JP2015028855A - Powder for negative electrode material of lithium ion secondary battery, and conductive assistant used therefor - Google Patents

Powder for negative electrode material of lithium ion secondary battery, and conductive assistant used therefor Download PDF

Info

Publication number
JP2015028855A
JP2015028855A JP2013157595A JP2013157595A JP2015028855A JP 2015028855 A JP2015028855 A JP 2015028855A JP 2013157595 A JP2013157595 A JP 2013157595A JP 2013157595 A JP2013157595 A JP 2013157595A JP 2015028855 A JP2015028855 A JP 2015028855A
Authority
JP
Japan
Prior art keywords
powder
negative electrode
electrode material
carbon
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013157595A
Other languages
Japanese (ja)
Inventor
裕亮 白川
Yusuke Shirakawa
裕亮 白川
木崎 信吾
Shingo Kizaki
信吾 木崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP2013157595A priority Critical patent/JP2015028855A/en
Publication of JP2015028855A publication Critical patent/JP2015028855A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide powder which can achieve a high initial efficiency and a high cycle characteristic when used as a negative electrode material of a lithium ion secondary battery.SOLUTION: As an average composition in the whole powder for a negative electrode material, the O/Si ratio x, which is a molar ratio of the oxygen to the silicon, satisfies the following relation: 0.6≤x≤0.95. In measurement by X-ray diffraction with CuKrays, the height α of a silicon oxide-originating peak arising in a range of diffraction angles 2θ of 24-26°, and the height β of a silicon-originating peak arising in a range of diffraction angles 2θ of 28-29° satisfy the following relation: 10<β/α<10. In the powder for a negative electrode material, the content of the carbon is 0.03-3.0 mass%. The powder has a powder specific resistance of 1-10Ω cm.

Description

この発明は、リチウムイオン二次電池の負極材用粉末、およびそれに用いる導電助剤に関し、より詳しくは、高い初期効率、および高いサイクル特性が得られるリチウムイオン二次電池に用いられる負極材用粉末、およびそれに用いる導電助剤に関する。   The present invention relates to a powder for a negative electrode material of a lithium ion secondary battery, and a conductive additive used therefor, and more specifically, a powder for a negative electrode material used for a lithium ion secondary battery capable of obtaining high initial efficiency and high cycle characteristics. And a conductive additive used therefor.

近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化および軽量化との観点から、高エネルギー密度の二次電池の開発が強く要望されている。現在、高エネルギー密度の二次電池として、ニッケルカドミウム電池、ニッケル水素電池、リチウムイオン二次電池およびポリマー電池等がある。このうち、リチウムイオン二次電池は、ニッケルカドミウム電池やニッケル水素電池に比べて格段に高寿命かつ高容量であることから、その需要は電源市場において高い伸びを示している。   In recent years, with the remarkable development of portable electronic devices, communication devices, etc., there is a strong demand for the development of secondary batteries with high energy density from the viewpoints of economy and miniaturization and weight reduction of the devices. Currently, high energy density secondary batteries include nickel cadmium batteries, nickel metal hydride batteries, lithium ion secondary batteries and polymer batteries. Among these, lithium ion secondary batteries have a much longer lifespan and higher capacity than nickel cadmium batteries and nickel metal hydride batteries, and thus the demand thereof has shown high growth in the power supply market.

図1は、コイン形状のリチウムイオン二次電池の構成例を示す断面図である。リチウムイオン二次電池は、同図に示すように、正極1、負極2、電解液を含浸させたセパレータ3、および正極1と負極2との電気的絶縁性を保つとともに電池内容物を封止するガスケット4から構成されている。充放電を行うと、リチウムイオンがセパレータ3の電解液を介して正極1と負極2との間を往復する。   FIG. 1 is a cross-sectional view illustrating a configuration example of a coin-shaped lithium ion secondary battery. As shown in the figure, the lithium ion secondary battery maintains the electrical insulation between the positive electrode 1, the negative electrode 2, the separator 3 impregnated with the electrolyte, and the positive electrode 1 and the negative electrode 2 and seals the battery contents. It is comprised from the gasket 4 to do. When charging / discharging is performed, lithium ions reciprocate between the positive electrode 1 and the negative electrode 2 through the electrolytic solution of the separator 3.

正極1は、対極ケース1aと対極集電体1bと対極1cとで構成され、対極1cにはコバルト酸リチウム(LiCoO2)やマンガンスピネル(LiMn24)が主に使用される。負極2は、作用極ケース2aと、作用極集電体2bと、作用極2cとで構成され、作用極2cに用いる負極材は、一般に、リチウムイオンの吸蔵・放出が可能な活物質(負極活物質)と導電助剤およびバインダーとで構成される。 The positive electrode 1 includes a counter electrode case 1a, a counter electrode current collector 1b, and a counter electrode 1c, and lithium cobaltate (LiCoO 2 ) and manganese spinel (LiMn 2 O 4 ) are mainly used for the counter electrode 1c. The negative electrode 2 includes a working electrode case 2a, a working electrode current collector 2b, and a working electrode 2c. The negative electrode material used for the working electrode 2c is generally an active material (negative electrode) capable of occluding and releasing lithium ions. Active material), a conductive aid and a binder.

リチウムイオン二次電池の負極活物質として、Siを使用することが可能であるが、Siは、リチウムイオンの吸蔵・放出時の膨張および収縮が大きく、珪素粉末を用いた負極では、この膨張および収縮により、電流の経路が破壊されたり、珪素粉末の粒子自体が破壊されることがある。そのため、負極活物質としてSiを用いたリチウムイオン二次電池は、充放電の繰り返しによる放電容量の維持性(以下「サイクル特性」という。)が不十分である。   Si can be used as a negative electrode active material of a lithium ion secondary battery, but Si has a large expansion and contraction during insertion and extraction of lithium ions. In a negative electrode using silicon powder, this expansion and contraction Shrinkage may destroy the current path or the silicon powder particles themselves. Therefore, a lithium ion secondary battery using Si as the negative electrode active material has insufficient discharge capacity maintenance (hereinafter referred to as “cycle characteristics”) due to repeated charge and discharge.

そこで、SiO等、SiOx(0<x≦2)で表される酸化珪素の粉末を用いることが、試みられている。ここで、酸化珪素とは、二酸化珪素と珪素との混合物を加熱して生成した一酸化珪素ガスを冷却し、析出させて得られた非晶質の珪素酸化物の総称である。酸化珪素は、充放電時のリチウムイオンの吸蔵・放出による膨張および収縮が、Siに比して、小さく、構造の崩壊や不可逆物質の生成等による劣化が少ないことから、有効な充放電容量が大きな負極活物質となり得る。 Thus, attempts have been made to use silicon oxide powder represented by SiO x or the like and SiO x (0 <x ≦ 2). Here, silicon oxide is a general term for amorphous silicon oxide obtained by cooling and precipitating silicon monoxide gas generated by heating a mixture of silicon dioxide and silicon. Silicon oxide has a small expansion and contraction due to insertion and extraction of lithium ions during charge and discharge compared to Si, and since there is little deterioration due to collapse of the structure or generation of irreversible substances, effective charge and discharge capacity is high. It can be a large negative electrode active material.

しかし、酸化珪素粉末を負極活物質として使用したリチウムイオン二次電池の初期効率(初回充電容量に対する初回放電容量の割合)は、たとえば、70%程度と低い(不可逆容量が大きい)。また、当該リチウムイオン二次電池のサイクル特性は、負極活物質としてSiを用いた場合に比して改善されるが、充放電サイクルを50回繰り返したときのサイクル特性は、たとえば、65%程度であり、十分に高いとはいえない。   However, the initial efficiency (ratio of initial discharge capacity to initial charge capacity) of a lithium ion secondary battery using silicon oxide powder as a negative electrode active material is as low as about 70% (large irreversible capacity). Further, the cycle characteristics of the lithium ion secondary battery are improved as compared with the case where Si is used as the negative electrode active material, but the cycle characteristics when the charge / discharge cycle is repeated 50 times is, for example, about 65%. It is not high enough.

下記特許文献1には、酸化珪素粉末、および珪素粉末の双方を用いた負極が開示されている。より詳細には、特許文献1に開示された負極は、メディアン径D50が1〜20μmの、一般式SiOx(1.0≦x<1.6)で表される非晶質珪素酸化物粉末と、メディアン径D50が0.1〜20μmの多結晶珪素粉末とからなる。これにより、「酸化珪素の高い電池容量と低い体積膨張率を維持しつつ、酸化珪素の最大の解決課題であった低い初回充放電効率の問題を解決し、サイクル特性に優れた非水電解質二次電池負極が得られる」とされている。 Patent Document 1 below discloses a negative electrode using both silicon oxide powder and silicon powder. More specifically, the negative electrode disclosed in Patent Document 1 is an amorphous silicon oxide represented by the general formula SiO x (1.0 ≦ x <1.6) having a median diameter D 50 of 1 to 20 μm. It consists of a powder and a polycrystalline silicon powder having a median diameter D 50 of 0.1 to 20 μm. As a result, “Non-aqueous electrolytes with excellent cycle characteristics were solved, while maintaining the high battery capacity and low volume expansion rate of silicon oxide, while solving the problem of low initial charge and discharge efficiency, which was the biggest problem of silicon oxide. A secondary battery negative electrode is obtained. "

また、負極材としての抵抗値を低減するために、負極材用粉末(たとえば、酸化珪素粉末)を炭素で被覆(コート)することが試みられている。この粉末を用いることにより、従来に比して、サイクル特性が良好なリチウムイオン二次電池の負極が得られるとされている。特許文献1においても、非晶質珪素酸化物粉末、または多結晶珪素粉末に炭素被覆することが試みられている。   In addition, in order to reduce the resistance value as a negative electrode material, it has been attempted to coat (coat) a powder for negative electrode material (for example, silicon oxide powder) with carbon. By using this powder, it is said that a negative electrode of a lithium ion secondary battery having better cycle characteristics than in the past can be obtained. Patent Document 1 also attempts to coat amorphous silicon oxide powder or polycrystalline silicon powder with carbon.

しかし、本発明者らが確認したところ、引用文献1に開示された負極は、サイクル特性は十分に高いものではなく、改善の余地がある。   However, as a result of confirmation by the present inventors, the negative electrode disclosed in the cited document 1 does not have sufficiently high cycle characteristics, and there is room for improvement.

また、負極活物質としてSiを用いる場合、P(リン)等の他元素をSiにドープすることによっても、負極の導電性を高くすることができる。他元素として、たとえば、Pをドープした珪素粉末を負極活物質に用いて、リチウムイオン二次電池を高容量化できる。しかし、他元素をドープすることにより、Siは活性化され、そのようなSiがリチウムイオン二次電池内で電解液に接触すると、電解液は当該Siとの反応により、劣化する。これにより、リチウムイオン二次電池のサイクル特性が悪化する。   Moreover, when using Si as a negative electrode active material, the electroconductivity of a negative electrode can be made high also by doping other elements, such as P (phosphorus), to Si. As another element, for example, the lithium ion secondary battery can be increased in capacity by using silicon powder doped with P as the negative electrode active material. However, by doping other elements, Si is activated, and when such Si comes into contact with the electrolytic solution in the lithium ion secondary battery, the electrolytic solution deteriorates due to reaction with the Si. Thereby, the cycling characteristics of a lithium ion secondary battery deteriorate.

特許第4844764号公報Japanese Patent No. 4844764

本発明は、これらの問題に鑑みてなされたものであり、リチウムイオン二次電池の負極材として用いたときに高い初期効率、および高いサイクル特性を得ることができる粉末を提供することを目的としている。   The present invention has been made in view of these problems, and an object of the present invention is to provide a powder capable of obtaining high initial efficiency and high cycle characteristics when used as a negative electrode material for a lithium ion secondary battery. Yes.

また、本発明は、リチウムイオン二次電池の負極材用粉末に用いる導電助剤であって、この負極材用粉末を、リチウムイオン二次電池の負極材に用いたときに高い初期効率、および高いサイクル特性を得ることができる導電助剤を提供することを目的としている。   Further, the present invention is a conductive additive used for a negative electrode material powder of a lithium ion secondary battery, and when the negative electrode material powder is used for a negative electrode material of a lithium ion secondary battery, high initial efficiency, and It aims at providing the conductive support agent which can acquire a high cycling characteristic.

本発明の要旨は、下記(1)および(2)のリチウムイオン二次電池の負極材用粉末、ならびに、下記(3)の導電助剤である。
(1)リチウムイオン二次電池の負極材用粉末であって、
Si、OおよびCを含有し、当該負極材用粉末全体の平均組成として、モル比で、O/Si比xが、0.6≦x≦0.95の関係を満たし、
CuKα線を用いたX線回折で測定した場合に、回折角2θが24°〜26°の範囲に現れる酸化珪素に起因するピークの高さαと、回折角2θが28°〜29°の範囲に現れるSiに起因するピークの高さβとが、10-1<β/α<10の関係を満たし、
当該負極材用粉末中の炭素含有率が、0.03〜3.0質量%であり、
当該粉末の粉体比抵抗が、1Ωcm〜102Ωcmであることを特徴とする粉末。
The gist of the present invention is the following negative electrode powder for lithium ion secondary batteries (1) and (2), and the following conductive additive (3).
(1) A negative electrode material powder for a lithium ion secondary battery,
Si, O, and C are included, and as an average composition of the entire negative electrode material powder, in terms of molar ratio, the O / Si ratio x satisfies the relationship of 0.6 ≦ x ≦ 0.95,
When measured by X-ray diffraction using CuK α- rays, the peak height α due to silicon oxide appearing in the diffraction angle 2θ range of 24 ° to 26 ° and the diffraction angle 2θ of 28 ° to 29 ° The peak height β due to Si appearing in the range satisfies the relationship of 10 −1 <β / α <10,
The carbon content in the negative electrode material powder is 0.03 to 3.0% by mass,
A powder having a powder specific resistance of 1 Ωcm to 10 2 Ωcm.

(2)当該負極材用粉末を構成する粒子について、体積基準の累積粒度分布の微粒側から累積10%、累積50%、および累積90%の粒径をそれぞれD10、D50、およびD90とすると、
2μm≦D50≦15μm、かつ、
2≦D90/D10≦10
の関係を満たすことを特徴とする、上記(1)に記載の負極材用粉末。
(2) About the particles constituting the negative electrode material powder, the particle sizes of 10%, 50%, and 90% from the fine particle side of the volume-based cumulative particle size distribution are D 10 , D 50 , and D 90 , respectively. Then,
2 μm ≦ D 50 ≦ 15 μm, and
2 ≦ D 90 / D 10 ≦ 10
The negative electrode material powder according to (1) above, which satisfies the following relationship.

(3)酸化珪素粉末と混合して、上記(1)または(2)の負極材用粉末を製造するために用いる導電助剤であって、
珪素粉末を含み、前記珪素粉末の少なくとも一部が、炭素被覆されており、
体積メディアン径D50が、0.01μm≦D50≦2μmの関係を満たし、
炭素含有率が、0.6〜7.5質量%であり、
炭素の密度ρ(g/m3)、ならびに当該導電助剤の炭素含有率a(質量%)およびBET比表面積S(m2/g)から、a/(ρ・S)で計算される炭素被覆膜厚が、1×10-3μm〜0.1μmであることを特徴とする導電助剤。
(3) A conductive additive used for producing the negative electrode material powder according to (1) or (2) by mixing with silicon oxide powder,
Silicon powder is included, at least a part of the silicon powder is coated with carbon,
The volume median diameter D 50 satisfies the relationship of 0.01 μm ≦ D 50 ≦ 2 μm,
The carbon content is 0.6 to 7.5% by mass,
Carbon calculated by a / (ρ · S) from the density ρ (g / m 3 ) of carbon and the carbon content a (mass%) and BET specific surface area S (m 2 / g) of the conductive additive. A conductive additive having a coating thickness of 1 × 10 −3 μm to 0.1 μm.

本発明の負極材用粉末は、リチウムイオン二次電池の負極材として用いたときに、高い初期効率、およびサイクル特性を得ることができる。
本発明の導電助剤は、酸化珪素粉末と混合することにより、本発明の負極材用粉末を得ることができる。
When the negative electrode material powder of the present invention is used as a negative electrode material of a lithium ion secondary battery, high initial efficiency and cycle characteristics can be obtained.
The conductive aid of the present invention can be mixed with silicon oxide powder to obtain the negative electrode material powder of the present invention.

コイン形状のリチウムイオン二次電池の構成例を示す断面図である。It is sectional drawing which shows the structural example of a coin-shaped lithium ion secondary battery. 実施例6の負極材用粉末のX線回折強度曲線である。6 is an X-ray diffraction intensity curve of a negative electrode material powder of Example 6. FIG. 実施例9の負極材用粉末のX線回折強度曲線である。10 is an X-ray diffraction intensity curve of a negative electrode material powder of Example 9. 比較例6の負極材用粉末のX線回折強度曲線ある。4 is an X-ray diffraction intensity curve of a negative electrode material powder of Comparative Example 6. 比較例10の負極材用粉末のX線回折強度曲線である。4 is an X-ray diffraction intensity curve of a negative electrode material powder of Comparative Example 10.

1.本発明の導電助剤
本発明の導電助剤は、酸化珪素粉末と混合して、本発明の負極材用粉末を製造するために用いられ、「珪素粉末を含み、前記珪素粉末の少なくとも一部が、炭素被覆されており、体積メディアン径D50が、0.01μm≦D50≦2μmの関係を満たし、炭素含有率が、0.6〜7.5質量%であり、炭素の密度ρ(g/m3)、ならびに当該導電助剤の炭素含有率a(質量%)およびBET比表面積S(m2/g)から、a/(ρ・S)で計算される炭素被覆膜厚が、1×10-3μm〜0.1μmである」ことを特徴とする。
1. Conductive aid of the present invention The conductive aid of the present invention is used to produce a negative electrode material powder of the present invention by mixing with silicon oxide powder, and includes “a silicon powder, at least a part of the silicon powder. Is coated with carbon, the volume median diameter D 50 satisfies the relationship of 0.01 μm ≦ D 50 ≦ 2 μm, the carbon content is 0.6 to 7.5 mass%, and the density of carbon ρ ( g / m 3 ), and the carbon coating thickness calculated by a / (ρ · S) from the carbon content a (mass%) and the BET specific surface area S (m 2 / g) of the conductive additive. 1 × 10 −3 μm to 0.1 μm ”.

珪素粉末が炭素被覆されていることにより、この導電助剤は、高い導電性を有する。したがって、この導電助剤と酸化珪素粉末とを混合することにより、導電性が高い負極材用粉末を得ることができる。また、この導電助剤自体も、リチウムイオンの吸蔵・放出能力を有するので、このような負極材用粉末を用いて負極を形成することにより、この負極が備えられたリチウムイオン二次電池(以下、単に、「電池」ともいう。)の容量を高くすることができる。   Since the silicon powder is coated with carbon, the conductive auxiliary agent has high conductivity. Therefore, the negative electrode material powder having high conductivity can be obtained by mixing the conductive assistant and the silicon oxide powder. In addition, since this conductive auxiliary agent itself has the ability to occlude and release lithium ions, by forming a negative electrode using such a negative electrode material powder, a lithium ion secondary battery equipped with this negative electrode (hereinafter referred to as the negative electrode material) , Simply referred to as “battery”).

体積メディアン径D50は、体積基準の累積粒度分布の微粒側(または粗粒側)から累積50%の粒径であり、粉体の平均的な粒径の指標となる。累積粒度分布は、たとえば、レーザー回折式粒度分布測定装置により測定することができる。 The volume median diameter D 50 is the particle size of cumulative 50% cumulative particle size distribution fine side of (or coarse side) of the volume-based, is indicative of an average particle size of the powder. The cumulative particle size distribution can be measured by, for example, a laser diffraction particle size distribution measuring apparatus.

50≦2μmであることにより、この導電助剤を用いて負極材用粉末を製造し、この負極材用粉末を用いて負極を形成すると、この負極が備えられた電池の充放電時に、リチウムイオンの吸蔵・放出に起因して、導電助剤中の珪素粒子が膨張・収縮して、当該粒子が破壊されることを、防止または抑制することができる。すなわち、D50が2μmより大きいと、珪素粒子の膨張・収縮により生ずる応力が大きくなり、粒子が破壊される。 When D 50 ≦ 2 μm, a negative electrode material powder is produced using this conductive auxiliary agent, and a negative electrode is formed using this negative electrode material powder. When charging and discharging a battery equipped with this negative electrode, It can be prevented or suppressed that the silicon particles in the conductive additive expand and contract due to the occlusion / release of ions and the particles are destroyed. That is, when D 50 is larger than 2 μm, the stress generated by the expansion and contraction of the silicon particles increases, and the particles are destroyed.

また、負極材用粉末を構成する粒子が、過度に小さく、比表面積が大きい場合は、電池に含まれる電解液との反応性が高くなり、電解液が劣化することがある。この導電助剤は、0.01μm<D50であることにより、電解液との反応性を低減することができる。また、0.01μm<D50であることにより、負極材用粉末をスラリーにして負極を形成する際に必要となるバインダーの量を低減できる。 Moreover, when the particle | grains which comprise the powder for negative electrode materials are too small and a specific surface area is large, the reactivity with the electrolyte solution contained in a battery becomes high, and electrolyte solution may deteriorate. The conductive additive, by a 0.01 [mu] m <D 50, it is possible to reduce the reactivity with a liquid electrolyte. In addition, when 0.01 μm <D 50 , the amount of binder required when forming the negative electrode by using the negative electrode material powder as a slurry can be reduced.

炭素被覆膜厚が1×10-3μm〜0.1μmであることにより、負極材として、十分に高い導電性を得つつ、電池の充放電時に、この導電助剤の膨張・収縮により炭素被膜が破断することを抑制できる。このような炭素被覆膜厚は、体積メディアン径D50が、0.01μm≦D50≦2μmの関係を満たし、炭素含有率が、0.6〜7.5質量%であることにより、得やすくなる。炭素被覆膜厚を計算する際、炭素の密度は、文献値を採用することができ、たとえば、2.2×106g/m3とすることができる。 When the carbon coating film thickness is 1 × 10 −3 μm to 0.1 μm, it is possible to obtain a sufficiently high conductivity as a negative electrode material, and carbon due to expansion and contraction of the conductive auxiliary agent during charging and discharging of the battery. It can control that a coat breaks. Such a carbon coating film thickness is obtained when the volume median diameter D 50 satisfies the relationship of 0.01 μm ≦ D 50 ≦ 2 μm and the carbon content is 0.6 to 7.5% by mass. It becomes easy. When calculating the carbon coating thickness, literature values can be adopted as the density of carbon, for example, 2.2 × 10 6 g / m 3 .

2.本発明の導電助剤の製造方法
この導電助剤は、体積メディアン径D50が0.01μm〜2μmである珪素粉末に対して、たとえば、熱CVD(Chemical Vapor Deposition)により、炭素被覆をすることにより得ることができる。熱CVDは、たとえば、C38(プロパン)を含むAr気流中で、珪素粉末を加熱することにより行うことができる。このような方法で炭素被膜を形成すると、珪素粉末の体積メディアン径D50は、炭素被膜を形成する前後で、ほとんど変わらない。
2. Method for Producing Conductive Auxiliary Agent According to the Present Invention In this conductive aid, carbon coating is applied to silicon powder having a volume median diameter D 50 of 0.01 μm to 2 μm, for example, by thermal CVD (Chemical Vapor Deposition) Can be obtained. Thermal CVD can be performed, for example, by heating silicon powder in an Ar stream containing C 3 H 8 (propane). When the carbon film is formed by such a method, the volume median diameter D 50 of the silicon powder hardly changes before and after the carbon film is formed.

3.本発明の負極材用粉末
本発明の負極材用粉末は、「リチウムイオン二次電池の負極材用粉末であって、Si、OおよびCを含有し、当該負極材用粉末全体の平均組成として、モル比で、O/Si比xが、0.6≦x≦0.95の関係を満たし、CuKα線を用いたX線回折で測定した場合に、回折角2θが24°〜26°の範囲に現れる酸化珪素に起因するピークの高さαと、回折角2θが28°〜29°の範囲に現れるSiに起因するピークの高さβとが、10-1<β/α<10の関係を満たし、当該負極材用粉末中の炭素含有率が、0.03〜3.0質量%であり、当該粉末の粉体比抵抗が、1Ωcm〜102Ωcmである」ことを特徴とする。
3. Powder for negative electrode material of the present invention The powder for negative electrode material of the present invention is “a powder for negative electrode material of a lithium ion secondary battery, containing Si, O, and C, and having an average composition of the whole powder for negative electrode material” When the O / Si ratio x satisfies the relationship of 0.6 ≦ x ≦ 0.95 and is measured by X-ray diffraction using CuK α rays, the diffraction angle 2θ is 24 ° to 26 °. The peak height α due to silicon oxide appearing in the range of 5 and the peak height β due to Si appearing in the range where the diffraction angle 2θ is in the range of 28 ° to 29 ° are 10 −1 <β / α <10. The carbon content in the powder for negative electrode material is 0.03 to 3.0% by mass, and the powder specific resistance of the powder is 1 Ωcm to 10 2 Ωcm ”. To do.

この負極材用粉末は、たとえば、図1に示すリチウムイオン二次電池において、作用極2cの材料として使用することができる。   This negative electrode material powder can be used, for example, as a material for the working electrode 2c in the lithium ion secondary battery shown in FIG.

負極材用粉末全体の平均組成として、モル比で、0.6≦O/Si≦0.95であることにより、この負極材用粉末を用いた電池のサイクル特性と電池の初期充放電容量(電池容量)とが、いずれも高くなるようにすることができる。O/Si<0.6であると、サイクル特性が悪くなり、0.95<O/Siであると、初期放電容量、および初期効率が小さくなる。   The average composition of the negative electrode material powder as a whole is 0.6 ≦ O / Si ≦ 0.95 in terms of molar ratio, so that the cycle characteristics of the battery using this negative electrode material powder and the initial charge / discharge capacity of the battery ( Battery capacity) can all be increased. When O / Si <0.6, the cycle characteristics deteriorate, and when 0.95 <O / Si, the initial discharge capacity and the initial efficiency are reduced.

X線回折測定に関し、高さαは、回折強度曲線上において、回折角2θが24°〜26°の範囲の測定値の最大値から、回折角2θが20°の点と回折角2θが40°の点とを結ぶ直線上で、上記最大値に対応する回折角2θにおける強度を差し引いたものである。当該差し引くべき強度は、回折角2θが20°の回折強度と回折角2θが40°の回折強度との平均値としてもよい。酸化珪素(SiOx;0<x≦2)は、非晶質であるので、回折強度曲線において、酸化珪素に起因するピークは、結晶(たとえば、Siの結晶)に起因するピークに比して、著しく幅が広いもの(いわゆるハロー)となり、たとえば、20〜40°に渡って現れる。 Regarding the X-ray diffraction measurement, the height α is a point on the diffraction intensity curve where the diffraction angle 2θ is 20 ° and the diffraction angle 2θ is 40 from the maximum of the measured values in the range of the diffraction angle 2θ of 24 ° to 26 °. This is obtained by subtracting the intensity at the diffraction angle 2θ corresponding to the maximum value on the straight line connecting the point of °. The intensity to be subtracted may be an average value of the diffraction intensity with a diffraction angle 2θ of 20 ° and the diffraction intensity with a diffraction angle 2θ of 40 °. Since silicon oxide (SiO x ; 0 <x ≦ 2) is amorphous, the peak due to silicon oxide in the diffraction intensity curve is compared to the peak due to crystal (for example, Si crystal). It becomes a very wide one (so-called halo), for example, appearing over 20-40 °.

高さβは、回折強度曲線上において、回折角2θが28°〜29°の範囲のピーク強度から、回折角2θが28.2°の点と回折角2θが28.8°の点とを結ぶ直線上で、上記ピーク強度に対応する回折角2θにおける強度を差し引いたものである。当該差し引くべき強度は、回折角2θが28.2°の回折強度と回折角2θが28.8°の回折強度との平均値としてもよい。   On the diffraction intensity curve, the height β is determined from the peak intensity where the diffraction angle 2θ is in the range of 28 ° to 29 °, and the point where the diffraction angle 2θ is 28.2 ° and the point where the diffraction angle 2θ is 28.8 °. On the connecting line, the intensity at the diffraction angle 2θ corresponding to the peak intensity is subtracted. The intensity to be subtracted may be an average value of the diffraction intensity at a diffraction angle 2θ of 28.2 ° and the diffraction intensity at a diffraction angle 2θ of 28.8 °.

β/αは、酸化珪素粉末の含有量に対する珪素粉末の含有量の割合に対応する。10-1<β/α<10になるような割合で、酸化珪素粉末と、珪素粉末とを含むことにより、上述の「電池の初期効率、およびサイクル特性を高くする」という効果が得やすくなる。 β / α corresponds to the ratio of the content of silicon powder to the content of silicon oxide powder. By including the silicon oxide powder and the silicon powder at a ratio such that 10 −1 <β / α <10, the above-described effect of “increasing the initial efficiency and cycle characteristics of the battery” can be easily obtained. .

粉体比抵抗が1Ω〜102Ωであることにより、この負極材用粉末を用いた負極の導電性を高くすることができ、電池のサイクル特性を向上させることができる。炭素含有率を高くして、粉体比抵抗を1Ω未満にすると、炭素被膜が厚くなりすぎて、電池の充放電時に、炭素被膜が破断しやすくなる。 When the powder specific resistance is 1Ω to 10 2 Ω, the conductivity of the negative electrode using the powder for negative electrode material can be increased, and the cycle characteristics of the battery can be improved. When the carbon content is increased and the powder specific resistance is less than 1Ω, the carbon coating becomes too thick, and the carbon coating is liable to break during charge / discharge of the battery.

粉体比抵抗は、たとえば、電極間隔が3.0mmで、電極半径が0.7mmである四探針プローブを用い、直径が10.0mmで、重量が2.0020〜2.0100gの円板状の試料に、軸方向に荷重をかけながら測定することができる。荷重は、たとえば、3.05±0.02kN、6.05±0.02kN、9.05±0.02kN、12.05±0.02kN、15.05±0.02kN、および18.05±0.02kNと、順次大きくしながら、各加重で粉体比抵抗を測定し、18.05±0.02kNで測定したときの値を、最終的な粉体比抵抗の値とすることができる。   The specific resistance of the powder is, for example, a four-probe probe having an electrode interval of 3.0 mm and an electrode radius of 0.7 mm, a diameter of 10.0 mm, and a weight of 2.0020 to 2.0100 g. Can be measured while applying a load to the sample in the axial direction. The loads are, for example, 3.05 ± 0.02 kN, 6.05 ± 0.02 kN, 9.05 ± 0.02 kN, 12.05 ± 0.02 kN, 15.05 ± 0.02 kN, and 18.05 ± While gradually increasing to 0.02 kN, the powder specific resistance is measured at each load, and the value measured at 18.05 ± 0.02 kN can be used as the final powder specific resistance value. .

導電助剤と混合する酸化珪素粉末の体積メディアン径D50は、この導電助剤の体積メディアン径D50より大きいことが望ましく、具体的には、4〜20μmであることが望ましい。この場合、負極において、大略的に、より大きな粒径を有する酸化珪素粒子の隙間が、より小さな粒径を有する珪素粒子(炭素被覆されたもの)で埋められた構造が得られる。このような構造の負極では、電池の充放電時に、珪素粒子が、酸化珪素粒子よりも大きな膨張率で膨張・収縮しても、負極内の電流の経路が破壊され難い。これにより、サイクル特性が向上する。このような効果を得るために、導電助剤と混合する酸化珪素粉末の体積メディアン径D50は、4〜15μmであることが、より望ましく、4〜10μmであることが、さらに望ましい。 Silicon oxide powder having a volume median diameter D 50 of mixing with the conductive additive is desirably greater than the volume median diameter D 50 of the conductive additive, specifically, it is desirable that 4 to 20 .mu.m. In this case, in the negative electrode, a structure is obtained in which the gaps between the silicon oxide particles having a larger particle diameter are filled with silicon particles (carbon-coated) having a smaller particle diameter. In the negative electrode having such a structure, even when the silicon particles expand and contract at a higher expansion rate than the silicon oxide particles during charging and discharging of the battery, the current path in the negative electrode is difficult to be destroyed. Thereby, cycle characteristics are improved. In order to obtain such an effect, the volume median diameter D 50 of the silicon oxide powder mixed with the conductive additive is more preferably 4 to 15 μm, and further preferably 4 to 10 μm.

当該負極材用粉末を構成する粒子について、体積基準の累積粒度分布の微粒側から累積10%、累積50%、および累積90%の粒径をそれぞれD10、D50、およびD90とすると、
2μm≦D50≦15μm、かつ、
2≦D90/D10≦10
の関係を満たすことが望ましい。この負極材用粉末に用いられる導電助剤の体積メディアン径D50は、2μm未満であるので、負極材用粉末の体積メディアン径D50が2μm以上であることは、導電助剤と混合される酸化珪素粉末の体積メディアン径D50が2μm以上であることを意味する。すなわち、2μm≦D50≦15μmとの関係を満たす負極材用粉末では、酸化珪素粉末の体積メディアン径D50は、導電助剤の体積メディアン径D50より大きく、したがって、上述のように、電池評価をしたときに、高いサイクル特性が得られやすい。
Regarding the particles constituting the powder for negative electrode material, assuming that the particle sizes of 10%, 50%, and 90% from the fine particle side of the volume-based cumulative particle size distribution are D 10 , D 50 , and D 90 , respectively.
2 μm ≦ D 50 ≦ 15 μm, and
2 ≦ D 90 / D 10 ≦ 10
It is desirable to satisfy the relationship. Since the volume median diameter D 50 of the conductive auxiliary agent used for the negative electrode material powder is less than 2 μm, it is mixed with the conductive auxiliary agent that the volume median diameter D 50 of the negative electrode material powder is 2 μm or more. It means that the volume median diameter D 50 of the silicon oxide powder is 2 μm or more. That is, in the negative electrode material powder satisfying the relationship between the 2 [mu] m ≦ D 50 ≦ 15 [mu] m, a volume median diameter D 50 of the silicon oxide powder is greater than the volume median diameter D 50 of the conductive additive, thus, as described above, the battery When evaluated, it is easy to obtain high cycle characteristics.

10、D50、およびD90についての上記関係を満たす負極材用粉末を用いることにより、電池として高いサイクル特性を得やすい。D90/D10は、負極材用粉末において、主として微粒子として存在する珪素と、主として粗粒子として存在する酸化珪素とが、粒径および量に関して、どの程度の割合になっているかの指標となる。D90/D10が上記関係を満たすことにより、充放電時の膨張・収縮に対して破壊され難い構造の負極が得られやすい。 By using the powder for negative electrode material that satisfies the above relationship for D 10 , D 50 , and D 90, it is easy to obtain high cycle characteristics as a battery. D 90 / D 10 is an index of the ratio of silicon, which is mainly present as fine particles, and silicon oxide, which is mainly present as coarse particles, in terms of particle size and amount in the negative electrode material powder. . When D 90 / D 10 satisfies the above relationship, it is easy to obtain a negative electrode having a structure that is not easily destroyed by expansion / contraction during charge / discharge.

4.本発明の負極材用粉末の製造方法
この負極材用粉末は、本発明の上記導電助剤と、酸化珪素粉末とを混合して得ることができる。酸化珪素粉末は、公知の方法、たとえば、二酸化珪素と珪素との混合物を加熱して生成した一酸化珪素ガスを冷却し、析出させる方法により、製造することができる。得られた酸化珪素粉末は、たとえば、ボールミルにより粉砕して、所望の体積メディアン径D50が得られるようにすることができる。
4). Manufacturing method of powder for negative electrode material of this invention This powder for negative electrode materials can be obtained by mixing the said conductive support agent of this invention, and silicon oxide powder. The silicon oxide powder can be produced by a known method, for example, a method of cooling and precipitating silicon monoxide gas generated by heating a mixture of silicon dioxide and silicon. Silicon oxide powder obtained, for example, by grinding in a ball mill, it is possible to make a desired volume median diameter D 50 is obtained.

このような方法により、粉末全体として、モル比で、Si:Oが、たとえば、1:0.98〜1.10の平均組成を有する酸化珪素粉末が得られる。この酸化珪素粉末と、導電助剤とを、適当な割合で混合して、負極材用粉末全体の平均組成として、モル比で、O/Si比xが、0.6≦x≦0.95の関係を満たすようにすることができる。   By such a method, a silicon oxide powder having an average composition of Si: O of, for example, 1: 0.98 to 1.10. The silicon oxide powder and the conductive additive are mixed at an appropriate ratio to obtain an average composition of the whole negative electrode material powder in terms of molar ratio and O / Si ratio x is 0.6 ≦ x ≦ 0.95. To satisfy the relationship.

〈導電助剤の予備試験〉
下記の条件で、本発明の要件を満たす導電助剤(実施例1〜5)、および本発明の要件を満たさない導電助剤(比較例1〜5)を作製した。比較例1は、Pをドープした珪素粉末であり、炭素は被覆しなかった。実施例1〜5、および比較例2〜5は、Pをドープしていない珪素粉末に炭素被覆したものである。炭素被覆は、キルン(回転式熱処理炉)を用いて行った。具体的には、キルン内に、被覆対象の珪素粉末を配置し、ArとC38(プロパン)とを1:1(体積比)で混合してなる混合気体を、毎分1Lの流量でキルン内に流し、キルンを5rpmで回転させながら加熱することにより、珪素粉末に炭素被覆した。表1に、炭素被覆の条件を示す。
<Preliminary test of conductive additive>
Under the following conditions, conductive assistants (Examples 1 to 5) satisfying the requirements of the present invention and conductive assistants (Comparative Examples 1 to 5) not satisfying the requirements of the present invention were prepared. Comparative Example 1 was a silicon powder doped with P and was not coated with carbon. In Examples 1 to 5 and Comparative Examples 2 to 5, silicon powder not doped with P was coated with carbon. Carbon coating was performed using a kiln (rotary heat treatment furnace). Specifically, a silicon gas to be coated is placed in a kiln, and a mixed gas formed by mixing Ar and C 3 H 8 (propane) at a 1: 1 (volume ratio) flow rate of 1 L / min. The silicon powder was coated with carbon by heating the kiln while rotating it at 5 rpm. Table 1 shows the carbon coating conditions.

Figure 2015028855
Figure 2015028855

得られた導電助剤について、体積メディアン径、炭素含有率、粉体比抵抗、および電池評価としてのサイクル特性を測定した。表2に、測定結果を示す。   About the obtained conductive support agent, the volume median diameter, carbon content rate, powder specific resistance, and the cycling characteristics as battery evaluation were measured. Table 2 shows the measurement results.

Figure 2015028855
Figure 2015028855

体積メディアン径は、レーザー回折式粒度分布測定装置により測定した。炭素含有率は、燃焼赤外線吸収法により、測定した。粉体比抵抗は、上述の方法、すなわち、荷重を3.05±0.02kNから18.05±0.02kNまで順次大きくしながら、各加重で粉体比抵抗を測定し、18.05±0.02kNで測定したときの値を、最終的な粉体比抵抗の値とする方法により測定した。   The volume median diameter was measured by a laser diffraction type particle size distribution measuring apparatus. The carbon content was measured by a combustion infrared absorption method. The powder specific resistance was measured by measuring the powder specific resistance at each load while gradually increasing the load from 3.05 ± 0.02 kN to 18.05 ± 0.02 kN. The value when measured at 0.02 kN was measured by a method for obtaining a final value of powder specific resistance.

これらの導電助剤については、BET比表面積も測定し、炭素の密度ρ(g/m3)、ならびに測定した炭素含有率a(質量%)およびBET比表面積S(m2/g)から、a/(ρ・S)で計算される炭素被覆膜厚を求めた。計算に際し、炭素の密度ρは、2.2×106g/m3を採用した。表2には、このようにして求めた炭素被覆膜厚を併せて示す。 For these conductive aids, the BET specific surface area was also measured, and the carbon density ρ (g / m 3 ), and the measured carbon content a (mass%) and BET specific surface area S (m 2 / g), The carbon coating thickness calculated by a / (ρ · S) was obtained. In the calculation, the carbon density ρ was 2.2 × 10 6 g / m 3 . Table 2 also shows the carbon coating film thickness thus obtained.

サイクル特性は、得られた導電助剤(実施例1〜5、および比較例1〜5の各々)を用いて負極を作製し、この負極を用いてリチウムイオン二次電池(コインセル)を作製して測定した。   Cycling characteristics produced a negative electrode using the obtained conductive assistants (Examples 1 to 5 and Comparative Examples 1 to 5), and produced a lithium ion secondary battery (coin cell) using the negative electrode. Measured.

負極は、各導電助剤、ケッチェンブラック(KB)、およびポリイミド(PI)を85:5:10(質量比)で混合し、さらに、n−メチルピロリドンを加えることで作製したスラリーを、厚さ20μmの銅箔に塗布し、120℃で30分乾燥後、1cm2(1cm×1cm)に打ち抜いて、得た。 The negative electrode was prepared by mixing each conductive additive, ketjen black (KB), and polyimide (PI) at a ratio of 85: 5: 10 (mass ratio), and adding n-methylpyrrolidone to the slurry. It was applied to a copper foil having a thickness of 20 μm, dried at 120 ° C. for 30 minutes, and punched into 1 cm 2 (1 cm × 1 cm) to obtain.

リチウムイオン二次電池は、上記負極と、対極としてリチウム箔とを用い、負極と対極との間に、厚さ30μmのポリエチレン製多孔質フィルムのセパレータであって、電解液を含浸させたものを配置して作製した。電解質は、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを1:1の体積比で混合して得た液に、六フッ化リンリチウム(LiPF6)を、1モル/Lの割合になるように溶解させたものとした。 A lithium ion secondary battery uses the above negative electrode and a lithium foil as a counter electrode, and is a separator made of a polyethylene porous film having a thickness of 30 μm between the negative electrode and the counter electrode, impregnated with an electrolytic solution. Arranged and produced. The electrolyte is a solution obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume ratio of 1: 1, and lithium hexafluoride (LiPF 6 ) is in a ratio of 1 mol / L. Thus, it was dissolved.

サイクル特性は、株式会社ナガノ製の二次電池充放電試験装置を用いて行った。充電は、電圧が0Vに達するまでは0.1Cの定電流で行い、電圧が0Vに達した後はセル電圧を0Vに保ったまま行った。電流値が20μAを下回った時点で、充電を終了した。放電は、電圧が1.5Vに達するまで0.1Cの定電流で行った。以上の充放電を50サイクル行い、初回放電容量を100としたときの50サイクル目の放電容量の割合を、表2において、サイクル特性として記載している。すなわち、表2のサイクル特性は、充放電を50サイクル行うことによる放電容量の維持率ということができる。   The cycle characteristics were measured using a secondary battery charge / discharge test apparatus manufactured by Nagano Corporation. Charging was performed at a constant current of 0.1 C until the voltage reached 0V, and after the voltage reached 0V, the cell voltage was maintained at 0V. Charging was terminated when the current value fell below 20 μA. Discharging was performed at a constant current of 0.1 C until the voltage reached 1.5V. The charge / discharge cycle described above is performed 50 times, and the ratio of the discharge capacity at the 50th cycle when the initial discharge capacity is 100 is shown in Table 2 as cycle characteristics. In other words, the cycle characteristics in Table 2 can be said to be a discharge capacity maintenance rate by performing 50 charge / discharge cycles.

電流値の計算に際し、1Cの値は、SiOの放電容量を1500mAh/g、Siの放電容量を2400mAh/gとして計算した。たとえば、負極中の活物質としてのSiOの重量をM(mg)としたとき0.1Cの電流値Iは、
I=1500mAh/g×M×10-3×0.1
として算出した。
When calculating the current value, the value of 1C was calculated assuming that the discharge capacity of SiO was 1500 mAh / g and the discharge capacity of Si was 2400 mAh / g. For example, when the weight of SiO as the active material in the negative electrode is M (mg), the current value I of 0.1 C is
I = 1500 mAh / g × M × 10 −3 × 0.1
Calculated as

表2の総合評価の欄は、サイクル特性の評価結果により、以下の通りとした。
×:35%未満
△:35%以上、かつ40%未満
○:40%以上、かつ55%未満
◎:55%以上
The column of comprehensive evaluation in Table 2 is as follows according to the evaluation results of cycle characteristics.
×: Less than 35% △: 35% or more and less than 40% ○: 40% or more and less than 55% ◎: 55% or more

表2に示すように、サイクル特性は、実施例1〜5では、いずれも、40%以上であり、このうち、実施例2〜5では、いずれも、50%以上であった。実施例2〜5に比して実施例1でサイクル特性が低くなるのは、炭素被覆膜厚が薄く、粉体比抵抗が高いことに関係しているものと考えられる。   As shown in Table 2, the cycle characteristics were all 40% or more in Examples 1 to 5, and all of Examples 2 to 5 were 50% or more. The lower cycle characteristics in Example 1 than in Examples 2-5 are considered to be related to the fact that the carbon coating film thickness is thin and the powder specific resistance is high.

これに対して、比較例1〜5では、サイクル特性は、いずれも40%未満であった。
比較例1では、実施例1に比して、粉体比抵抗が低いにもかかわらず、サイクル特性は6割程度しか得られていない。これは、Pドープの珪素粉末が、電解液と反応したことによる。
On the other hand, in Comparative Examples 1-5, the cycle characteristics were all less than 40%.
In Comparative Example 1, although the powder specific resistance is lower than that in Example 1, only about 60% of the cycle characteristics are obtained. This is because the P-doped silicon powder reacted with the electrolytic solution.

比較例2〜5では、いずれも、珪素粉末は、炭素被覆されているが、本願発明の導電助剤の要件に関して、炭素被覆膜厚が1×10-3μm〜0.1μmとの要件を満たさず、また、比較例4および5では、体積メディアン径D50が0.01μm〜2μmとの要件も満たさない。比較例2では、炭素被覆膜厚が薄すぎ、負極の抵抗値が低減できないことに関係して、サイクル特性が低くなったものと考えられる。これに対して、比較例3では、炭素被覆膜厚が厚すぎて、充放電時の珪素粒子の膨張・収縮により炭素被膜が破断して、サイクル特性が低くなったものと考えられる。比較例4では、比較例3と同様に、炭素被覆膜厚が厚すぎることに加え、体積メディアン径D50が大きいため、充放電時の珪素粒子の膨張・収縮により珪素粒子自体が破壊されて、サイクル特性が低くなったことが考えられる。比較例5では、比較例2と同様に、炭素被覆膜厚が薄すぎることにより、サイクル特性が低いものと考えられる。比較例5は、炭素含有率については、本願発明の導電助剤の要件(0.6〜75質量%)を満たすが、体積メディアン径D50が小さいことにより、炭素被覆膜厚が薄くなっている。 In Comparative Examples 2 to 5, all of the silicon powder is coated with carbon, but regarding the requirement of the conductive additive of the present invention, the requirement that the carbon coating film thickness is 1 × 10 −3 μm to 0.1 μm. In Comparative Examples 4 and 5, the volume median diameter D 50 does not satisfy the requirement of 0.01 μm to 2 μm. In Comparative Example 2, it is considered that the cycle characteristics were lowered in connection with the fact that the carbon coating thickness was too thin and the resistance value of the negative electrode could not be reduced. On the other hand, in the comparative example 3, it is thought that the carbon coating film thickness was too thick, the carbon coating film was broken by expansion / contraction of the silicon particles during charge / discharge, and the cycle characteristics were lowered. In Comparative Example 4, as in Comparative Example 3, in addition to the carbon coating film thickness being too thick, the volume median diameter D 50 is large, so that the silicon particles themselves are destroyed by the expansion and contraction of the silicon particles during charging and discharging. Thus, it is considered that the cycle characteristics are lowered. In Comparative Example 5, as in Comparative Example 2, it is considered that the cycle characteristics are low due to the carbon coating film thickness being too thin. Comparative Example 5, for the carbon content, but meet the requirements of the conductive additive of the present invention (0.6 to 75 mass%), by volume median diameter D 50 is smaller, thinner carbon coating thickness ing.

〈実施例〉
表3に示す条件で炭素被覆を行った粉末を用いて(比較例6を除く)、表4に示す条件で、負極材用粉末(実施例6〜9、および比較例6〜10)を作製した。
<Example>
Using powders coated with carbon under the conditions shown in Table 3 (excluding Comparative Example 6), powders for negative electrode materials (Examples 6 to 9 and Comparative Examples 6 to 10) were produced under the conditions shown in Table 4. did.

Figure 2015028855
Figure 2015028855

Figure 2015028855
Figure 2015028855

実施例6〜9、および比較例7〜10は、珪素粉末に炭素被覆し、この珪素粉末と、酸化珪素粉末とを混合したものである。比較例6は、負極活物質としての酸化珪素粉末自体に、炭素被覆したものであり、珪素粉末は用いていない。比較例6の粉末は、導電助剤として、ケッチェンブラックを含む。表4の「酸化珪素粉末の被覆炭素量」、および「珪素粉末の被覆炭素量」は、導電助剤の炭素含有率に等しい。   Examples 6 to 9 and Comparative Examples 7 to 10 are obtained by coating silicon powder with carbon and mixing this silicon powder and silicon oxide powder. In Comparative Example 6, the silicon oxide powder itself as the negative electrode active material was coated with carbon, and no silicon powder was used. The powder of Comparative Example 6 contains ketjen black as a conductive additive. “Coating carbon amount of silicon oxide powder” and “Coating carbon amount of silicon powder” in Table 4 are equal to the carbon content of the conductive additive.

得られた負極材用粉末について、粉体特性を測定し、電池評価を実施した。表5に、粉体特性測定、および電池評価の結果を示す。   About the obtained powder for negative electrode materials, the powder characteristic was measured and battery evaluation was implemented. Table 5 shows the results of powder characteristic measurement and battery evaluation.

Figure 2015028855
Figure 2015028855

粉体特性として、O/Si比(モル比)、炭素含有率、体積基準の累積粒度分布の微粒側から累積10%、累積50%、および累積90%の粒径D10、D50、およびD90、CuKα線を用いたX線回折で、回折角2θが24°〜26°の範囲に現れる酸化珪素に起因するピークの高さα、および回折角2θが28°〜29°の範囲に現れるSiに起因するピークの高さβ、ならびに粉体比抵抗を測定した。D10、D90、α、およびβに関しては、表5に、D90/D10、およびβ/αの値を示す。 As powder characteristics, O / Si ratio (molar ratio), carbon content, particle size D 10 , D 50 of cumulative 10%, cumulative 50%, and cumulative 90% from the fine particle side of the volume-based cumulative particle size distribution, and D 90 , X-ray diffraction using CuK α- rays, peak height α due to silicon oxide appearing in a diffraction angle 2θ in the range of 24 ° to 26 °, and diffraction angle 2θ in the range of 28 ° to 29 ° The peak height β due to Si appearing in FIG. Regarding D 10 , D 90 , α, and β, Table 5 shows the values of D 90 / D 10 and β / α.

電池特性として、得られた負極材用粉末を用いて、上記予備試験と同様の方法により、リチウムイオン二次電池を作製し、初期放電容量、初期効率、およびサイクル特性を測定した。サイクル特性の測定方法は、上記予備試験と同様とした。表5の総合評価の欄は、サイクル特性の評価結果を主な評価項目とし、初期放電容量、および初期効率の評価結果を考慮して、以下の通りとした。
×:不可(△より劣る)
△:不可
○:可
◎:良
As battery characteristics, using the obtained powder for negative electrode material, a lithium ion secondary battery was produced in the same manner as in the preliminary test, and the initial discharge capacity, initial efficiency, and cycle characteristics were measured. The method for measuring the cycle characteristics was the same as in the preliminary test. The column of comprehensive evaluation in Table 5 is based on the evaluation results of cycle characteristics as main evaluation items, and is as follows in consideration of the evaluation results of initial discharge capacity and initial efficiency.
×: Impossible (inferior to △)
△: Impossible ○: Acceptable ◎: Good

表5に示すように、電池評価において、本発明の実施例に係る負極材用粉末を用いたものでは、いずれも、高い初期放電容量と、高いサイクル特性とが得られた。   As shown in Table 5, in the battery evaluation, all of the powders using the negative electrode material powder according to the example of the present invention obtained high initial discharge capacity and high cycle characteristics.

本発明の負極材用粉末のX線回折測定の結果の例として、図2に、実施例6の負極材用粉末の回折強度曲線を示し、図3に、実施例9の負極材用粉末の回折強度曲線を示す。実施例6および9では、回折角2θが28°〜29°の範囲に現れるSiに起因するピークが明瞭に現れており、β/αは、それぞれ、0.3および3.4となっている(表5参照)。   As an example of the result of the X-ray diffraction measurement of the negative electrode material powder of the present invention, FIG. 2 shows the diffraction intensity curve of the negative electrode material powder of Example 6, and FIG. A diffraction intensity curve is shown. In Examples 6 and 9, peaks due to Si appearing when the diffraction angle 2θ is in the range of 28 ° to 29 ° clearly appear, and β / α is 0.3 and 3.4, respectively. (See Table 5).

一方、本発明の範囲に入らない比較例に係る負極材用粉末を用いたものでは、いずれも、初期放電容量、およびサイクル特性の少なくとも一方が低かった。   On the other hand, in the case of using the negative electrode material powder according to the comparative example which does not fall within the scope of the present invention, at least one of the initial discharge capacity and the cycle characteristics was low.

図4に、比較例6のX線回折強度曲線を示す。比較例6の負極材用粉末は、珪素粉末を用いずに製造したものであり(表4参照)、このため、回折角2θが28°〜29°の範囲に現れる得るSiに起因するピークは、明瞭には現れていない。これに対応して、β/αは、0.01となっている(表5参照)。比較例6の負極材用粉末は、導電助剤として、ケッチェンブラック(KB)を含むが、粉体比抵抗は、4.2×103Ωcmと、本発明の負極材用粉末として規定する粉体比抵抗の範囲に比して高い。比較例6の電池評価で初期放電容量が低いのは、粉体比抵抗が高いことに関係しているものと考えられる。 FIG. 4 shows an X-ray diffraction intensity curve of Comparative Example 6. The negative electrode material powder of Comparative Example 6 was manufactured without using silicon powder (see Table 4). For this reason, the peak due to Si that can appear in the diffraction angle 2θ in the range of 28 ° to 29 ° is It does not appear clearly. Correspondingly, β / α is 0.01 (see Table 5). The negative electrode material powder of Comparative Example 6 contains ketjen black (KB) as a conductive additive, but the powder specific resistance is 4.2 × 10 3 Ωcm, which is defined as the negative electrode material powder of the present invention. Higher than the range of powder specific resistance. The low initial discharge capacity in the battery evaluation of Comparative Example 6 is considered to be related to the high powder specific resistance.

比較例7および8の負極材用粉末は、用いた導電助剤の炭素被覆膜厚が、本発明の導電助剤として規定する炭素被覆膜厚の範囲より小さく、負極材用粉末の粉体比抵抗は、7.6×104Ωcm以上と、本発明の負極材用粉末として規定する粉体比抵抗の範囲に比して高い。これは、用いた導電助剤について、体積メディアン径D50が小さい(比較例7)こと、または珪素粉末の被覆炭素量が少ない(比較例8)ことによる。比較例7および8では、負極材用粉末の粉体比抵抗が高いことにより、電池評価の初期効率が低いものと考えられる。 In the powders for negative electrode materials of Comparative Examples 7 and 8, the carbon coating film thickness of the conductive auxiliary agent used was smaller than the range of the carbon coating film thickness defined as the conductive auxiliary agent of the present invention. The body specific resistance is 7.6 × 10 4 Ωcm or higher, which is higher than the range of the powder specific resistance defined as the negative electrode material powder of the present invention. This is because the conductive auxiliary agent used has a small volume median diameter D 50 (Comparative Example 7) or a small amount of coated carbon of the silicon powder (Comparative Example 8). In Comparative Examples 7 and 8, it is considered that the initial efficiency of battery evaluation is low due to the high powder specific resistance of the negative electrode material powder.

比較例9の負極材用粉末は、用いた導電助剤の被覆炭素量(炭素含有率)が、本発明の導電助剤として規定する炭素含有率の範囲より多く、用いた導電助剤の炭素被覆膜厚は、本発明の導電助剤として規定する炭素被覆膜厚の範囲より厚い。このため、電池の充放電時に、炭素被膜が破断しやすく、これに関係して、比較例9では、電池評価のサイクル特性が低いものと考えられる。比較例9では、用いた導電助剤の被覆炭素量が多いことにより、負極材用粉末としての炭素含有率が、本発明の負極材用粉末として規定する炭素含有率の範囲に比して高くなっている。   The powder for the negative electrode material of Comparative Example 9 has a coating carbon amount (carbon content) of the used conductive auxiliary agent that is larger than the range of the carbon content defined as the conductive auxiliary agent of the present invention. The coating film thickness is thicker than the carbon coating film thickness range defined as the conductive additive of the present invention. For this reason, at the time of charging / discharging of a battery, a carbon film is easy to fracture | rupture, In connection with this, in Comparative Example 9, it is thought that the cycle characteristic of battery evaluation is low. In Comparative Example 9, the carbon content of the negative electrode material powder is higher than the range of the carbon content defined as the negative electrode material powder of the present invention because the conductive auxiliary agent used has a large amount of coated carbon. It has become.

図5に、比較例10のX線回折強度曲線を示す。回折角2θが28°〜29°の範囲に現れるSiに起因するピークは明瞭であり、β/αは、8.4となっている。しかし、比較例10の負極材用粉末は、O/Si比xが、本発明の負極材用粉末として規定するO/Si比xの範囲より小さい。これに関係して、比較例10では、電池評価のサイクル特性が低いものと考えられる。   FIG. 5 shows an X-ray diffraction intensity curve of Comparative Example 10. The peak due to Si appearing in the diffraction angle 2θ in the range of 28 ° to 29 ° is clear, and β / α is 8.4. However, the negative electrode material powder of Comparative Example 10 has an O / Si ratio x smaller than the O / Si ratio x defined as the negative electrode material powder of the present invention. In relation to this, in Comparative Example 10, it is considered that the cycle characteristics of battery evaluation are low.

2:負極、 2c:作用極、 2: negative electrode, 2c: working electrode,

Claims (3)

リチウムイオン二次電池の負極材用粉末であって、
Si、OおよびCを含有し、当該負極材用粉末全体の平均組成として、モル比で、O/Si比xが、0.6≦x≦0.95の関係を満たし、
CuKα線を用いたX線回折で測定した場合に、回折角2θが24°〜26°の範囲に現れる酸化珪素に起因するピークの高さαと、回折角2θが28°〜29°の範囲に現れるSiに起因するピークの高さβとが、10-1<β/α<10の関係を満たし、
当該負極材用粉末中の炭素含有率が、0.03〜3.0質量%であり、
当該粉末の粉体比抵抗が、1Ωcm〜102Ωcmであることを特徴とする粉末。
A powder for a negative electrode material of a lithium ion secondary battery,
Si, O, and C are included, and as an average composition of the entire negative electrode material powder, in terms of molar ratio, the O / Si ratio x satisfies the relationship of 0.6 ≦ x ≦ 0.95,
When measured by X-ray diffraction using CuK α- rays, the peak height α due to silicon oxide appearing in the diffraction angle 2θ range of 24 ° to 26 ° and the diffraction angle 2θ of 28 ° to 29 ° The peak height β due to Si appearing in the range satisfies the relationship of 10 −1 <β / α <10,
The carbon content in the negative electrode material powder is 0.03 to 3.0% by mass,
A powder having a powder specific resistance of 1 Ωcm to 10 2 Ωcm.
当該負極材用粉末を構成する粒子について、体積基準の累積粒度分布の微粒側から累積10%、累積50%、および累積90%の粒径をそれぞれD10、D50、およびD90とすると、
2μm≦D50≦15μm、かつ、
2≦D90/D10≦10
の関係を満たすことを特徴とする、請求項1に記載の負極材用粉末。
Regarding the particles constituting the powder for negative electrode material, assuming that the particle sizes of 10%, 50%, and 90% from the fine particle side of the volume-based cumulative particle size distribution are D 10 , D 50 , and D 90 , respectively.
2 μm ≦ D 50 ≦ 15 μm, and
2 ≦ D 90 / D 10 ≦ 10
The negative electrode material powder according to claim 1, wherein the relationship is satisfied.
酸化珪素粉末と混合して、請求項1または2の負極材用粉末を製造するために用いる導電助剤であって、
珪素粉末を含み、前記珪素粉末の少なくとも一部が、炭素被覆されており、
体積メディアン径D50が、0.01μm≦D50≦2μmの関係を満たし、
炭素含有率が、0.6〜7.5質量%であり、
炭素の密度ρ(g/m3)、ならびに当該導電助剤の炭素含有率a(質量%)およびBET比表面積S(m2/g)から、a/(ρ・S)で計算される炭素被覆膜厚が、1×10-3μm〜0.1μmであることを特徴とする導電助剤。
A conductive additive used for producing the negative electrode material powder of claim 1 or 2 by mixing with silicon oxide powder,
Silicon powder is included, at least a part of the silicon powder is coated with carbon,
The volume median diameter D 50 satisfies the relationship of 0.01 μm ≦ D 50 ≦ 2 μm,
The carbon content is 0.6 to 7.5% by mass,
Carbon calculated by a / (ρ · S) from the density ρ (g / m 3 ) of carbon and the carbon content a (mass%) and BET specific surface area S (m 2 / g) of the conductive additive. A conductive additive having a coating thickness of 1 × 10 −3 μm to 0.1 μm.
JP2013157595A 2013-07-30 2013-07-30 Powder for negative electrode material of lithium ion secondary battery, and conductive assistant used therefor Pending JP2015028855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013157595A JP2015028855A (en) 2013-07-30 2013-07-30 Powder for negative electrode material of lithium ion secondary battery, and conductive assistant used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013157595A JP2015028855A (en) 2013-07-30 2013-07-30 Powder for negative electrode material of lithium ion secondary battery, and conductive assistant used therefor

Publications (1)

Publication Number Publication Date
JP2015028855A true JP2015028855A (en) 2015-02-12

Family

ID=52492462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013157595A Pending JP2015028855A (en) 2013-07-30 2013-07-30 Powder for negative electrode material of lithium ion secondary battery, and conductive assistant used therefor

Country Status (1)

Country Link
JP (1) JP2015028855A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179111A1 (en) * 2017-03-28 2018-10-04 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6451915B1 (en) * 2018-01-31 2019-01-16 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6451914B1 (en) * 2018-01-31 2019-01-16 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6451916B1 (en) * 2018-01-31 2019-01-16 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2019133920A (en) * 2018-12-13 2019-08-08 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2019133918A (en) * 2018-12-13 2019-08-08 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2019133919A (en) * 2018-12-13 2019-08-08 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN110462899A (en) * 2017-04-28 2019-11-15 株式会社杰士汤浅国际 Lead storage battery
CN113745645A (en) * 2021-09-08 2021-12-03 珠海冠宇电池股份有限公司 Lithium ion battery of silicon cathode system

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179111A1 (en) * 2017-03-28 2018-10-04 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2018179813A1 (en) * 2017-03-28 2018-10-04 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2020024950A (en) * 2017-03-28 2020-02-13 日立化成株式会社 Anode active material for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery
JP7147732B2 (en) 2017-03-28 2022-10-05 昭和電工マテリアルズ株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JPWO2018179813A1 (en) * 2017-03-28 2019-04-11 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN110462899A (en) * 2017-04-28 2019-11-15 株式会社杰士汤浅国际 Lead storage battery
JP6451916B1 (en) * 2018-01-31 2019-01-16 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2019150511A1 (en) * 2018-01-31 2019-08-08 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2019150512A1 (en) * 2018-01-31 2019-08-08 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US11063255B2 (en) 2018-01-31 2021-07-13 Showa Denko Materials Co., Ltd. Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US11094931B2 (en) 2018-01-31 2021-08-17 Showa Denko Materials Co., Ltd. Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2019150513A1 (en) * 2018-01-31 2019-08-08 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6451914B1 (en) * 2018-01-31 2019-01-16 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6451915B1 (en) * 2018-01-31 2019-01-16 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN111656582A (en) * 2018-01-31 2020-09-11 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US10998546B2 (en) 2018-01-31 2021-05-04 Showa Denko Materials Co., Ltd. Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2019133920A (en) * 2018-12-13 2019-08-08 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2019133919A (en) * 2018-12-13 2019-08-08 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2019133918A (en) * 2018-12-13 2019-08-08 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7159839B2 (en) 2018-12-13 2022-10-25 昭和電工マテリアルズ株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP7159840B2 (en) 2018-12-13 2022-10-25 昭和電工マテリアルズ株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP7159838B2 (en) 2018-12-13 2022-10-25 昭和電工マテリアルズ株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
CN113745645A (en) * 2021-09-08 2021-12-03 珠海冠宇电池股份有限公司 Lithium ion battery of silicon cathode system
CN113745645B (en) * 2021-09-08 2022-08-05 珠海冠宇电池股份有限公司 Lithium ion battery of silicon cathode system

Similar Documents

Publication Publication Date Title
JP5219339B2 (en) Lithium secondary battery
JP2015028855A (en) Powder for negative electrode material of lithium ion secondary battery, and conductive assistant used therefor
KR101531451B1 (en) Powder for lithium ion secondary battery negative pole material, lithium ion secondary battery negative pole and capacitor negative pole, and lithium ion secondary battery and capacitor
JPWO2018025582A1 (en) Solid electrolyte material and battery
JP2009099523A (en) Lithium secondary battery
CN103003985A (en) Anode material, metal secondary battery, and method for production of anode material
JP2004319129A (en) Anode active material and nonaqueous electrolyte secondary battery using it
JP6059019B2 (en) Nonaqueous electrolyte secondary battery
KR101495451B1 (en) Powder for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode and capacitor negative electrode, and lithium ion secondary battery and capacitor
JP2009064715A (en) Positive electrode and lithium secondary battery using the same
JP5851801B2 (en) Lithium secondary battery
JP2012089464A (en) Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
JP2019169354A (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2012124525A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
JP6195936B2 (en) Powder for negative electrode of lithium ion secondary battery
JP3992529B2 (en) Nonaqueous electrolyte secondary battery
TW201731144A (en) Negative electrode material for lithium ion secondary battery and method of manufacturing the same, negative electrode material for lithium ion secondary battery and lithium ion secondary battery
JP2012079470A (en) Nonaqueous electrolyte secondary battery
US10177370B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
WO2021212392A1 (en) Three-dimensional composite metal lithium negative electrode, metal lithium battery and apparatus
JP2013149451A (en) Lithium secondary battery
JP5845096B2 (en) Lithium secondary battery
JP4267885B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode using the negative electrode material, and lithium ion secondary battery
JP2003288899A (en) Positive electrode active material for nonaqueous electrolyte secondary cell
CN111540894B (en) Negative electrode active material for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery