜10質量部含む事を特徴とする請求項1〜2記載の耐熱性樹脂非発泡シート。   The heat-resistant resin non-foamed sheet according to claim 1 or 2, wherein the heat-resistant resin contains 1 to 10 parts by mass of a rubber reinforcing material with respect to 100 parts by mass in total. 前記ゴム補強材がハイインパクトポリスチレンであることを特徴とする請求項3記載の耐熱性樹脂非発泡シート。   4. The heat resistant resin non-foamed sheet according to claim 3, wherein the rubber reinforcing material is high impact polystyrene. 前記ハイインパクトポリスチレンのゴム分が5〜12質量%である事を特徴とする請求項4記載の耐熱性樹脂非発泡シート。   The heat-resistant resin non-foamed sheet according to claim 4, wherein the rubber content of the high impact polystyrene is 5 to 12% by mass. 請求項1〜5記載の耐熱性樹脂非発泡シートを成形してなる食品包装用容器。   A food packaging container formed by molding the heat-resistant resin non-foamed sheet according to claim 1.
JP2013159646A 2013-07-31 2013-07-31 Heat-resistant resin non-foamed sheet and container Active JP6353638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013159646A JP6353638B2 (en) 2013-07-31 2013-07-31 Heat-resistant resin non-foamed sheet and container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013159646A JP6353638B2 (en) 2013-07-31 2013-07-31 Heat-resistant resin non-foamed sheet and container

Publications (2)

Publication Number Publication Date
JP2015030767A true JP2015030767A (en) 2015-02-16
JP6353638B2 JP6353638B2 (en) 2018-07-04

Family

ID=52516385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013159646A Active JP6353638B2 (en) 2013-07-31 2013-07-31 Heat-resistant resin non-foamed sheet and container

Country Status (1)

Country Link
JP (1) JP6353638B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015113443A (en) * 2013-12-13 2015-06-22 電気化学工業株式会社 Polystyrene resin sheet suitable for use in heating by microwave oven and container formed from the same
JP6203973B1 (en) * 2016-08-09 2017-09-27 東洋スチレン株式会社 Heat-resistant styrene resin composition, foam sheet, and food container
WO2018012373A1 (en) * 2016-07-12 2018-01-18 デンカ株式会社 Biaxially stretched sheet and shaped article of same
CN112757511A (en) * 2021-01-19 2021-05-07 南京逸科景润科技有限公司 Preparation method of high-temperature-resistant anti-aging polyphenyl ether engineering plastic

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168153A (en) * 1990-10-31 1992-06-16 Asahi Chem Ind Co Ltd Biaxially drawn sheet
JPH08207216A (en) * 1995-01-31 1996-08-13 Mitsubishi Chem Corp Styrene resin biaxially oriented laminated sheet
JPH09258386A (en) * 1995-10-13 1997-10-03 Eastman Kodak Co Zeolite molecular sieve for packaging structure
JP2000080175A (en) * 1998-06-30 2000-03-21 Daicel Chem Ind Ltd Thermoplastic resin sheet
JP2012031344A (en) * 2010-08-02 2012-02-16 Ps Japan Corp Styrene-methacrylic acid-methyl methacrylate resin composition, extruded sheet, and molding
JP2012140549A (en) * 2011-01-04 2012-07-26 Toyo Styrene Co Ltd Heat-resistant resin composition and foam molded body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168153A (en) * 1990-10-31 1992-06-16 Asahi Chem Ind Co Ltd Biaxially drawn sheet
JPH08207216A (en) * 1995-01-31 1996-08-13 Mitsubishi Chem Corp Styrene resin biaxially oriented laminated sheet
JPH09258386A (en) * 1995-10-13 1997-10-03 Eastman Kodak Co Zeolite molecular sieve for packaging structure
JP2000080175A (en) * 1998-06-30 2000-03-21 Daicel Chem Ind Ltd Thermoplastic resin sheet
JP2012031344A (en) * 2010-08-02 2012-02-16 Ps Japan Corp Styrene-methacrylic acid-methyl methacrylate resin composition, extruded sheet, and molding
JP2012140549A (en) * 2011-01-04 2012-07-26 Toyo Styrene Co Ltd Heat-resistant resin composition and foam molded body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015113443A (en) * 2013-12-13 2015-06-22 電気化学工業株式会社 Polystyrene resin sheet suitable for use in heating by microwave oven and container formed from the same
WO2018012373A1 (en) * 2016-07-12 2018-01-18 デンカ株式会社 Biaxially stretched sheet and shaped article of same
JPWO2018012373A1 (en) * 2016-07-12 2019-06-13 デンカ株式会社 Biaxially oriented sheet and molded article thereof
JP6203973B1 (en) * 2016-08-09 2017-09-27 東洋スチレン株式会社 Heat-resistant styrene resin composition, foam sheet, and food container
JP2018024819A (en) * 2016-08-09 2018-02-15 東洋スチレン株式会社 Heat-resistant styrenic resin composition, foamed sheet, and food product container
CN112757511A (en) * 2021-01-19 2021-05-07 南京逸科景润科技有限公司 Preparation method of high-temperature-resistant anti-aging polyphenyl ether engineering plastic

Also Published As

Publication number Publication date
JP6353638B2 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
JP6271147B2 (en) Heat-resistant resin foam sheet and container
JP5717451B2 (en) Heat resistant resin composition and foamed molded body
JP5897311B2 (en) Heat-resistant styrenic resin composition, extruded sheet and molded product
TWI523887B (en) Polyester resin composition
JP6104677B2 (en) Heat-resistant styrenic resin composition, extruded sheet and molded product
JP6321322B2 (en) Heat-resistant styrenic resin composition, extruded sheet and molded product
JP6188307B2 (en) Heat-resistant styrenic resin composition, extruded sheet and molded product
JP6353638B2 (en) Heat-resistant resin non-foamed sheet and container
JP6444539B2 (en) Biaxially stretched sheet and molded product thereof
JP2019108506A (en) Heat-resistant styrene resin composition, molded article, extruded sheet, and food packaging container
JP2011126996A (en) Styrene-methacrylic acid-methyl methacrylate resin, extruded sheet, and molded article
US7211626B2 (en) Styrenic resin composition
JP2017133040A (en) Heat resistant styrene resin composition, extrusion sheet and molded article
JP2015071678A (en) Heat-resistant resin composition, and foam molding of the same
JP5929447B2 (en) Laminate and medical container
KR20160086871A (en) Rubber modified styrene resin, and sheet, food container, and food container lid member produced using same
JP6457898B2 (en) Styrenic resin for molding, molded product, and manufacturing method of molded product
JP7333218B2 (en) Resin composition and molding
JP5796310B2 (en) Modified alicyclic polyester and molded body
JP2019206664A (en) Biaxially stretched sheet and molded article thereof
JP7470565B2 (en) Styrene-methacrylic acid copolymer resin composition for film, film, and molded article
JP7002264B2 (en) Biaxially stretched sheet and its molded products
JP6930855B2 (en) Styrene-based resin composition, sheet, molded product, and method for manufacturing sheet
JP2019147911A (en) Styrene resin composition, sheet, and molded article
JP2019210437A (en) Styrene-based copolymer and its compact, sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170825

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180611

R150 Certificate of patent or registration of utility model

Ref document number: 6353638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250