JP2015028901A - Lead battery - Google Patents

Lead battery Download PDF

Info

Publication number
JP2015028901A
JP2015028901A JP2013213432A JP2013213432A JP2015028901A JP 2015028901 A JP2015028901 A JP 2015028901A JP 2013213432 A JP2013213432 A JP 2013213432A JP 2013213432 A JP2013213432 A JP 2013213432A JP 2015028901 A JP2015028901 A JP 2015028901A
Authority
JP
Japan
Prior art keywords
lead
negative electrode
strap
electrode plate
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013213432A
Other languages
Japanese (ja)
Other versions
JP6244801B2 (en
Inventor
和成 安藤
Kazunari Ando
和成 安藤
則恵 万徳
Norie Mantoku
則恵 万徳
俊介 齊藤
Shunsuke Saito
俊介 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2013213432A priority Critical patent/JP6244801B2/en
Publication of JP2015028901A publication Critical patent/JP2015028901A/en
Application granted granted Critical
Publication of JP6244801B2 publication Critical patent/JP6244801B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lead battery capable of improving charge receiving characteristics in a high SOC rejoin while preventing disconnection due to corrosion at joint portion between a negative electrode strap part and a negative electrode plate lug.SOLUTION: The lead battery includes: a group of electrode which has plural positive electrode plates using a positive electrode grid of a lead-calcium alloy and plural negative electrode plates using a negative electrode grid of a lead-calcium alloy, which are alternately disposed being interposed by a separator, and in which electrode plate lugs of identical polarity are collected using a positive electrode strap and a negative electrode strap; an electrolyte for immersing the group of electrode; a battery case for storing the group of electrode and the electrolyte; a lid having a liquid port, which is connected to the opening of battery case; and a liquid port plug which has a path for exhausting a gas and an exhaust port, and which is attached to the liquid port. The negative electrode strap contains thallium without containing antimony. The path of the liquid port plug is mounted with a porous filter of a ceramics or resin.

Description

本発明は、鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

鉛蓄電池は、車両のエンジン始動用やバックアップ電源用といった様々な用途に用いられており、特に始動用鉛蓄電池は、エンジン始動用セルモータへの電力供給とともに車両に搭載された各種電気・電子機器へ電力を供給している。始動用鉛蓄電池の設置場所はエンジンルーム内であるために、使用温度は主に40℃以上で80℃の高温にもなることもあり、温度が高ければ過充電状態で使用されることになる。   Lead-acid batteries are used in various applications such as vehicle engine start-up and backup power supply. In particular, lead-acid batteries for start-up are supplied to various electric and electronic devices mounted on the vehicle along with power supply to the engine start cell motor. Power is being supplied. Since the starting lead-acid battery is installed in the engine room, the operating temperature is mainly 40 ° C or higher and may be as high as 80 ° C. If the temperature is high, it will be used in an overcharged state. .

鉛蓄電池は、過充電状態になると電解液中の水が電気分解されて水素ガスと酸素ガスが発生し、セル内の圧力が所定値を超えるとこれらのガスは電池外に排出されるため、電解液量が減少する。その結果、電解液中の希硫酸濃度が上昇して正極板が腐食することで容量低下が進行したり、電解液面が低下して極板が電解液から露出することで放電容量が急激に低下したり、さらに負極板とストラップとの接続部が腐食したりと、多くの問題が生じる。始動用鉛蓄電池においては、上述した問題を引き起こす電解液の減少を抑制するために、格子体に鉛−カルシウム合金を用いている。   When lead-acid batteries are overcharged, the water in the electrolyte is electrolyzed to generate hydrogen gas and oxygen gas, and these gases are discharged outside the battery when the pressure in the cell exceeds a predetermined value. The amount of electrolyte decreases. As a result, the concentration of dilute sulfuric acid in the electrolyte rises and the positive electrode plate corrodes, resulting in a decrease in capacity, or the electrolyte surface decreases and the electrode plate is exposed from the electrolyte, resulting in a rapid increase in discharge capacity. Many problems arise, for example, when it is lowered or when the connection between the negative electrode plate and the strap is corroded. In the lead acid battery for start-up, a lead-calcium alloy is used for the lattice body in order to suppress the decrease in the electrolyte solution that causes the above-described problems.

一方で水の電気分解の他にも、温度の上昇によって水分が自然蒸発したり、車両走行中の振動により電解液面が激しく揺動して発生する電解液の細かい飛沫が電解液ミストとなったり、充電により発生したガスが電解液面から離脱する際に電解液ミストが発生したりすることで、電解液の一部が電池外に放出される場合もある。   On the other hand, in addition to the water electrolysis, the water is evaporated spontaneously due to the temperature rise, or the electrolyte liquid mist is generated by the electrolyte surface violently oscillating due to vibrations while the vehicle is running. In some cases, a part of the electrolytic solution is released to the outside of the battery due to generation of an electrolytic solution mist when the gas generated by charging is released from the electrolytic solution surface.

さらには上述した2つのケースとは別に、鉛蓄電池のセル内に異種合金が存在すれば、充電時に水分が電気分解する反応が促進され、ガス発生量が増大することもある。   Furthermore, apart from the two cases described above, if a dissimilar alloy is present in the lead-acid battery cell, the reaction in which water is electrolyzed during charging is promoted, and the amount of gas generated may increase.

電解液が減少したまま鉛蓄電池を使用し続けてストラップ部が電解液面から露出するまで電解液面が低下した場合、負極板の耳部と負極ストラップとの間で腐食が生じ、負極ストラップ部と負極板耳部の接合部が断線するという課題があった。   If the electrolyte level drops until the strap part is exposed from the electrolyte surface while the electrolyte is reduced and the strap part is exposed from the electrolyte surface, corrosion occurs between the ears of the negative electrode plate and the negative electrode strap. There was a problem that the joint of the negative electrode plate ear part was disconnected.

特許文献1では、上述した電解液の減少を抑制するとともに、万一、電解液が減液してストラップ部が電解液面から露出しても、負極ストラップ部と負極板耳部の接合部の腐食断線を抑制する、信頼性が高い構成が提案されている。   In patent document 1, while suppressing the reduction | decrease of the electrolyte solution mentioned above, even if electrolyte solution reduces and a strap part is exposed from an electrolyte surface, the negative electrode strap part and the negative electrode plate ear | edge part of a junction part are exposed. A highly reliable configuration that suppresses corrosion disconnection has been proposed.

特開2009−146872号公報JP 2009-146872 A

しかし特許文献1の構成は負極ストラップ部にアンチモンを含有しないため、アンチモン含有合金を用いた場合と比べて、高SOC領域での充電受入れ性の低下を引き起こす。この現象に起因して、特に発電制御車や深い放電が繰返すアイドルストップ車において、充電不足に起因する短寿命が発生した。本発明はこの課題を解決するものであり、負極ストラップ部と負極板耳部の接合部における腐食断線を抑制しつつ、高SOC領域での充電受入性を高める鉛蓄電池を提案するものである。   However, since the structure of Patent Document 1 does not contain antimony in the negative electrode strap portion, it causes a decrease in charge acceptance in a high SOC region as compared with the case where an antimony-containing alloy is used. Due to this phenomenon, particularly in power generation control vehicles and idle stop vehicles where repeated deep discharges occur, a short life due to insufficient charging has occurred. The present invention solves this problem, and proposes a lead-acid battery that enhances charge acceptance in a high SOC region while suppressing corrosion disconnection at the joint between the negative electrode strap portion and the negative electrode plate ear portion.

前記した課題を解決するために、本発明の請求項1に係る発明は、鉛−カルシウム合金からなる正極格子体を用いた正極板と、鉛−カルシウム合金からなる負極格子体を用いた負極板とを、セパレータを介して交互に配置し、同極性の極板耳部をそれぞれ正極ストラップと負極ストラップとで集合した極板群と、極板群を浸漬する電解液と、極板群と電解液とを収納する電槽と、液口を備え電槽の開口部に接合される蓋と、ガスを排気するための経路と排気口とを備え液口に装着される液口栓と、からなる鉛蓄電池であって、負極ストラップにアンチモンを含ませずにビスマスおよび/あるいはタリウムを含ませ、液口栓の経路に、セラミッスクス又は樹脂からなる多孔性フィルタを装着したことを特徴とする。   In order to solve the above-described problems, the invention according to claim 1 of the present invention includes a positive electrode plate using a positive electrode lattice made of a lead-calcium alloy and a negative electrode plate using a negative electrode lattice made of a lead-calcium alloy. Are arranged alternately with separators, and the electrode plate group in which the electrode plate ears of the same polarity are respectively assembled by the positive electrode strap and the negative electrode strap, the electrolyte solution in which the electrode plate group is immersed, the electrode plate group and the electrolysis A battery case that contains liquid, a lid that has a liquid port and is joined to the opening of the battery case, and a liquid port plug that is attached to the liquid port with a path for exhausting gas and an exhaust port. The lead storage battery is characterized in that bismuth and / or thallium is contained in the negative electrode strap without containing antimony, and a porous filter made of ceramics or resin is attached to the passage of the liquid plug.

本発明の請求項2に係る発明は、請求項1において、負極ストラップにさらにスズを含ませたことを特徴とする。   The invention according to claim 2 of the present invention is characterized in that, in claim 1, tin is further included in the negative electrode strap.

本発明の請求項3に係る発明は、請求項1において、負極ストラップにおけるビスマスの含有量を10ppm以上、1000ppm以下としたことを特徴とする。   The invention according to claim 3 of the present invention is characterized in that, in claim 1, the bismuth content in the negative electrode strap is 10 ppm or more and 1000 ppm or less.

本発明の請求項4に係る発明は、請求項1において、負極ストラップにおけるタリウムの含有量を5ppm以上、500ppm以下としたことを特徴とする。   The invention according to claim 4 of the present invention is characterized in that, in claim 1, the thallium content in the negative electrode strap is 5 ppm or more and 500 ppm or less.

本発明の請求項5に係る発明は、請求項1において、負極ストラップにさらに銀を含ませたことを特徴とする。   The invention according to claim 5 of the present invention is characterized in that, in claim 1, silver is further included in the negative electrode strap.

本発明の請求項6に係る発明は、請求項1において、負極板の耳部の両表面に鉛−スズ合金層を形成したことを特徴とする。   The invention according to claim 6 of the present invention is characterized in that, in claim 1, lead-tin alloy layers are formed on both surfaces of the ear portion of the negative electrode plate.

本発明の請求項7に係る発明は、請求項6において、鉛−スズ合金層は、負極格子体をエキスパンド工法にて作製する際に、鉛合金シートの非展開部に鉛−スズ合金箔を一体圧延して形成したものであることを特徴とする。   The invention according to claim 7 of the present invention is the lead-tin alloy layer according to claim 6, wherein the lead-tin alloy layer is formed by applying a lead-tin alloy foil to a non-expanded portion of the lead alloy sheet when the negative electrode lattice body is produced by an expanding method. It is formed by integral rolling.

本発明の鉛蓄電池は、電解液の減液を抑制するとともに、万一、電解液が減液してストラップ部が電解液面から露出しても、負極ストラップ部と負極板耳部の接合部の腐食断線を抑制できるので、発電制御車や深い放電を繰り返すアイドルストップ車に、サイクル寿命特性に優れた鉛蓄電池を提供できる。   The lead storage battery of the present invention suppresses the decrease in the electrolyte solution, and even if the electrolyte solution decreases and the strap portion is exposed from the electrolyte surface, the junction between the negative electrode strap portion and the negative electrode plate ear portion Therefore, lead storage batteries having excellent cycle life characteristics can be provided for power generation control vehicles and idle stop vehicles that repeat deep discharge.

本発明における鉛蓄電池のセル構成断面図Cell configuration cross-sectional view of a lead storage battery in the present invention 網目状に展開したエキスパンド格子の説明図Explanatory drawing of expanded lattice developed in a mesh 負極板の耳部の詳細を示す図The figure which shows the detail of the ear | edge part of a negative electrode plate

以下、本発明の実施形態による鉛蓄電池の実施形態を図1に示した鉛蓄電池のセル構成断面図を用いて説明する。   Hereinafter, an embodiment of a lead storage battery according to an embodiment of the present invention will be described with reference to a cross-sectional view of a cell configuration of the lead storage battery shown in FIG.

鉛−カルシウム−スズ合金の正極格子体を有した正極板1と鉛−カルシウム−スズ合金の負極格子体を有した負極板2とがセパレータ3を介して積層され、同極性の極板同士をそれぞれ正極ストラップ4と負極ストラップ5とで集合した極板群6を電槽7のセル室8に収納し、極板群6を電解液9に浸漬し、電槽7の上部を蓋10にて接合する。   A positive electrode plate 1 having a lead-calcium-tin alloy positive electrode lattice body and a negative electrode plate 2 having a lead-calcium-tin alloy negative electrode lattice body are laminated via a separator 3, and the same polarity electrode plates are connected to each other. The electrode plate group 6 assembled with the positive electrode strap 4 and the negative electrode strap 5 is housed in the cell chamber 8 of the battery case 7, the electrode plate group 6 is immersed in the electrolyte 9, and the upper part of the battery case 7 is covered with the lid 10. Join.

蓋10にはセル室8に対応する液口11が設けられ、この液口11には液口栓20が装着され、その頭部に排気孔22が設けられる。始動用鉛蓄電池は使用時に振動が加わるため、振動によって揺動する電解液9が直接排気孔22に達することで液口栓から溢液することがある。そこで液口栓20の内部に防沫体23を設け、排気孔22との間に一定の通気抵抗を有した多孔性フィルタ21を配置する。   The lid 10 is provided with a liquid port 11 corresponding to the cell chamber 8, a liquid port plug 20 is attached to the liquid port 11, and an exhaust hole 22 is provided in the head thereof. Since the starting lead-acid battery is subjected to vibration during use, the electrolytic solution 9 oscillating due to vibration may reach the exhaust hole 22 and overflow from the liquid plug. Therefore, a splash-proof body 23 is provided inside the liquid spout 20, and a porous filter 21 having a certain ventilation resistance is disposed between the exhaust hole 22.

電解液の減少のうち、電解液の水分蒸発や電解液ミストの電池外への散逸は、液口栓20に装着された多孔性フィルタ21によって妨げることができる。電気分解により発生する水素ガスおよび酸素ガスにより電池内圧が所定値まで上昇した場合、これらのガスはセル室8からフィルタ21を通過し排気孔22より電池外に排出される。このガス排出に伴って電解液ミストも一緒に排気孔22からセル室外へ放出される。   Among the decrease in the electrolytic solution, the evaporation of water in the electrolytic solution and the dissipation of the electrolytic solution mist to the outside of the battery can be prevented by the porous filter 21 attached to the liquid plug 20. When the internal pressure of the battery rises to a predetermined value due to hydrogen gas and oxygen gas generated by electrolysis, these gases pass from the cell chamber 8 through the filter 21 and are discharged out of the battery from the exhaust hole 22. As the gas is discharged, the electrolyte mist is also discharged from the exhaust hole 22 to the outside of the cell chamber.

多孔性フィルタ21の通気抵抗を適正範囲にすれば、水分蒸発や電解液ミストなどによって水分がセル室8から電池外に過度に散逸することを抑制できる。具体的には多孔性フィルタ21の通気抵抗として、5/分のエアー送風量の時、水柱マノメータ数値が30mm以上であることが好ましい。   If the ventilation resistance of the porous filter 21 is set to an appropriate range, it is possible to suppress excessive dissipation of moisture from the cell chamber 8 to the outside of the battery due to moisture evaporation, electrolyte mist, or the like. Specifically, the water column manometer value is preferably 30 mm or more when the air flow rate of the porous filter 21 is 5 / min.

始動用鉛蓄電池の正極ストラップ4および負極ストラップ5として、製造時の溶接性や取扱性(適度な強度)を保つために鉛−アンチモン合金を使用するのが一般的であったが、本発明では正極格子体および負極板格子体としてアンチモンを含有しない鉛−カルシウム−スズ合金を使用するので、少なくとも負極ストラップ5には、アンチモンを含まずビスマスおよび/あるいはタリウムを含む鉛合金を使用する。なお、負極ストラップ5の異種合金どうしが接続する箇所における自己放電やそれに伴うガス発生を防止するには、さらにスズを含ませることや、ビスマスの含有量を10ppm以上1000ppm以下とすることや、タリウムの含有量を5ppm以上500ppm以下とすることや、さらに銀を含ませることが好ましい。   As a positive electrode strap 4 and a negative electrode strap 5 of a lead-acid battery for starting, a lead-antimony alloy is generally used in order to maintain weldability and handleability (appropriate strength) at the time of manufacture. Since a lead-calcium-tin alloy containing no antimony is used as the positive electrode grid and the negative electrode plate grid, at least the negative electrode strap 5 uses a lead alloy containing no bismuth and / or thallium. In addition, in order to prevent self-discharge and the accompanying gas generation at the places where the dissimilar alloys of the negative electrode strap 5 are connected, tin is further included, the bismuth content is 10 ppm or more and 1000 ppm or less, It is preferable to make content of 5 ppm or more and 500 ppm or less, and to contain silver further.

さらに好ましい態様として、負極ストラップ5と負極板2の耳部2aとの間の溶接状態を向上させるべく、鉛−カルシウム−スズ合金からなる耳部2aの両面に、図3に示すような鉛−スズ合金層12を形成させることができる。耳部2aは溶接中にカルシウムが酸化される(表面に酸化皮膜が形成される)ことで溶接が不十分となり、負極ストラップ5との間に隙間を生じることで負極ストラップ5が電解液9から露出した時にこの隙間で選択的に腐食が進行する。しかし上述した構成を採れば、負極ストラップ5と耳部2aの双方が鉛とスズとを含有した合金どうしなので親和性が高く、溶接性が高くなる。この鉛−スズ合金層12を形成させる過程を、図1を参酌しつつ、図2に示したエキスパンド工法を用いて詳述する。   As a more preferred embodiment, in order to improve the welded state between the negative electrode strap 5 and the ear portion 2a of the negative electrode plate 2, lead-type lead as shown in FIG. 3 is formed on both surfaces of the ear portion 2a made of lead-calcium-tin alloy. A tin alloy layer 12 can be formed. The ear portion 2a is not welded because calcium is oxidized during the welding (an oxide film is formed on the surface), and a gap is formed between the negative electrode strap 5 and the negative electrode strap 5 from the electrolytic solution 9. When exposed, corrosion proceeds selectively in this gap. However, if the structure mentioned above is taken, since both the negative electrode strap 5 and the ear | edge part 2a are the alloys containing lead and tin, affinity is high and weldability becomes high. The process of forming the lead-tin alloy layer 12 will be described in detail with reference to FIG. 1 and using the expanding method shown in FIG.

エキスパンド格子体13は、鉛−カルシウム−スズ合金からなる圧延シート14のうち耳部2aに相当する部分を非展開部15として残し、他の箇所には切込み18を入れて幅方向に展開して網目16とすることで作製される。耳部2aの両面に鉛−スズ合金層12を形成するには、耳部2aを構成する非展開部15に、一例としてスズ50質量%の鉛−スズ合金箔17を表裏に位置させ(裏側は図示せず)、未化成活物質19を塗着した後で、鉛−スズ合金層12を両面に貼り付けた箇所が耳部2aとなるように極板の形状に切断すればよい。   The expanded lattice 13 leaves a portion corresponding to the ear portion 2a of the rolled sheet 14 made of a lead-calcium-tin alloy as a non-expanded portion 15 and expands in the width direction by making cuts 18 in other portions. The mesh 16 is produced. In order to form the lead-tin alloy layer 12 on both surfaces of the ear part 2a, the lead-tin alloy foil 17 of 50% by mass of tin is positioned on the front and back as an example in the non-deployed part 15 constituting the ear part 2a (back side) Is not shown), and after applying the non-chemically active material 19, it may be cut into the shape of an electrode plate so that the portions where the lead-tin alloy layer 12 is pasted on both surfaces become the ear portions 2a.

以下、実施例により、本発明の効果を説明する。   Hereinafter, the effects of the present invention will be described with reference to examples.

本発明例および比較例の鉛蓄電池として、JISD5301始動用鉛蓄電池に示された80D26を作製し、振動を加えながら充電し、電解液の減少量を評価した。   As lead acid batteries of the present invention and comparative examples, 80D26 shown in JIS D5301 start lead acid battery was manufactured, charged while applying vibration, and the amount of decrease in electrolyte was evaluated.

正極板は、鉛−カルシウム0.07質量%−スズ1.6質量%鉛合金からなる圧延シートをエキスパンド加工して得られた正極格子体を用いて常法により作製した。負極板は、鉛−カルシウム0.07質量%−スズ0.25質量%鉛合金からなる圧延シートをエキスパンド加工して得られた負極格子体に鉛粉と水と硫酸および添加剤を加えて作製した。さらにポリエチレン樹脂の微多孔膜からなるセパレータを袋状にして正極板を包む構成とした。   The positive electrode plate was produced by a conventional method using a positive electrode grid obtained by expanding a rolled sheet made of a lead-calcium 0.07 mass% -tin 1.6 mass% lead alloy. The negative electrode plate is prepared by adding lead powder, water, sulfuric acid, and additives to a negative electrode grid obtained by expanding a rolled sheet made of lead-calcium 0.07 mass% -tin 0.25 mass% lead alloy. did. Further, a separator made of a polyethylene resin microporous film was formed in a bag shape to enclose the positive electrode plate.

負極ストラップとして、(表1)に示す鉛合金を準備した。さらにスズ50質量%鉛−スズ合金箔を負極板の耳部の両面に貼り付けたものとそうでないものとを準備した。また液口栓のフィルタとして、通気抵抗が水柱マノメータ値で30mmの多孔体を準備した。   The lead alloy shown in (Table 1) was prepared as a negative electrode strap. Furthermore, what stuck 50 mass% lead-tin alloy foil of tin on both surfaces of the ear | edge part of the negative electrode plate, and the thing which was not so were prepared. Further, a porous body having a ventilation resistance of 30 mm as a water column manometer value was prepared as a filter for the liquid spigot.

これらの各電池を70℃の温度雰囲気下で、充電電圧14.5V(最大充電電流25A)で100時間連続充電する間、一般オーナーカーを模擬した振動条件(加速度:1G、周波数:10Hz〜33Hz、スイープ速度:10分/サイクル)で上下方向に振動を加えた時の電池の質量減を電解液の減少量と見なした。そして電池Dの減少量を100とした指数で他の電池の減少量を表し(表1)に併記した。   While these batteries were continuously charged for 100 hours at a charging voltage of 14.5 V (maximum charging current 25 A) in a temperature atmosphere of 70 ° C., vibration conditions (acceleration: 1 G, frequency: 10 Hz to 33 Hz) simulating a general owner car , Sweep rate: 10 minutes / cycle), the decrease in the mass of the battery when vibration was applied in the vertical direction was regarded as the decrease in the electrolyte. And the reduction amount of the other battery was expressed with the index which made the reduction amount of the battery D 100 (Table 1).

次にこれら各電池について、液面が負極ストラップ下面より5mm下方の位置になるように調整して負極ストラップを電解液から露出させ、上述と同様に70℃雰囲気において振動を加えながら14.5V定電圧充電を100時間行った後、各電池を分解して負極ストラップの状態を観察した。負極ストラップに何等異常が無いものを「◎」、負極ストラップおよび負極板耳部に僅かな腐食の形跡が見られたものを「○〜◎」、負極ストラップおよび負極板耳部に腐食が進行中のものを「○」、断線には至っていないものの負極ストラップおよび負極板耳部の腐食が相当に進行しているものを「△」、腐食が進行して負極ストラップと負極板が断線している状態のものを「×」として(表1)に併記した。   Next, for each of these batteries, the liquid level is adjusted to a position 5 mm below the lower surface of the negative electrode strap so that the negative electrode strap is exposed from the electrolytic solution. After voltage charging for 100 hours, each battery was disassembled and the state of the negative electrode strap was observed. “◎” indicates that there is no abnormality in the negative strap, “○ to ◎” indicates that slight signs of corrosion are observed on the negative strap and the negative electrode plate ear, and corrosion is in progress on the negative strap and negative electrode tab. "○" indicates that the wire is not broken, but "△" indicates that the corrosion of the negative electrode strap and the negative electrode plate has progressed considerably. Corrosion has progressed and the negative electrode strap and the negative electrode plate are disconnected. Those in the state are also shown as “x” in (Table 1).

さらにこれら各電池について、環境温度40℃下で、300分間の5A充電(制御電圧14.0V)と60分間の20A放電とのサイクルを繰り返した。そして25サイクルごとに、720分間の5A充電(制御電圧14.0V)と20A放電(終止電圧10.5V)の容量確認を実施した。この試験では、液面がLowレベルとUpperレベルの間になるように補水をし、負極ストラップが気相中に露出しないように設定した。そして放電容量が初期の50%未満になった時点を寿命に達したと判断した。寿命に達したサイクル数について電池Dの減少量を100とした指数で他の電池のサイクル数を表し(表1)に併記した。   Further, for each of these batteries, a cycle of 5 A charge (control voltage 14.0 V) for 300 minutes and 20 A discharge for 60 minutes was repeated at an environmental temperature of 40 ° C. And capacity | capacitance confirmation of 5A charge (control voltage 14.0V) and 20A discharge (end voltage 10.5V) for 720 minutes was implemented for every 25 cycles. In this test, water was replenished so that the liquid level was between the low level and the upper level, and the negative electrode strap was set not to be exposed in the gas phase. And it was judged that the lifetime was reached when the discharge capacity became less than 50% of the initial value. For the number of cycles that reached the end of life, the number of cycles of other batteries was expressed as an index with the amount of decrease in battery D being 100 (Table 1).

Figure 2015028901
Figure 2015028901

鉛−アンチモン合金を負極ストラップに用いた電池A及びBは、深い放電深度からの充電受入性が向上して長寿命化するものの、電解液の減少が多くなるとともに負極ストラップは腐食によって断線していた。   Batteries A and B using a lead-antimony alloy for the negative electrode strap have improved charge acceptability from a deep discharge depth and have a longer life, but the decrease in the electrolyte is increased and the negative electrode strap is broken due to corrosion. It was.

鉛−スズ合金を負極ストラップに用いた電池C及びDは、電解液の減少が少なくなることで負極ストラップの腐食が制御されるものの、深い放電深度からの充電受入性が低下して短寿命化していた。   Batteries C and D using a lead-tin alloy for the negative electrode strap have a reduced life due to a decrease in charge acceptability from a deep discharge depth, although corrosion of the negative electrode strap is controlled by reducing the decrease in electrolyte. It was.

ところが、電池E〜Lのように負極ストラップにアンチモンを含ませずビスマスを含ませると、電池Dと同レベルの電解液減少量および耐食性と、電池Dよりも優れた寿命特性とを併せ持たせることができるようになる。   However, when the negative electrode strap does not contain antimony and does not contain bismuth as in the batteries E to L, the electrolyte solution reduction amount and the corrosion resistance at the same level as the battery D are combined with the life characteristics superior to the battery D. Will be able to.

但し、ビスマスの含有量が10ppm未満の電池Eでは、寿命特性はやや低い結果となった。この理由として、負極の水素過電圧の適度な低下が不足するため、深い放電深度からの充電受入性が十分に向上せず、寿命特性が十分に改善しなかったことが考えられる。また、ビスマスが1000ppmを超える電池Lでは、電解液の顕著が顕著であった。この理由として、負極の水素過電圧がやや過度に低くなって、深い放電深度からの充電受入性がやや過剰になったことが挙げられる。以上の結果から、負極ストラップにおけるビスマスの含有量は10ppm以上1000ppm以下であることが好ましい。   However, in the battery E having a bismuth content of less than 10 ppm, the life characteristics were somewhat low. This is probably because the hydrogen overvoltage of the negative electrode is not adequately reduced, so that charge acceptability from a deep discharge depth is not sufficiently improved and the life characteristics are not sufficiently improved. Moreover, in the battery L in which bismuth exceeds 1000 ppm, the conspicuousness of the electrolytic solution was remarkable. The reason for this is that the hydrogen overvoltage of the negative electrode is slightly too low, and the charge acceptability from a deep discharge depth is slightly excessive. From the above results, the bismuth content in the negative electrode strap is preferably 10 ppm or more and 1000 ppm or less.

一方、鉛−タリウム合金を負極ストラップに用いた電池M〜Tも、鉛−アンチモン合金を負極ストラップに用いた電池A及びBよりも電解液の減少が少なくなった影響で負極ストラップの腐食が緩和されるとともに、鉛−スズ合金を負極ストラップに用いた電池C及びDよりも深い放電深度からの充電受入性が向上して長寿命化していた。   On the other hand, the batteries M to T using the lead-thallium alloy for the negative electrode straps also alleviate the corrosion of the negative electrode straps due to the fact that the decrease in the electrolyte is less than those of the batteries A and B using the lead-antimony alloy for the negative electrode straps. At the same time, charge acceptability from a deeper discharge depth than batteries C and D using a lead-tin alloy as a negative electrode strap has been improved and the life has been extended.

但し、タリウムの含有量が5ppm未満の電池Mでは、寿命特性はやや低い結果となった。この理由として、負極板の水素過電圧が十分に下がらなかったために、深い放電深度からの充電受入性が向上せず、充電不足により寿命特性が十分に改善しなかったことが挙げられる。また、タリウムの含有量が500ppmを超える電池Tでは、電解液の減少がやや顕著であった。この理由として、負極板の水素過電圧がやや過度に低くなって、深い放電深度からの充電受入性がやや過剰になったことが挙げられる。以上の結果から、負極ストラップにおけるタリウムの含有量は5ppm以上500ppm以下であることが好ましい。   However, in the battery M having a thallium content of less than 5 ppm, the life characteristics were slightly low. The reason for this is that the hydrogen overvoltage of the negative electrode plate was not sufficiently lowered, so that the charge acceptability from a deep discharge depth was not improved, and the life characteristics were not sufficiently improved due to insufficient charge. Moreover, in the battery T in which the thallium content exceeds 500 ppm, the decrease in the electrolytic solution was somewhat remarkable. This is because the hydrogen overvoltage of the negative electrode plate is slightly excessively low, and the charge acceptability from a deep discharge depth is slightly excessive. From the above results, the thallium content in the negative electrode strap is preferably 5 ppm or more and 500 ppm or less.

上述した傾向は、さらにスズを含有させた鉛−スズ−ビスマス合金を負極ストラップに用いた電池U〜AB、あるいは鉛−スズ−タリウム合金を負極ストラップに用いた電池AC〜AJにおいても同様である。但しこれらの電池は、スズを含有させない鉛−ビスマス合金あるいは鉛−タリウム合金を負極ストラップに用いた電池と比較して、負極ストラップの腐食が著しく緩和される結果となった。この理由は、鉛−スズ−ビスマス合金・鉛−スズ−タリウム合金ともに、負極ストラップ中のスズと負極格子中のスズとが馴染んだためだと考えられる。   The above-mentioned tendency is the same in batteries U to AB using lead-tin-bismuth alloy further containing tin as a negative electrode strap, or batteries AC to AJ using lead-tin-thallium alloy as a negative electrode strap. . However, in these batteries, the corrosion of the negative electrode strap was remarkably reduced as compared with the battery using the lead-bismuth alloy or lead-thallium alloy not containing tin as the negative electrode strap. The reason for this is considered to be that the tin in the negative electrode strap and the tin in the negative electrode lattice are compatible with each other in both the lead-tin-bismuth alloy and the lead-tin-thallium alloy.

また電池AGに対して、さらにビスマスを含有させた鉛−スズ−タリウム−ビスマス合金を負極ストラップに用いた電池AK〜AOのうち、ビスマスの含有量が10ppm以上(電池AL〜AO)であれば、寿命特性がさらに向上する結果となった。しかしビスマスの含有量が1000ppmを超える電池AOは、電解液の減少がやや顕著であった。ところでこの電池AOは電解液の減少が顕著であるにもかかわらず負極ストラップが腐食断線するには至っていない。これは、ビスマスを含有させた鉛−スズ−タリウム−ビスマス合金が、鉛−スズ−タリウム合金よりも強度が高いためだと考えられる。   Further, among batteries AK to AO using a lead-tin-thallium-bismuth alloy further containing bismuth as a negative electrode strap with respect to battery AG, if the bismuth content is 10 ppm or more (batteries AL to AO). As a result, the life characteristics were further improved. However, in the battery AO in which the bismuth content exceeds 1000 ppm, the decrease in the electrolytic solution was somewhat remarkable. By the way, in this battery AO, although the decrease in the electrolytic solution is remarkable, the negative electrode strap has not been broken by corrosion. This is presumably because the lead-tin-thallium-bismuth alloy containing bismuth has higher strength than the lead-tin-thallium alloy.

なお電池AMに対して、さらに銀を含有させて強度を著しく高めた鉛−スズ−タリウム−ビスマス−銀合金を負極ストラップに用いた電池APは、電解液の減少が抑制されて負極ストラップの腐食がほぼ見られない上に、極めて良好な寿命特性を示した。   In addition, the battery AP using the lead-tin-thallium-bismuth-silver alloy, which is further enhanced in strength by adding silver to the battery AM, is used in the negative electrode strap. Was not seen, and very good life characteristics were exhibited.

なお、鉛−ビスマス合金を負極ストラップに用いた鉛蓄電池のうち電池F〜K、鉛−タリウム合金を負極ストラップに用いた鉛蓄電池のうち電池N〜S、鉛−スズ−ビスマス合金を負極ストラップに用いた鉛蓄電池のうち電池V〜AA、及び鉛−スズ−タリウム合金を負極ストラップに用いた鉛蓄電池のうち電池AD〜AIにおいては、鉛−スズ合金箔を負極板の耳部の両面に貼り付けたものとそうでなものとの比較を行った。その結果、鉛−スズ合金箔を負極板の耳部の両面に貼り付けることで、負極ストラップの腐食が顕著に制御されることが確認できた。   Among lead-acid batteries using lead-bismuth alloy as a negative electrode strap, batteries F to K, among lead-acid batteries using lead-thallium alloy as a negative electrode strap, batteries N to S, and lead-tin-bismuth alloy as a negative electrode strap Among the lead-acid batteries used, batteries V to AA and lead-acid batteries using lead-tin-thallium alloys as negative electrode straps, batteries AD to AI, have lead-tin alloy foils attached to both sides of the ears of the negative electrode plate. A comparison was made between what was attached and what was. As a result, it was confirmed that the corrosion of the negative electrode strap was remarkably controlled by attaching the lead-tin alloy foil to both surfaces of the ear portion of the negative electrode plate.

以上、本発明によれば、鉛蓄電池の寿命特性を高次元に保ちつつ、電解液の減少を抑制できる(電解液の減少が進行して負極ストラップが電解液から露出した場合においても、負極ストラップの腐食が制御できる)、信頼性の高い負極ストラップを提供できることが判明した。   As described above, according to the present invention, it is possible to suppress the decrease in the electrolyte while maintaining the life characteristics of the lead storage battery at a high level (even when the decrease in the electrolyte progresses and the negative strap is exposed from the electrolyte, the negative strap It has been found that a highly reliable negative electrode strap can be provided.

本発明は、鉛蓄電池における電解液の減少を極めて顕著に抑制でき、さらには、負極ストラップ部の腐食に対する信頼性が向上することから、始動用鉛蓄電池をはじめとする多くの液式鉛蓄電池に好適であり、その利用価値は高い。   The present invention can remarkably suppress the decrease of the electrolytic solution in the lead storage battery, and further, the reliability against the corrosion of the negative electrode strap portion is improved. Therefore, the present invention can be applied to many liquid lead storage batteries including a start lead storage battery. It is suitable and its utility value is high.

1 正極板
2 負極板
2a 耳部
3 セパレータ
4 正極ストラップ
5 負極ストラップ
6 極板群
7 電槽
8 セル室
9 電解液
10 蓋
11 液口
12 鉛−スズ合金層
13 エキスパンド格子体
14 圧延シート
15 非展開部
16 網目
17 鉛−スズ合金箔
18 切込み
19 未化成活物質
20 液口栓
21 多孔性フィルタ
22 排気孔
23 防沫体
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 2a Ear part 3 Separator 4 Positive electrode strap 5 Negative electrode strap 6 Electrode plate group 7 Battery case 8 Cell chamber 9 Electrolyte 10 Lid 11 Liquid port 12 Lead-tin alloy layer 13 Expanded lattice body 14 Rolled sheet 15 Non Deployment part 16 Mesh 17 Lead-tin alloy foil 18 Notch 19 Unformed active material 20 Liquid spout 21 Porous filter 22 Exhaust hole 23 Splash-proof body

Claims (7)

鉛−カルシウム合金からなる正極格子体を用いた正極板と、鉛−カルシウム合金からなる負極格子体を用いた負極板とを、セパレータを介して交互に配置し、同極性の極板耳部をそれぞれ正極ストラップと負極ストラップとで集合した極板群と、
前記極板群を浸漬する電解液と、
前記極板群と前記電解液とを収納する電槽と、
液口を備え、前記電槽の開口部に接合される蓋と、
ガスを排気するための経路と排気口とを備え、前記液口に装着される液口栓と、
からなる鉛蓄電池であって、
前記負極ストラップにアンチモンを含ませずにビスマスおよび/あるいはタリウムを含ませ、
前記液口栓の前記経路に、セラミッスクス又は樹脂からなる多孔性フィルタを装着したことを特徴とする鉛蓄電池。
A positive electrode plate using a positive electrode lattice body made of a lead-calcium alloy and a negative electrode plate using a negative electrode lattice body made of a lead-calcium alloy are alternately arranged via a separator, A group of electrode plates each assembled with a positive strap and a negative strap,
An electrolyte for immersing the electrode group,
A battery case for storing the electrode plate group and the electrolytic solution;
A lid provided with a liquid port, joined to the opening of the battery case;
A path for exhausting gas and an exhaust port; a liquid port plug attached to the liquid port;
A lead storage battery comprising:
The negative electrode strap contains bismuth and / or thallium without containing antimony,
A lead-acid battery, wherein a porous filter made of ceramics or resin is attached to the path of the liquid plug.
前記負極ストラップにさらにスズを含ませたことを特徴とする、請求項1記載の鉛蓄電池。 The lead acid battery according to claim 1, wherein the negative electrode strap further contains tin. 前記負極ストラップにおけるビスマスの含有量を10ppm以上、1000ppm以下としたことを特徴とする、請求項1記載の鉛蓄電池。 The lead acid battery according to claim 1, wherein a content of bismuth in the negative electrode strap is 10 ppm or more and 1000 ppm or less. 前記負極ストラップにおけるタリウムの含有量を5ppm以上、500ppm以下としたことを特徴とする、請求項1記載の鉛蓄電池。 The lead acid battery according to claim 1, wherein the content of thallium in the negative electrode strap is 5 ppm or more and 500 ppm or less. 前記負極ストラップにさらに銀を含ませたことを特徴とする、請求項1記載の鉛蓄電池。 The lead acid battery according to claim 1, wherein the negative electrode strap further contains silver. 前記負極板の耳部の両表面に鉛−スズ合金層を形成したことを特徴とする、請求項1記載の鉛蓄電池。 The lead-acid battery according to claim 1, wherein a lead-tin alloy layer is formed on both surfaces of the ear portion of the negative electrode plate. 前記鉛−スズ合金層は、前記負極格子体をエキスパンド工法にて作製する際に、鉛合金シートの非展開部に鉛−スズ合金箔を一体圧延して形成したものであることを特徴とする、請求項6記載の鉛蓄電池。 The lead-tin alloy layer is formed by integrally rolling a lead-tin alloy foil on a non-expanded portion of a lead alloy sheet when the negative electrode lattice body is produced by an expanding method. The lead acid battery according to claim 6.
JP2013213432A 2012-12-18 2013-10-11 Lead acid battery Active JP6244801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013213432A JP6244801B2 (en) 2012-12-18 2013-10-11 Lead acid battery

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2012275387 2012-12-18
JP2012275387 2012-12-18
JP2013141479 2013-07-05
JP2013141479 2013-07-05
JP2013213432A JP6244801B2 (en) 2012-12-18 2013-10-11 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2015028901A true JP2015028901A (en) 2015-02-12
JP6244801B2 JP6244801B2 (en) 2017-12-13

Family

ID=52492502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013213432A Active JP6244801B2 (en) 2012-12-18 2013-10-11 Lead acid battery

Country Status (1)

Country Link
JP (1) JP6244801B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017085922A1 (en) * 2015-11-17 2017-05-26 株式会社Gsユアサ Lead storage battery and method for producing same
WO2022113731A1 (en) * 2020-11-30 2022-06-02 古河電気工業株式会社 Lead alloy, electrode for lead storage batteries, lead storage battery, and power storage system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137357A (en) * 1990-09-27 1992-05-12 Japan Storage Battery Co Ltd Welding method of electrode plate group for lead storage battery
JPH06310120A (en) * 1993-04-27 1994-11-04 Matsushita Electric Ind Co Ltd Manufacture of lead-acid battery
JP2005317332A (en) * 2004-04-28 2005-11-10 Furukawa Battery Co Ltd:The Lead-acid storage battery
JP2006210210A (en) * 2005-01-31 2006-08-10 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2007157610A (en) * 2005-12-08 2007-06-21 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2008041473A (en) * 2006-08-08 2008-02-21 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2008071693A (en) * 2006-09-15 2008-03-27 Matsushita Electric Ind Co Ltd Lead storage battery
JP2009146872A (en) * 2007-11-22 2009-07-02 Panasonic Corp Lead-acid storage battery
WO2010032782A1 (en) * 2008-09-22 2010-03-25 株式会社ジーエス・ユアサコーポレーション Lead acid storage battery
JP2010108682A (en) * 2008-10-29 2010-05-13 Panasonic Corp Lead-acid battery
JP2010205572A (en) * 2009-03-04 2010-09-16 Panasonic Corp Lead acid battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137357A (en) * 1990-09-27 1992-05-12 Japan Storage Battery Co Ltd Welding method of electrode plate group for lead storage battery
JPH06310120A (en) * 1993-04-27 1994-11-04 Matsushita Electric Ind Co Ltd Manufacture of lead-acid battery
JP2005317332A (en) * 2004-04-28 2005-11-10 Furukawa Battery Co Ltd:The Lead-acid storage battery
JP2006210210A (en) * 2005-01-31 2006-08-10 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2007157610A (en) * 2005-12-08 2007-06-21 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2008041473A (en) * 2006-08-08 2008-02-21 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2008071693A (en) * 2006-09-15 2008-03-27 Matsushita Electric Ind Co Ltd Lead storage battery
JP2009146872A (en) * 2007-11-22 2009-07-02 Panasonic Corp Lead-acid storage battery
WO2010032782A1 (en) * 2008-09-22 2010-03-25 株式会社ジーエス・ユアサコーポレーション Lead acid storage battery
JP2010108682A (en) * 2008-10-29 2010-05-13 Panasonic Corp Lead-acid battery
JP2010205572A (en) * 2009-03-04 2010-09-16 Panasonic Corp Lead acid battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017085922A1 (en) * 2015-11-17 2017-05-26 株式会社Gsユアサ Lead storage battery and method for producing same
WO2022113731A1 (en) * 2020-11-30 2022-06-02 古河電気工業株式会社 Lead alloy, electrode for lead storage batteries, lead storage battery, and power storage system

Also Published As

Publication number Publication date
JP6244801B2 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
JP5596241B1 (en) Lead acid battery
JP5477288B2 (en) Lead-acid battery and method for manufacturing the same
JP5061451B2 (en) Anode current collector for lead acid battery
WO2014162674A1 (en) Lead acid storage battery
JP6045329B2 (en) Lead acid battery
JP6164266B2 (en) Lead acid battery
JP5326291B2 (en) Lead acid battery
JP6244801B2 (en) Lead acid battery
JP6525167B2 (en) Lead storage battery
JP2006086039A (en) Lead-acid storage battery
JP5116331B2 (en) Lead acid battery
JP5151088B2 (en) Lead acid battery
JP2006114417A (en) Lead-acid storage battery
JP2010205572A (en) Lead acid battery
JPWO2019088040A1 (en) Separator for lead-acid battery and lead-acid battery
JP2010108682A (en) Lead-acid battery
JP6197426B2 (en) Lead acid battery
JP6921037B2 (en) Lead-acid battery
JP5340615B2 (en) Lead-acid battery for vehicle engine start
JP4904686B2 (en) Lead acid battery
JP2008146960A (en) Lead-acid battery
JP5044888B2 (en) Liquid lead-acid battery
JP4904674B2 (en) Lead acid battery
JP2005294142A (en) Lead storage battery
JP6006429B2 (en) Lead acid battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141001

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160519

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160713

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160824

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160902

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161004

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171030

R150 Certificate of patent or registration of utility model

Ref document number: 6244801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150