JP5235484B2 - Polyolefin microporous membrane - Google Patents

Polyolefin microporous membrane Download PDF

Info

Publication number
JP5235484B2
JP5235484B2 JP2008118894A JP2008118894A JP5235484B2 JP 5235484 B2 JP5235484 B2 JP 5235484B2 JP 2008118894 A JP2008118894 A JP 2008118894A JP 2008118894 A JP2008118894 A JP 2008118894A JP 5235484 B2 JP5235484 B2 JP 5235484B2
Authority
JP
Japan
Prior art keywords
microporous membrane
stretching
mass
sheet
polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008118894A
Other languages
Japanese (ja)
Other versions
JP2009269941A (en
Inventor
健 鬼澤
貴志 池本
吉宏 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei E Materials Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2008118894A priority Critical patent/JP5235484B2/en
Publication of JP2009269941A publication Critical patent/JP2009269941A/en
Application granted granted Critical
Publication of JP5235484B2 publication Critical patent/JP5235484B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

本発明は、ポリオレフィン微多孔膜、電池用セパレータ、リチウムイオン二次電池、およびポリオレフィン微多孔膜の製造方法に関する。   The present invention relates to a polyolefin microporous membrane, a battery separator, a lithium ion secondary battery, and a method for producing a polyolefin microporous membrane.

ポリオレフィン製微多孔膜は優れた電気絶縁性、イオン透過性を示すことから電池やコンデンサー等におけるセパレータとして広く利用されている。特に近年では携帯機器の多機能化、軽量化に伴いその電源として高出力密度、高容量密度のリチウムイオン二次電池が使用されている。このような電池用セパレータにも主としてポリオレフィン微多孔膜が用いられている。
リチウムイオン二次電池のセパレータには種々の特性が求められるが、特にセパレータの捲回方向(セパレータの長さ方向、若しくは製膜時の原料樹脂吐出方向と同意。以下、「MD」と略記することがある。)と、その垂直方向(セパレータの幅方向と同意。以下、「TD」と略記することがある。)の収縮応力(以下、「TMA」と略記することがある。)や収縮率が大きいと、電池の温度が上がった際にセパレータが収縮することにより電極がむき出しになり、内部短絡が生じるおそれが懸念される。このような事情のもと、収縮応力の低いセパレータとして、例えば、特許文献1では孔閉塞温度以下でのTDの最大収縮応力を規定したポリオレフィン製電池用セパレータが提案されている。特許文献2では突刺強度と引張強度が高くTDの収縮最大応力が小さいポリオレフィン製電池用セパレータが提案されている。特許文献3にはMD最大収縮応力が小さいポリオレフィン製微多孔膜が提案されている。
Polyolefin microporous membranes are widely used as separators in batteries, capacitors and the like because they exhibit excellent electrical insulation and ion permeability. In particular, in recent years, with the increase in functionality and weight of portable devices, lithium ion secondary batteries with high output density and high capacity density have been used as power sources. Polyolefin microporous membranes are mainly used for such battery separators.
Various properties are required for a separator of a lithium ion secondary battery, and in particular, the winding direction of the separator (the length direction of the separator, or the direction of discharging the raw material resin during film formation, which is abbreviated as “MD” hereinafter). ) And the contraction stress (hereinafter sometimes abbreviated as “TMA”) or contraction in the vertical direction (the same as the width direction of the separator; hereinafter sometimes abbreviated as “TD”). If the rate is large, there is a concern that when the temperature of the battery rises, the separator shrinks and the electrode is exposed, causing an internal short circuit. Under such circumstances, as a separator having a low shrinkage stress, for example, Patent Document 1 proposes a polyolefin battery separator that defines a maximum shrinkage stress of TD at a temperature equal to or lower than a hole closing temperature. Patent Document 2 proposes a polyolefin battery separator having high puncture strength and tensile strength and low TD shrinkage maximum stress. Patent Document 3 proposes a polyolefin microporous film having a small MD maximum shrinkage stress.

特開平11−322989号公報Japanese Patent Laid-Open No. 11-322989 特開2001−081221号公報Japanese Patent Laid-Open No. 2001-081221 特開2004−335255号公報JP 2004-335255 A

しかしながら、特許文献1〜3に記載された微多孔膜を電池用セパレータとして用いた場合、電池の安全性とサイクル特性とを両立する観点からは、なお改良の余地を有するものであった。
本発明は、良好な安全性と良好なサイクル特性とを両立し得るセパレータとして好適なポリオレフィン製微多孔膜を提供することを課題とする。
However, when the microporous membrane described in Patent Documents 1 to 3 is used as a battery separator, there is still room for improvement from the viewpoint of achieving both battery safety and cycle characteristics.
An object of the present invention is to provide a polyolefin microporous membrane suitable as a separator capable of achieving both good safety and good cycle characteristics.

本発明者らは上記課題を解決するために鋭意検討を行った。その結果、特定のポリオレフィン製微多孔膜が上記課題を達成し得ることを見出し、本発明をなすに至った。
すなわち、本発明は以下の通りである。
[1] 膜厚方向に連通孔を有し、80℃における長さ方向(MD)の収縮応力(TMA)が15〜40N/mであるポリオレフィン製微多孔膜であって、前記ポリオレフィンがポリエチレンをベースとした組成であり、バブルポイントが300〜600kPaであり、気孔率が35%〜60%である微多孔膜
]炭素数3〜5のコモノマー単位含量が0.1〜4mol%である線状共重合ポリエチレンを、微多孔膜を形成する原料ポリマー成分100質量%に対して10〜50質量%の割合で含む[1]に記載の微多孔膜。
]前記コモノマー単位がプロピレンである[]に記載の微多孔膜。
]前記線状共重合ポリエチレンの粘度平均分子量が20万〜50万である[]又は[]に記載の微多孔膜。
]80℃における幅方向(TD)のTMAが8N/m以下である[1]〜[]のいずれかに記載の微多孔膜。
][1]〜[]のいずれかに記載の微多孔膜を用いた電池用セパレータ。
][]記載の電池用セパレータと、正極と、負極と、電解液とを用いたリチウムイオン二次電池。
][1]〜[]のいずれかに記載のポリオレフィン製微多孔膜の製造方法であって、下記(1)〜(5)の各工程、
(1)ポリオレフィン樹脂と、可塑剤と、無機粉体とを混合する混合工程、
(2)混合工程により得られた混合物を押出機中で溶融混練する混練工程、
(3)混練工程で得られた混練物を、Tダイスから押出し、冷却してシート状に成形するシート成形工程、
(4)シート成形工程で得られたシート状の成形物から可塑剤と無機紛体とを抽出する抽出工程、
(5)抽出工程で得られたシート状の多孔体を延伸する延伸工程、
を含み、前記延伸工程は、延伸時の最大加熱温度が延伸前の膜融点の−2℃〜+4℃の範囲にある製造方法。
]前記延伸工程におけるMD延伸倍率/TD延伸倍率の比が1.5以上5以下である[]に記載の製造方法。
The present inventors have intensively studied to solve the above problems. As a result, the inventors have found that a specific polyolefin microporous membrane can achieve the above-described problems, and have made the present invention.
That is, the present invention is as follows.
[1] A polyolefin microporous film having communication holes in the film thickness direction and having a shrinkage stress (TMA) in the length direction (MD) at 80 ° C. of 15 to 40 N / m , wherein the polyolefin is made of polyethylene. A microporous membrane having a base composition, a bubble point of 300 to 600 kPa, and a porosity of 35% to 60% .
[ 2 ] A ratio of 10 to 50% by mass of linear copolymerized polyethylene having a comonomer unit content of 3 to 5 carbon atoms of 0.1 to 4 mol% with respect to 100% by mass of the raw material polymer component forming the microporous film. [1] The microporous membrane according to [1] .
[ 3 ] The microporous membrane according to [ 2 ], wherein the comonomer unit is propylene.
[ 4 ] The microporous membrane according to [ 2 ] or [ 3 ], wherein the linear copolymer polyethylene has a viscosity average molecular weight of 200,000 to 500,000.
[ 5 ] The microporous membrane according to any one of [1] to [ 4 ], wherein the TMA in the width direction (TD) at 80 ° C. is 8 N / m or less.
[ 6 ] A battery separator using the microporous membrane according to any one of [1] to [ 5 ].
[ 7 ] A lithium ion secondary battery using the battery separator according to [ 6 ], a positive electrode, a negative electrode, and an electrolytic solution.
[ 8 ] A method for producing a polyolefin microporous membrane according to any one of [1] to [ 5 ], wherein the following steps (1) to (5):
(1) a mixing step of mixing a polyolefin resin, a plasticizer, and an inorganic powder;
(2) a kneading step of melt-kneading the mixture obtained in the mixing step in an extruder;
(3) A sheet forming step in which the kneaded product obtained in the kneading step is extruded from a T die, cooled and formed into a sheet shape,
(4) An extraction process for extracting the plasticizer and the inorganic powder from the sheet-like molded product obtained in the sheet molding process,
(5) Stretching step for stretching the sheet-like porous body obtained in the extraction step,
The stretching step is a production method wherein the maximum heating temperature during stretching is in the range of −2 ° C. to + 4 ° C. of the melting point of the film before stretching.
[ 9 ] The method according to [ 8 ], wherein a ratio of MD stretching ratio / TD stretching ratio in the stretching step is 1.5 or more and 5 or less.

本発明の微多孔膜は、良好な安全性と良好なサイクル特性とを両立し得るセパレータとして好適である。   The microporous membrane of the present invention is suitable as a separator that can achieve both good safety and good cycle characteristics.

以下、本発明を実施するための最良の形態(以下、「実施の形態」と略記する。)について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   The best mode for carrying out the present invention (hereinafter abbreviated as “embodiment”) will be described in detail below. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.

本実施の形態のポリオレフィン製微多孔膜は、膜厚方向に連通孔を有し、例えば、三次元網状骨格構造を有するものである。また、前記微多孔膜は、80℃におけるMDのTMAが15〜40N/m(好ましくは20〜35N/m)である。80℃におけるMDのTMAが上記範囲に設定される微多孔膜は、電池用セパレータとして使用したときにサイクル特性と安全性が良好となる。これらの特性が良好となるメカニズムは次のように推測される。
リチウムイオン電池は一般的に高い出力密度、容量密度を得るために帯状の電極とセパレータが重ねられて捲回された構造をとっている。ここで、MDの収縮応力が一定範囲にあると、捲回後の乾燥工程(通常約50〜80℃で実施される)で捲回体が、撚れなく適度に巻き締まって極板とセパレータが適度に密着し、電極反応の均一性が向上するものと考えられる。
電極反応の均一性が向上すると局所的なリチウムデンドライトの析出が抑制され(電池反応に寄与するリチウムイオンの低減が抑制され)、結果としてサイクル特性が向上すると考えられる。また、デンドライト析出による電極間の短絡を抑制することは安全性の向上にも寄与すると考えられる。さらに、極板とセパレータとの密着性が向上すると高温下におけるTD方向の収縮までもが抑制され、電池が異常発熱した際にも内部短絡が起こりにくく高温時の安全性がより向上する。
なお、極板とセパレータの密着性を向上させるために電池捲回時の巻取張力を上げたり、熱をかけて融着させたりする手法も考えられるが、捲回張力を上げ過ぎるとシワが発生するために均一に密着させることが難しく、また、熱融着は表層の孔が融けて閉塞して透過性が低下しまうことがある。よって、セパレータの収縮応力を利用した密着性向上が最も好ましいと考えられる。
The polyolefin microporous membrane of the present embodiment has communication holes in the film thickness direction, and has, for example, a three-dimensional network skeleton structure. The microporous membrane has an MD TMA of 15 to 40 N / m (preferably 20 to 35 N / m) at 80 ° C. A microporous membrane in which the MD TMA at 80 ° C. is set in the above range has good cycle characteristics and safety when used as a battery separator. The mechanism by which these characteristics become favorable is presumed as follows.
Lithium-ion batteries generally have a structure in which strip-shaped electrodes and separators are stacked to obtain a high output density and capacity density. Here, when the shrinkage stress of MD is within a certain range, the wound body is properly wound without being twisted in the drying step after the winding (usually performed at about 50 to 80 ° C.), and the electrode plate and the separator It is considered that the film adheres moderately and improves the uniformity of the electrode reaction.
It is considered that when the uniformity of the electrode reaction is improved, local precipitation of lithium dendrite is suppressed (reduction of lithium ions contributing to the battery reaction is suppressed), and as a result, cycle characteristics are improved. Moreover, it is thought that suppression of the short circuit between electrodes by dendrite precipitation will also contribute to the improvement of safety. Furthermore, when the adhesion between the electrode plate and the separator is improved, even the shrinkage in the TD direction at high temperature is suppressed, and even when the battery abnormally generates heat, an internal short circuit hardly occurs and the safety at high temperature is further improved.
In order to improve the adhesion between the electrode plate and the separator, it is possible to increase the winding tension when winding the battery, or to heat and fuse the battery, but if the winding tension is increased too much, wrinkles will occur. Since it occurs, it is difficult to make it adhere uniformly, and in heat sealing, pores in the surface layer may melt and close, resulting in a decrease in permeability. Therefore, it is considered that the improvement in adhesion utilizing the shrinkage stress of the separator is most preferable.

上記微多孔膜をセパレータとして用いた電池は、捲回式の電池であれば円筒型、角型を問わないが、詳細は詳らかではないものの、特に円筒型の電池に用いた場合に高いサイクル特性、および安全性が得られやすい。
従来、ポリオレフィン製微多孔膜については安全性の観点から収縮応力の低いポリオレフィン製微多孔膜の実現が指向され、収縮応力を低減する試みが種々行なわれてきた。本発明者らはこれら従来の試みとは逆行する形で、微多孔膜のMD方向の収縮応力を従来の微多孔膜よりも大きな領域で一定範囲に設定することで、電池の安全性が却って向上し、しかも、サイクル特性も良好となることを見出したものである。
A battery using the microporous membrane as a separator may be a cylindrical type or a square type as long as it is a wound type battery, but the details are not detailed, but particularly when used for a cylindrical type battery, the cycle characteristics are high. , And safe to get.
Conventionally, with respect to polyolefin microporous membranes, from the viewpoint of safety, polyolefin microporous membranes having low shrinkage stress are aimed at and various attempts have been made to reduce the shrinkage stress. The inventors of the present invention are contrary to these conventional attempts, and by setting the shrinkage stress in the MD direction of the microporous film within a range larger than that of the conventional microporous film, the safety of the battery is overtaken. It has been found that the cycle characteristics are also improved.

一方、前記微多孔膜の80℃におけるTDのTMAはセパレータ収縮による内部短絡を抑制する観点から8N/m以下が好ましく、より好ましくは6N/m以下である。下限としては特に限定されず、好ましくは0N/mである。   On the other hand, the TDA of TD at 80 ° C. of the microporous membrane is preferably 8 N / m or less, more preferably 6 N / m or less from the viewpoint of suppressing internal short circuit due to separator shrinkage. It does not specifically limit as a minimum, Preferably it is 0 N / m.

前記微多孔膜のバブルポイントは、自己放電の抑制、及び良好な耐電圧特性等の観点から300kPa以上が好ましく、良好なサイクル特性やレート特性を実現する観点から600kPa以下が好ましい。より好ましくは350〜500kPaである。   The bubble point of the microporous membrane is preferably 300 kPa or more from the viewpoints of suppression of self-discharge and good withstand voltage characteristics, and is preferably 600 kPa or less from the viewpoint of realizing good cycle characteristics and rate characteristics. More preferably, it is 350-500 kPa.

前記微多孔膜の膜厚は強度の面から5μm以上が好ましく、電池高容量化の面から50μm以下が好ましい。より好ましい膜厚は10〜30μmである。
前記微多孔膜の気孔率は透過性の面から35%以上が好ましく、強度や捲回性の面から60%以下が好ましい。より好ましい気孔率は40〜55%である。
前記微多孔膜の透気度は安全性の面から10sec/100cc以上、イオン透過性の面から500sec/100cc以下が好ましく、より好ましくは50〜150sec/100ccである。
前記微多孔膜の耐電圧は電池にしたときのOCV不良(自然放電により開回路電圧が低下する)抑制の面から0.8kV以上が好ましく、イオン透過性の面から3.0kV以下が好ましい。より好ましくは1.0〜2.0kVである。
The thickness of the microporous membrane is preferably 5 μm or more from the viewpoint of strength, and is preferably 50 μm or less from the viewpoint of increasing the battery capacity. A more preferable film thickness is 10 to 30 μm.
The porosity of the microporous membrane is preferably 35% or more from the viewpoint of permeability, and preferably 60% or less from the viewpoint of strength and winding properties. A more preferable porosity is 40 to 55%.
The air permeability of the microporous membrane is preferably 10 sec / 100 cc or more from the viewpoint of safety and 500 sec / 100 cc or less from the viewpoint of ion permeability, and more preferably 50 to 150 sec / 100 cc.
The withstand voltage of the microporous membrane is preferably 0.8 kV or more from the viewpoint of suppressing OCV defects (open circuit voltage is reduced by natural discharge) when used as a battery, and preferably 3.0 kV or less from the viewpoint of ion permeability. More preferably, it is 1.0-2.0 kV.

前記微多孔膜の突刺強度は電池内への異物混入やリチウムデンドライトによる突き破れを抑制する観点から3N以上がこのましく、電池製造工程における捲回のしやすさから8N以下が好ましい。より好ましくは3.5〜7Nである。   The puncture strength of the microporous membrane is preferably 3N or more from the viewpoint of suppressing foreign matter contamination in the battery and breakage by lithium dendrite, and preferably 8N or less from the viewpoint of ease of winding in the battery manufacturing process. More preferably, it is 3.5-7N.

前記微多孔膜のシャットダウン温度は安全性の面から140℃以下が好ましく、サイクル特性の観点から130℃以上が好ましい。シャットダウン温度が低いほど異常発熱時における熱暴走の早期抑制に効果的であり、シャットダウン温度が高いほど高温下における孔の閉塞を抑制できるため高温状態のサイクル特性に優れる。より好ましいシャットダウン温度は135〜140℃である。
なお、微多孔膜に関する上記各パラメータの調整方法としては、下記ポリオレフィン樹脂の分子量、ポリオレフィン樹脂の割合や、下記製造工程における延伸温度、延伸倍率等を調整する方法、熱処理条件を調整する方法等が挙げられる。
The shutdown temperature of the microporous membrane is preferably 140 ° C. or lower from the viewpoint of safety, and preferably 130 ° C. or higher from the viewpoint of cycle characteristics. The lower the shutdown temperature, the more effective for early suppression of thermal runaway during abnormal heat generation, and the higher the shutdown temperature, the better the high-temperature cycle characteristics because the blockage of holes at high temperatures can be suppressed. A more preferable shutdown temperature is 135 to 140 ° C.
In addition, as the adjustment method of each parameter regarding the microporous membrane, there are a method for adjusting the molecular weight of the following polyolefin resin, a ratio of the polyolefin resin, a stretching temperature in the following production process, a stretching ratio, a method for adjusting the heat treatment conditions, and the like. Can be mentioned.

前記微多孔膜は、下記(1)〜(5)の各工程、
(1)ポリオレフィン樹脂と、可塑剤と、必要に応じて無機粉体とをヘンシェルミキサー等で混合する混合工程、
(2)混合工程により得られた混合物を押出機中で溶融混練する混練工程、
(3)混練工程で得られた混練物を、Tダイスから押出し、冷却してシート状に成形するシート成形工程、
(4)シート成形工程で得られたシート状の成形物から可塑剤と、必要に応じて無機紛体とを抽出する抽出工程、
(5)抽出工程で得られたシート状の多孔体を延伸する延伸工程、
を含む製造方法により製造することができる。
なお、抽出工程の後に乾燥する工程や、延伸工程の後に熱処理する工程を含んでも良い。
The microporous membrane comprises the following steps (1) to (5):
(1) A mixing step of mixing a polyolefin resin, a plasticizer, and, if necessary, an inorganic powder with a Henschel mixer,
(2) a kneading step of melt-kneading the mixture obtained in the mixing step in an extruder;
(3) A sheet forming step in which the kneaded product obtained in the kneading step is extruded from a T die, cooled and formed into a sheet shape,
(4) An extraction step of extracting a plasticizer and, if necessary, an inorganic powder from a sheet-like molded product obtained in the sheet molding step,
(5) Stretching step for stretching the sheet-like porous body obtained in the extraction step,
It can manufacture with the manufacturing method containing.
In addition, you may include the process of drying after an extraction process, and the process of heat-processing after an extending process.

前記微多孔膜の製造においては(4)工程と(5)工程の順序を入れ替えて延伸後に可塑剤を抽出しても良い(抽出前延伸)が、特定のMD収縮応力を発現し、均一で大きな孔径の微多孔膜を得やすいという点から無機粉体を添加し、可塑剤と無機粉体を抽出した後に延伸すること(抽出後延伸)が好ましい。用いる無機粉体としては、シリカ、ケイ酸カルシウム、ケイ酸アルミニウム、アルミナ、炭酸カルシウム、炭酸マグネシウム、カオリンクレー、タルク、酸化チタン、カーボンブラック、珪藻土類などが挙げられるが、分散性や抽出の容易さから特にシリカを使用することが好ましい。   In the production of the microporous membrane, the order of the steps (4) and (5) may be switched to extract the plasticizer after stretching (stretching before extraction), but it develops a specific MD shrinkage stress and is uniform. From the viewpoint of easily obtaining a microporous film having a large pore diameter, it is preferable to add an inorganic powder, extract the plasticizer and the inorganic powder, and then stretch (stretch after extraction). Examples of the inorganic powder used include silica, calcium silicate, aluminum silicate, alumina, calcium carbonate, magnesium carbonate, kaolin clay, talc, titanium oxide, carbon black, and diatomaceous earth. In particular, it is preferable to use silica.

(1)工程において用いられるポリオレフィン樹脂は、一種のポリオレフィンからなっても、数種のポリオレフィンを含むポリオレフィン組成物であってもよい。ポリオレフィンとしては、例えばポリエチレン、ポリプロピレン、ポリ−4−メチル−1−ペンテンなどが挙げられ、これらを2種類以上ブレンドして用いても良い。成形性や強度の面からポリエチレンをベースとした組成が好ましく、中でも炭素数3〜5のコモノマー単位含量が0.1〜4mol%の線状共重合ポリエチレン、特に前記単位コモノマーがプロピレンである線状共重合ポリエチレン(以下、「C3コポリマー」と略記することがある)を用いると、高い収縮応力と、高強度、低いシャットダウン温度を達成しやすい。
前記線状共重合ポリエチレンの粘度平均分子量(Mv)は高い強度や収縮応力の面から20万以上のものが好ましく、成形性の面から50万以下のものが好ましい。より好ましくは25万〜40万である。また、ポリオレフィン樹脂中に用いられるポリマー成分100質量%に対する前記線状共重合ポリエチレンの比率はサイクル特性やオーブン特性の観点から10〜50質量%が好ましい。より好ましいブレンド比率は20〜40質量%である。
また、より低いシャットダウン温度を達成するために粘度平均分子量10万〜30万の線状低密度ポリエチレン(PE)を前記ポリマー成分100質量%に対して10〜50質量%、より高い強度を達成するために粘度平均分子量70万以上の超高分子量ポリエチレンを前記ポリマー成分100質量%に対して10〜50質量%含むことが、電池用セパレータとしてバランスのとれた安全性と透過性を発現する上で好ましい。
The polyolefin resin used in the step (1) may be a kind of polyolefin or a polyolefin composition containing several kinds of polyolefin. Examples of the polyolefin include polyethylene, polypropylene, poly-4-methyl-1-pentene, and two or more of these may be blended and used. From the viewpoint of moldability and strength, a polyethylene-based composition is preferable. Among them, a linear copolymer polyethylene having a comonomer unit content of 3 to 5 carbon atoms of 0.1 to 4 mol%, particularly a linear copolymer in which the unit comonomer is propylene. When copolymerized polyethylene (hereinafter sometimes abbreviated as “C3 copolymer”) is used, high shrinkage stress, high strength, and low shutdown temperature are easily achieved.
The viscosity average molecular weight (Mv) of the linear copolymer polyethylene is preferably 200,000 or more from the viewpoint of high strength and shrinkage stress, and preferably 500,000 or less from the viewpoint of moldability. More preferably, it is 250,000 to 400,000. Further, the ratio of the linear copolymer polyethylene to 100% by mass of the polymer component used in the polyolefin resin is preferably 10 to 50% by mass from the viewpoint of cycle characteristics and oven characteristics. A more preferable blend ratio is 20 to 40% by mass.
In order to achieve a lower shutdown temperature, linear low density polyethylene (PE) having a viscosity average molecular weight of 100,000 to 300,000 is 10 to 50% by mass with respect to 100% by mass of the polymer component, and higher strength is achieved. Therefore, the inclusion of 10 to 50% by mass of ultra-high molecular weight polyethylene having a viscosity average molecular weight of 700,000 or more with respect to 100% by mass of the polymer component is necessary for expressing balanced safety and permeability as a battery separator. preferable.

前記可塑剤としては、例えば、フタル酸ジオクチル(以下DOPと記述)、フタル酸ジヘプチル、フタル酸ジブチルのようなフタル酸エステル;アジピン酸エステルやグリセリン酸エステル等の有機酸エステル類;リン酸トリオクチル等のリン酸エステル類;流動パラフィン;固形ワックス;ミネラルオイル等が挙げられ、ポリエチレンとの相溶性を考慮するとフタル酸エステルが特に好ましい。これらは単独で使用しても混合物として使用してもよい。   Examples of the plasticizer include phthalic acid esters such as dioctyl phthalate (hereinafter referred to as DOP), diheptyl phthalate, and dibutyl phthalate; organic acid esters such as adipic acid ester and glyceric acid ester; trioctyl phosphate, etc. Examples thereof include liquid paraffins; liquid paraffin; solid wax; mineral oil and the like, and phthalic acid esters are particularly preferable in consideration of compatibility with polyethylene. These may be used alone or as a mixture.

(1)工程におけるポリオレフィン樹脂と可塑剤と無機粉体のブレンド比は特に限定されるものではないが、前記ブレンド原料100質量%中のポリオレフィン樹脂濃度は強度と製膜性の面から25〜50質量%が好ましい。
前記ブレンド原料100質量%中の可塑剤濃度は押出しに適した粘度が得られるため30〜60質量%が好ましい。前記ブレンド原料100質量%中の無機粉体の濃度は均一な孔径を得るために10質量%以上が好ましく、製膜性の面から40質量%以下が好ましい。
The blend ratio of the polyolefin resin, the plasticizer and the inorganic powder in the step (1) is not particularly limited, but the polyolefin resin concentration in 100% by mass of the blend raw material is 25 to 50 from the viewpoint of strength and film forming property. Mass% is preferred.
The plasticizer concentration in 100% by mass of the blend raw material is preferably 30 to 60% by mass because a viscosity suitable for extrusion can be obtained. In order to obtain a uniform pore size, the concentration of the inorganic powder in 100% by mass of the blend raw material is preferably 10% by mass or more, and preferably 40% by mass or less from the viewpoint of film formability.

なお、前記ポリオレフィン樹脂、無機粉体、可塑剤に加え、必要に応じて酸化防止剤、耐電防止剤、紫外線吸収剤、滑剤、アンチブロッキング剤等の各種添加剤を添加することができる。   In addition to the polyolefin resin, inorganic powder, and plasticizer, various additives such as an antioxidant, an antistatic agent, an ultraviolet absorber, a lubricant, and an antiblocking agent can be added as necessary.

(1)工程のポリオレフィン樹脂、無機粉体、可塑剤の三成分の混合は、ヘンシェルミキサー、V−ブレンダー、プロシェアミキサー、リボンブレンダー等の一般的な混合機を用いて行われる。   (1) The mixing of the three components of the polyolefin resin, the inorganic powder, and the plasticizer in the step is performed using a general mixer such as a Henschel mixer, a V-blender, a pro shear mixer, or a ribbon blender.

(2)工程では、混合物は押出機、ニーダー等の溶融混練装置により混練される。得られる混練物は、例えば、Tダイスを用いた溶融成形によりシート状に成形される。この場合、ギアーポンプを介して成形するのが、寸法安定性の面で好ましく、特にギアーポンプ前圧力を一定に制御して成形するのが、寸法安定性の面で好ましい。
(3)工程では、冷却方法としては、エアーにて冷却する方法、Tダイス吐出樹脂温度より20〜120℃低く温調したロールにて接触させて冷却する方法、Tダイス吐出樹脂温度より20〜120℃低いカレンダーロールにて圧延成形してシート状に成形しながら冷却する方法をとることができる。Tダイス吐出樹脂温度より20〜120℃低いカレンダーロールにて圧延成形してシート状に成形しながら冷却する方法をとるのが膜厚み均一性の面で好ましい。より好ましいTダイス吐出樹脂温度とカレンダーロール温度の差は40〜80℃である。この場合において、ロールを使用する際、Tダイスとロールのシートとの接点の距離は5〜500mmの範囲にて成形するのが好ましい。ダイス吐出温度は通常の熱電対温度計にて端子をダイスに触れないようにし、吐出樹脂に接触させることにより測定することができる。
In the step (2), the mixture is kneaded by a melt kneader such as an extruder or a kneader. The obtained kneaded material is formed into a sheet by, for example, melt molding using a T die. In this case, it is preferable from the viewpoint of dimensional stability to form through a gear pump, and it is particularly preferable from the viewpoint of dimensional stability that the pressure before the gear pump is controlled to be constant.
In the step (3), as a cooling method, a method of cooling with air, a method of cooling with a roll adjusted to 20 to 120 ° C. lower than the temperature of the T dice discharge resin, and a temperature of 20 to 20 from the temperature of the T dice discharge resin. A method of cooling while forming a sheet by rolling with a calender roll having a temperature of 120 ° C. can be employed. It is preferable in terms of film thickness uniformity to adopt a method in which it is cooled while being formed into a sheet by rolling with a calender roll that is 20 to 120 ° C. lower than the T-die discharge resin temperature. A more preferable difference between the T-die discharge resin temperature and the calender roll temperature is 40 to 80 ° C. In this case, when the roll is used, it is preferable that the distance between the contact points of the T dice and the roll sheet is 5 to 500 mm. The die discharge temperature can be measured by making the terminal not touch the die with a normal thermocouple thermometer and bringing it into contact with the discharge resin.

(4)工程では、膜中の可塑剤、及び必要に応じて無機紛体の抽出を行う。可塑剤の抽出に用いられる溶剤としては、メタノール、エタノール、メチルエチルケトン、アセトン等の有機溶剤;アセトン、メチルエチルケトン等のケトン類;テトラヒドロフラン等のエーテル類;塩化メチレン、1,1,1−トリクロロエタン等のハロゲン化炭化水素類等、を使用することができる。これらは単独あるいは混合して用いることも出来る。一方、無機粉体の抽出に用いられる溶剤としては、水酸化ナトリウム、水酸化カリウムのようなアルカリ水溶液が好適に用いられる。
(5)工程では、シート状成形物は少なくとも一軸方向に延伸される。一軸方向に延伸する方法は、ロール延伸でも、テンターを用いた延伸でもよい。延伸倍率は高強度と薄膜化を考えると二軸延伸が好ましい。延伸倍率は強度向上のため面倍率で8倍以上が好ましく、更に好ましくは8.5倍以上である。二軸延伸する場合は、逐次二軸延伸でも同時二軸延伸でもどちらでも構わないが、大孔径の膜を得るためには逐次二軸延伸が好ましい。延伸は一枚でも複数枚重ねても構わないが、強度向上の面から、二枚以上重ねて延伸することが好ましい。延伸後、耐熱収縮性の向上のため熱固定あるいは熱緩和等の熱処理を行うことが好ましい。
In the step (4), the plasticizer in the film and, if necessary, the inorganic powder are extracted. Solvents used for extraction of plasticizers include organic solvents such as methanol, ethanol, methyl ethyl ketone, and acetone; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; halogens such as methylene chloride and 1,1,1-trichloroethane. Hydrocarbons and the like can be used. These can be used alone or in combination. On the other hand, an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide is preferably used as the solvent used for extraction of the inorganic powder.
In the step (5), the sheet-like molded product is stretched in at least a uniaxial direction. The method of stretching in the uniaxial direction may be roll stretching or stretching using a tenter. The stretching ratio is preferably biaxial stretching considering high strength and thinning. The draw ratio is preferably 8 times or more and more preferably 8.5 times or more in terms of surface magnification in order to improve strength. In the case of biaxial stretching, either sequential biaxial stretching or simultaneous biaxial stretching may be used, but sequential biaxial stretching is preferable in order to obtain a film having a large pore diameter. The stretching may be performed by one sheet or a plurality of sheets, but it is preferable to stretch two or more sheets in order to improve the strength. After stretching, it is preferable to perform heat treatment such as heat fixation or heat relaxation in order to improve heat shrinkage resistance.

ここで、前記延伸工程において、TD延伸時の最大加熱温度は、延伸前の膜融点を基準として、好ましくは−2℃〜+4℃の範囲、より好ましくはー1℃〜+2℃の範囲である。このような延伸条件とすることは、適度なTD収縮応力を発現する観点から好適である。さらに好ましくは0℃〜+2℃である。
また、前記延伸工程におけるMD延伸倍率/TD延伸倍率の比としては、好ましくは1.5〜5、より好ましくは2〜4である。このような延伸条件とすることは、適度に高いMD収縮応力と小さいTD収縮応力を得る観点から好適である。
なお、本実施の形態中に記載された各種パラメータについては、特に記載の無い限りにおいて、下記実施例における測定法に準じて測定されるものである。
Here, in the stretching step, the maximum heating temperature during TD stretching is preferably in the range of −2 ° C. to + 4 ° C., more preferably in the range of −1 ° C. to + 2 ° C., based on the film melting point before stretching. . Such stretching conditions are suitable from the viewpoint of expressing appropriate TD shrinkage stress. More preferably, it is 0 degreeC-+2 degreeC.
Moreover, as ratio of MD draw ratio / TD draw ratio in the said extending process, Preferably it is 1.5-5, More preferably, it is 2-4. Such stretching conditions are preferable from the viewpoint of obtaining a reasonably high MD shrinkage stress and a small TD shrinkage stress.
The various parameters described in the present embodiment are measured according to the measurement methods in the following examples unless otherwise specified.

次に、実施例及び比較例を挙げて本実施の形態をより具体的に説明するが、本実施の形態はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例中の物性は以下の方法により測定した。   Next, the present embodiment will be described more specifically with reference to examples and comparative examples. However, the present embodiment is not limited to the following examples unless it exceeds the gist. In addition, the physical property in an Example was measured with the following method.

(1)膜厚(μm)
ダイヤルゲージ「PEACOCK No.25」(尾崎製作所社製、商標)を用いて測定した。試料を100mm×100mmのサイズに切り出し、格子状に9分割した各格子の中心部の厚さを測定し、9点の平均値を膜厚とした。
(1) Film thickness (μm)
Measurement was performed using a dial gauge “PEACOCK No. 25” (trademark, manufactured by Ozaki Seisakusho Co., Ltd.). A sample was cut into a size of 100 mm × 100 mm, the thickness of the center part of each grid divided into 9 grids was measured, and the average value of 9 points was taken as the film thickness.

(2)透気度(sec/100cc)
JIS P−8117準拠のガーレー式透気度計を用いて測定した。
(2) Air permeability (sec / 100cc)
It measured using the Gurley type air permeability meter based on JIS P-8117.

(3)気孔率(%)
試料を100mm×100mmのサイズに切り出して体積(cm)、質量(g)を求め、それらと樹脂密度(g/cm)より次式を用いて計算した。
気孔率(%)=(1−(質量/体積)/(樹脂密度))×100
(3) Porosity (%)
The sample was cut into a size of 100 mm × 100 mm to determine the volume (cm 3 ) and mass (g), and calculated from these and the resin density (g / cm 3 ) using the following formula.
Porosity (%) = (1− (mass / volume) / (resin density)) × 100

(4)突刺強度(N)
ハンディー圧縮試験機「KES−G5」(カトーテック製、商標)を用いて測定した。針先端の曲率半径0.5mm、突刺速度2mm/sで突刺試験を行い、最大突刺荷重を突刺強度とした。
(4) Puncture strength (N)
The measurement was performed using a handy compression tester “KES-G5” (trade name, manufactured by Kato Tech). The puncture test was performed with a radius of curvature of the needle tip of 0.5 mm and a puncture speed of 2 mm / s, and the maximum puncture load was defined as the puncture strength.

(5)バブルポイント(kPa)
ASTM E−128−61に準拠し、エタノール中で算出した。
(5) Bubble point (kPa)
It calculated in ethanol based on ASTM E-128-61.

(6)TMA(収縮応力、N/m)
島津製作所TMA50(商標)を用いて測定した。MDまたはTDに幅3mmに切り出したサンプルを、チャック間距離が10mmとなるようにチャックに固定し、専用プロープにセットした。初期荷重を0.0098N(1.0gf)とし、30℃より10℃/minの速度にてプロープを80℃まで昇温させ、収縮応力を測定した。
収縮応力(N/m)=TMA読み取り値(N)/0.003(m)
(6) TMA (Shrinkage stress, N / m)
Measurement was performed using Shimadzu Corporation TMA50 (trademark). A sample cut into a width of 3 mm in MD or TD was fixed to a chuck so that the distance between chucks was 10 mm, and set in a dedicated probe. The initial load was 0.0098 N (1.0 gf), the temperature of the probe was increased from 30 ° C. to 80 ° C. at a rate of 10 ° C./min, and the shrinkage stress was measured.
Shrinkage stress (N / m) = TMA reading (N) /0.003 (m)

(7)シャットダウン温度(℃)
規定の電解液を十分に含浸させた多層多孔膜を、ガラス板に固定した厚さ10μmのニッケル箔で挟み込み、ガラス板を市販のクリップで固定する。ガラス板には熱電対を耐熱テープで固定しセルを作製した。
さらに、詳細に説明すると、一方のニッケル箔には耐熱テープを貼り合わせて箔中央部に15mm×10mmの窓の部分を残しマスキングする。窓部を多層多孔膜で覆うように重ね、もう一方のニッケル箔で多層多孔膜を挟み込む。なお規定の電解液とは1mol/lのホウフッ化リチウム溶液であり溶媒はプロピレンカーボネート/エチレンカーボネート/γ-ブチルラクトン=1/1/2(体積比)である。
このセルをオーブン中に静置し、温度とニッケル箔間の電気抵抗を測定した。オーブンは30℃から200℃まで2℃/minの昇温速度で昇温させ、電気抵抗値は1kHzの交流にて測定した。電気抵抗値が1000Ωに達するときの温度をシャットダウン温度とした。
(7) Shutdown temperature (℃)
A multilayer porous membrane sufficiently impregnated with a specified electrolyte is sandwiched between 10 μm thick nickel foils fixed to a glass plate, and the glass plate is fixed with a commercially available clip. A cell was fabricated by fixing a thermocouple to the glass plate with heat-resistant tape.
More specifically, heat-resistant tape is bonded to one nickel foil, and a 15 mm × 10 mm window portion is left in the central portion of the foil for masking. The windows are overlapped so as to be covered with the multilayer porous film, and the multilayer porous film is sandwiched between the other nickel foils. The prescribed electrolyte is a 1 mol / l lithium borofluoride solution, and the solvent is propylene carbonate / ethylene carbonate / γ-butyllactone = 1/1/2 (volume ratio).
The cell was placed in an oven and the temperature and the electrical resistance between the nickel foils were measured. The oven was heated from 30 ° C. to 200 ° C. at a rate of 2 ° C./min, and the electrical resistance value was measured at an alternating current of 1 kHz. The temperature at which the electric resistance value reached 1000Ω was taken as the shutdown temperature.

(8)粘度平均分子量
ポリエチレンおよびポリプロピレンの粘度平均分子量は、溶剤としてデカリンを用い、測定温度135℃で測定し、粘度[η]からChaiang式により算出した。
ポリエチレンの場合
[η]=6.77×10−4×Mv0.67
ポリプロピレンの場合
[η]=1.10×10−4×Mv0.80
(8) Viscosity average molecular weight The viscosity average molecular weight of polyethylene and polypropylene was measured at a measurement temperature of 135 ° C. using decalin as a solvent, and was calculated from the viscosity [η] by the Chain equation.
In the case of polyethylene [η] = 6.77 × 10 −4 × Mv 0.67
In the case of polypropylene [η] = 1.10 × 10 −4 × Mv 0.80

(9)膜融点(℃)
島津製作所社製DSC60を使用し測定した。セパレータを直径5mmの円形に打ち抜き、数枚重ね合わせて3mgとしたものを測定サンプルとして用いた。これを直径5mmのアルミ製オープンサンプルパンに敷き詰め、クランピングカバーを乗せサンプルシーラーでアルミパン内に固定した。窒素雰囲気下、昇温速度10℃/minで30℃から180℃までを測定し、融解吸熱曲線の極大となる温度を融点とした。融解吸熱曲線のピークが複数存在する場合はピーク面積が最も大きいピークを用いて計算した。
(10)コモノマー単位含量(mol%)
13C−NMRスペクトルにおいて、コモノマー単位由来のシグナル強度の積分値のモル換算量(A)を、(A)とエチレン単位由来のシグナル強度の積分値のモル換算量(B)との和で除して得られた商に100を乗じることにより、コモノマー単位含量(mol%)を求める。
(9) Film melting point (° C)
Measurement was performed using DSC60 manufactured by Shimadzu Corporation. A separator was punched into a circle with a diameter of 5 mm, and several sheets were stacked to give 3 mg, which was used as a measurement sample. This was spread on an aluminum open sample pan having a diameter of 5 mm, and a clamping cover was placed thereon and fixed in the aluminum pan with a sample sealer. Under a nitrogen atmosphere, the temperature was increased from 30 ° C. to 180 ° C. at a temperature rising rate of 10 ° C./min, and the temperature at which the melting endotherm curve was maximized was taken as the melting point. When there were a plurality of peaks of the melting endotherm curve, calculation was performed using the peak with the largest peak area.
(10) Comonomer unit content (mol%)
In the 13 C-NMR spectrum, the molar equivalent (A) of the integrated value of the signal intensity derived from the comonomer unit is divided by the sum of (A) and the molar equivalent (B) of the integrated value of the signal intensity derived from the ethylene unit. By multiplying the quotient obtained in this way by 100, the comonomer unit content (mol%) is determined.

(11)電池としての評価
下記の手順に従って円筒電池を作成した。
<正極の作製>
活物質としてリチウムコバルト複合酸化物LiCoOを92.2質量%、導電剤としてリン片状グラファイトとアセチレンブラックをそれぞれ2.3質量%、バインダーとしてポリフッ化ビニリデン(PVDF)3.2質量%をN−メチルピロリドン(NMP)中に分散させてスラリーを調製した。このスラリーを正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターで塗布し、130℃で3分間乾燥後、ロールプレス機で圧縮成形した。このとき、正極の活物質塗付量は250g/m、活物質嵩密度は3.00g/cmになるようにする。これを幅約57mmに切断して帯状にした。
<負極の作製>
活物質として人造グラファイト96.9質量%、バインダーとしてカルボキシメチルセルロースのアンモニウム塩1.4質量%とスチレン−ブタジエン共重合体ラテックス1.7質量%を精製水中に分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ12μmの銅箔の片面にダイコーターで塗付し、120℃で3分間乾燥後、ロールプレス機で圧縮成形した。このとき、負極の活物質塗付量は106g/m、活物質嵩密度は1.55g/cmと高充填密度とした。これを幅約58mmに切断して帯状にした。
<非水電解液の調製>
エチレンカーボネート/エチルメチルカーボネート=1/2(体積比)の混合溶媒に、溶質としてLiPFを濃度1.0mol/lとなるように溶解させて調製した。
<セパレータ>
実施例、比較例に記載のセパレータを60mmにスリットして帯状にした。
<電池組立て>
帯状負極、セパレータ、帯状正極、セパレータの順に重ね、250gfの巻取張力で渦巻状に複数回捲回することで電極板積層体を作製した。この電極板積層体を外径が18mmで高さが65mmのステンレス製容器に収納し、正極集電体から導出したアルミニウム製タブを容器蓋端子部に、負極集電体から導出したニッケル製タブを容器壁に溶接した。その後、真空下80℃で12時間の乾燥を行い、次に、アルゴンボックス内にて容器内に前記した非水電解液を注入し、封口した。
<前処理>
組立てた電池を1/3Cの電流値で電圧4.2Vまで定電流充電した後4.2Vの定電圧充電を5時間行い、その後1/3Cの電流で3.0Vの終止電圧まで放電を行った。次に、1Cの電流値で電圧4.2Vまで定電流充電した後4.2Vの定電圧充電を2時間行い、その後1Cの電流で3.0Vの終止電圧まで放電を行った。最後に1Cの電流値で4.2Vまで定電流充電をした後に4.2Vの定電圧充電を2時間行い前処理とした。
(11−1)捲回性
(11)の電池組立てにおいて、真空下80℃で12時間の乾燥を行った際に、撚れやシワの有無を目視で観察した。撚れやシワの生じなかったものを「○」とした。
(11−2)サイクル特性(%)
(11)で前処理を行った電池を温度25℃の条件下で、放電電流1Aで放電終止電圧3Vまで放電を行った後、充電電流1Aで充電終止電圧4.2Vまで充電を行った。これを1サイクルとして充放電を繰り返し、初期容量に対する500サイクル後の容量保持率(%)をサイクル特性として表した。
(11−3)オーブンテスト
(11)で前処理を行った電池をオーブンに投入し、室温から5℃/minで昇温した後150℃で一定時間放置した。30分以内に発火したものを「×」、30分以上発火しなかったものを「○」とし、特に60分以上発火しなかったものを「◎」とした。
(11−4)耐電圧(kV)
(11)で電解液を注入する前の電池のタブからリード線を通して菊水電子工業製の耐電圧測定機(TOS9201)に繋いた。交流電圧(60Hz)を1.0kV/secの速度でかけていき短絡した電圧値を耐電圧(kV)とした。
(11) Evaluation as a battery A cylindrical battery was prepared according to the following procedure.
<Preparation of positive electrode>
92.2% by mass of lithium cobalt composite oxide LiCoO 2 as the active material, 2.3% by mass of flake graphite and acetylene black as the conductive agent, and 3.2% by mass of polyvinylidene fluoride (PVDF) as the binder are N -A slurry was prepared by dispersing in methylpyrrolidone (NMP). This slurry was applied to one side of a 20 μm thick aluminum foil serving as a positive electrode current collector with a die coater, dried at 130 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material coating amount of the positive electrode is 250 g / m 2 and the active material bulk density is 3.00 g / cm 3 . This was cut into a width of about 57 mm to form a strip.
<Production of negative electrode>
A slurry was prepared by dispersing 96.9% by mass of artificial graphite as an active material, 1.4% by mass of ammonium salt of carboxymethyl cellulose and 1.7% by mass of styrene-butadiene copolymer latex as binders in purified water. This slurry was applied to one side of a 12 μm thick copper foil serving as a negative electrode current collector with a die coater, dried at 120 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material application amount of the negative electrode was 106 g / m 2 , and the active material bulk density was 1.55 g / cm 3, which was a high packing density. This was cut into a width of about 58 mm to form a strip.
<Preparation of non-aqueous electrolyte>
It was prepared by dissolving LiPF 6 as a solute in a mixed solvent of ethylene carbonate / ethyl methyl carbonate = 1/2 (volume ratio) to a concentration of 1.0 mol / l.
<Separator>
The separators described in Examples and Comparative Examples were slit into 60 mm to form strips.
<Battery assembly>
A strip-shaped negative electrode, a separator, a strip-shaped positive electrode, and a separator were stacked in this order, and the electrode plate laminate was fabricated by winding a plurality of times in a spiral shape with a winding tension of 250 gf. The electrode plate laminate is housed in a stainless steel container having an outer diameter of 18 mm and a height of 65 mm, and an aluminum tab derived from the positive electrode current collector is used as a container lid terminal portion, and a nickel tab derived from the negative electrode current collector Was welded to the container wall. Thereafter, drying was performed at 80 ° C. for 12 hours under vacuum, and then the above-described nonaqueous electrolytic solution was injected into the container in an argon box and sealed.
<Pretreatment>
The assembled battery was charged at a constant current of 1 / 3C to a voltage of 4.2V, then charged at a constant voltage of 4.2V for 5 hours, and then discharged at a current of 1 / 3C to a final voltage of 3.0V. It was. Next, after constant current charging to a voltage of 4.2 V with a current value of 1 C, a constant voltage charge of 4.2 V was performed for 2 hours, and then discharging was performed to a final voltage of 3.0 V with a current of 1 C. Finally, after constant current charging to 4.2 V with a current value of 1 C, 4.2 V constant voltage charging was performed for 2 hours as a pretreatment.
(11-1) Winding property In the battery assembly of (11), when drying was performed at 80 ° C. for 12 hours under vacuum, the presence or absence of twists and wrinkles was visually observed. Those where no twist or wrinkle occurred were marked as “◯”.
(11-2) Cycle characteristics (%)
The battery pretreated in (11) was discharged at a discharge current of 1 A to a discharge end voltage of 3 V under a temperature of 25 ° C., and then charged to a charge end voltage of 4.2 V with a charge current of 1 A. Charging / discharging was repeated with this as one cycle, and the capacity retention rate (%) after 500 cycles with respect to the initial capacity was expressed as cycle characteristics.
(11-3) Oven Test The battery pretreated in (11) was put into an oven, heated from room temperature at 5 ° C./min, and allowed to stand at 150 ° C. for a certain time. Those that ignited within 30 minutes were designated as “×”, those that did not ignite for 30 minutes or more were designated as “◯”, and those that did not ignite over 60 minutes were designated as “◎”.
(11-4) Withstand voltage (kV)
In (11), it was connected to a withstand voltage measuring machine (TOS9201) manufactured by Kikusui Electronics through the lead wire from the battery tab before injecting the electrolyte solution. A voltage value obtained by applying an alternating voltage (60 Hz) at a speed of 1.0 kV / sec and short-circuiting was defined as a withstand voltage (kV).

[実施例1]
プロピレン単位含有量2mol%で粘度平均分子量30万のC3コポリマー30質量%、粘度平均分子量15万の線状低密度ポリエチレン(「Mv15万PE」。以下、同様に表1中に表記している。)40質量%、粘度平均分子量100万の超高分子量ポリエチレン20質量%、粘度平均分子量200万の超高分子量ポリエチレン10質量%からなるポリマー34質量部に対し、DOP45質量部、微粉シリカ21質量部、酸化防止剤0.3質量部をヘンシェルミキサーで混合して造粒した。その後、Tダイスを装着した二軸押出機にて200℃で混練・押出し、140℃に冷却されたカレンダーロールにて厚さ100μmのシート状に成形した。該成形物から塩化メチレンにてDOPを、水酸化ナトリウムにて微粉シリカを抽出し、微多孔膜とした。該微多孔膜を2枚重ねて120℃に加熱された延伸ロールでMDに5倍延伸した後(抽出後の延伸)、最大温度128.0℃のテンター内でTD方向に2倍延伸した。得られた微多孔膜について各種特性を評価した。評価結果を表1に示す。
[Example 1]
Linear low density polyethylene (“Mv 150,000 PE”) having a propylene unit content of 2 mol%, a viscosity average molecular weight of 300,000 C3 copolymer, and a viscosity average molecular weight of 150,000. ) 45 parts by mass of DOP and 21 parts by mass of finely divided silica with respect to 34 parts by mass of 40% by mass, 20% by mass of ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 1 million and 10% by mass of ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 2 million Then, 0.3 parts by mass of an antioxidant was mixed with a Henschel mixer and granulated. Then, it knead | mixed and extruded at 200 degreeC with the twin-screw extruder equipped with T dice | dies, and it shape | molded in the sheet form of thickness 100 micrometers with the calender roll cooled at 140 degreeC. From the molded product, DOP was extracted with methylene chloride, and finely divided silica was extracted with sodium hydroxide to obtain a microporous membrane. Two microporous membranes were stacked and stretched 5 times to MD with a stretching roll heated to 120 ° C. (stretching after extraction), and then stretched 2 times in the TD direction in a tenter having a maximum temperature of 128.0 ° C. Various characteristics of the obtained microporous membrane were evaluated. The evaluation results are shown in Table 1.

[実施例2〜10、比較例1〜5]
表1に示す条件以外は実施例1と同様にして微多孔膜を得た。実施例8ではコモノマーとして1―ブテンを2mol%含むC4コポリマーを使用した。比較例4、5では粘度平均分子量25万の高密度ポリエチレンを使用した。得られた微多孔膜について各種特性を評価した。評価結果を表1に示す。
[Examples 2 to 10, Comparative Examples 1 to 5]
A microporous membrane was obtained in the same manner as in Example 1 except for the conditions shown in Table 1. In Example 8, a C4 copolymer containing 2 mol% of 1-butene was used as a comonomer. In Comparative Examples 4 and 5, high density polyethylene having a viscosity average molecular weight of 250,000 was used. Various characteristics of the obtained microporous membrane were evaluated. The evaluation results are shown in Table 1.

[比較例6]
プロピレン単位含有量1mol%で粘度平均分子量12万のC3コポリマー30質量%、粘度平均分子量25万の高密度ポリエチレン30質量%、粘度平均分子量100万の超高分子量ポリエチレン15質量%、粘度平均分子量200万の超高分子量ポリエチレン25質量%からなるポリマー混合物35質量部と、流動パラフィン65質量部をTダイスを装着した二軸押出機にて200℃で混練・押出し、厚さ1000μmのシート状に成形した。該シートを同時二軸テンターに導き最大温度120℃でMD方向に7倍、TD方向に6.5倍延伸を行った。最後に塩化メチレンにて流動パラフィンを抽出し、微多孔膜を得た。得られた微多孔膜について各種特性を評価した。評価結果を表1に示す。
[Comparative Example 6]
30% by mass of a C3 copolymer having a propylene unit content of 1 mol% and a viscosity average molecular weight of 120,000, 30% by mass of high density polyethylene having a viscosity average molecular weight of 250,000, 15% by mass of ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 1,000,000, and a viscosity average molecular weight of 200 35 parts by mass of a polymer mixture consisting of 25% by mass of ultra-high molecular weight polyethylene and 65 parts by mass of liquid paraffin were kneaded and extruded at 200 ° C. in a twin-screw extruder equipped with a T die, and formed into a sheet having a thickness of 1000 μm. did. The sheet was introduced into a simultaneous biaxial tenter and stretched 7 times in the MD direction and 6.5 times in the TD direction at a maximum temperature of 120 ° C. Finally, liquid paraffin was extracted with methylene chloride to obtain a microporous membrane. Various characteristics of the obtained microporous membrane were evaluated. The evaluation results are shown in Table 1.

[比較例7]
プロピレン単位含有量2mol%で粘度平均分子量30万のC3コポリマー50質量%、粘度平均分子量25万の高密度ポリエチレン50質量%からなるポリマー混合物40質量部と、流動パラフィン60質量部をTダイスを装着した二軸押出機にて200℃で混練・押出し、厚さ1000μmのシート状に成形した。該シートを同時二軸テンターに導き最大温度120℃でMD方向に6倍、TD方向に6倍延伸を行った。最後に塩化メチレンにて流動パラフィンを抽出し、微多孔膜を得た。得られた微多孔膜について各種特性を評価した。評価結果を表1に示す。
[Comparative Example 7]
40 parts by mass of a polymer mixture consisting of 50% by mass of a C3 copolymer having a propylene unit content of 2 mol% and a viscosity average molecular weight of 300,000, and 50% by mass of high density polyethylene having a viscosity average molecular weight of 250,000, and 60 parts by mass of liquid paraffin are attached to a T die. The mixture was kneaded and extruded at 200 ° C. with a twin-screw extruder and formed into a sheet having a thickness of 1000 μm. The sheet was introduced into a simultaneous biaxial tenter and stretched 6 times in the MD direction and 6 times in the TD direction at a maximum temperature of 120 ° C. Finally, liquid paraffin was extracted with methylene chloride to obtain a microporous membrane. Various characteristics of the obtained microporous membrane were evaluated. The evaluation results are shown in Table 1.

Figure 0005235484
Figure 0005235484

以上、実施例に示したように本実施の形態の微多孔膜は電池用セパレータとして用いた際に、安全性とサイクル特性とに優れる。   As described above, as shown in the examples, the microporous membrane of the present embodiment is excellent in safety and cycle characteristics when used as a battery separator.

本発明によれば、良好な安全性と良好なサイクル特性を両立し得るセパレータとして好適なポリオレフィン製微多孔膜が提供される。   According to the present invention, there is provided a polyolefin microporous membrane suitable as a separator capable of achieving both good safety and good cycle characteristics.

Claims (9)

膜厚方向に連通孔を有し、80℃における長さ方向(MD)の収縮応力(TMA)が15〜40N/mであるポリオレフィン製微多孔膜であって、前記ポリオレフィンがポリエチレンをベースとした組成であり、バブルポイントが300〜600kPaであり、気孔率が35%〜60%である微多孔膜A polyolefin microporous membrane having communication holes in the film thickness direction and having a shrinkage stress (TMA) in the length direction (MD) at 80 ° C. of 15 to 40 N / m , wherein the polyolefin is based on polyethylene A microporous membrane having a composition, a bubble point of 300 to 600 kPa, and a porosity of 35% to 60% . 炭素数3〜5のコモノマー単位含量が0.1〜4mol%である線状共重合ポリエチレンを、微多孔膜を形成する原料ポリマー成分100質量%に対して10〜50質量%の割合で含む請求項1に記載の微多孔膜。 Claims comprising a linear copolymerized polyethylene having a comonomer unit content of 3 to 5 carbon atoms of 0.1 to 4 mol% in a proportion of 10 to 50 mass% with respect to 100 mass% of the starting polymer component forming the microporous membrane. Item 2. The microporous membrane according to Item 1 . 前記コモノマー単位がプロピレンである請求項に記載の微多孔膜。 The microporous membrane according to claim 2 , wherein the comonomer unit is propylene. 前記線状共重合ポリエチレンの粘度平均分子量が20万〜50万である請求項又はに記載の微多孔膜。 The microporous membrane according to claim 2 or 3 , wherein the linear copolymer polyethylene has a viscosity average molecular weight of 200,000 to 500,000. 80℃における幅方向(TD)のTMAが8N/m以下である請求項1〜のいずれか1項に記載の微多孔膜。 The microporous membrane according to any one of claims 1 to 4 , wherein TMA in the width direction (TD) at 80 ° C is 8 N / m or less. 請求項1〜のいずれかに記載の微多孔膜を用いた電池用セパレータ。 The battery separator using the microporous film in any one of Claims 1-5 . 請求項記載の電池用セパレータと、正極と、負極と、電解液とを用いたリチウムイオン二次電池。 A lithium ion secondary battery using the battery separator according to claim 6 , a positive electrode, a negative electrode, and an electrolytic solution. 請求項1〜のいずれかに記載のポリオレフィン製微多孔膜の製造方法であって、下記(1)〜(5)の各工程、
(1)ポリオレフィン樹脂と、可塑剤と、無機粉体とを混合する混合工程、
(2)混合工程により得られた混合物を押出機中で溶融混練する混練工程、
(3)混練工程で得られた混練物を、Tダイスから押出し、冷却してシート状に成形するシート成形工程、
(4)シート成形工程で得られたシート状の成形物から可塑剤と無機紛体とを抽出する抽出工程、
(5)抽出工程で得られたシート状の多孔体を延伸する延伸工程、
を含み、前記延伸工程は、延伸時の最大加熱温度が延伸前の膜融点の−2℃〜+4℃の範囲にある製造方法。
It is a manufacturing method of the polyolefin microporous film in any one of Claims 1-5 , Comprising: Each process of following (1)-(5),
(1) a mixing step of mixing a polyolefin resin, a plasticizer, and an inorganic powder;
(2) a kneading step of melt-kneading the mixture obtained in the mixing step in an extruder;
(3) A sheet forming step in which the kneaded product obtained in the kneading step is extruded from a T die, cooled and formed into a sheet shape,
(4) An extraction process for extracting the plasticizer and the inorganic powder from the sheet-like molded product obtained in the sheet molding process,
(5) Stretching step for stretching the sheet-like porous body obtained in the extraction step,
The stretching step is a production method wherein the maximum heating temperature during stretching is in the range of −2 ° C. to + 4 ° C. of the melting point of the film before stretching.
前記延伸工程におけるMD延伸倍率/TD延伸倍率の比が1.5以上5以下である請求項に記載の製造方法。 The manufacturing method according to claim 8 , wherein a ratio of MD stretching ratio / TD stretching ratio in the stretching step is 1.5 or more and 5 or less.
JP2008118894A 2008-04-30 2008-04-30 Polyolefin microporous membrane Active JP5235484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008118894A JP5235484B2 (en) 2008-04-30 2008-04-30 Polyolefin microporous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008118894A JP5235484B2 (en) 2008-04-30 2008-04-30 Polyolefin microporous membrane

Publications (2)

Publication Number Publication Date
JP2009269941A JP2009269941A (en) 2009-11-19
JP5235484B2 true JP5235484B2 (en) 2013-07-10

Family

ID=41436804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008118894A Active JP5235484B2 (en) 2008-04-30 2008-04-30 Polyolefin microporous membrane

Country Status (1)

Country Link
JP (1) JP5235484B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5511329B2 (en) * 2009-11-25 2014-06-04 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
JP5967589B2 (en) * 2011-12-28 2016-08-10 東レバッテリーセパレータフィルム株式会社 Polyolefin microporous membrane and method for producing the same
KR101611229B1 (en) 2013-01-31 2016-04-11 제일모직 주식회사 Method for manufacturing separator, the separator, and battery using the separator
AU2016234205B2 (en) 2015-03-18 2019-01-03 Asahi Kasei Kabushiki Kaisha Diaphragm for alkaline water electrolysis, alkaline water electrolysis apparatus, method for producing hydrogen, and method for producing diaphragm for alkaline water electrolysis
JP6603565B2 (en) * 2015-12-09 2019-11-06 旭化成株式会社 Microporous membrane, battery separator and battery
CN116722303A (en) * 2018-09-25 2023-09-08 旭化成株式会社 High strength separator
CN112795066B (en) * 2019-11-13 2023-10-24 上海恩捷新材料科技有限公司 Polyolefin microporous membrane
CN113964448B (en) * 2020-07-01 2023-12-15 华为技术有限公司 Separator, method for manufacturing separator, battery, electronic device, and mobile device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3121047B2 (en) * 1991-07-08 2000-12-25 旭化成工業株式会社 Homogeneous polyethylene microporous membrane and method for producing the same
JPH11130900A (en) * 1997-10-27 1999-05-18 Asahi Chem Ind Co Ltd Finely porous polyethylene membrane

Also Published As

Publication number Publication date
JP2009269941A (en) 2009-11-19

Similar Documents

Publication Publication Date Title
JP5546144B2 (en) Polyolefin microporous membrane
JP4753446B2 (en) Polyolefin microporous membrane
US9620754B2 (en) Polyolefin microporous membrane and separator for lithium ion secondary battery
JP5213443B2 (en) Polyolefin microporous membrane
JP5235484B2 (en) Polyolefin microporous membrane
KR101103163B1 (en) Polyolefin microporous membrane
JP5216327B2 (en) Polyolefin microporous membrane
JP5942145B2 (en) Polyolefin microporous membrane and method for producing the same
JP4931911B2 (en) Polyolefin microporous membrane
JP5586152B2 (en) Polyolefin microporous membrane
JP5325405B2 (en) Polyolefin microporous membrane
JP6823718B2 (en) Polyolefin microporous membranes, separators for power storage devices, and power storage devices
KR20150032294A (en) Non-aqueous electrolyte battery separator, non-aqueous electrolyte battery, and manufacturing method of non-aqueous electrolyte battery
JP4884008B2 (en) Polyethylene microporous membrane
JP5511329B2 (en) Polyolefin microporous membrane
JPWO2008044761A1 (en) Nonaqueous electrolyte secondary battery separator and multi-layer separator for nonaqueous electrolyte secondary battery
JP7409301B2 (en) Microporous polyolefin membrane and method for producing microporous polyolefin membrane
JP5235324B2 (en) Polyolefin microporous membrane
JP4230584B2 (en) Polyethylene microporous membrane
WO2021065283A1 (en) Polyolefin microporous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2012136704A (en) Microporous membrane made of polyethylene and battery using the same
JP2009138159A (en) Microporous membrane
KR101103125B1 (en) Polyolefin microporous membrane
TW200830616A (en) Electrode assembly and non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5235484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350