JP2015025566A - 冷蔵庫 - Google Patents

冷蔵庫 Download PDF

Info

Publication number
JP2015025566A
JP2015025566A JP2013153463A JP2013153463A JP2015025566A JP 2015025566 A JP2015025566 A JP 2015025566A JP 2013153463 A JP2013153463 A JP 2013153463A JP 2013153463 A JP2013153463 A JP 2013153463A JP 2015025566 A JP2015025566 A JP 2015025566A
Authority
JP
Japan
Prior art keywords
cooler
refrigerant
defrosting
temperature
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013153463A
Other languages
English (en)
Inventor
克則 堀井
Katsunori Horii
克則 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2013153463A priority Critical patent/JP2015025566A/ja
Publication of JP2015025566A publication Critical patent/JP2015025566A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Defrosting Systems (AREA)

Abstract

【課題】高い除霜効率を持つ冷却器を備えた冷蔵庫を提供することを目的とする。
【解決手段】冷却器下方に配置した除霜ヒータ47と、除霜ヒータへの通電を制御する制御部63とを備え、制御部63は圧縮機61を停止させて所定時間経過後に除霜ヒータ47への通電を開始する構成としてある。これにより、除霜運転時は除霜ヒータからの輻射・対流熱による除霜に加え、除霜ヒータによって加熱された下部冷媒パイプ内の高温冷媒による熱搬送によってパイプ内側からも冷却器上部の除霜を行い、しかも上記高温冷媒による熱搬送は液相冷媒が加熱されて生じる突沸沸騰による泡のはじけ力を利用するので効果的に行え、効率の良い除霜が可能となる。
【選択図】図8

Description

本発明は冷蔵庫に関し、特に冷却器の除霜効率を向上させた冷蔵庫に関するものである。
一般に冷蔵庫は使用していると冷却器に霜が付着し、冷却効率が低下してくる。したがって、定期的に除霜している。
この除霜は冷却器の下部に設けたガラス管ヒータを発熱させ、このヒータからの対流熱と輻射熱で冷却器を加熱して行っている。
しかしながら、ガラス管ヒータの対流熱や輻射熱はガラス管ヒータ上方に設けた凝縮水滴化防止板の存在や冷却器上部に熱気が到達し難いことなどがあって除霜時間が長くなり、庫内温度の上昇及び消費電力の増大を招くという課題があった。
そこで従来の冷蔵庫の中には、冷却器のガラス管ヒータ近傍に位置する下部冷媒パイプを冷却器上部に位置する上部冷媒パイプに直結し、ガラス管ヒータによって加熱される下部冷媒パイプ内の高温冷媒を上部冷媒パイプに送り込んで、冷却器上部の除霜効率を高めたものが見られる(例えば、特許文献1参照)。
図13は特許文献1記載の冷却器100を示し、凝縮器からの冷媒入口パイプ101を除霜用のガラス管ヒータ102近傍の下部冷媒パイプ103につなぎ、前記冷却器下部冷却パイプ103を連結パイプ104によって冷却器上部冷却パイプ105につないで構成してある。
特開平7−190598号公報
上記特許文献1記載の冷却器は、除霜用のガラス管ヒータ102によって加熱された下部冷媒パイプ103内の高温冷媒が連結パイプを介して上部パイプ105へと上昇し、冷却器100上部を当該高温冷媒によってパイプ内側からも加熱するようになり、この冷媒による熱搬送加熱によって除霜時間が短くなる。
本発明はこのような除霜の効率をさらに向上させたもので、一段と高い除霜効率を持つ冷蔵庫を提供するものである。
本発明は、上記従来の除霜効率をさらに向上させるため、直管部および曲管部が上下に連続して複数の列に形成された冷媒管とプレートフィンとを備えた冷却器と、前記冷却器で生成された冷気を強制的に循環させる送風機と、前記冷却器下方に配置した除霜ヒータと、前記冷却器、送風機および除霜ヒータを収容した冷却室と、前記除霜ヒータへの通電を制御する制御部とを備え、前記制御部は圧縮機を停止させた所定時間経過後に除霜ヒータへの通電を開始する構成としてある。
これにより、除霜運転時は除霜ヒータからの輻射・対流熱による除霜に加え、除霜ヒータによって加熱された下部冷媒パイプ内の高温冷媒が上部冷媒パイプに流れ込んでパイプ内側からも冷却器上部の除霜を行うので除霜時間の短縮が可能となるとともに、圧縮機停止の所定時間経過後に除霜ヒータによる加熱を開始させるので、この除霜ヒータで加熱する頃には冷却器の下部冷媒パイプ内は気相冷媒が液相冷媒と入れ替わって液相冷媒の比率が高まり、この液相冷媒が加熱されて生じる突沸沸騰による泡のはじける勢いにより下部冷媒パイプの高温冷媒は効率よく上部冷媒パイプに流れ込み加熱器上部を加熱するようになる。よって効率の良い除霜が可能となる。
本発明は、除霜ヒータからの輻射・対流熱による除霜に加え冷媒自体が持つ熱の熱搬送によっても冷却器上部を除霜でき、しかも冷媒の熱搬送は加熱された液冷媒が蒸発して高温の冷媒蒸気が浮力でパイプ内を上昇して効率よく冷媒の熱を冷却器上部に搬送し、効果的に行うことができ、除霜効率の高い冷蔵庫とすることができる。
本発明の実施の形態1における冷蔵庫の縦断面図 同実施の形態1における冷蔵庫の冷却室を示す拡大縦断面図 同実施の形態1における冷蔵庫の冷却室を背面から見た概略図 同実施の形態1における冷蔵庫の冷却器の正面図 同実施の形態1における冷蔵庫の冷却器の側面図 同実施の形態1における冷蔵庫の冷却器のプレートフィンの斜視図 同実施の形態1における冷蔵庫の冷却器のパイプ配列を示す概略説明図 同実施の形態1における冷蔵庫の除霜ヒータを制御する制御ブロック図 同実施の形態1における冷蔵庫の除霜制御フロー図 同実施の形態1における冷蔵庫の圧縮機停止からの冷却器の圧力、温度と低温貯蔵室温度との関係を示す図 同実施の形態2における冷蔵庫の冷却室を背面から見た概略図 同実施の形態3における冷蔵庫の冷却器のパイプ配列を示す概略説明図 従来の冷蔵庫の冷却器と除霜ヒータを示す側面図
第1の発明は、直管部および曲管部が上下に連続して複数の列に形成された冷媒管とプレートフィンとを備えた冷却器と、前記冷却器で生成された冷気を強制的に循環させる送風機と、前記冷却器下方に配置した除霜ヒータと、前記冷却器、送風機および除霜ヒータを収容した冷却室と、前記除霜ヒータへの通電を制御する制御部とを備え、前記制御部は圧縮機を停止させた所定時間経過後に除霜ヒータへの通電を開始する構成としてある。
これにより、除霜運転時は除霜ヒータからの輻射・対流熱による除霜に加え、除霜ヒータによって加熱された下部冷媒パイプ内の高温冷媒が上部冷媒パイプに流れ込んでパイプ内側からも冷却器上部の除霜を行うので除霜時間の短縮が可能となるとともに、圧縮機停止の所定時間経過後に除霜ヒータによる加熱を開始させるので、この除霜ヒータで加熱する頃には冷却器の下部冷媒パイプ内は気相冷媒が液相冷媒と入れ替わって液相冷媒の比率が高まり、冷媒の熱搬送は加熱された液冷媒が蒸発して高温の冷媒蒸気が浮力でパイプ内を上昇して効率よく冷媒の熱を冷却器上部に搬送し効果的に行うことができ、除霜効率を高めることができる。
第2の発明は、第1の発明において、前記所定時間は圧縮機が停止して冷凍サイクルの高圧と低圧がバランスする時間としたものであり、この冷凍サイクルの高圧と低圧がバランスすることにより下部冷媒パイプ内はほぼ液相状態の冷媒となり、上部冷媒パイプへの
熱搬送がより効率のよいものとなって、除霜効率をさらに向上させることができる。
第3の発明は、第1または第2の発明において、低温貯蔵室および低温貯蔵室内の温度を検知する低温貯蔵室温度検知手段と、冷却器の温度を検知する冷却器温度検知手段とを備え、制御手段は前記低温貯蔵室温度検知手段と前記冷却器温度検知手段とに基づいて前記所定時間を制御する構成としてあり、低温貯蔵室温度検知手段と記冷却器温度検知手段が検出する温度によって冷凍サイクルの高圧と低圧のバランスを間接的に検知して除霜ヒータへの通電を制御でき、高価な圧力検知器などを用いることなく安価な構成で除霜効率の高い冷蔵庫を提供することができる。
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
(実施の形態1)
図1は本発明の実施の形態1における冷蔵庫の縦断面図、図2は同実施の形態1における冷蔵庫の冷却室を示す拡大縦断面図、図3は同実施の形態1における冷蔵庫の冷却室を背面から見た概略図、図4は同実施の形態1における冷蔵庫の冷却器の正面図、図5は同実施の形態1における冷蔵庫の冷却器の側面図、図6は同実施の形態1における冷蔵庫の冷却器のプレートフィンの斜視図、図7は同実施の形態1における冷蔵庫の冷却器のパイプ配列を示す説明、図8は同実施の形態1における冷蔵庫の除霜ヒータを制御する制御ブロック図、図9は同実施の形態1における冷蔵庫の除霜制御フロー図、図10は同実施の形態1における冷蔵庫の圧縮機停止からの冷却器の圧力、温度と低温貯蔵室温度との関係を示す図である。
図1〜図10において、冷蔵庫30の断熱箱体31は主に鋼板を用いた外箱32とABSなどの樹脂で成型された内箱33とで構成され、その内部には断熱材として例えば硬質発泡ウレタンなどの発泡断熱材34を充填してある。
断熱箱体31内は複数の貯蔵室に区分されており、最上部に冷蔵室35、その冷蔵室35の下部に野菜室36、そして最下部に冷凍室37が配置されている。
冷蔵室35の前面開口部には冷蔵室ドア38、野菜室36の前面開口部には野菜室ドア39、冷凍室37の前面開口部には冷凍室ドア40が、それぞれの前面開口部を開閉可能な如く設けてある。
冷蔵室35は冷蔵保存のために凍らない温度を下限に通常1℃〜5℃とし、野菜室36は3〜8℃まで設定することができるように構成されており、これらは高温貯蔵室となっている。冷凍室37は冷凍温度帯に設定されており、冷凍保存のために通常−22℃〜−15℃で設定されているが、冷凍保存状態の向上のために、例えば−30℃や−25℃の低温で設定されることもあり、低温貯蔵室となっている。
野菜室36と冷凍室37とは仕切壁である第一区画壁41によって上下に区画され、冷蔵室35と野菜室36とは仕切壁である第二区画壁42によって上下に区画されている。
また低温貯蔵室となる冷凍室37の背面には冷気を生成する冷却室43が設けられ、内部には冷却器44が配設されている。冷却室43は縦区画壁45によって冷凍室37と断熱区画されている。冷却器44の上方に生成された冷気を強制的に送風する送風機46が配置され、冷却器44の下方に、冷却器44に付着した霜や氷を除霜する除霜ヒータ47が設けられている。さらにその下部には除霜時に生じる除霜水を受けるためのドレンパン48、その最深部から庫外に貫通したドレンパイプ49が構成され、その下流側の庫外に
蒸発皿50が設置されている。
除霜ヒータ47は、具体的にはガラス製のガラス管ヒータであり、特に冷媒が炭化水素系冷媒ガスである場合、防爆対応としてガラス管が2重に形成された2重ガラス管ヒータとなっている。
ドレンパン48は冷却室43の底面および背面の一部を構成している。底面は、除霜水をドレンパイプ49に集めるためにドレンパイプ49との接続部が最も低くなるよう構成されており、ドレンパイプ49との接続部において除霜ヒータ47から最も離れる(距離L)ことになる。背面はドレンパン48の貯水量が確保できる高さを超える高さまで立ち上がっており、底面と背面とのなす角は緩やかな曲面で構成されている。
縦区画壁45は、冷凍室37の外殻をなす前区画壁45aと冷却室43の外殻をなす後区画壁45bとから構成される。前区画壁45aと後区画壁45bとの間の空間は各貯蔵室に向けて冷気を分岐させる分配風路51である。
前区画壁45aは、上方に冷凍室吐出口52を有し、分配風路51と冷凍室37とを連通している。下方には冷凍室37側へ突出した冷凍室戻り風路53を有し、冷凍室戻り風路53前面に設けられた入り口53aから冷却室43へ冷凍室37の戻り冷気を導入する。
分配風路51はまた、第一区画壁41内に設けられた高温吐出風路54に接続している。さらに高温吐出風路54は冷蔵室35および野菜室36と接続している。
後区画壁45bは上方に送風機46を備え、下方には冷凍室戻り風路53と冷却室43とを区画するリブ55を有する。冷凍室戻り風路53をリブ55とドレンパン48とにより囲んだ領域が低温吸込み口56であり、冷却室43の前面下部に位置していて冷凍室戻り風路53と冷却室43とを連通している。
冷凍室戻り風路53の底面は、ドレンパン48の一部により冷却室43底面の続きとして構成される。ドレンパン48は入り口53aの下端より始まり低温吸込み口56下端を通りドレンパイプ49まで下向きに傾斜し、その後緩やかに上向きに転じ冷却室43の背面へと繋がる形状を有する。
冷却器44の背面に高温戻り風路57が配置されている。この高温戻り風路57は第一区画壁41および第二区画壁42を通り、高温貯蔵室である野菜室36と冷蔵室35とにそれぞれ連通しており、冷蔵室35と野菜室36を冷却した冷気が高温戻り風路57内で合流する。高温戻り風路57は下方に冷却室43と連通する高温吸込み口58を備える。高温吸込み口58は、図2から明らかなように冷却器44の背面下部近傍であって、低温吸込み口56よりも高い位置に構成されている。
冷却器44は、内部を冷媒が流動する冷媒パイプ201と、所定間隔毎に配置された複数のプレートフィン202を備えている。
冷媒パイプ201は、アルミニウム製あるいはアルミニウム合金製の一本のパイプを、直管部と曲管部が連続し、列(左右)方向Xおよび段(上下)方向Yにおいて複数となるように蛇行状に曲げ加工されたサーペンタインパイプであり、曲管部を形成する接続管を用いることなく一本の冷媒流路を形成している。
そして、プレートフィン202に形成された長孔203を冷媒パイプ201の曲管部が
貫通することにより、冷媒パイプ201の直管部がプレートフィン202と密着した構成となっている。
長孔203は、矩形部と円弧部とを有し、該矩形部の両側短辺に前記円弧部がそれぞれ連続して形成された長穴状に形成されている。また、円弧部には、冷媒パイプ201の直管部と密着固定するための縁立成形された円弧部カラー203aが設けられており、矩形部長手方向の両端にも、略垂直に縁立成形された矩形部カラー203bが設けられている。
冷却室43において、矩形部カラー203bが冷蔵庫背面に向かって下方に傾斜するように冷却器44が設置されている。
ここで、上記冷却器の冷媒パイプ201は図4に示すように凝縮器、キャピラリチューブ(図示せず)からの冷媒入口パイプ201aを下部冷媒パイプ201bに接続して冷媒入口部201cを冷却器44の下部としてある。そして、この実施の形態では上記冷媒入口部201cから冷蔵庫の横幅方向に折り曲げ冷却器44の上部まで蛇行させて前列A(図5参照)を構成し、その前列Aから同じように冷却器44の下部まで蛇行させて後列Bを構成した2列配置としてあり、後列Bの端部を立ち上げて冷媒出口パイプ201dとしてある。
一方、上記冷却器44を収容した冷却室43は前記冷媒入口パイプ201aが接続された冷媒入口部201cにつながる前列Aの冷媒パイプ列と面する部分にバイパス風路60が設けられている。すなわち、バイパス風路60はこの実施の形態では図2に示すように冷却器44の前面側に設けられており、冷媒入口部201cはこのバイパス風路60に面した側に位置する低温吸込み口56の一端部近傍に設けられている。
図8は前記除霜ヒータ47を制御する制御ブロック図で、圧縮機61、送風機46、冷気供給制御用の冷気ダンパ62を制御する制御部63は、冷蔵庫の運転が例えば所定時間経過する毎に定期的に圧縮機61、送風機46を停止するとともに除霜ヒータ47への通電を行って除霜運転を行うように構成されている。そしてこの実施の形態では前記制御部63は、前記低温貯蔵室となる冷凍室37の温度を検出する低温貯蔵室温度検知手段64と前記冷却器44の温度を検出する冷却器温度検知手段65からの出力に基づいて除霜ヒータ47への通電を制御し除霜運転を停止させるように構成されている。
以上のように構成された冷蔵庫について、以下その動作、作用を説明する。
まず、冷却動作を説明すると、冷却室43の冷却器44で生成された冷気はその一部が送風機46によって分配風路51内前方へ強制的に送風される。冷凍室37は冷凍室吐出口52から吐出された冷気によって冷却され、冷気は縦区画壁45の下部に設けられた冷凍室戻り風路53を介して低温吸込み口56より冷却器44の下部に導かれ、冷却器44で熱交換されて、再び新鮮な冷気が送風機46によって循環を繰返す。そして冷凍室37は低温貯蔵室温度検知手段64からの検出温度に基づいて適温に冷却される。
また分配風路51内上方に吐出された冷気は第一区画壁41内の高温吐出風路54を経て冷蔵室35や野菜室36に吐出される。循環した冷気は冷蔵室35や野菜室36内の空気や貯蔵物に含まれる湿気を帯びた空気となって、高温戻り風路57を通り高温吸込み口58から冷却器44の下部に導かれて冷却器44と熱交換および除湿されて、新鮮な冷気が再び送風機によって強制的に送風される。
これによって、冷蔵室35や野菜室36は、冷却器44から離れた位置にあっても、送
風機46によって冷気を強制的に循環させることで貯蔵室内を設定温度に冷却することができる。
このようにして各室の冷却を行っていると、前記冷却器44には霜が付着し成長していく。この霜は凝縮器で液化され、キャピラリチューブを通り減圧された低温冷媒が冷却器44内に入る冷却器44下部の冷媒入口部201cとそれにつらなる下部冷媒パイプ201bの温度が最も低くなるのでこの部分に付着しやすい。これと同時に冷却器44には高温吸込み口58および低温吸込み口56からの戻り冷気の一部がバイパス風路60から当該バイパス風路60に面する冷却器前列A側の冷媒パイプ列部分を通って冷却器44の中・上段に流れるので、このバイパス風路60に面する冷媒パイプ列A側に霜が多く付着しやすい。すなわち、冷却器44は冷却器下部と前面部分の着霜量が比較的多くなっている。
以上のように冷却器44には霜が付着しこれが成長していく。したがって、制御部63は所定時間経過するごとに除霜運転を行う。
以下、その除霜運転について図9の制御フローを用いながら説明する。
制御部63は冷却運転が所定時間続くと、まずステップS1で圧縮機61、送風機46を停止し、ステップS2で冷気ダンパ62が開いた状態であればこれを閉じる。この状態で冷凍サイクル中の凝縮器と冷却器44の圧力がバランスし始める。
次に制御部63はステップS3で圧縮機61停止から所定時間が経過するのを確認し、所定時間経過するまで待機状態とする。この待機により、凝縮器と冷却器44の圧力がバランスし、その間に凝縮器からの高温の冷媒がキャピラリチューブを通り気液二相の状態で低温の冷却器44に流れ込んでくる。その過程で一部凝縮しながら重力で液相冷媒が下部に滞留することになる。
すなわち、所定時間、待機することで、高圧液相冷媒が冷媒入口パイプ201aを介して冷却器44下部の冷媒入口部201cに入り、冷媒入口部201cにつながる下部冷媒パイプ201bの中に十分な液冷媒を滞留することができる。
この状態で制御部63はステップS4で除霜ヒータ47に通電し、除霜を開始する。除霜ヒータ47の通電によって除霜ヒータ47は発熱し、その熱は輻射および対流熱となってその上方の冷却器44を加熱し、また対流熱の一部はバイパス風路60を上昇して冷却器44上部を効率よく加熱し、冷却器44に付着している霜を除霜する。
またこの時、前記冷却器44の下部冷媒パイプ201bは前記除霜ヒータ47による加熱よって短時間で温度上昇し、下部冷媒パイプ201b内の加熱された液冷媒が蒸発して高温の冷媒蒸気が浮力でパイプ内を上昇して冷却器44上部に達し、冷却器44上部をパイプ内部からも加熱する。したがって冷却器44上部は除霜ヒータ47からの輻射・対流熱とともにこのパイプ内側からの冷媒によっても加熱されるから、輻射・対流熱が届きにくい冷却器44上部を効率よく短時間で除霜することができる。
また、上記下部冷媒パイプ201bから冷却器上部に上昇する冷媒は下部冷媒パイプ201bにつながる冷却器前面部の冷媒パイプ前列Aを通って上昇するので、この上昇する冷媒は冷媒パイプ前列Aも加熱することになる。すなわち、冷却器44上部をパイプ内側から加熱する冷媒は冷却器前面の冷媒パイプ前列A側の除霜にも有効活用されることになる。その結果、冷却器44上部と同様比較的多くの霜が付着している冷却器前面部も従来に比べ短時間に効率よく除霜することができる。
さらに、この実施の形態では前記除霜運転開始時、圧縮機61、送風機46を停止したのち、所定時間、除霜動作することなく待機状態としたことによって、下部冷媒パイプ201b内に十分な液冷媒を滞留させた後、加熱した液冷媒を効率よく冷却器44上部まで上昇させることができる。
すなわち、圧縮機61、送風機46の停止と同時に除霜ヒータ47に通電して除霜運転を開始した場合、下部冷媒パイプ201b内の冷媒は気相状態のままであるから除霜ヒータ47で加熱され温度上昇した冷媒は冷却器44上部に効率よく上昇しない。しかしながら、本実施の形態のように圧縮機停止から所定時間待機すれば、その間に凝縮器と冷却器との間の圧力がバランスし、この圧力バランスに伴い前記下部冷媒パイプ201bの気相冷媒が蒸発器からの液相冷媒と入れ替わって液相冷媒の比率が高くなり、この比率が高くなった液相冷媒を加熱することによって生じる加熱された液冷媒が蒸発して高温の冷媒蒸気が浮力でパイプ内を上昇して効率よく冷媒の熱を冷却器44上部に搬送することができ、効率の良い加熱が可能となる。
ここで、上記冷却器44の下部冷媒パイプ201bの中の冷媒が液相冷媒に入れ替わる所定時間は既に述べたように圧縮機61が停止して冷凍サイクルの高圧と低圧がバランスする時間となるので、この圧力がバランスするまでの間を所定時間として、当該圧力バランスを検出すればよいが、圧力検知器は高価である。
したがって、この実施の形態では冷却器44の温度と低温貯蔵室である冷凍室37の温度とから前記圧力バランスを間接的に検知し、所定時間を検出するようにしてある。
図10は圧縮機61を停止した時点からの冷却器44の圧力、温度と低温貯蔵室の温度との関係を示す図で、冷却器44は圧縮機61の停止とともに凝縮器との間で圧力がバランスし始めてサチュレートしていくが、その間に既に述べたように凝縮器内の高温液相冷媒が冷媒入口パイプ201aを介して冷却器44下部の冷媒入口部201cに入り、冷媒入口部201cにつながる下部冷媒パイプ201bの中は圧縮機停止当初は気相冷媒であったものが液相冷媒に入れ替わって液相冷媒の比率が多くなってくる。
上記冷却器44と凝縮器の圧力がバランスし始める時点Xは冷却器44の温度もYで示すようにサチュレートし始めており、この冷却器44の温度のサチュレートを検出することによって圧力バランスを間接検知することができる。あるいは若干早め検知となるが、圧力がバランスする前に冷却器44の温度が低温貯蔵室の温度を超えるのでその時点Zを検出することによっても間接検知することができる。
この実施の形態では冷却器温度検知手段65で冷却器44の温度を検出し、低温貯蔵室温度検知手段64で低温貯蔵室である冷凍室37の温度を検出し、冷却器44の温度が低温貯蔵室の温度を超えて一定時間後を所定時間としており、この所定時間を超えた時点で除霜ヒータ47に通電し、除霜を開始するようにしてある。したがって、冷却器44や凝縮器の圧力を検知する高価な圧力検知器を用いる必要がなく、安価に提供することができる。
また、この実施の形態では前記構成の説明では割愛したが、図2からも明らかなように冷却室43の背面にも第二バイパス風路66が設けてあり、除霜運転時、除霜ヒータ47からの対流熱が前面のバイパス風路60とともにこの第二バイパス風路66をも経由して冷却器44上部へと流れるので、対流熱による除霜効率がさらに向上する。
このようにして除霜が行われ、加熱器に付着している霜の除去が終了すると、冷却器4
4の温度が上昇をはじめる。この温度上昇を冷却器温度検知手段65が検出し、この温度が所定温度に達すれば、制御部63がステップS5でこれを検出し、ステップS6で除霜ヒータ47への通電を停止して除霜運転を終了する。
以上のようにして除霜が行われるが、本実施の形態の冷蔵庫は、低温吸込み口56を冷却室43の前面に、高温吸込み口58を前記冷却室43の背面に設けた構成としてあるから、冷却運転時の冷却器44への着霜均一化を図ることができるとともに、高温吸込み口58を冷却室43の背面に設けたことで、高温吸込み口58を幅広に設計でき、冷却器44左右方向の着霜均一化も図ることができる。また、冷蔵室35等の高温貯蔵室が上部にあってこれにつながる高温戻り風路57も冷却室43背面に位置しているから、冷却室43から外部への熱ロスも低減することができる。
また、冷却室43の前面側にバイパス風路60を設けた構成としてあるから、バイパス風路60はその前方に位置する冷凍室37によってその中を流れる戻り冷気を低温に維持でき、冷却効率の低下を防止して省エネを図ることができる。
なお、図示はしないが、低温吸込み口56を冷却室43前面に、高温吸込み口58を前記冷却室43の背面に設けた前記冷蔵庫において、前記冷却器44を、その冷媒入口部201cが冷却室43背面の高温吸込み口58近傍に下部に位置し、かつ、この冷媒入口部201cにつながる後列の冷媒パイプ列Bが第二バイパス風路66に面するように設ける構成としてもよいものである。
このような構成とすることによって、冷却室43の背面下部に開口させた高温吸込み口58からの比較的温度、湿度の高い冷気が第二バイパス風路66を流れるようになって、第二バイパス風路66に面する後列の冷媒パイプ列には冷凍室からの低温冷気が通る場合よりも多くの霜が付着するようになる。したがって、冷媒自体の熱搬送によって冷媒パイプ列部分の霜を除霜する本方式は効果的であり、その除霜効果はより高いものとなる。加えて、冷却室43背面に第二バイパス風路66が位置するので、除霜時、第二バイパス風路66に流れる除霜ヒータ47からの対流熱による冷凍室37側への熱影響を低減することもでき、さらに効果的である。
なお、本実施の形態1における冷蔵庫は、低温貯蔵室となる冷凍室37からの低温吸込み口56が冷却室43前面に、高温貯蔵室となる冷蔵室35等からの高温吸込み口58が冷却室43背面に設けられ、低温吸込み口56は高温吸込み口58よりも下方に位置する構成としたことにより、後向きの速度が大きい冷凍室戻り冷気と前向きの速度が大きい高温戻り冷気は、上下方向にずれることで相互干渉を抑制し庫内を循環する風量を大きくすることができるため、冷却能力を向上することができる。
また、冷却室43の底面を構成するドレンパン48は低温吸込み口56からドレンパイプ49にかけて下方に傾斜した形状を有することにより、冷凍室戻り冷気は、ドレンパン48沿って下方へ流れた後背面に沿って上昇させることができ、高温吸込み口58前方において冷凍室戻り冷気の速度が上向きとなり、高温戻り冷気とスムーズに合流できるため、より風量を増やし冷却能力を向上させることができる。
また、冷却室43において、矩形部カラー203bが冷蔵庫背面に向かって下方に傾斜するように冷却器44を設置していることで、合流した冷気は、冷却器44の背面側より鉛直上向き成分を主として突入し、突入した冷気の一部は、冷却器44の矩形部カラー203bに沿って流れ、冷却器44の前面へと誘導される。これにより、冷気が冷却器44全体を通過することで熱交換量を増加させることができ、冷却能力を向上することができる。
(実施の形態2)
図11は実施の形態2における冷蔵庫の冷却室を示し、冷却室を正面から見た概略図である。
この実施の形態2の冷蔵庫は、実施の形態1で説明した高温戻り風路57とその高温吸込み口58を冷却室43の側部に設けるとともに、低温吸込み口56は前記冷却室43の前面に設け、かつ、冷却器44の冷媒入口部201cを高温吸込み口58とは反対の冷却室43の側面部としたものである。
その他の構成は前記実施の形態1と同様であり、同一構成、同一機能部分には同一の番号を付記して説明は省略する。
本実施の形態2は、低温吸込み口56を冷却室43前面に、高温吸込み口58は冷却室43の側面に設けているので、冷却運転時の冷却器44への着霜均一化を図ることができる。特にこの実施の形態2ではさらに前記高温吸込み口58とは反対側の側面に冷媒入口部201cを設けてあるから、着霜量をより均一化できる。すなわち、上記高温吸込み口58からの戻り冷気は既に述べたように温度、湿度が高いため高温吸込み口58近傍の冷却器側面下部は着霜量が多くなる。一方、この高温吸込み口58の反対側の冷却器側面下部に設けた冷媒入口部201cでも凝縮器からの低温冷媒が最初に入ってくるところであるから強く冷却され着霜量が多くなる。これによって、冷却器44の下部はその左右で着霜量が略均一化するのであり、除霜運転によって左右ほぼ均等に除霜でき効率の良い除霜が可能となる。
また、高温吸込み口58を冷却室43の側面に設けたことで、冷却室43の奥行寸法を小さくでき、省スペース化が可能、あるいはまた、冷却室43の奥行寸法を小さくしない場合は、冷却器44の奥行を大きくでき、冷却能力を高めることができる。
その他の作用効果は前記実施の形態1と同様であり、説明は省略する。
なお、この実施の形態2において、図示しないが、前記冷却室43の側面に設けた高温吸込み口58と同一側面に冷媒入口部201cを設けることも考えられる。
この場合は、冷却器44への着霜量の均一化は得られないものの、冷媒入口部201cにつながる上方から下方に連通する冷媒入口パイプ201aを利用して、除霜時に発生する冷媒の熱搬送により冷媒入口パイプ201a近傍の高温戻り風路57内の除霜も可能となり、信頼性が向上する。
(実施の形態3)
図12は実施の形態3における冷蔵庫の冷却器44を示し、冷却器44を側面から見た概略説明図である。
この実施の形態3の冷蔵庫の冷却器44は冷媒パイプ201の列を前列A、中列C、後列Bの3列としたものであり、冷媒パイプ長を長くして冷却効果を高めたものである。
その他の構成、効果は前記実施の形態1あるいは2と同様であり、説明は省略する。
なお、上記各実施の形態で説明した冷蔵庫の断熱箱体31内に設けた複数の貯蔵室は、最上部に冷蔵室35、その冷蔵室35の下部に野菜室36、そして最下部に冷凍室37を配置したものを例にして説明したが、その配列に特定されるものではなく、例えば冷蔵室
35の下部に冷凍室37、さらにその下部に野菜室を配置したものであってもよいものである。この場合冷蔵室35からの高温吸込み口58と野菜室36からの高温吸込み口58は別に設けることになるが、これらは例えば冷却器44の背面に互いに隣接して配置する等すればよい。
本発明は、除霜ヒータからの輻射・対流熱による除霜に加え冷媒自体が持つ熱の熱搬送によっても冷却器上部を除霜でき、しかも冷媒の熱搬送は液相冷媒の突沸沸騰による泡のはじけ力を利用して効果的に行うことができ、その結果、除霜効率の高い冷蔵庫とすることができ、家庭用冷蔵庫はもちろん、業務用冷蔵庫やショーケース等に幅広く適用できる。
30 冷蔵庫
35 冷蔵室(高温貯蔵室)
36 野菜室(高温貯蔵室)
37 冷凍室(低温貯蔵室)
43 冷却室
44 冷却器
46 送風機
47 除霜ヒータ
48 ドレンパン(冷却室底面)
53 冷凍室戻り風路
53a 入り口
56 低温吸込み口
57 高温戻り風路
58 高温吸込み口
60 バイパス風路
61 圧縮機
62 冷気ダンパ
63 制御部
64 低温貯蔵室温度検知手段
65 冷却器温度検知手段
66 第二バイパス風路
201 冷媒パイプ
201a 冷媒入口パイプ
201b 下部冷媒パイプ
201c 冷媒入口部
201d 冷媒出口パイプ
202 プレートフィン

Claims (3)

  1. 直管部および曲管部が上下に連続して複数の列に形成された冷媒管とプレートフィンとを備えた冷却器と、前記冷却器で生成された冷気を強制的に循環させる送風機と、前記冷却器下方に配置した除霜ヒータと、前記冷却器、送風機および除霜ヒータを収容した冷却室と、前記除霜ヒータへの通電を制御する制御部とを備え、前記制御部は圧縮機を停止させて所定時間経過後に除霜ヒータへの通電を開始する構成とした冷蔵庫。
  2. 除霜ヒータへの通電を開始する所定時間は圧縮機が停止して冷凍サイクルの高圧と低圧がバランスする時間とした請求項1に記載の冷蔵庫。
  3. 低温貯蔵室および低温貯蔵室内の温度を検知する低温貯蔵室温度検知手段と、冷却器の温度を検知する冷却器温度検知手段とを備え、制御手段は前記低温貯蔵室温度検知手段と前記冷却器温度検知手段とに基づいて前記所定時間を制御する請求項1または2に記載の冷蔵庫。
JP2013153463A 2013-07-24 2013-07-24 冷蔵庫 Pending JP2015025566A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013153463A JP2015025566A (ja) 2013-07-24 2013-07-24 冷蔵庫

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013153463A JP2015025566A (ja) 2013-07-24 2013-07-24 冷蔵庫

Publications (1)

Publication Number Publication Date
JP2015025566A true JP2015025566A (ja) 2015-02-05

Family

ID=52490361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013153463A Pending JP2015025566A (ja) 2013-07-24 2013-07-24 冷蔵庫

Country Status (1)

Country Link
JP (1) JP2015025566A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110360778A (zh) * 2019-07-14 2019-10-22 南京创维家用电器有限公司 一种机械风门风冷冰箱低温启动控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH102658A (ja) * 1996-06-14 1998-01-06 Matsushita Refrig Co Ltd 冷凍冷蔵庫
JPH10160327A (ja) * 1996-11-26 1998-06-19 Sharp Corp 冷蔵庫
JP2006052878A (ja) * 2004-08-10 2006-02-23 Hoshizaki Electric Co Ltd 冷却貯蔵庫の除霜制御装置
US20070033956A1 (en) * 2005-08-11 2007-02-15 Samsung Electronics Co., Ltd. Operation control method of refrigerator
JP2010281491A (ja) * 2009-06-04 2010-12-16 Hitachi Appliances Inc 冷蔵庫
JP2013040691A (ja) * 2011-08-11 2013-02-28 Hoshizaki Electric Co Ltd 冷却貯蔵庫

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH102658A (ja) * 1996-06-14 1998-01-06 Matsushita Refrig Co Ltd 冷凍冷蔵庫
JPH10160327A (ja) * 1996-11-26 1998-06-19 Sharp Corp 冷蔵庫
JP2006052878A (ja) * 2004-08-10 2006-02-23 Hoshizaki Electric Co Ltd 冷却貯蔵庫の除霜制御装置
US20070033956A1 (en) * 2005-08-11 2007-02-15 Samsung Electronics Co., Ltd. Operation control method of refrigerator
JP2010281491A (ja) * 2009-06-04 2010-12-16 Hitachi Appliances Inc 冷蔵庫
JP2013040691A (ja) * 2011-08-11 2013-02-28 Hoshizaki Electric Co Ltd 冷却貯蔵庫

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110360778A (zh) * 2019-07-14 2019-10-22 南京创维家用电器有限公司 一种机械风门风冷冰箱低温启动控制方法

Similar Documents

Publication Publication Date Title
KR102327894B1 (ko) 제상 장치 및 이를 구비하는 냉장고
JP6687384B2 (ja) 冷蔵庫
KR20170104877A (ko) 냉장고
CN107543351B (zh) 冰箱及其控制方法
JP5557661B2 (ja) 冷蔵庫
JP2010133590A (ja) 冷凍冷蔵庫
US20220170675A1 (en) Method for controlling refrigerator
JP5847198B2 (ja) 冷蔵庫
US20220235976A1 (en) Refrigerator
WO2015029409A1 (ja) 冷蔵庫
JP5966145B2 (ja) 冷蔵庫
US12038220B2 (en) Refrigerator and deep freezing compartment defrost operation
JP2010121842A (ja) 冷蔵庫
JP2019039586A (ja) 冷蔵庫
JP6330137B2 (ja) 冷蔵庫
JP2014077615A (ja) 冷蔵庫
JP2015025566A (ja) 冷蔵庫
JP2010117038A (ja) 冷蔵庫
KR101097974B1 (ko) 에너지 절약형 냉장냉동창고
JP6866995B2 (ja) 冷蔵庫
CN107816832B (zh) 冰箱
JP7012139B2 (ja) 冷蔵庫
TWI781501B (zh) 冰箱
JP6035506B2 (ja) 冷蔵庫
JP6026966B2 (ja) 冷蔵庫

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160704

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171031