JP2015026477A - Gasket for alkali dry cell - Google Patents

Gasket for alkali dry cell Download PDF

Info

Publication number
JP2015026477A
JP2015026477A JP2013154417A JP2013154417A JP2015026477A JP 2015026477 A JP2015026477 A JP 2015026477A JP 2013154417 A JP2013154417 A JP 2013154417A JP 2013154417 A JP2013154417 A JP 2013154417A JP 2015026477 A JP2015026477 A JP 2015026477A
Authority
JP
Japan
Prior art keywords
gasket
explosion
resin composition
safety valve
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013154417A
Other languages
Japanese (ja)
Other versions
JP6083024B2 (en
Inventor
陽一 宮田
Yoichi Miyata
陽一 宮田
麻記 岡部
Maki Okabe
麻記 岡部
久保 直人
Naoto Kubo
久保  直人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinsei Kagaku Kogyo Co Ltd
Original Assignee
Shinsei Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinsei Kagaku Kogyo Co Ltd filed Critical Shinsei Kagaku Kogyo Co Ltd
Priority to JP2013154417A priority Critical patent/JP6083024B2/en
Publication of JP2015026477A publication Critical patent/JP2015026477A/en
Application granted granted Critical
Publication of JP6083024B2 publication Critical patent/JP6083024B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a high-reliability gasket for an alkali dry cell in which immunity of the alkali dry cell to an electrolyte is improved and a thin part including a function of an explosion-proof safety valve is normally broken while using a polyamide resin composition with less elongation.SOLUTION: The gasket for the alkali dry cell is formed by using a polyamide 610 resin composition and comprises the thin part including the function of the explosion-proof safety valve partially. The thin part is formed with thickness equal to or less than 0.4 mm. The polyamide 610 resin composition is a resin composition which contains a polyamide 610 resin as a main component and contains a crystal nucleus agent, of which a tensile elongation rate of a tester in the case where the tester with thickness of 1 mm is prepared, is 300% or less, and which becomes too fine to observe a spherocrystal when a cross section of the thin part is observed by a polarization microscope of 200 magnifications.

Description

本発明は、アルカリ乾電池に用いられる樹脂製のアルカリ乾電池用ガスケットに関する。   The present invention relates to a resin-made gasket for an alkaline dry battery used for an alkaline dry battery.

アルカリ乾電池は、玩具、懐中電灯、その他電気・電子機器を使用する上で、持ち運びしながら使用できる電源として過去から多く利用されている。   Alkaline batteries have been widely used as power sources that can be used while carrying toys, flashlights, and other electric / electronic devices.

アルカリ乾電池は陽極と陰極とを絶縁する為にガスケットが具備されている。ガスケットは通常は汎価なポリアミド66樹脂を素材として、射出成形法で目的の形状に成形した物が使用されている。(特許文献1)   Alkaline batteries have a gasket to insulate the anode from the cathode. The gasket is usually made of a general-purpose polyamide 66 resin and molded into the desired shape by an injection molding method. (Patent Document 1)

アルカリ乾電池へ求められている課題の一つとして、乾電池の長寿命化がある。長寿命化を実現する為には、ガスケットがアルカリ電解液により劣化することを防ぐ必要が有ることがわかっている。アルカリ電解液による劣化を抑えるという目的に沿って、例えば、耐アルカリ性に優れたポリプロピレン(以下、PPという)を用いたガスケットが提案されている。(特許文献2)   One of the issues required for alkaline batteries is to prolong the life of dry batteries. It has been found that in order to realize a long life, it is necessary to prevent the gasket from being deteriorated by the alkaline electrolyte. Along with the purpose of suppressing deterioration due to an alkaline electrolyte, for example, a gasket using polypropylene (hereinafter referred to as PP) having excellent alkali resistance has been proposed. (Patent Document 2)

他方、アルカリ乾電池は放電すると電池缶内で反応ガスが発生する事が知られている。この発生ガスにより電池内部の圧力が増すと電池が爆発する危険があるため、特許文献1にも開示されているように、ガスケットの一部に防爆安全弁として機能する薄肉部を形成し、電池内圧が一定圧力以上に達すると薄肉部が破裂し、電池本体が爆発することを食い止めるようにしたガスケットも提案されている。   On the other hand, it is known that when an alkaline battery is discharged, a reaction gas is generated in the battery can. If the pressure inside the battery increases due to the generated gas, the battery may explode. Therefore, as disclosed in Patent Document 1, a thin portion that functions as an explosion-proof safety valve is formed in a part of the gasket, and the battery internal pressure is increased. A gasket has also been proposed that prevents the thin-walled portion from exploding when the pressure exceeds a certain pressure and the battery body exploding.

しかしながら、ガスケットの素材をPPとした場合、PPは伸び率が高いことから、直ぐに破断するように薄肉部の厚みを0.1〜0.3mm程度まで薄くすることで改善されていた。しかし、薄肉部の厚みが薄くなる事により射出成形時の流動不足によるガスケットの成形不良が生じる問題があった。   However, when PP is used as the material of the gasket, PP has a high elongation rate. Therefore, it has been improved by reducing the thickness of the thin portion to about 0.1 to 0.3 mm so as to break immediately. However, since the thickness of the thin portion is reduced, there is a problem that a molding failure of the gasket occurs due to insufficient flow during injection molding.

特開2001−351586号公報JP 2001-351586 A 国際公開第2004/077592号International Publication No. 2004/077592

本発明は、上記事情に鑑みてなされたものであり、アルカリ乾電池の電解液に対する耐性が良好で、伸びが少ないポリアミド樹脂組成物を用いて、防爆安全弁となる薄肉部が正常に破断する信頼性の高いアルカリ電池用ガスケットを提供することを目的とする。   The present invention has been made in view of the above circumstances, and uses a polyamide resin composition that has good resistance to an electrolytic solution of an alkaline battery and has little elongation, and the reliability that a thin-walled portion that serves as an explosion-proof safety valve normally breaks. An object of the present invention is to provide an alkaline battery gasket having a high level.

発明者らが鋭意検討を重ねたところ、アルカリ電解液への耐性が良好なポリアミド610樹脂(以下、PA610樹脂という)の中でも、引張り伸びが300%以下であり、防爆作動弁となる薄肉部を偏光顕微鏡200倍で観察した際に球晶が観察されないものであれば、形状として薄肉部の厚みを成形が容易な厚みである0.2〜0.4mmにしても、薄肉部が所定の圧力で破断することを見出し本発明に至った。   As a result of extensive studies by the inventors, among polyamide 610 resins (hereinafter referred to as PA 610 resins) having good resistance to alkaline electrolytes, the tensile elongation is 300% or less, and the thin-walled portion serving as an explosion-proof operation valve is formed. If a spherulite is not observed when observed with a polarizing microscope 200 times, the thickness of the thin-walled portion is set to a predetermined pressure even if the thickness of the thin-walled portion is 0.2 to 0.4 mm, which is a thickness that can be easily molded. As a result, the present invention was found.

本発明に係るアルカリ乾電池用ガスケットは、樹脂組成物を用いて形成され、一部に防爆安全弁の機能を有する薄肉部を有するアルカリ乾電池用ガスケットにおいて、
薄肉部は、厚さ0.4mm以下に形成され、
樹脂組成物は、PA610樹脂を主成分とし、結晶核剤を含み、厚さ1mmの試験片を作製した時に試験片の引張り伸び率が300%以下であって、薄肉部の断面を偏光顕微鏡200倍で観察した時に球晶が観測できないほど微小となるPA610樹脂組成物であることを特徴とする。
The gasket for an alkaline battery according to the present invention is formed using a resin composition, and in a gasket for an alkaline battery having a thin part having a function of an explosion-proof safety valve in part,
The thin portion is formed to a thickness of 0.4 mm or less,
The resin composition contains PA610 resin as a main component, includes a crystal nucleating agent, and when a test piece having a thickness of 1 mm is produced, the tensile elongation of the test piece is 300% or less. It is characterized by being a PA610 resin composition that becomes so fine that spherulites cannot be observed when observed at double magnification.

以上のように、本発明のアルカリ乾電池用ガスケットは、PA610樹脂を主成分とし、結晶核剤を含み、厚さ1mmの試験片を作製した時に試験片の引張り伸び率が300%以下であって、薄肉部の断面を偏光顕微鏡200倍で観察した時に球晶が観測できないほど微小となるPA610樹脂組成物を用いて形成されているので、薄肉部が所定の圧力で正常に破断するとともに、例えば、射出成形も良好に行なうことができる。その結果、このPA610樹脂組成物を使用したアルカリ乾電池用ガスケットを備えたアルカリ電池は、長期にわたり保管が可能であり、且つ電池内圧に対し高精度で防爆安全弁を作動することが可能となる。   As described above, the alkaline dry battery gasket of the present invention has PA610 resin as a main component, a crystal nucleating agent, and a test piece having a thickness of 1 mm has a tensile elongation of 300% or less. In addition, since the PA610 resin composition is formed using a PA610 resin composition that is so small that spherulites cannot be observed when the cross section of the thin portion is observed with a polarizing microscope 200 times, the thin portion is normally broken at a predetermined pressure. Also, injection molding can be performed well. As a result, the alkaline battery including the alkaline battery gasket using the PA610 resin composition can be stored for a long period of time, and the explosion-proof safety valve can be operated with high accuracy against the battery internal pressure.

本発明の実施形態に係るアルカリ乾電池用ガスケットをアルカリ乾電池に組み込んだ状態の模式的な断面図である。It is typical sectional drawing of the state which incorporated the gasket for alkaline dry batteries which concerns on embodiment of this invention in the alkaline dry battery. 本実施形態に係るアルカリ乾電池用ガスケットのアルカリ乾電池に組み込む前の断面図である。It is sectional drawing before incorporating in the alkaline dry battery of the gasket for alkaline dry batteries which concerns on this embodiment. 本発明に係る実施例1におけるアルカリ乾電池用ガスケットの防爆安全弁部分の偏光写真である。2 is a polarized photograph of an explosion-proof safety valve portion of an alkaline battery gasket in Example 1 according to the present invention. 本発明に係る実施例2におけるアルカリ乾電池用ガスケットの防爆安全弁部分の偏光写真である。It is a polarization | polarized-light photograph of the explosion-proof safety valve part of the gasket for alkaline dry batteries in Example 2 which concerns on this invention. 比較例1におけるアルカリ乾電池用ガスケットの防爆安全弁部分の偏光写真である。3 is a polarized photograph of an explosion-proof safety valve portion of an alkaline battery gasket in Comparative Example 1.

以下に、本発明の実施形態について添付図面を参照しながら説明する。
図1は、本発明のアルカリ乾電池用のガスケット2を備える円筒型アルカリ乾電池1の断面図である。
アルカリ乾電池1は、亜鉛メッキを施した鉄製の有底円筒の正極缶11内に、円筒形状に予め成形しておいた二酸化マンガンを含む正極材15を入れ、さらに、筒状のセパレータ12を介して中心部に水酸化カリウム水溶液を主成分とする電解液混合物と亜鉛を含む負極材16とが収納されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view of a cylindrical alkaline battery 1 having a gasket 2 for alkaline batteries according to the present invention.
The alkaline dry battery 1 includes a positive electrode material 15 containing manganese dioxide, which has been formed in a cylindrical shape, in a galvanized iron-made bottomed cylindrical positive electrode can 11, and further, through a cylindrical separator 12. In the center portion, an electrolyte mixture containing a potassium hydroxide aqueous solution as a main component and a negative electrode material 16 containing zinc are accommodated.

正極缶11の底面中央部には、外方に突出する正極端子14が形成されている。そして、正極となる正極缶11の開口部をガスケット2を介して円板状の負極端子13で覆っている。ガスケット2は、正極缶11の開口部と負極端子13との間をシールすると共に、正極缶11と負極端子13とを絶縁する。   A positive electrode terminal 14 protruding outward is formed at the center of the bottom surface of the positive electrode can 11. And the opening part of the positive electrode can 11 used as a positive electrode is covered with the disk-shaped negative electrode terminal 13 via the gasket 2. The gasket 2 seals between the opening of the positive electrode can 11 and the negative electrode terminal 13 and insulates the positive electrode can 11 and the negative electrode terminal 13.

負極材16には、亜鉛メッキが施された真鍮棒で構成された集電体17が挿入されている。この集電体17は一端の頭部17a上面と負極端子13の内面とが溶接により接続され、ガスケット2の中央部に形成するボス孔21を貫通して負極材16内部へ挿入されている。   A current collector 17 composed of a brass bar plated with zinc is inserted into the negative electrode material 16. The current collector 17 is connected to the upper surface of the head 17 a at one end and the inner surface of the negative electrode terminal 13 by welding, and is inserted into the negative electrode material 16 through a boss hole 21 formed in the central portion of the gasket 2.

ガスケット2は、射出成形により成形され、図2にも示すように、集電体17をボス孔21を介して保持するボス部22が中央部に形成され、上方に向けて起立するリング状の起立部23が外周縁に形成され、ボス部22と起立部23とを円板状の隔壁部24で連結している。起立部23は、外周面が正極缶11の開口部内に圧接した状態で挿入される。   The gasket 2 is formed by injection molding, and as shown in FIG. 2, a boss portion 22 that holds the current collector 17 through a boss hole 21 is formed at the center portion, and is a ring-shaped member that stands upward. An upright portion 23 is formed on the outer peripheral edge, and the boss portion 22 and the upright portion 23 are connected by a disk-shaped partition wall portion 24. The upright portion 23 is inserted in a state where the outer peripheral surface is pressed into the opening of the positive electrode can 11.

ガスケット2を正極缶11の開口部内に挿入し、隔壁部24上に負極端子13を配置させた状態で、正極缶11の開口端部を内側に折り曲げる。この正極缶11の折り曲げにより、図1に示すように、ガスケット2の起立部23も折り曲げられて、正極缶11の開口端部と負極端子13の外周縁とにより起立部23が挟持される。起立部23により正極となる正極缶11と負極となる負極端子13とが絶縁される。   The gasket 2 is inserted into the opening of the positive electrode can 11, and the open end of the positive electrode can 11 is bent inward with the negative electrode terminal 13 disposed on the partition wall 24. By bending the positive electrode can 11, as shown in FIG. 1, the upright portion 23 of the gasket 2 is also bent, and the upright portion 23 is sandwiched between the open end portion of the positive electrode can 11 and the outer peripheral edge of the negative electrode terminal 13. The upright portion 23 insulates the positive electrode can 11 serving as the positive electrode and the negative electrode terminal 13 serving as the negative electrode.

さらに、隔壁部24におけるボス部22との連結部には、電池内圧が正極缶11のカシメ強度よりも高く上昇する前に破断する薄肉部25が形成されている。薄肉部25は、電池の爆発を未然に防ぐ防爆安全弁としての機能を有する。   Further, a thin portion 25 that breaks before the battery internal pressure rises higher than the caulking strength of the positive electrode can 11 is formed at the connecting portion of the partition wall portion 24 to the boss portion 22. The thin portion 25 has a function as an explosion-proof safety valve that prevents explosion of the battery.

薄肉部25は、隔壁部24のボス部22との連結部となる内周部の下面側にリング状の溝を形成して構成されている。従って、薄肉部25の厚みは、薄肉部25に隣接する隔壁部24の径方向中間位置の厚みよりも薄く、薄肉部25を形成する溝の壁面は隔壁部24の下面に対して直角または鋭角に形成して、電池内圧により破断しやすい形状になっている。   The thin portion 25 is configured by forming a ring-shaped groove on the lower surface side of the inner peripheral portion that becomes a connection portion between the partition wall portion 24 and the boss portion 22. Accordingly, the thickness of the thin wall portion 25 is thinner than the thickness of the intermediate portion in the radial direction of the partition wall portion 24 adjacent to the thin wall portion 25, and the wall surface of the groove forming the thin wall portion 25 is perpendicular or acute with respect to the lower surface of the partition wall portion 24. Formed into a shape that is easily broken by the internal pressure of the battery.

本実施形態では、隔壁部24における薄肉部25に隣接する部分の厚みは0.6〜1.0mmとし、薄肉部25の厚みは0.4mm以下であり、好ましくは0.2〜0.3mmである。薄肉部25の位置は隔壁部24にあれば特に限定されるものではなく、本実施形態のように、隔壁部24のボス部22との連結部分でもよいし、ボス部22から離れた隔壁部24の一部に形成してもよい。   In this embodiment, the thickness of the part adjacent to the thin part 25 in the partition part 24 shall be 0.6-1.0 mm, and the thickness of the thin part 25 is 0.4 mm or less, Preferably it is 0.2-0.3 mm. It is. The position of the thin wall portion 25 is not particularly limited as long as it is in the partition wall portion 24, and may be a connecting portion with the boss portion 22 of the partition wall portion 24 as in this embodiment, or the partition wall portion separated from the boss portion 22. You may form in a part of 24.

本実施形態のガスケット2は、PA610樹脂を主成分とし、結晶核剤を含むPA610樹脂組成物を用いて射出成形により成形されている。PA610樹脂は、セバシン酸とヘキサメチレンジアミンの共重合体であり、このPA610樹脂100重量部に対し、0.0001〜5重量部の範囲で、最大粒径が0.5μm以下の結晶核剤を添加したPA610樹脂組成物を用いている。このような結晶核剤が添加されたPA610樹脂組成物を用いてガスケット2を成形することにより、所定以下の引張り伸びで球晶のサイズが偏光顕微鏡では観測できないほどの微小の球晶を有するガスケット2が得られる。   The gasket 2 of this embodiment is formed by injection molding using a PA610 resin composition containing PA610 resin as a main component and a crystal nucleating agent. PA610 resin is a copolymer of sebacic acid and hexamethylenediamine, and a crystal nucleating agent having a maximum particle size of 0.5 μm or less in a range of 0.0001 to 5 parts by weight with respect to 100 parts by weight of this PA610 resin. The added PA610 resin composition is used. By forming the gasket 2 using the PA610 resin composition to which such a crystal nucleating agent is added, the gasket has a spherulite so small that the spherulite size cannot be observed with a polarizing microscope with a tensile elongation of a predetermined value or less. 2 is obtained.

本実施形態では、PA610樹脂組成物は、JIS K7162 1BAに規定される大きさの小型試験片を射出成形したものを以下の条件下で所定時間放置した後の引張り伸びの物性が300%以下となるような配合のものを使用する。
具体的な試験片の大きさは、全長100mm、中心部の平行部の長さ30mm、中心部の平行部の横幅5mm、厚さ1mmである。そして、作製した試験片を環境温度30℃、湿度50%の環境下で48時間調湿し、引張り試験速度50mm/分の条件で引張り試験を行った時、引張り伸びが300%以下となるような配合のPA610樹脂組成物を使用する。
In this embodiment, the PA610 resin composition has a tensile elongation of 300% or less after injection molding a small test piece having a size specified in JIS K7162 1BA under the following conditions for a predetermined time. The one with such a composition is used.
Specifically, the test piece has a total length of 100 mm, a central parallel part length of 30 mm, a central parallel part width of 5 mm, and a thickness of 1 mm. Then, when the prepared test piece is conditioned for 48 hours in an environment of 30 ° C. and 50% humidity, and a tensile test is performed at a tensile test speed of 50 mm / min, the tensile elongation is 300% or less. A PA610 resin composition with a suitable formulation is used.

なお、引張り伸びが300%以上のPA610樹脂製ガスケットの場合、ガスケット2の薄肉部25が、防爆安全弁として機能する薄肉部25が破断すべき所定の圧力に達しても伸び率が良いので薄肉部25が破断せず、電池本体が爆発する危険があり、ガスケットの機能として不十分である。   In the case of a PA610 resin gasket having a tensile elongation of 300% or more, since the thin portion 25 of the gasket 2 has a good elongation rate even when the thin portion 25 functioning as an explosion-proof safety valve reaches a predetermined pressure to be broken, the thin portion There is a risk that the battery body will not explode and the battery body will explode, which is insufficient as a gasket function.

本実施形態のガスケット2は、引張り伸びが300%以下のPA610樹脂組成物を用いて成形されているので、防爆安全弁機能を有する薄肉部25が所定の圧力で正常に破断し、安定した安全弁効果が得られる。   Since the gasket 2 of this embodiment is molded using a PA610 resin composition having a tensile elongation of 300% or less, the thin-walled portion 25 having an explosion-proof safety valve function is normally broken at a predetermined pressure, and a stable safety valve effect is achieved. Is obtained.

また、本実施形態のガスケット2の防爆安全弁機能を有する薄肉部25は、結晶状態が偏光顕微鏡を用いて200倍の倍率で観察した時に図3もしくは図4の顕微鏡写真で示したように球晶が観測されない。この倍率で球晶が観測できるガスケットで有れば、防爆安全弁である薄肉部25の伸びが大きく、一定圧に達しても破断しない。また、本実施形態のように球晶が観測できないものは薄肉部25での伸びが小さく、正常に作動することがわかった。可視光で球晶が観察されないことを考えると、球晶サイズは2μm以下だと推察される。   Further, the thin-walled portion 25 having the explosion-proof safety valve function of the gasket 2 of the present embodiment has a spherulite as shown in the micrograph of FIG. 3 or FIG. 4 when the crystal state is observed at a magnification of 200 times using a polarizing microscope. Is not observed. If it is a gasket that can observe spherulites at this magnification, the thin-walled portion 25, which is an explosion-proof safety valve, has a large elongation and does not break even when it reaches a certain pressure. In addition, it was found that a material in which spherulites cannot be observed as in this embodiment has a small elongation at the thin-walled portion 25 and operates normally. Considering that spherulites are not observed with visible light, the spherulite size is assumed to be 2 μm or less.

本実施形態に使用するPA610樹脂組成物には、結晶核剤として、タルク、焼成カオリン、ケイ酸マグネシウムなどの無機微粒子、酸化アルミニウムなどの金属酸化物、ステアリン酸アルミニウムなどの脂肪酸金属塩が0.0001〜5重量部の範囲で添加されるが、その最大粒径は0.5μm以下である。0.5μmを超えると、結晶が大きく育ち、偏光顕微鏡で球晶が確認されると同時に伸びが大きくなり、安全弁作動圧が高くなり、薄肉部が破断しにくくなるので本発明の主旨にそぐわない。なかでも、微細な結晶が安定して形成されることから結晶核剤のサイズは0.3μm以下が特に好ましい。
一方、結晶核剤の添加量が多いと、結晶核剤自身が補強効果を示し、防爆安全弁の作動圧力にバラツキが発生する為、結晶核剤は0.0001〜3重量部以下である方が好ましい。
In the PA610 resin composition used in the present embodiment, as a crystal nucleating agent, talc, calcined kaolin, inorganic fine particles such as magnesium silicate, metal oxide such as aluminum oxide, and fatty acid metal salt such as aluminum stearate are 0. Although added in the range of 0001 to 5 parts by weight, the maximum particle size is 0.5 μm or less. If it exceeds 0.5 μm, the crystal grows large, and the spherulite is confirmed with a polarizing microscope. At the same time, the elongation is increased, the safety valve operating pressure is increased, and the thin-walled portion is not easily broken. Among these, the size of the crystal nucleating agent is particularly preferably 0.3 μm or less because fine crystals are stably formed.
On the other hand, if the amount of the crystal nucleating agent added is large, the crystal nucleating agent itself has a reinforcing effect and the operating pressure of the explosion-proof safety valve varies. preferable.

また、本発明のPA610樹脂組成物には、離型剤、酸化防止剤などの添加物が電池機能へ影響を及ぼさない範囲で少量添加される。
特に離型剤は成形性を向上させることから併用が好ましい。たとえば、ステアリン酸マグネシウム、ステアリン酸バリウム、モンタン酸マグネシウムなどの長鎖アルキル脂肪酸金属塩、長鎖アルキル脂肪酸エステルがあげられ、その添加量は樹脂の物性に影響を与えない0.5重量部以下が好ましい。
本発明の主旨を逸脱しない範囲でポリアミド66、ポリアミド612樹脂などが少量添加されていてもかまわない。
Further, a small amount of additives such as a release agent and an antioxidant are added to the PA610 resin composition of the present invention as long as they do not affect the battery function.
In particular, the release agent is preferably used in combination because it improves moldability. For example, long-chain alkyl fatty acid metal salts such as magnesium stearate, barium stearate, and magnesium tannate, and long-chain alkyl fatty acid esters are included, and the amount added is 0.5 parts by weight or less that does not affect the physical properties of the resin. preferable.
A small amount of polyamide 66, polyamide 612 resin or the like may be added without departing from the gist of the present invention.

本実施形態のアルカリ乾電池は、正極材15、セパレータ12、電解液及び負極材16を収納した正極缶11の開口部へ負極端子13及び集電体17が取り付けられたガスケット2を組み込み、正極缶11の開口部とガスケット2の起立部23とをカシメることによりアルカリ乾電池が完成する。   The alkaline dry battery of this embodiment incorporates a gasket 2 in which a negative electrode terminal 13 and a current collector 17 are attached to an opening of a positive electrode can 11 containing a positive electrode material 15, a separator 12, an electrolytic solution and a negative electrode material 16, and The alkaline dry battery is completed by caulking the opening portion 11 and the standing portion 23 of the gasket 2.

ガスケット2は、ボス孔21へ集電体17を圧入する際にボス孔21が割れることを防ぐ為に適宜吸水された状態で使用してもよいし、射出成形法により成形されたガスケットをそのまま使用してもかまわない。   The gasket 2 may be used in an appropriately absorbed state in order to prevent the boss hole 21 from cracking when the current collector 17 is press-fitted into the boss hole 21, or a gasket molded by an injection molding method is used as it is. You can use it.

尚、本発明のアルカリ乾電池用ガスケットは上記記述及び図面によって説明した実施形態に限定されるものではなく、本発明主旨の範囲内で種々の変更を施すことが可能である。   The gasket for an alkaline battery of the present invention is not limited to the embodiment described with reference to the above description and drawings, and various modifications can be made within the scope of the present invention.

例えば、本発明のアルカリ乾電池用ガスケットを作製する方法は、特に限定されるものではないが、通常の熱可塑性樹脂の加工方法であれば問題なく、一般的には射出成形法を使用することができる。ガスケットの作製に使用される射出成形用金型は、ガスケットの品質の安定化を優先する場合にはコールドランナータイプの金型、生産性を優先させる場合はホットランナータイプの金型、両方のバランスを考慮するならセミホットランナータイプの金型を使用することが好ましい。コールドランナー及びセミホットランナータイプの金型を使用すると、ランナーが排出されるが、ランナーをガスケットの機能上問題とならない範囲で再利用してもかまわない。   For example, the method for producing the alkaline dry battery gasket of the present invention is not particularly limited, but there is no problem as long as it is a normal thermoplastic resin processing method, and generally an injection molding method may be used. it can. The injection mold used to make gaskets is a balance between both cold runner molds when priority is given to stabilizing gasket quality, and hot runner molds when productivity is prioritized. Therefore, it is preferable to use a semi-hot runner type mold. When cold runner and semi-hot runner type molds are used, the runner is discharged. However, the runner may be reused as long as it does not cause a problem in the gasket function.

また、本発明のアルカリ乾電池用ガスケットは射出成形の他、圧縮成形、溶着成形、押出成形、ブロー成形など、一般に知られている熱可塑性樹脂の加工法で作製することができる。また、切削法、キャスト法や積層法などの加工法などで作製してもよい。これらの加工法のうち、製品の寸法精度が高く大量生産が可能な射出成形法が最も適している。   Moreover, the gasket for alkaline dry batteries of the present invention can be produced by a generally known thermoplastic resin processing method such as compression molding, welding molding, extrusion molding, blow molding, etc. in addition to injection molding. Moreover, you may produce by processing methods, such as a cutting method, a casting method, and a lamination method. Of these processing methods, the injection molding method that has high dimensional accuracy of the product and enables mass production is most suitable.

さらに、本発明のアルカリ乾電池用ガスケットは、図1に示した円筒形アルカリ乾電池に限らず、一般の円筒形のマンガン電池、角型やボタン型電池等の封口用部品にも適用でき、電解液がアルカリ性のものである電池、例えばニッケル水素電池の絶縁用樹脂部品などでも本願発明のガスケットを適応できる。ニッケル水素電池としては、円筒形ニッケル水素二次電池や、ハイブリッド車両や電気自動車に使用されるニッケル水素二次電池が挙げられる。また、アルカリ蓄電池にも適用できる。   Furthermore, the gasket for alkaline dry batteries of the present invention is not limited to the cylindrical alkaline battery shown in FIG. 1, but can also be applied to sealing parts such as general cylindrical manganese batteries, prismatic and button batteries, etc. The gasket of the present invention can also be applied to batteries in which the alkaline is alkaline, such as resin parts for insulation of nickel metal hydride batteries. Examples of the nickel-metal hydride battery include a cylindrical nickel-metal hydride secondary battery and a nickel-metal hydride secondary battery used in hybrid vehicles and electric vehicles. It can also be applied to alkaline storage batteries.

上記実施形態をより明らかにする為に、以下に、本発明の実施例および比較例を挙げて詳細に説明する。なお、実施例によって本発明の構成が何等限定されるものではない。各種ガスケットの特性、樹脂特性についての評価は(1)引張伸び、(2)薄肉部球晶観察、(3)成形性、(4)ガスケット外観、(5)防爆安全弁作動圧、(6)防爆安全弁作動圧のバラツキ、(7)防爆安全弁作動後の薄肉部の伸び、(8)耐アルカリ性試験とした。   In order to clarify the above embodiment, the present invention will be described in detail below with reference to examples and comparative examples. In addition, the structure of this invention is not limited at all by the Example. Evaluation of various gasket properties and resin properties is as follows: (1) Tensile elongation, (2) Observation of thin-walled spherulites, (3) Formability, (4) Gasket appearance, (5) Explosion-proof safety valve operating pressure, (6) Explosion-proof Dispersion of safety valve operating pressure, (7) Elongation of thin wall portion after activation of explosion-proof safety valve, and (8) Alkali resistance test.

(1)の各樹脂原料による引張り伸びを観察する試験片の作製に当たっては、射出成形機としてソディック製LA-100(型締め力980kN、スクリュー径25mm)を使用し、JIS K7162 1BAの小型試験片成形用金型(平行部厚さ1.0mm)を使用した。成形条件はJIS K6920−2に記載の加工条件を利用し、成形品外観を見ながら最適化を行った。   In preparing the test piece for observing the tensile elongation of each resin material in (1), LA-100 (clamping force 980 kN, screw diameter 25 mm) manufactured by Sodick is used as an injection molding machine, and a small test piece of JIS K7162 1BA. A molding die (parallel part thickness: 1.0 mm) was used. The molding conditions were optimized using the processing conditions described in JIS K6920-2 while looking at the appearance of the molded product.

(2)〜(8)のガスケット成形性評価およびガスケットの性能評価を行うためにガスケット成形用の射出成形機として、住友重機械製SE−100(型締め力980kN、スクリュー径32mm)を使用した。金型は単三アルカリ乾電池用ガスケットを成形する金型を使用した。金型温度は70℃に統一したが、その他の主要な成形加工条件は樹脂の特性、成形品の外観に応じて最適な条件を採用しサンプルを取得した。   SE-100 (clamping force 980 kN, screw diameter 32 mm) manufactured by Sumitomo Heavy Industries was used as an injection molding machine for gasket molding to perform gasket moldability evaluation and gasket performance evaluation of (2) to (8). . As the mold, a mold for molding a gasket for AA alkaline batteries was used. The mold temperature was unified at 70 ° C., but other main molding processing conditions were selected according to the characteristics of the resin and the appearance of the molded product, and samples were obtained.

(試験方法1)引張伸び
JIS K7162 1BA小型試験片に準拠し、全長100mm、中央部の平行部長さ30mm、平行部横幅5mm、平行部厚さ1mmの小型試験片を、温度30℃湿度50%の雰囲気で48時間調湿し、引張り試験速度50mm/分で引張り試験を行ったときの破断伸びを測定した。
(Test Method 1) Tensile Elongation According to JIS K7162 1BA small test piece, a small test piece having a total length of 100 mm, a parallel part length of 30 mm, a parallel part width of 5 mm, and a parallel part thickness of 1 mm was measured at a temperature of 30 ° C. and a humidity of 50%. The humidity at 48 hours was adjusted for 48 hours, and the elongation at break when a tensile test was conducted at a tensile test speed of 50 mm / min was measured.

(試験方法2)薄肉部球晶観察
ガスケットの防爆安全弁となる薄肉部を切り出し、ミクロトームにより厚さ約10μmの薄片を作製した。この薄片を偏光顕微鏡BX50(オリンパス製)により200倍(接眼レンズ10倍、対物レンズ20倍)で観察した時に球晶が観測できないものを“見えず”、球晶が観測できるものを“見える”とし、その状況を図3〜図5に示す参考写真と照合させた。
(Test Method 2) Thin-walled part spherulite observation A thin-walled part serving as an explosion-proof safety valve for a gasket was cut out, and a thin piece having a thickness of about 10 μm was produced by a microtome. When this flake is observed with a polarizing microscope BX50 (manufactured by Olympus) at 200 times (eyepiece 10 times, objective lens 20 times), those in which spherulites cannot be observed are "invisible" and those in which spherulites can be observed are "visible". The situation was collated with the reference photographs shown in FIGS.

(試験方法3)成形性
単三アルカリ乾電池用ガスケットを成形した際、1時間にわたり問題なく成形できたものを“良好”、連続成形は出来なかったがガスケットが得られたものを“不適”、成形出来なかったものを“不良”とした。
(Test Method 3) Formability When molding a gasket for AA alkaline batteries, “good” was able to be molded without any problems over 1 hour, “unsuitable” was the one that was not able to be continuously molded but the gasket was obtained. Those that could not be molded were defined as “bad”.

(試験方法4)ガスケット外観
単三アルカリ電池用ガスケットをについて、任意に100個取出し薄肉部の形状を含む外観が正常に成形されているものを“良好”、ウエルドラインなど電池性能上問題が懸念される外観不良がある場合を“不良”とした。
(Test Method 4) Gasket Appearance About 100 AA alkaline battery gaskets, the appearance including the shape of the thin-walled part is arbitrarily shaped as “good”, and there are concerns about battery performance problems such as weld lines The case where there was a defective appearance was defined as “defect”.

(試験方法5)防爆安全弁作動圧
防爆安全弁評価は、油圧式のガスケット用の防爆試験機を用いた(特願2012-063657参照)。この防爆試験機は、ガスケット外周部とボス部分を保持した状態で、ガスケットの隔壁部の下面側となり、ガスケットが電池に組み込まれた際に電解液側となる空間部と、反対側の面に対向する空間部とがガスケットによって区画される油圧作動室を有し、電解液側の空間部にオイルを注入してガスケットの薄肉部が破断したときの油圧を測定するようになっている。この防爆試験機を用いることにより防爆安全弁作動圧力である薄肉部の破断圧力を求めた。防爆試験は、50個のガスケットに対して防爆安全弁作動圧力を求めた。防爆安全弁作動圧力が電池性能に対して良好な場合は“良好”、電池が爆発する危険がある場合は“不良”とした。
(Test method 5) Explosion-proof safety valve operating pressure The explosion-proof safety valve was evaluated using an explosion-proof test machine for hydraulic gaskets (see Japanese Patent Application No. 2012-063657). This explosion-proof tester is on the lower surface side of the gasket partition wall while holding the gasket outer periphery and boss, and on the opposite surface to the space on the electrolyte side when the gasket is installed in the battery. There is a hydraulic working chamber that is partitioned by a gasket from an opposing space, and oil pressure is measured when oil is injected into the space on the electrolyte side and the thin portion of the gasket is broken. By using this explosion-proof tester, the breaking pressure of the thin wall portion, which is the explosion-proof safety valve operating pressure, was determined. In the explosion-proof test, the explosion-proof safety valve operating pressure was obtained for 50 gaskets. When the explosion-proof safety valve operating pressure was good for battery performance, it was judged as “good”, and when there was a risk of battery explosion, it was judged as “bad”.

(試験方法6)防爆安全弁作動圧のバラツキ
試験方法5によって得られたガスケット50個分の防爆安全弁作動圧力から、作動圧力のバラツキを求めた。母数50個の防爆安全弁作動圧力のバラツキ範囲が規格範囲の10%以内であれば“良好”、30%以内であれば“不適”、30%以上であれば“不良”とした。
(Test Method 6) Variation in Operation Pressure of Explosion-Proof Safety Valve From the operation pressure of the explosion-proof safety valve for 50 gaskets obtained by Test Method 5, the variation in operation pressure was obtained. When the variation range of the operating pressure of the explosion-proof safety valve with 50 parameters is within 10% of the standard range, “good”, within 30% “unsuitable”, and over 30% “bad”.

(試験方法7)防爆安全弁作動後の薄肉の伸び
試験方法5の防爆安全弁作動圧力測定後のガスケットの薄肉部を観察し、伸びが大きいものを“大”とし、伸びが小さいものを“小”とした。
(Test method 7) Thin wall elongation after activation of explosion-proof safety valve Observe the thin wall of the gasket after measuring the explosion-proof safety valve operating pressure in Test method 5, and mark “large” for large elongation and “small” for small elongation. It was.

(試験方法8)耐アルカリ性試験
耐アルカリ性はガスケットのボス部へボス孔直径の1.3倍の真鍮棒を挿入し、80℃に加温したアルカリ乾電池のアルカリ濃度と同じ水酸化カリウム溶液内に入れ、30日間放置した後にボス部周辺にクラックが見られないものを“良好”、クラックが入った物を“不良”とした。
(Test method 8) Alkali resistance test Alkaline resistance is measured by placing a brass rod 1.3 times the diameter of the boss hole into the boss part of the gasket and heating it at 80 ° C in the same potassium hydroxide solution as the alkali concentration of the alkaline battery. When the sample was left for 30 days and no cracks were observed around the boss, the sample was evaluated as “good”, and the sample with cracks was defined as “bad”.

(実施例1)
市販のPA610樹脂100重量部に対して、結晶核剤としてケイ酸マグネシウムが0.3重量部添加されたPA610樹脂組成物を原料とし、上記の試験サンプル作製法により試験片及びガスケットを得た。
実施例1では、試験方法1による引張伸びが275%、試験方法2による観察法で球晶が観測できなかった。なお、結晶化していることの確認として、示差走査熱量計(DSC)DSC2920(TAインスツルメンツ社製)を使って10℃/分で加熱したときに、226℃に結晶融解に起因する66.5J/gの吸熱ピークの存在を確認し、結晶(球晶)が存在していることを確認した。
ケイ酸マグネシウムが0.3重量部添加されたPA610樹脂組成物で成形されたガスケットは、防爆安全弁作動圧力が良好であり、かつバラツキも非常に小さいもので有った。更に耐アルカリ性も良好であった。
このように、試験片の伸び率が300%以下であり、防爆安全弁である薄肉部に球晶が観測できなかった実施例1のガスケットは、量産性に優れ、アルカリ乾電池ガスケットに必要な要求事項を満足するばかりでなく、このガスケットを使用したアルカリ乾電池は、長寿命と高い安全性を有することが出来ることがわかった。
Example 1
Using a PA610 resin composition in which 0.3 part by weight of magnesium silicate as a crystal nucleating agent was added to 100 parts by weight of commercially available PA610 resin, a test piece and a gasket were obtained by the above test sample preparation method.
In Example 1, the tensile elongation by Test Method 1 was 275%, and spherulites could not be observed by the observation method by Test Method 2. As confirmation of crystallization, when heated at 10 ° C./min using a differential scanning calorimeter (DSC) DSC2920 (manufactured by TA Instruments), 66.5 J / The presence of an endothermic peak of g was confirmed, and the presence of crystals (spherulites) was confirmed.
The gasket molded from the PA610 resin composition to which 0.3 part by weight of magnesium silicate was added had good explosion-proof safety valve operating pressure and very little variation. Furthermore, the alkali resistance was also good.
Thus, the elongation rate of the test piece is 300% or less, and the gasket of Example 1 in which the spherulite was not observed in the thin wall portion, which is an explosion-proof safety valve, is excellent in mass productivity and required for an alkaline battery gasket. It has been found that the alkaline dry battery using this gasket can have a long life and high safety.

(実施例2)
PA610樹脂100重量部に結晶核剤として0.2重量部の窒化ホウ素(和光純薬製)と離型材として0.5重量部のステアリン酸カルシウム(和光純薬製)を添加し、二軸押出し成形装置kzw15tTW-45HG(テクノベル製)を用いてペレット化したPA610樹脂組成物を原料とし、上記の試験サンプル作製法により試験片及びガスケットを得た。
実施例2では、試験方法1による伸び率が290%、試験方法2による観察法で球晶が観測できなかった。なお、結晶化していることの確認として、実施例1と同じDSCを使って10℃/分で加熱したときに、227℃に結晶融解に起因する66.4J/gの吸熱ピークの存在を確認し、結晶(球晶)が存在していることを確認した。
ステアリン酸カルシウムが0.5重量部添加されたPA610樹脂組成物で成形されたガスケットは、防爆安全弁作動圧力が良好であり、かつバラツキも非常に小さいもので有った。更に耐アルカリ性も良好であった。
このように、試験片の伸び率が300%以下であり、防爆安全弁の薄肉部に球晶が観測できない本実施例2のガスケットは、量産性に優れ、アルカリ乾電池ガスケットに必要な要求事項を満足するばかりでなく、このガスケットを使用したアルカリ乾電池は、長寿命と高い安全性を有することが出来ることがわかった。
(Example 2)
A biaxial extrusion molding is performed by adding 0.2 parts by weight of boron nitride (manufactured by Wako Pure Chemical Industries) as a crystal nucleating agent and 0.5 parts by weight of calcium stearate (manufactured by Wako Pure Chemical Industries) as a mold release material to 100 parts by weight of PA610 resin. A test piece and a gasket were obtained using the PA610 resin composition pelletized using the apparatus kzw15tTW-45HG (manufactured by Technobell) as a raw material by the above test sample preparation method.
In Example 2, the elongation percentage by Test Method 1 was 290%, and no spherulite could be observed by the observation method by Test Method 2. As confirmation of crystallization, the presence of an endothermic peak of 66.4 J / g due to crystal melting at 227 ° C. was confirmed using the same DSC as in Example 1 at 10 ° C./min. It was confirmed that crystals (spherulites) were present.
The gasket molded from the PA610 resin composition to which 0.5 parts by weight of calcium stearate was added had good explosion-proof safety valve operating pressure and very little variation. Furthermore, the alkali resistance was also good.
As described above, the elongation of the test piece is 300% or less, and the gasket of Example 2 in which spherulites are not observable in the thin wall portion of the explosion-proof safety valve is excellent in mass production and satisfies the requirements for alkaline battery gaskets. In addition, it has been found that an alkaline battery using this gasket can have a long life and high safety.

(比較例1)
結晶核剤が添加されていないPA610樹脂を原料として、上記の試験サンプル作製法により試験片及びガスケットを得た。
比較例1では、試験方法1による引張り伸びは320%、試験方法2による球晶が観測できた。
結晶核剤が添加されていないPA610樹脂を使用したガスケットの成形に於いては、離型性が悪く連続成形が出来なかった。得られた一部のガスケットは防爆安全弁の作動圧が高く、ばらつきも大きいことがわかった。成形品の薄肉部が成形直後から伸びて変形していることが原因であることが考えられる。
比較例1のガスケットは、PA610樹脂を使用して成形していても試験片の伸び率が300%以上と高く、防爆安全弁となる薄肉部において球晶が観測できるため、量産性には課題が多く、電池品質上についても芳しくない結果となった。
(Comparative Example 1)
A test piece and a gasket were obtained by the above-described test sample preparation method using PA610 resin to which a crystal nucleating agent was not added as a raw material.
In Comparative Example 1, the tensile elongation by Test Method 1 was 320%, and spherulites by Test Method 2 were observed.
In the molding of a gasket using PA610 resin to which no crystal nucleating agent was added, the releasability was poor and continuous molding could not be performed. It was found that some of the gaskets obtained had a high operating pressure of the explosion-proof safety valve and a large variation. It is conceivable that this is because the thin part of the molded product is stretched and deformed immediately after molding.
Even when the gasket of Comparative Example 1 is molded using PA610 resin, the elongation of the test piece is as high as 300% or more, and spherulites can be observed in the thin wall portion serving as an explosion-proof safety valve. In many cases, the battery quality was not good.

(比較例2)
市販のPA612樹脂100重量部に対し結晶核剤としてタルクが0.5重量部添加されたPA612樹脂組成物を原料として、上記の試験サンプル作製法により試験片及びガスケットを得た。
比較例2では、試験方法1による引張り伸びが325%、試験方法2による球晶観察法で球晶が観測できた。
比較例2のPA612樹脂組成物で成形されたガスケットは、防爆安全弁作動圧が高いことがわかり、試験方法7の防爆安全弁作動圧試験後のガスケットの薄肉部の伸びが前記実施例1及び2のものと比べて大きいことがわかった。
比較例2のガスケットは、試験片の伸び率が300%以上と高く、防爆安全弁である薄肉部の球晶も観測できる樹脂であり、この樹脂を使用したガスケットは、電池品質上芳しくない結果となった。
(Comparative Example 2)
A test piece and a gasket were obtained by the above-described test sample preparation method using as a raw material a PA612 resin composition in which 0.5 parts by weight of talc was added as a crystal nucleating agent to 100 parts by weight of a commercially available PA612 resin.
In Comparative Example 2, the tensile elongation by Test Method 1 was 325%, and spherulites could be observed by the spherulite observation method by Test Method 2.
The gasket molded from the PA612 resin composition of Comparative Example 2 was found to have a high explosion-proof safety valve operating pressure, and the elongation of the thin portion of the gasket after the explosion-proof safety valve operating pressure test of Test Method 7 was the same as in Examples 1 and 2. It turned out to be bigger than the one.
The gasket of Comparative Example 2 is a resin in which the elongation percentage of the test piece is as high as 300% or more, and a spherulite in a thin wall portion that is an explosion-proof safety valve can be observed, and the gasket using this resin has a poor battery quality. became.

(比較例3)
PA612樹脂100重量部に対し、結晶核剤としてタルク(和光純薬製)を0.5重量部、補強材として無水ケイ酸アルミニウム(和光純薬製)を10重量部を混合して、複合材料ペレット製造装置kzw15tTW-45HG(テクノベル製)を用いてペレット化したPA612樹脂組成物を原料とした。
このPA612樹脂組成物を用いて、上記の試験サンプル作製法により試験片及びガスケットを得た。
比較例3では、試験方法1による引張強度が285%、試験方法2による球晶観察では無機補強材の影響で観測できなかった。
また、比較例3のガスケットは、試験方法6の防爆安全弁作動圧を測定した際のバラツキが大きいことがわかり、試験方法7の防爆安全弁作動圧を測定した後のガスケットの薄肉部は、補強材のムラにより伸びがばらついている事がわかった。
また、無機補強材の影響により射出成形時の樹脂の流動性が悪く、ガスケットを成形するための成形加工条件に自由度が無いことが判った。更に無機補強材は射出成形金型に使用する鋼材よりも硬いため、長期間ガスケットを製造すると、金型が劣化する懸念があることが判明した。
比較例3のガスケットは、樹脂組成物中に無機補強材が含まれることから伸び率が300%以下であっても、防爆安全弁のバラツキが大きく、比較例3のガスケットを用いたアルカリ電池は、電池品質上芳しくない結果となった。
(Comparative Example 3)
To 100 parts by weight of PA612 resin, 0.5 part by weight of talc (manufactured by Wako Pure Chemical Industries) as a crystal nucleating agent and 10 parts by weight of anhydrous aluminum silicate (manufactured by Wako Pure Chemical Industries) as a reinforcing material are mixed to form a composite material. A PA612 resin composition pelletized using a pellet manufacturing apparatus kzw15tTW-45HG (manufactured by Technobel) was used as a raw material.
Using this PA612 resin composition, a test piece and a gasket were obtained by the above test sample preparation method.
In Comparative Example 3, the tensile strength by Test Method 1 was 285%, and the spherulite observation by Test Method 2 could not be observed due to the influence of the inorganic reinforcing material.
In addition, it can be seen that the gasket of Comparative Example 3 has a large variation when the explosion-proof safety valve operating pressure of Test Method 6 is measured, and the thin-walled portion of the gasket after the measurement of the explosion-proof safety valve operating pressure of Test Method 7 is a reinforcing material. It was found that the elongation varies due to unevenness.
Further, it has been found that due to the influence of the inorganic reinforcing material, the fluidity of the resin at the time of injection molding is poor, and the molding process conditions for molding the gasket are not flexible. Furthermore, since the inorganic reinforcing material is harder than the steel material used for the injection mold, it has been found that there is a concern that the mold deteriorates when a gasket is manufactured for a long period of time.
Since the gasket of Comparative Example 3 contains an inorganic reinforcing material in the resin composition, even if the elongation is 300% or less, the explosion-proof safety valve varies greatly. The alkaline battery using the gasket of Comparative Example 3 is The battery quality was not good.

(比較例4)
PA66樹脂100重量部に対し、結晶核剤として窒化ホウ素0.2重量部が含まれている市販のPA66樹脂組成物を原料として、上記の試験サンプル作製法により試験片及びガスケットを得た。
比較例4では、試験方法1による引張り伸びが310%、試験方法2による観察法で球晶が観測できた。
窒化ホウ素が0.2重量部添加されたPA66樹脂組成物を使用したガスケットは、防爆安全弁作動圧が実施例1及び実施例2のガスケットと比較すると若干高いが、使用上問題がない範囲でありバラツキも少なかった。しかし、試験方法8の試験によって、耐アルカリ性は非常に悪いものであることがわかった。
比較例4のガスケットは、PA66樹脂を使用しているので、耐電解液特性に問題があり、このガスケットによって作られたアルカリ乾電池は電池寿命が短いものであることがわかった。
以下の表1に実施例1、実施例2、比較例1〜4の試験結果を示す。
(Comparative Example 4)
A test piece and a gasket were obtained by the above-described test sample preparation method using a commercially available PA66 resin composition containing 0.2 parts by weight of boron nitride as a crystal nucleating agent for 100 parts by weight of PA66 resin.
In Comparative Example 4, the tensile elongation by Test Method 1 was 310%, and spherulites could be observed by the observation method by Test Method 2.
The gasket using the PA66 resin composition to which 0.2 parts by weight of boron nitride is added has an explosion-proof safety valve operating pressure slightly higher than that of the gaskets of Examples 1 and 2, but there is no problem in use. There was little variation. However, it was found by the test of Test Method 8 that the alkali resistance is very bad.
Since the gasket of Comparative Example 4 uses PA66 resin, there is a problem in the electrolytic solution resistance, and it was found that the alkaline dry battery made by this gasket has a short battery life.
Table 1 below shows the test results of Example 1, Example 2, and Comparative Examples 1 to 4.

以上の実施例及び比較例の結果から、試験方法1による引張り伸びが300%以下、試験方法2による観察方法で球晶が観測されない実施例1及び実施例2のPA610樹脂組成物を使用したガスケットは防爆安全弁作動圧力が、電池品質上問題の無い圧力で作動し、作動圧力のバラツキが少なく、耐アルカリ性の高いガスケットであることがわかった。
このように実施例1及び実施例2のガスケットは量産性と電池安全性と耐電解液特性が良いことが明らかとなった。よって、試験片の伸び率が300%以下であり、防爆安全弁の薄肉部に球晶が観測できない実施例1及び実施例2のガスケットを用いて作られたアルカリ乾電池は長寿命化と安全性をあわせ持つ高い品質のアルカリ乾電池であることが明らかと成った。
From the results of the above Examples and Comparative Examples, the gasket using the PA610 resin composition of Examples 1 and 2 in which the tensile elongation by Test Method 1 is 300% or less and no spherulites are observed by the observation method by Test Method 2. It was found that the explosion-proof safety valve operates at a pressure that does not cause any problems in battery quality, has a small variation in operating pressure, and has a high alkali resistance.
Thus, it was revealed that the gaskets of Example 1 and Example 2 have good mass productivity, battery safety, and electrolyte resistance characteristics. Therefore, the alkaline dry batteries made using the gaskets of Example 1 and Example 2 in which the elongation percentage of the test piece is 300% or less and spherulites are not observable in the thin wall portion of the explosion-proof safety valve have a long life and safety. It became clear that this was a high-quality alkaline battery.

本発明の電池用ガスケットは、アルカリ乾電池の安全で高寿命化が可能となり、電解液へ高アルカリ水溶液を用いるニッケル水素電池にも良好に適用できるものである。   The battery gasket of the present invention can provide a safe and long-life alkaline battery, and can be applied well to a nickel metal hydride battery using a highly alkaline aqueous solution as an electrolyte.

1 アルカリ乾電池
2 ガスケット
11 正極缶
12 セパレータ
13 負極端子
14 正極端子
15 正極材
16 負極材
17 集電体
17a 頭部
21 ボス孔
22 ボス部
23 起立部
24 隔壁部
25 薄肉部
DESCRIPTION OF SYMBOLS 1 Alkaline battery 2 Gasket 11 Positive electrode can 12 Separator 13 Negative electrode terminal 14 Positive electrode terminal 15 Positive electrode material 16 Negative electrode material 17 Current collector 17a Head 21 Boss hole 22 Boss part 23 Standing part 24 Partition part 25 Thin part

Claims (1)

樹脂組成物を用いて形成され、一部に防爆安全弁の機能を有する薄肉部を有するアルカリ乾電池用ガスケットにおいて、
薄肉部は、厚さ0.4mm以下に形成され、
樹脂組成物は、ポリアミド610樹脂を主成分とし、結晶核剤を含み、厚さ1mmの試験片を作製した時に試験片の引張り伸び率が300%以下であって、薄肉部の断面を偏光顕微鏡200倍で観察した時に球晶が観測できないほど微小となるポリアミド610樹脂組成物であることを特徴とするアルカリ乾電池用ガスケット。
In a gasket for an alkaline dry battery, which is formed using a resin composition and has a thin part having a function of an explosion-proof safety valve in part,
The thin portion is formed to a thickness of 0.4 mm or less,
The resin composition has a polyamide 610 resin as a main component, a crystal nucleating agent, and when a test piece having a thickness of 1 mm is produced, the tensile elongation of the test piece is 300% or less, and the cross section of the thin part is polarized with a polarizing microscope. A gasket for an alkaline battery characterized in that it is a polyamide 610 resin composition that is so fine that spherulites cannot be observed when observed at 200 times.
JP2013154417A 2013-07-25 2013-07-25 Gasket for alkaline battery Active JP6083024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013154417A JP6083024B2 (en) 2013-07-25 2013-07-25 Gasket for alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013154417A JP6083024B2 (en) 2013-07-25 2013-07-25 Gasket for alkaline battery

Publications (2)

Publication Number Publication Date
JP2015026477A true JP2015026477A (en) 2015-02-05
JP6083024B2 JP6083024B2 (en) 2017-02-22

Family

ID=52490997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013154417A Active JP6083024B2 (en) 2013-07-25 2013-07-25 Gasket for alkaline battery

Country Status (1)

Country Link
JP (1) JP6083024B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6323971B1 (en) * 2017-04-07 2018-05-16 新生化学工業株式会社 Gasket for alkaline battery and method for producing the same
JP2021002438A (en) * 2019-06-20 2021-01-07 Fdk株式会社 End-sealing gasket and battery
WO2021187044A1 (en) 2020-03-19 2021-09-23 東レ株式会社 Alkaline battery gasket
WO2023188799A1 (en) * 2022-03-28 2023-10-05 Fdk株式会社 Alkaline battery, and method for manufacturing gasket for alkaline battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112152A (en) * 1988-10-20 1990-04-24 Toshiba Battery Co Ltd Alkaline battery
JPH08315791A (en) * 1995-05-22 1996-11-29 Matsushita Electric Ind Co Ltd Battery and its manufacture
US20060083985A1 (en) * 2004-10-14 2006-04-20 Rayovac Corporation Electrochemical cell having improved gasket
JP2008226565A (en) * 2007-03-10 2008-09-25 Fdk Energy Co Ltd Negative electrode collector for alkaline battery and alkaline battery
JP2008280514A (en) * 2007-04-12 2008-11-20 Asahi Kasei Chemicals Corp Polyamide resin composition and molding
JP2009021263A (en) * 2007-04-12 2009-01-29 Panasonic Corp Gasket for battery, and alkaline dry cell
JP2009032639A (en) * 2007-06-29 2009-02-12 Toray Ind Inc Polyamide resin composition for battery gasket
WO2009087798A1 (en) * 2008-01-11 2009-07-16 Panasonic Corporation Gasket for battery and alkaline battery
JP2011165585A (en) * 2010-02-12 2011-08-25 Fdk Energy Co Ltd Alkaline battery gasket and alkaline battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112152A (en) * 1988-10-20 1990-04-24 Toshiba Battery Co Ltd Alkaline battery
JPH08315791A (en) * 1995-05-22 1996-11-29 Matsushita Electric Ind Co Ltd Battery and its manufacture
US20060083985A1 (en) * 2004-10-14 2006-04-20 Rayovac Corporation Electrochemical cell having improved gasket
JP2008226565A (en) * 2007-03-10 2008-09-25 Fdk Energy Co Ltd Negative electrode collector for alkaline battery and alkaline battery
JP2008280514A (en) * 2007-04-12 2008-11-20 Asahi Kasei Chemicals Corp Polyamide resin composition and molding
JP2009021263A (en) * 2007-04-12 2009-01-29 Panasonic Corp Gasket for battery, and alkaline dry cell
JP2009032639A (en) * 2007-06-29 2009-02-12 Toray Ind Inc Polyamide resin composition for battery gasket
WO2009087798A1 (en) * 2008-01-11 2009-07-16 Panasonic Corporation Gasket for battery and alkaline battery
JP2011165585A (en) * 2010-02-12 2011-08-25 Fdk Energy Co Ltd Alkaline battery gasket and alkaline battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6323971B1 (en) * 2017-04-07 2018-05-16 新生化学工業株式会社 Gasket for alkaline battery and method for producing the same
WO2018185971A1 (en) 2017-04-07 2018-10-11 新生化学工業株式会社 Gasket for alkaline dry battery, and method for producing same
JP2018181825A (en) * 2017-04-07 2018-11-15 新生化学工業株式会社 Gasket for alkaline dry battery and manufacturing method thereof
CN109075274A (en) * 2017-04-07 2018-12-21 新生化学工业株式会社 Alkaline dry battery gasket and its manufacturing method
US10826031B2 (en) 2017-04-07 2020-11-03 Shinsei Kagaku Kogyo Co., Ltd. Gasket for alkaline battery and method for manufacturing same
JP2021002438A (en) * 2019-06-20 2021-01-07 Fdk株式会社 End-sealing gasket and battery
JP7286429B2 (en) 2019-06-20 2023-06-05 Fdk株式会社 Sealing gaskets and batteries
WO2021187044A1 (en) 2020-03-19 2021-09-23 東レ株式会社 Alkaline battery gasket
KR20220154672A (en) 2020-03-19 2022-11-22 도레이 카부시키가이샤 alkaline battery gasket
CN115485920A (en) * 2020-03-19 2022-12-16 东丽株式会社 Alkaline dry cell sealing gasket
WO2023188799A1 (en) * 2022-03-28 2023-10-05 Fdk株式会社 Alkaline battery, and method for manufacturing gasket for alkaline battery

Also Published As

Publication number Publication date
JP6083024B2 (en) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6083024B2 (en) Gasket for alkaline battery
JP6323971B1 (en) Gasket for alkaline battery and method for producing the same
JP5572334B2 (en) Polyolefin microporous membrane
EP2612702B1 (en) Microporous polyolefin film and method for preparing the same
JP5325405B2 (en) Polyolefin microporous membrane
JP5942145B2 (en) Polyolefin microporous membrane and method for producing the same
PT2108675E (en) Microporous polyolefin membrane
TWI639731B (en) Electrolytic copper foil and method for producing the same, and current collector for lithium secondary battery and secondary battery comprising the electrolytic copper foil
JP2014029839A (en) Sealing member for battery
JP5235484B2 (en) Polyolefin microporous membrane
JP2015048478A (en) Battery gasket based on polyamide composition
CN111108621B (en) Battery packaging material, method for producing same, battery, and aluminum alloy foil
JP5235324B2 (en) Polyolefin microporous membrane
JP2007262203A (en) Microporous film made of polyolefin
EP2747172B1 (en) Rubber valve body for sealed battery, safety valve device and alkaline storage battery
WO2020213212A1 (en) Gasket for alkaline battery, and alkaline battery
JP7239083B1 (en) Exterior material for power storage device, manufacturing method thereof, and power storage device
JP2010231936A (en) Separator for alloy-based anode electrode lithium ion secondary battery
JP2005129480A (en) Polyphenylene sulfide porous film
RU71034U1 (en) ALKALINE BATTERY
JPS628901B2 (en)
WO2023057068A1 (en) Copper foil with high engery at break and secondary battery comprising the same
CN115485920A (en) Alkaline dry cell sealing gasket
CA3172019A1 (en) Copper foil with high energy at break and secondary battery comprising the same
JP2012102198A (en) Polyolefin microporous film, and electricity storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161227

R150 Certificate of patent or registration of utility model

Ref document number: 6083024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250