JP2015027768A - 成形型の製造方法、マーク加工装置、及び光学素子 - Google Patents

成形型の製造方法、マーク加工装置、及び光学素子 Download PDF

Info

Publication number
JP2015027768A
JP2015027768A JP2013158227A JP2013158227A JP2015027768A JP 2015027768 A JP2015027768 A JP 2015027768A JP 2013158227 A JP2013158227 A JP 2013158227A JP 2013158227 A JP2013158227 A JP 2013158227A JP 2015027768 A JP2015027768 A JP 2015027768A
Authority
JP
Japan
Prior art keywords
transfer surface
mold
mark
molding die
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013158227A
Other languages
English (en)
Inventor
高木 信
Makoto Takagi
信 高木
智之 森本
Tomoyuki Morimoto
智之 森本
章弘 藤本
Akihiro Fujimoto
章弘 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2013158227A priority Critical patent/JP2015027768A/ja
Publication of JP2015027768A publication Critical patent/JP2015027768A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

【課題】マークの視認性を確保しつつマークを光学転写面に対して高精度で形成した成形型の製造方法を提供すること。【解決手段】実施形態のマーク加工装置又は成形型の製造方法では、転写面20p,30pを測定するための測定用部材を用いて転写面20p,30pの所定箇所に基準マーク25,26,35,36を形成するので、基準マーク25,26,35,36の形成箇所を精密なものとでき、光学素子であるレンズアレイ10の成形の管理が容易となる。また、測定用部材として触針41の圧子42を用いて基準マークを形成するので、切削工具のような摩耗の問題が生じにくく、基準マーク25,26,35,36を転写した基準転写マーク15a,15b,16a,16bの視認性を確保しやすい。【選択図】 図1

Description

本発明は、光学素子の製造に用いられる成形型の製造方法、成形型の転写面にマークを形成するためのマーク加工装置、及び光学素子に関する。
レンズ等の光学素子の製作にあたり、研磨によるのではなく、金型形状を転写するモールド法が多く用いられている。かかるモールド法の利点として、金型を1つ作製することでレンズを大量かつ安価に生産可能である点、研磨によっては困難である非球面、自由曲面、アレイレンズ等の生産も容易になる点等があげられる。
モールド法でレンズを作製する場合、成形機に取り付けられた一対の金型の位置ズレがあると、成形されたレンズの両光学面間でズレ(偏芯)が生じる。わずかな偏芯でも、レンズの用途によっては所望のレンズ特性を達成できなくなる場合がある。したがって、成形機に固定された一対の金型の位置を微調整することが一般的に行われており、成形されたレンズの偏芯を測定し、金型の位置修正のためにフィードバックすることが行われている。レンズの偏芯を測定する方法として、回転対称の中心にマーク形状が加工された金型を用いて成形を行い、成形されたレンズの上下面のマーク座標を顕微鏡等で観察することによってレンズの偏芯を算出するものがある(特許文献1参照)。マーク形状の加工には、彫刻、エッチング、エンボス加工等の手法を用いることができる。
成形型の型面に同様の目的でマークを付与する方法として、切削用のバイトを用いて、幅数μm〜数10μm、深さμm〜数10μm、直径1mmのリング状のマークを切削形成するものも、公知となっている(特許文献2参照)。
マークから偏芯を高精度で効率的に計測するためには、光学顕微鏡等を用いて取り込んだ画像に対して画像処理を行う必要があり、マークの視認性が重要である。このようなマークを備える金型を精度よく製造するためには、1本の工具で光学面とマークとを一括して加工する方法、2本の工具を使用して光学面とマークとを個別に加工する方法等が考えられる。
1本の工具で光学面とマークとを一括加工する場合、微小な構造物であるマークの視認性を高めるため、微小半径の先端部を有する切削工具等を用いる必要があるが、このような先端の尖った切削工具で材料を加工すると、工具摩耗が進行しやすく光学転写面の形状精度の制御が容易でなくなる。つまり、マークの視認性確保と光学転写面の精度確保との両立が容易でなくなる。
一方、2本の工具で光学面とマークとを個別加工する場合、原理的に光学面とマークとの位置関係の精度が低下しやすい。光学面用の工具とマーク用の工具とを加工機に取り付けた場合、これら両工具間の位置関係を正確に把握しつつその経時的変化を抑制する必要がある。両工具間の位置関係に誤差を生じさせる要因として、環境温度の変化、両工具による事前加工面の測定誤差等が考えられるが、これらを低減することは容易でない。
特表2007−519020号公報 特開平8−294976号公報
本発明は、上記背景技術の問題に鑑みてなされたものであり、マークの視認性を確保しつつマークを転写面に対して高精度の配置で形成した成形型の製造方法及びマーク加工装置を提供することを目的とする。
また、本発明は、上記成形型の製造方法等を利用して作製される光学素子を提供することを目的とする。
上記目的を達成するため、本発明に係る成形型の製造方法は、光学素子を成形するための成形型の製造方法であって、測定用部材を成形型の転写面に接触させ当該転写面の形状を測定する測定工程と、測定工程に引き続き、成形型と測定用部材とを取り外さずに、測定用部材を用いて転写面の所定箇所に、転写面の基準位置を特定するための基準マークを形成するマーク加工工程とを備える。ここで、転写面の基準位置とは、測定工程によって得られる空間的な基準点、基準線等であり、例えば転写面に光学転写面が設けられている場合、当該光学転写面の光軸のようなものを意味する。
上記成形型の製造方法では、転写面の形状を測定するための測定用部材を用いて転写面の所定箇所に基準マークを形成するので、基準マークの形成箇所を精密なものとでき、光学素子の成形の管理が容易となる。また、測定用部材を用いるので、切削工具のような摩耗の問題が生じにくく、基準マークを転写した基準転写マークの視認性を確保しやすい。なお、基準マークの形成を測定工程に引き続いて成形型や測定用部材を取り外す前とすることで、転写面の基準位置に対して基準マークの空間的配置関係を精密に設定することができる。
また、本発明の具体的な態様又は側面によれば、上記成形型の製造方法において、基準マークは、基準点を直接又は間接的に示す窪みである。窪みは加工が容易であり、画像処理等によって比較的検出しやすくできる。
また、本発明の別の側面によれば、基準マークは、球面状の窪みである。この場合、窪みの中心を基準点とすることができる。
また、本発明のさらに別の側面によれば、基準マークは、転写面のうち光学面を転写するための光学転写面外の平坦な領域に形成される。この場合、基準マークが光学転写面に影響することを防止でき、基準マークを精密に形成しやすくなる。なお、基準マークは、光学転写面外に限らず、光学転写面内(具体的には、例えば光学転写面の中心すなわち光軸上)に形成してもよい。
また、本発明のさらに別の側面によれば、光学素子は、2次元的に配列された複数のレンズ要素と、当該複数のレンズ要素を周囲から支持する支持部とを有し、基準マークは、支持部に対応する転写面の領域に形成される。この場合、光学素子は、レンズアレイであり、基準マークは、レンズアレイ内の複数のレンズ間やレンズアレイの枠部に形成されることになる。
また、本発明のさらに別の側面によれば、測定用部材は、転写面の配置又は形状に関する情報を検出する測定に用いられる接触式プローブの先端に設けられた圧子であり、当該圧子を転写面に押圧することによって当該転写面を変形させる。この場合、接触式プローブの圧子によって基準マークを形成することができ、接触式プローブの測定精度で基準マークを形成することができる。
また、本発明のさらに別の側面によれば、圧子は、成形型よりも高硬度な材料で構成されている。この場合、基準マークの形成によって圧子が劣化したり損傷したりすることを防止できる。
また、本発明のさらに別の側面によれば、接触式プローブは、球状面を有する圧子と、当該圧子を下端に固定した軸部と、当該軸部を昇降可能に支持する軸受部とを有する。
また、本発明のさらに別の側面によれば、駆動機構によって、測定用部材を転写面に付勢する駆動力を与える。この場合、駆動機構に駆動された測定用部材を転写面に付勢することで、測定用部材の先端形状の転写したものとして基準マークを形成することができる。
また、本発明のさらに別の側面によれば、駆動機構は、測定用部材を転写面に衝突させる運動によって、測定用部材の先端形状を転写面に基準マークとして転写する。この場合、測定用部材の先端形状に対応する基準マークを比較的深く目立つように形成することができる。
上記目的を達成するため、本発明に係るマーク加工装置は、光学素子の成形用の成形型に基準マークを形成するためのマーク加工装置であって、転写面を測定するための測定用部材と、測定用部材の位置を監視しつつ当該測定用部材を動作させて、転写面の所定箇所に基準マークを形成させる制御部とを備える。
上記マーク加工装置では、制御部が、転写面の形状等を測定するための測定用部材の位置を監視しつつ当該測定用部材を動作させて転写面の所定箇所に基準マークを形成させることができるので、基準マークの形成箇所を精密なものとでき、光学素子の成形の管理が容易となる。また、測定用部材を用いるので、切削工具のような摩耗の問題が生じにくく、基準マークを転写した基準転写マークの視認性を確保しやすい。
上記目的を達成するため、本発明に係る第1の光学素子は、上記成形型の製造方法によって得た成形型を用いた成形によって形成されたものである。
上記目的を達成するため、本発明に係る第2の光学素子は、転写面の形状等を測定するための測定用部材によって形成された基準マークを有する成形型を用いた成形によって形成され、基準マークは、転写面に沿って異方性を有する。
実施形態のマーク加工装置を説明する概念図である。 マーク加工装置等の一部を拡大した斜視図である。 (A)及び(B)は、第1の成形型の平面図及び側方断面図であり、(C)及び(D)は、第2の成形型の平面図及び側方断面図である。 (A)〜(C)は、成形型によって形成された光学素子であるレンズアレイの平面図、側方断面図、及び裏面図である。 (A)及び(B)は、第1の成形型に形成された基準転写マークを拡大して示す平面図及び側方断面図であり、(C)及び(D)は、第2の成形型に形成された基準転写マークを拡大して示す平面図及び側方断面図であり、(E)及び(F)は、レンズアレイに形成された基準マークを拡大して示す平面図及び側方断面図である。 成形型の転写面を加工する面加工装置を説明する概念的な斜視図である。 処理の手順を説明するフローチャートである。 (A)〜(C)は、マーク加工工程を説明する概念図である。 基準マークの形成例を説明する図である。 基準マークの変形例を説明する図である。
以下、図面を参照して、本発明の一実施形態に係るマーク加工装置について詳細に説明する。
図1に示すように、本実施形態のマーク加工装置100は、接触型の形状測定装置を基本として必要な機能を追加したものであり、定盤81上に、XYステージ装置82と、Z駆動装置84とを固定した構造を有する。つまり、マーク加工装置100は、形状測定装置を兼ねる。ここで、XYステージ装置82やZ駆動装置84等の動作は、制御装置99によって制御されている。
XYステージ装置82は、制御装置99の制御下で動作し、載置台82a上に固定された被測定物等である成形型20を、XY面内で2次元的に任意の位置に滑らかに移動させる。載置台82aは、成形型20を支持するための支持基準面PSを有する。載置台82aは、支持基準面PSのチルト角等を微調整できる機構を有し、成形型20を支持基準面PS上に位置決めした状態でかつ着脱可能に支持している。
XYステージ装置82は、X軸方向にスライド移動する可動部82xと、Y軸方向にスライド移動する可動部82yとの上下2段で構成されている。
XYステージ装置82の上部に設けた載置台82a上に固定された成形型20の位置は、XYステージ装置82の上部に設けたXミラー部材83aと、Yミラー部材83bとを利用して検出される。すなわち、Xミラー部材83aに対向して定盤81上に取り付けたレーザー干渉計83dを利用してX軸方向の位置が分かる。レーザー干渉計83dは、レーザー光LLを発生するレーザー光源83fと、図示を省略する干渉用光学系及びセンサー備え、Xミラー部材83aで反射されたレーザー光LLの位相変化に基づいてX軸方向の位置を算出することができるようなっている。また、同様に、Yミラー部材83bに対向して定盤81側に取り付けたレーザー光源83gを有するレーザー干渉計83eを利用してY軸方向の位置が分かる。
Z駆動装置84は、フレーム85上に昇降機構86を固定したものであり、昇降機構86は、フレーム85上部に固定されZ方向に延びる支持軸86aと、支持軸86aに支持されてZ軸方向に移動する昇降部材86bと、昇降部材86bに支持されて昇降するプローブ装置40とを備える。
図2にも示すように、プローブ装置40は、触針41によって、載置台82a上に固定された成形型20の表面形状の計測を可能にする。触針41は、先端に測定用部材として半球状の圧子42を有しているスタイラス状の部材である。プローブ装置40は、触針41の軸部41sの昇降運動を許容する軸受部89kを備え、触針41は、軸受部89kを介して昇降部材86bに非接触で支持されてZ軸に沿って滑らかに昇降運動可能になっている。さらに、触針41は、バネ92によって上方に引っ張られており、自重よりも極めて軽い状態で成形型20の表面2aと接触するようになっている。ここで、軸受部89kは、例えば空気や電磁力を利用した非接触型の軸受けであり、軸受け駆動部87に駆動されて触針41の滑らかな昇降を可能にするとともに、触針41にZ軸に沿って上昇する力やZ軸に沿って降下する力を与えることができ、圧子(測定用部材)42が成形型20の表面2aを押圧する際の圧力を調整できるようになっている。ここで、軸受部89kと軸受け駆動部87とは、触針41を成形型20の表面2aに付勢する駆動力を与える駆動機構として機能する。
プローブ装置40に設けた触針41の上下位置は、触針41の上端に設けられて触針41とともに昇降するZミラー部材89aと、フレーム85側に固定されたレーザー干渉計89bとを利用して検出される。レーザー干渉計89bは、レーザー光LLを発生するレーザー光源89gと、図示を省略する干渉用光学系及びセンサーを備え、Zミラー部材89aのミラー面で反射されたレーザー光LLの位相変化に基づいてZミラー部材89aのZ軸方向の変位量を算出することができるようなっている。
制御装置99は、レーザー干渉計83d,83e,89bを監視して載置台82aや成形型20やその表面2aの3次元的な位置を監視するだけでなく、軸受け駆動部87を介して指令を出力することにより、触針41の圧子42が成形型20の表面2aに当接する圧力を自在に調整でき、所望のタイミングで圧子42による表面2aに向けた付勢力を正負を含めて所望の値に切り替えることができる。なお、圧子42の先端は、表面2a上で滑らかに移動するため、半球状の球状面42aとなっている。圧子42、特に先端部42eは、監視対象物の成形型20の表面と衝突しても変形しないダイヤモンド等の比較的高硬度な材料で構成されている。
以上のマーク加工装置(形状測定装置)100では、触針41下部の尖端である圧子(測定用部材)42が成形型20の表面2aに対して一定の圧力で押圧する状態で触針41を昇降させつつ、XYステージ装置82を適宜動作させて、載置台82a上に載置された成形型20をXY面内で2次元的に走査するように移動させる。これにより、触針41の圧子42を成形型20の表面2aに沿って2次元的に移動させることができる。つまり、レーザー干渉計83d,83eを利用して得たXYステージ装置82のXY座標と、レーザー干渉計89bを利用して得た触針41のZ座標とを、制御装置99で対応付けしつつ必要な演算処理を行うことにより、成形型20の表面2aについて精密な測定が可能となっている。
図2は、プローブ装置40の触針41を説明する部分拡大斜視図である。触針41の下端に形成された圧子42は、測定モードでの動作に際して、図1に示す制御装置99の制御下で軸受け駆動部87に駆動されて、成形型20の表面2a(例えば光学転写面21a)に沿ってZ方向に変位しつつXY方向に移動可能になっている。また、圧子42は、待避モードでの動作に際して、図1に示す制御装置99の制御下で軸受け駆動部87に駆動されて、Z方向上側に変位し、成形型20の表面2aから離間する。また、圧子42は、マーク加工モードでの動作に際して、図1に示す制御装置99の制御下で軸受け駆動部87に駆動されて、Z方向下側に所定の速度及び加速度で変位し、成形型20の表面2aを変形させて表面2aの窪みとして基準マーク(不図示)を形成する。測定モードにおいて、圧子42の接触圧は、被加工物面である成形型20の表面2aに対する接触や走査によりキズ等の影響を及ぼし得ないものとしている。このような接触圧の閾値(以下、接触圧閾値)は、事前に試験的な測定を行って表面検査を行うことで確認できる。また、マーク加工モードにおいて、圧子42の接触圧は、上記接触圧閾値の110%以上であって、所望のマークサイズを達成できるものとする。具体的な装置では、接触圧を1mgf〜1000mgfの範囲内で調整できるようになっている。
以下、図1に示すマーク加工装置100によってマーク加工が施された成形型20等について説明する。
図3(A)及び3(B)は、図1のマーク加工装置100によって処理された第1の成形型20を示す平面図及び側方断面図である。図示のように、成形型20は、Ni、銅、アルミ、超硬、SiC等、或いはこれらの2つ以上の合金又はこれらの表面にコーティングを施したもので形成された四角柱状の部材である。成形型20は、それぞれが光学面の転写に用いられる複数のレンズ転写部21と、複数のレンズ転写部21を周囲から支持する周辺転写部22とを有する。これらのレンズ転写部21は、XY面に平行に配列された正方の格子点(図示の例では3×3の9点)上に2次元的に配置されている。各レンズ転写部21は、輪郭が円形で凹の光学転写面21aを有し、各光学転写面21aは、例えば非球面形状を有している。周辺転写部22は、レンズ転写部21を囲むように設けられており、光学転写面21aを囲んで軸AXに垂直な平坦面22aとなっている。第1の成形型20において、光学転写面21aと平坦面22aとを合わせたものは、この成形型20の転写面20pを構成している。
第1の成形型20には、例えば対角位置(図示の例では、平坦面22a、つまり光学転写面21a外の平坦な領域)に一対の基準マーク25,26が形成されている。両基準マーク25,26は、同一の形状を有し、例えば図5(A)に示すように平面視円形の輪郭を有し、図5(B)に示すように半球状の表面27を有する凹部となっている。なお、基準マーク25,26の周囲には、加工工程に起因して低い環状の凸部29が形成されているが、実際の製造では凸部29が殆ど存在しない場合もある。
図3(C)及び3(D)は、図1のマーク加工装置100によって処理された第2の成形型30を示す平面図及び側方断面図である。図示のように、成形型30は、Ni、銅、アルミ、超硬、SiC等、或いはこれらの2つ以上の合金又はこれらの表面にコーティングを施したもので形成された四角柱状の部材である。成形型30は、それぞれが光学面の転写に用いられる複数のレンズ転写部31と、複数のレンズ転写部31を周囲から支持する周辺転写部32とを有する。これらのレンズ転写部31は、XY面に平行に配列された正方の格子点(図示の例では3×3の9点)上に2次元的に配置されている。各レンズ転写部31は、輪郭が円形で凹の光学転写面31aを有し、各光学転写面31aは、例えば非球面形状を有している。周辺転写部32は、レンズ転写部31を囲むように設けられており、光学転写面31aを囲んで軸AXに垂直な平坦面32aとなっている。なお、周辺転写部32の縁部32dは、段差状に設けられた低い部分となっており、四角枠領域に広がる平坦面32eとなっている。第2の成形型30において、光学転写面31aと平坦面32a,32eとを合わせたものは、この成形型30の転写面30pを構成している。
第2の成形型30には、第1の成形型20と同様に、対角位置(図示の例では、平坦面32a、つまり光学転写面21a外の平坦な領域)に一対の基準マーク35,36が形成されている。両基準マーク35,36は、同一の形状を有し、例えば図5(C)に示すように平面視円形の輪郭を有し、図5(D)に示すように半球状の表面37を有する凹部となっている。なお、基準マーク35,36の周囲には、加工工程に起因して低い環状の凸部39が形成されているが、実際の製造では凸部39が殆ど存在しない場合もある。
図4(A)及び4(B)は、図3(A)等に示す第1の成形型20と、図3(C)等に示す第2の成形型30とによって形成されるレンズアレイ10を示す平面図及び側方断面図である。レンズアレイ10は、軸AX方向又はz軸方向から見て略正方形の輪郭を有する光学素子である。レンズアレイ(光学素子)10において、一方の第1主面10pは、第1の成形型20の転写面に対応する形状を有しており、他方の第2主面10qは、第2の成形型30の転写面に対応する形状を有している。
レンズアレイ10は、複数のレンズ要素11と、複数のレンズ要素11を周囲から支持する支持部12とを有する。第1レンズアレイ10を構成する複数のレンズ要素11は、xy面に平行に配列された正方の格子点(図示の例では3×3の9点)上に2次元的に配置されている。各レンズ要素11は、一方の第1主面10pにおいて凸の第1光学面11aを有し、他方の第2主面10qにおいて凹の第2光学面11bを有し、両光学面11a,11bは、非球面となっている。支持部12は、平板状の部分であり、各レンズ要素11の周りをそれぞれ囲むように形成されている。支持部12は、一対の平行な平坦面12a,12bを表面として有する。支持部12の外側に設けられた四角枠状の縁部14は、レンズアレイ10を他の部品に接合等するための部分となっており、その上面14bは、平坦面となっている。
レンズアレイ(光学素子)10の第1主面10p側には、平坦面12a上に対角位置に一対の基準転写マーク15a,16aが形成されている。両基準転写マーク15a,16aは、同一の形状を有し、例えば図5(E)に示すように平面視円形の輪郭を有し、図5(F)に示すように半球状の表面17を有する凹部となっている。レンズアレイ10(光学素子)の第2主面10q側にも、平坦面12b上に対角位置に一対の基準転写マーク15b,16bが形成されている。両基準転写マーク15b,16bは、同一の形状を有し、例えば図5(E)に示すように平面視円形の輪郭を有し、図5(F)に示すように半球状の表面17を有する凹部となっている。また、基準転写マーク15a,15bの周囲に低い凸部19が形成される場合もある。なお、第1主面10pの平坦面12a上の一方の基準転写マーク15aは、第2主面10qの平坦面12b上の一方の基準転写マーク15bと上下に対向して配置されている。このため、レンズアレイ10を光軸OA方向から顕微鏡観察した場合、基準転写マーク15aと基準転写マーク15bとが略一致して重なり合うように観察され、基準転写マーク15aと基準転写マーク15bとの位置ずれは、第1主面10pと第2主面10qのxy面内での位置ずれを示すものとなる。第1主面10pと第2主面10qのxy面内での位置ずれは、図3(A)等に示す第1の成形型20と図3(C)等に示す第2の成形型30とを射出成形装置に組み込んだ際の両成形型20,30の位置ずれを示しており、射出成形装置の調整のためにフィードバックされる。
図6を参照して、成形型20,30の転写面20p,30pを加工する面加工装置の一例を説明する。図示の面加工装置90は、被加工体であるワークWを切削加工するための切削ユニット91と、切削ユニット91をワークWに対して支持する駆動装置としてのNC駆動機構92とを備える。切削ユニット91は、例えばエンドミル等である切削工具91aを有し、切削工具91aを回転軸のまわりに回転させることもできる。切削工具91aの先端は、自由曲面を加工可能な形状となっている。NC駆動機構92は、台座94a上に第1ステージ94bと第2ステージ94cとを載置した構造の駆動装置である。ここで、第1ステージ94bは、第1可動部95aを支持しており、この第1可動部95aは、不図示のチャックを介してワークWを支持している。第1ステージ94bは、ワークWを、例えばγ軸方向に沿った所望の位置に所望の速度で移動させることができる。一方、第2ステージ94cは、第2可動部95bを支持しており、この第2可動部95bは、切削ユニット91を支持している。第2ステージ94cは、第2可動部95b及び切削ユニット91を支持して、これらを例えばα軸方向に沿った所望の位置に所望の速度で移動させることができ、第2可動部95bは、切削ユニット91を支持して、これをβ軸方向に沿った所望の位置に所望の速度で移動させることができる。
不図示の駆動制御装置によって、NC駆動機構92に内蔵されたモータや位置センサー等を駆動することにより、第1及び第2ステージ94b,94cや、第1及び第2可動部95a,95bを目的とする状態に適宜動作させる。ワークWの表面Waに自由曲面を加工する場合、例えばラスター型の走査を行いつつ切削加工を行う。具体的には、第2ステージ94cによって切削ユニット91をα軸方向に定速度で移動させる主走査を行うことができ、第1可動部95aによって切削ユニット91をγ軸方向に定速度で移動させる副走査を行うことができる。これらの主走査及び副走査に際して、第2可動部95bが切削ユニット91をβ方向に適宜変位させることで、ワークWの表面Waに所望の凹凸形状を形成することができる。つまり、図3(A)等に示す成形型20と、図3(C)等に示す成形型30とを加工することができる。なお、このような加工方法を採用する場合、切削ユニット91によって成形型20,30に小さな基準マーク25,26,35,36を形成することは容易でない。
以下、図7を参照して、レンズアレイ10の製造工程の概要について説明する。まず、図6に示す面加工装置90を用いて、図3(A)等に示す第1の成形型20と、図3(C)等に示す第2の成形型30とになるべき初期金型を作製する(転写面の加工工程;ステップS00)。具体的には、第1の成形型20の転写面20pや第2の成形型30の転写面30pを数値制御型の研削又は切削装置である面加工装置90によって創成する。
次に、例えば第1の成形型20を図1に示すマーク加工装置(形状測定装置)100にセットし、プローブ装置40の触針41を第1の成形型20の転写面20pに沿って相対的に移動させて例えば複数の光学転写面21aの形状を測定し、複数の光学転写面21aの基準位置である中心CP(光軸AX上の点)を決定する(成形型の測定工程:ステップS015)。より詳細には、成形型20の転写面20pのうち特定の光学転写面21aに沿って、比較的低い接触圧を保ちつつ触針41をX方向に主走査しY方向に副走査させるラスター走査を行うことで、この特定の光学転写面21aの形状を測定し、基準位置である中心CPを決定することができる。他の光学転写面21aについても、同様に形状を測定することができ、基準位置である中心CPを決定することができる。
次に、ステップS01で測定後の第1の成形型20に対して、図1に示すマーク加工装置100をそのまま用いて、基準マーク25,26を追加する加工を行う(基準マークの加工工程;ステップS02)。なお、この基準マークの加工工程(ステップS02)は、上述した成形型の測定工程(ステップS01)に引き続いて行われるが、これらの工程の間に面形状の測定結果に影響を与えない範囲で各種工程を追加することができる。
上記加工工程では、具体的には、プローブ装置40の触針41と第1の成形型20とを測定工程の動作状態のままに継続させて、これら転写面20pの中心CPを基準とする所定位置に基準マーク25,26を順次形成する。つまり、触針41や第1の成形型20をマーク加工装置100から取り外さずに、計測モードを維持したままの触針41によって第1の成形型20の適所に基準マーク25,26を形成する。ここで、計測モードの維持とは、計測の一貫性を確保できればよく、例えば触針41をホームポジションに戻す程度のことは、計測モードの維持に含まれる。基準マーク25,26の形成についてより詳細に説明すると、図8(A)に示すように、XYステージ装置82を適宜動作させて触針41に対する成形型20のXY座標を目標値に設定する。これにより、触針41の先端の圧子42が成形型20の転写面20pのうち光学転写面21a外に設定されたマーク形成位置まで移動する。次に、図8(B)に示すように、制御装置99によって軸受け駆動部87等を適宜動作させて触針41を一旦上昇させ、触針41の圧子42が成形型20の転写面20p又は平坦面22aから十分離れるようにする(負の接触圧状態)。その後、図8(C)に示すように、制御装置99によって軸受け駆動部87等を適宜動作させて触針41を比較的高い接触圧となるように下方に付勢し(正の強い接触圧状態)、触針41の先端の圧子42を転写面20pに衝突させる。なお、図示の例では、圧子42を転写面20pのうち光学転写面21aではなく平坦面22aに衝突させている。これにより、平坦面22aにおいて圧子42の先端形状を反転させた窪みとしての基準マーク25が形成される。図示は省略するが、基準マーク26も、基準マーク25の形成工程に引き続いて図8(A)〜8(C)に示すものと同様の手法で形成され、結果的に得られる基準マーク25,26は、プローブ装置40による転写面20pの測定を反映した精密な位置に形成される。
以上において、基準マーク25,26の形成位置は、成形型20の平坦面22aに限らず、光学転写面21a上の適所(例えば光軸OA上にある中心CP)とできる。
以上において、触針41又は圧子42を光学転写面21aに沿って移動させているが、その軌跡は、例えば十字状とでき、或いはラスター走査状とできる。触針41を移動させる軌跡のパターンは、光学転写面21aの測定の目的や精度に応じたものとできる。
以上と同様の工程を第2の成形型30についても行う。すなわち、触針41を第2の成形型30の転写面30pに沿って移動させて、転写面30pの形状を測定して複数の転写面30pの中心を決定し(成形型の測定工程:ステップS01)、触針41や第2成形型30をマーク加工装置100から取り外さずに、これら転写面30pの中心を基準とする所定位置に基準マーク35,36を順次形成する(基準マークの加工工程;ステップS02)。
以上において、基準マーク35,36の形成位置は、成形型30の平坦面32aに限らず、光学転写面31a上の適所(例えば光軸AX上にある中心CP)とできる。
次に、ステップS02で基準マークを付した成形型20,30を利用して、レンズアレイ10を成形する(光学素子の成形工程:ステップS03)。この結果、レンズアレイ10には、光学面11a,11bとともに基準転写マーク15a,16a,15b,16bが転写されている。
このようにして形成されたレンズアレイ10は、顕微鏡観察され、基準転写マーク15a,15bの重なり具合や基準転写マーク16a,16bの重なり具合がチェックされる(レンズアレイの測定・評価の工程:ステップS04)。チェックの結果は、良品及び不良品の判定に利用され、或いは成形型20,30の取り付け位置の調整にフィードバックされる。
図9は、成形型20の転写面20pに追加加工された基準マーク25の一例を示す顕微鏡拡大写真である。基準マーク25は、光学的に点又は円として明瞭に観察される。図示を省略するが、レンズアレイ10の基準転写マーク15a,15b等も、基準マーク25と同様に光学的に明瞭に観察可能なものとなる。
以上のように、本実施形態のマーク加工装置又は成形型の製造方法では、転写面20p,30pの形状を測定するための測定用部材を用いて転写面20p,30pの所定箇所に基準マーク25,26,35,36を形成するので、基準マーク25,26,35,36の形成箇所を精密なものとでき、光学素子であるレンズアレイ10の成形の管理が容易となる。また、測定用部材として触針41の圧子42を用いて基準マークを形成するので、切削工具のような摩耗の問題が生じにくく、基準マーク25,26,35,36を転写した基準転写マーク15a,15b,16a,16bの視認性を確保しやすい。さらに、形状測定用の触針41を用いることで、転写面20p,30p上の所望の位置に基準マークを形成することができ、基準マークの配置の自由度が高まる。
以上、実施形態のマーク加工装置100やこれを用いた成形型の製造方法等について説明したが、発明に係るマーク加工装置及び成形型の製造方法は上記のものには限られない。例えば、上記実施形態では、基準マーク25,26,35,36を半球状の窪みとしたが、図10に示すように、基準マーク125は、角錐の先端を丸くした窪みとすることができる。この基準マーク125は、四角錐その他の多角錐の先端を丸くした触針41の先端を反転させた形状に相当し、型面又は転写面の方向(深さ方向に垂直な横方向)に異方性を有することから、基準マーク125単独で方向性を示すものとなる。基準マーク125単独で方向性を示す場合、例えばレンズアレイ10の顕微鏡観察等に際して局所観察で全体の方向性を判断でき、取り扱いの利便性を高めることができる。また、基準マーク25,26,35,36は、中心を基準点として示すものに限らず、角部を基準点として示すものであってもよく、角部をつないだ線分(対角線)の交点のように基準点を間接的に示すものであってもよい。
上記実施形態では、1つの成形型20に2つの基準マーク25,26を形成したが、目的や仕様に応じて、1つの成形型20に1つの基準マーク、又は3つ以上の基準マークを形成することができる。
上記実施形態では、測定工程(ステップS01)で触針41を成形型20の光学転写面21a等に沿うように相対的に移動させて2次元的な走査を行っているが、測定工程触において触針41を移動させる軌跡のパターンは、光学転写面21aの測定の目的や精度に応じて適宜変更できる。例えば、触針41をX方向とY方向とに直交するように移動させる十字状の走査によって、特定の光学転写面21aの曲率と中心座標とを決定することができる。つまり、光軸AX上にある中心CPを決定することができる。この場合も、中心CPに基準マークを形成でき、或いは図3(A)及び3(B)に示すように、中心CPを基準とする適当な基準位置に基準マーク25,26,35,36を形成することができる。
上記実施形態では、レンズアレイ10にマーク加工を行う場合について説明したが、単独のレンズその他の光学素子にマーク加工を行うこともできる。レンズアレイ10は、3×3のレンズ要素を含むものに限らず、4×4以上の格子配列、或いは非格子配列のレンズ要素を含む各種構成とできる。
上記実施形態では、軸受け駆動部87を動作させて触針41の圧子42を成形型20,30の転写面20p,30pに衝突させたが、昇降機構86によって触針41の圧子42を成形型20,30に衝突させることもできる。
10…レンズアレイ、 11…レンズ要素、 12…支持部、 11a,11b…光学面、 14…縁部、 14b…上面、 15a,15b1,6a,16b…基準転写マーク、 20…成形型、 20,30…成形型、 20p,30p…転写面、 21,31…レンズ転写部、 21a,32a…光学転写面、 22,32…周辺転写部、 22a,32a…平坦面、 25,26…基準マーク、 25,26,35,36…基準マーク、 30…成形型、 32a,32e…平坦面、 40…プローブ装置、 41…触針、 41s…軸部、 42…圧子、 82…ステージ装置、 82a…載置台、 84…Z駆動装置、 86…昇降機構、 87…軸受け駆動部、 89k…軸受部、 100…マーク加工装置、 125…基準マーク、 AX…軸、 OA…光軸

Claims (13)

  1. 光学素子を成形するための成形型の製造方法であって、
    測定用部材を前記成形型の転写面に接触させて前記転写面の形状を測定する測定工程と、
    前記測定工程に引き続き、前記成形型と前記測定用部材とを取り外さずに、前記測定用部材を用いて前記転写面の所定箇所に、前記転写面の基準位置を特定するための基準マークを形成するマーク加工工程と
    を備える成形型の製造方法。
  2. 前記基準マークは、基準点を直接又は間接的に示す窪みであることを特徴とする請求項1に記載の成形型の製造方法。
  3. 前記基準マークは、球面状の窪みであることを特徴とする請求項2に記載の成形型の製造方法。
  4. 前記基準マークは、前記転写面のうち光学面を転写するための光学転写面外の領域に形成されることを特徴とする請求項1から3までのいずれか一項に記載の成形型の製造方法。
  5. 前記光学素子は、2次元的に配列された複数のレンズ要素と、当該複数のレンズ要素を周囲から支持する支持部とを有し、
    前記基準マークは、前記支持部に対応する前記転写面の領域に形成されることを特徴とする請求項1から4までのいずれか一項に記載の成形型の製造方法。
  6. 前記測定用部材は、前記転写面の配置又は形状に関する情報を検出する測定に用いられる接触式プローブの先端に設けられた圧子であり、当該圧子を前記転写面に押圧することによって当該転写面を変形させることを特徴とする請求項1から5までのいずれか一項に記載の成形型の製造方法。
  7. 前記圧子は、前記成形型よりも高硬度な材料で構成されていることを特徴とする請求項6に記載の成形型の製造方法。
  8. 前記接触式プローブは、球状面を有する前記圧子と、当該圧子を下端に固定した軸部と、当該軸部を昇降可能に支持する軸受部とを有することを特徴とする請求項6及び7のいずれか一項に記載の成形型の製造方法。
  9. 駆動機構によって、前記測定用部材を前記転写面に付勢する駆動力を与えることを特徴とする請求項1から8までのいずれか一項に記載の成形型の製造方法。
  10. 前記駆動機構は、前記測定用部材を前記転写面に衝突させる運動によって、前記測定用部材の先端形状を前記転写面に前記基準マークとして転写することを特徴とする請求項9に記載の成形型の製造方法。
  11. 光学素子の成形用の成形型に基準マークを形成するためのマーク加工装置であって、
    前記転写面を測定するための測定用部材と、
    前記測定用部材の位置を監視しつつ当該測定用部材を動作させて、前記転写面の所定箇所に基準マークを形成させる制御部と
    を備えるマーク加工装置。
  12. 請求項1から10までのいずれか一項に記載の成形型の製造方法によって得た成形型を用いた成形によって形成されたことを特徴とする光学素子。
  13. 転写面を測定するための測定用部材によって形成された基準マークを有する成形型を用いた成形によって形成され、
    前記基準マークは、転写面に沿って異方性を有することを特徴とする光学素子。
JP2013158227A 2013-07-30 2013-07-30 成形型の製造方法、マーク加工装置、及び光学素子 Pending JP2015027768A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013158227A JP2015027768A (ja) 2013-07-30 2013-07-30 成形型の製造方法、マーク加工装置、及び光学素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013158227A JP2015027768A (ja) 2013-07-30 2013-07-30 成形型の製造方法、マーク加工装置、及び光学素子

Publications (1)

Publication Number Publication Date
JP2015027768A true JP2015027768A (ja) 2015-02-12

Family

ID=52491842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013158227A Pending JP2015027768A (ja) 2013-07-30 2013-07-30 成形型の製造方法、マーク加工装置、及び光学素子

Country Status (1)

Country Link
JP (1) JP2015027768A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018155242A (ja) * 2017-01-23 2018-10-04 ゼネラル・エレクトリック・カンパニイ 一体型ひずみインジケータを有する構成要素を作製および監視する方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018155242A (ja) * 2017-01-23 2018-10-04 ゼネラル・エレクトリック・カンパニイ 一体型ひずみインジケータを有する構成要素を作製および監視する方法
JP7080646B2 (ja) 2017-01-23 2022-06-06 ゼネラル・エレクトリック・カンパニイ 一体型ひずみインジケータを有する構成要素を作製および監視する方法

Similar Documents

Publication Publication Date Title
EP2203273B1 (en) Rotating part position and change finding method and apparatus
JP6862764B2 (ja) 研削装置およびこれを用いる転がり軸受の製造方法
JP6000643B2 (ja) 被加工物の加工方法と、該加工方法によって加工された光学素子、金型及び半導体基板
WO2015107751A1 (ja) 表面形状測定装置およびそれを備えた工作機械ならびに表面形状測定方法
CN106737194B (zh) 一种气囊轮廓在位检测方法及装置
WO2010109975A1 (ja) 形状測定装置
JP4835149B2 (ja) 光学素子測定用治具、並びに、光学素子形状測定装置及び方法
JP2015027768A (ja) 成形型の製造方法、マーク加工装置、及び光学素子
JP6361729B2 (ja) 非球面の偏心量測定方法及び形状解析方法
US11187881B2 (en) Method and device for producing an optical component having at least three monolithically arranged optical functional surfaces and optical component
JP2017226035A (ja) 加工方法及び加工装置
CN114290177B (zh) 一种非球面光学元件磨削加工非接触式精密对刀方法
JP4839798B2 (ja) 光学素子形状測定方法
JP2002071344A (ja) 形状測定方法及び装置
JP5218957B2 (ja) 形状測定装置、形状測定方法、及び形状測定プログラム
JP5971902B2 (ja) ワーク保持装置及び、このワーク保持装置を備えた3次元形状測定装置
JPS63289410A (ja) 三次元測定機
JP6120648B2 (ja) 修正部材製造装置および修正部材の製造方法
TWI290210B (en) Molded lens formed with notches for measuring eccentricity and method for measuring the eccentricity
JP4493168B2 (ja) 形状測定方法および形状測定装置
TWI283289B (en) A system and a method of measuring a surface profile
JP3939983B2 (ja) 移動・姿勢制御装置の計測方法
JP2008151664A (ja) 三次元カムの測定方法、測定プログラムおよび測定ステージ
CN105180872A (zh) 高精度镜间隔调整环的测量方法及装置
JP5242293B2 (ja) 芯合せ方法