JP2015021889A - 表面プラズモン増強蛍光測定方法および表面プラズモン増強蛍光測定装置 - Google Patents

表面プラズモン増強蛍光測定方法および表面プラズモン増強蛍光測定装置 Download PDF

Info

Publication number
JP2015021889A
JP2015021889A JP2013151564A JP2013151564A JP2015021889A JP 2015021889 A JP2015021889 A JP 2015021889A JP 2013151564 A JP2013151564 A JP 2013151564A JP 2013151564 A JP2013151564 A JP 2013151564A JP 2015021889 A JP2015021889 A JP 2015021889A
Authority
JP
Japan
Prior art keywords
diffraction grating
substance
surface plasmon
detected
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013151564A
Other languages
English (en)
Other versions
JP6263887B2 (ja
Inventor
幸登 中村
Yukito Nakamura
幸登 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2013151564A priority Critical patent/JP6263887B2/ja
Publication of JP2015021889A publication Critical patent/JP2015021889A/ja
Application granted granted Critical
Publication of JP6263887B2 publication Critical patent/JP6263887B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

【課題】被検出物質を高感度に検出することができる、GC−SPFSを利用する表面プラズモン共鳴蛍光分析方法を提供すること。【解決手段】回折格子を形成された金属膜と、前記回折格子に固定化された捕捉体と、前記捕捉体に結合した、蛍光物質で標識された被検出物質とを有するチップを準備する。前記回折格子において表面プラズモンの定在波が発生するように、前記回折格子に励起光を照射する。前記蛍光物質から放出された蛍光を検出して蛍光シグナルを得る。【選択図】図1

Description

本発明は、表面プラズモン共鳴を利用して検体に含まれる被検出物質の検出を行う表面プラズモン増強蛍光測定方法および表面プラズモン増強蛍光測定装置に関する。
臨床検査などにおいて、タンパク質やDNAなどの微量の被検出物質を高感度かつ定量的に検出することができれば、患者の状態を迅速に把握して治療を行うことが可能となる。このため、微量の被検出物質を高感度かつ定量的に検出できる方法が求められている。
被検出物質を高感度に検出できる方法として、表面プラズモン励起増強蛍光分光法(Surface Plasmon-field enhanced Fluorescence Spectroscopy):以下「SPFS」と略記する)が知られている。SPFSでは、所定の条件で金属膜に光を照射すると、表面プラズモン共鳴(Surface Plasmon Resonance:以下「SPR」と略記する)が生じることを利用する。被検出物質に特異的に結合できる捕捉体(例えば1次抗体)を金属膜上に固定化して、被検出物質を特異的に捕捉するための反応場を形成する。この反応場に被検出物質を含む検体を提供すると、被検出物質は反応場に結合する。次いで、蛍光物質で標識された2次抗体を反応場に提供すると、反応場に結合した被検出物質は蛍光物質で標識される。この状態で金属膜に励起光を照射すると、被検出物質を標識する蛍光物質は、SPRにより増強された電場により励起され、蛍光を放出する。したがって、蛍光を検出することで、被検出物質の存在またはその量を検出することができる。SPFSでは、SPRにより増強された電場により蛍光物質を励起するため、高感度で被検出物質を検出することができる。
SPFSは、励起光と表面プラズモンとを結合(カップリング)させる手段により、プリズムカップリング(PC)−SPFSと、格子カップリング(GC)−SPFSとに大別される。PC−SPFSでは、1つの面に金属膜を形成されたプリズムを利用する。この方法では、プリズムと金属膜の界面において励起光を全反射させることで、励起光と表面プラズモンとを結合させる。PC−SPFSは、現在主流となっている方法であるが、プリズムを使用すること、および金属膜に対する励起光の入射角が大きいことから、PC−SPFSは、測定装置の小型化の点で課題を有している。
これに対し、GC−SPFSは、回折格子を利用して励起光と表面プラズモンとを結合させる(非特許文献1参照)。GC−SPFSは、プリズムを使用せず、かつ回折格子に対する励起光の入射角が小さいため、PC−SPFSに比べて測定装置を小型化することができる。
Keiko Tawa, Hironobu Hori, Kenji Kintaka, Kazuyuki Kiyosue, Yoshiro Tatsu, and Junji Nishii, "Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance", Optics Express, Vol. 16, pp. 9781-9790.
上記のように、GC−SPFSは、PC−SPFSに比べて測定装置を小型化できるという利点を有するが、GC−SPFSについての研究は、PC−SPFSについての研究に比べて進んでいない。したがって、GC−SPFSを利用する測定方法および測定装置には、検出感度に改善の余地がある。
本発明は、かかる点に鑑みてなされたものであり、GC−SPFSを利用する測定方法および測定装置であって、被検出物質をより高感度に検出することができる測定方法および測定装置を提供することを目的とする。
本発明者らは、回折格子において表面プラズモンの定在波を発生させることで上記課題を解決できることを見出し、さらに検討を加えて本発明を完成させた。
すなわち、本発明は、以下の表面プラズモン増強蛍光測定方法に関する。
[1]被検出物質を標識する蛍光物質が、表面プラズモン共鳴に基づく電場により励起されて発した蛍光を検出して、前記被検出物質の存在またはその量を検出する表面プラズモン増強蛍光測定方法であって、回折格子を形成された金属膜と、前記回折格子に固定化された捕捉体と、前記捕捉体に結合した、蛍光物質で標識された被検出物質とを有するチップを準備する工程と、前記回折格子において表面プラズモンの定在波が発生するように、前記回折格子に励起光を照射する工程と、前記蛍光物質から放出された蛍光を検出して蛍光シグナルを得る工程と、を含む、表面プラズモン増強蛍光測定方法。
[2]前記回折格子のピッチΛ(nm)および真空中の前記励起光の波長λ(nm)は、以下の式(1)を満たし、前記回折格子のフィルファクターfは、以下の式(2)を満たし、前記回折格子に対する前記励起光の入射角θ(°)は、以下の式(3)〜式(5)を満たすか、または前記蛍光物質からの蛍光の強度が以下の式(3)〜式(5)を満たすときの前記蛍光物質からの蛍光の強度に対して50%以上となる範囲内である、[1]に記載の表面プラズモン増強蛍光測定方法。
Figure 2015021889
Figure 2015021889
Figure 2015021889
Figure 2015021889
Figure 2015021889
[上記式(1)〜(3)において、εは前記回折格子上の媒体の誘電率であり、εは前記回折格子を構成する金属の誘電率であり、nは前記媒体の屈折率であり、MおよびNは整数であり、lおよびmは1〜5の範囲内の整数である。]
[3]前記回折格子に励起光を照射する工程では、前記捕捉体に結合した前記被検出物質に所定の周波数で前記金属膜の面方向を含む方向の振動を加え、前記蛍光シグナルを周波数解析することにより被検出物質の存在またはその量を分析する工程をさらに含む、[1]または[2]に記載の表面プラズモン増強蛍光測定方法。
[4]前記被検出物質に加えられる前記振動の周波数は、前記捕捉体に結合した前記被検出物質が共振する周波数未満であるか、または前記捕捉体に結合した前記被検出物質が共振する周波数である、[3]に記載の表面プラズモン増強蛍光測定方法。
また、本発明は、以下の表面プラズモン増強蛍光測定装置に関する。
[5]回折格子を形成された金属膜と、前記回折格子に固定化された捕捉体と、前記捕捉体に結合した、蛍光物質で標識された被検出物質とを有するチップを装着され、励起光を前記回折格子に照射することで、被検出物質の存在またはその量を検出する表面プラズモン増強蛍光測定装置であって、増強された電場により前記蛍光物質を励起して蛍光を放出させるために、前記励起光を前記回折格子に照射する光源と、前記蛍光物質からの蛍光を検出する光検出部と、を有し、前記光源は、前記回折格子において表面プラズモンの定在波が発生するように、前記励起光を前記回折格子に照射する、表面プラズモン増強蛍光測定装置。
[6]前記回折格子のピッチΛ(nm)および真空中の前記励起光の波長λ(nm)は、以下の式(1)を満たし、前記回折格子のフィルファクターfは、以下の式(2)を満たし、前記回折格子に対する前記励起光の入射角θ(°)は、以下の式(3)〜式(5)を満たすか、または前記蛍光物質からの蛍光の強度が以下の式(3)〜式(5)を満たすときの前記蛍光物質からの蛍光の強度に対して50%以上となる範囲内である、[5]に記載の表面プラズモン増強蛍光測定装置。
Figure 2015021889
Figure 2015021889
Figure 2015021889
Figure 2015021889
Figure 2015021889
[上記式(1)〜(3)において、εは前記回折格子上の媒体の誘電率であり、εは前記回折格子を構成する金属の誘電率であり、nは前記媒体の屈折率であり、MおよびNは整数であり、lおよびmは1〜5の範囲内の整数である。]
[7]前記捕捉体に結合した前記被検出物質に、所定の周波数で前記金属膜の面方向を含む方向の振動を加える振動付与部をさらに有し、前記振動付与部により前記被検出物質に振動を加えた状態で、前記光検出部により前記蛍光物質からの蛍光を検出し、前記光検出部からの出力信号を周波数解析することにより被検出物質の存在またはその量を分析する、[5]または[6]に記載の表面プラズモン増強蛍光測定装置。
[8]前記振動付与部が加える前記振動の周波数は、前記捕捉体に結合した前記被検出物質が共振する周波数未満であるか、または前記捕捉体に結合した前記被検出物質が共振する周波数である、[7]に記載の表面プラズモン増強蛍光測定装置。
[9]前記振動付与部は、交番電界を印加することで前記被検出物質に振動を加える、[7]または[8]に記載の表面プラズモン増強蛍光測定装置。
[10]前記振動付与部は、前記金属膜を1つの壁面とする流路の他の壁面を振動させることで前記被検出物質に振動を加える、[7]または[8]に記載の表面プラズモン増強蛍光測定装置。
[11]前記振動付与部は、前記金属膜を1つの壁面とする流路内において液体を往復させることで前記被検出物質に振動を加える、[7]または[8]に記載の表面プラズモン増強蛍光測定装置。
[12]前記振動付与部は、周波数1×10〜1×1013Hzの電磁波を照射することで前記被検出物質に振動を加える、[7]または[8]に記載の表面プラズモン増強蛍光測定装置。
本発明によれば、GC−SPFSを利用する測定方法および測定装置において、被検出物質をより高感度に検出することができる。
実施の形態1に係る表面プラズモン増強蛍光測定装置の構成を示す模式図である。 図2A,Bは、回折格子の斜視図である。 実施の形態1に係る表面プラズモン増強蛍光測定装置の動作を示すフローチャートである。 図4A,Bは、表面プラズモンの定在波の電荷分布を示す回折格子の部分拡大断面である。 実施の形態2に係る表面プラズモン増強蛍光測定装置の構成を示す模式図である。 図6A〜Cは、反応場に結合した被検出物質の振動を説明するための模式図である。 倒立振り子モデルを説明するための図である。 回折格子上の電場強度の分布の例を示すグラフである。 特異的結合(SP)により結合した複合体および非特異的結合(US)により結合した複合体の蛍光強度の変化を示すグラフである。 実施の形態2に係る表面プラズモン増強蛍光測定装置の動作を示すフローチャートである。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
[実施の形態1]
図1は、本発明の実施の形態1に係る表面プラズモン増強蛍光測定装置(以下「SPFS装置」という)100の構成を示す模式図である。図1に示されるように、SPFS装置100は、光源110、コリメートレンズ120、励起光フィルター130、第1集光レンズ140、蛍光フィルター150、第2集光レンズ160、光検出部170および制御部180を有する。SPFS装置100は、チップホルダー(不図示)にチップ200を装着した状態で使用される。そこで、チップ200について先に説明し、その後にSPFS装置100について説明する。
チップ200は、基板210と、基板210の上に形成された金属膜220とを有する。金属膜220には、回折格子230が形成されている。回折格子230には捕捉体(例えば1次抗体)が固定化されており、回折格子230の表面は、捕捉体と被検出物質とが結合するための反応場としても機能する。なお、図1では、捕捉体および被検出物質を省略している。なお、チップ200は、好ましくは、各片の長さが数mm〜数cmである構造物であるが、「チップ」の範疇に含まれないより小型の構造物またはより大型の構造物であってもよい。
基板210は、金属膜220の支持部材である。基板210の材料は、金属膜220を支持できる機械的強度を有するものであれば特に限定されない。基板210の材料の例には、ガラスや石英、シリコンなどの無機材料、ポリメタクリル酸メチルやポリカーボネート、ポリスチレン、ポリオレフィンなどの樹脂が含まれる。
金属膜220は、基板210上に配置されている。前述のとおり、金属膜220には、回折格子230が形成されている。金属膜220に光を照射すると、金属膜220中に生じる表面プラズモンと、回折格子230により生じるエバネッセント波とが結合して、表面プラズモン共鳴が生じる。金属膜220の材料は、表面プラズモンを生じさせる金属であれば特に限定されない。金属膜220の材料の例には、金、銀、銅、アルミ、これらの合金が含まれる。金属膜220の形成方法は、特に限定されない。金属膜220の形成方法の例には、スパッタリング、蒸着、メッキが含まれる。金属膜220の厚みは、特に限定されない。たとえば、金属膜220の厚みは、30〜70nm程度である。
回折格子230は、金属膜220に光を照射された時に、エバネッセント波を生じさせる。回折格子230の形状は、エバネッセント波を生じさせることができれば特に限定されない。たとえば、回折格子230は、図2Aに示されるように1次元回折格子であってもよいし、図2Bに示されるように2次元回折格子であってもよい。図2Aに示される1次元回折格子では、金属膜220の表面に、互いに平行な複数の凸条が所定の間隔で形成されている。図2Bに示される2次元回折格子では、金属膜220の表面に、所定形状の凸部が周期的に配置されている。凸部の配列の例には、正方格子、三角(六方)格子などが含まれる。回折格子230の断面形状の例には、矩形波形状、正弦波形状、鋸歯形状などが含まれる。なお、本明細書において、「回折格子のピッチ」とは、図2A,Bに示されるように、凸部の配列方向(x軸方向)における凸部の中心間距離Λをいう。また、「回折格子のフィルファクター」とは、凸部の中心間距離Λに対する凸部の同一方向の幅の割合(0〜1の範囲内の数)をいう。図2A,Bに示される例では、後述する励起光αの光軸は、xz平面に平行である。
回折格子230の形成方法は、特に限定されない。たとえば、平板状の基板210の上に金属膜220を形成した後、金属膜220に凹凸形状を付与してもよい。また、予め凹凸形状を付与された基板210の上に、金属膜220を形成してもよい。いずれの方法であっても、回折格子230を含む金属膜220を形成することができる。
回折格子230(反応場)には、被検出物質を捕捉するための捕捉体が固定化されている(図6における1次抗体410を参照)。捕捉体は、被検出物質に特異的に結合する。本実施の形態では、回折格子230の表面に、捕捉体が略均一に固定化されている。捕捉体の種類は、被検出物質を捕捉することができれば特に限定されない。たとえば、捕捉体は、被検出物質に特異的な抗体(1次抗体)またはその断片、被検出物質に特異的に結合可能な酵素などである。
捕捉体の固定化方法は、特に限定されない。たとえば、回折格子230の上に、捕捉体を結合させた自己組織化単分子膜(以下「SAM膜」という)または高分子膜を形成すればよい。SAM膜の例には、HOOC−(CH11−SHなどの置換脂肪族チオールで形成された膜が含まれる。高分子膜を構成する材料の例には、ポリエチレングリコールおよびMPCポリマーが含まれる。また、捕捉体に結合可能な反応性基(または反応性基に変換可能な官能基)を有する高分子を回折格子230に固定化し、この高分子に捕捉体を結合させてもよい。
図1に示されるように、励起光αは、所定の入射角θで金属膜220(回折格子230)に照射される。照射領域では、金属膜220で生じた表面プラズモンと、回折格子230により生じたエバネッセント波が結合し、SPRが生じる。照射領域に蛍光物質が存在する場合は、SPRにより形成された増強電場により、蛍光物質が励起され、蛍光βが放出される。
次に、SPFS装置100の各構成要素について説明する。
光源110、コリメートレンズ120および励起光フィルター130は、励起光照射ユニットを構成する。励起光照射ユニットは、コリメートされ、かつ波長および光量が一定の励起光αを、チップ200の金属膜220表面(回折格子230)における照射スポットの形状が略円形となるように出射する。また、励起光照射ユニットは、金属膜220中の表面プラズモンと結合できる回折光が回折格子230で生じるように、金属膜220に対するP波のみを回折格子230に向けて出射する。励起光照射ユニットは、励起光αの光軸が、回折格子230における周期的構造の配列方向(図2A,Bにおけるx軸方向)に沿うように、励起光αを回折格子230に照射する。したがって、x軸に垂直かつ金属膜220の表面に平行な軸をy軸とし、x軸に垂直かつ金属膜220の表面に垂直な軸をz軸とした場合、励起光αの光軸はxz平面に平行である(図1参照)。
本実施の形態では、光源110は、レーザーダイオードである。光源110は、チップ200の回折格子230に向けて励起光α(シングルモードレーザー光)を出射する。なお、光源110の種類は、特に限定されず、レーザーダイオードでなくてもよい。光源110の例には、発光ダイオード、水銀灯、その他のレーザー光源が含まれる。
コリメートレンズ120は、光源110から出射された励起光αをコリメートする。レーザーダイオード(光源110)から出射される励起光αは、コリメートされてもその輪郭形状が扁平である。このため、金属膜220表面における照射スポットの形状が略円形となるように、レーザーダイオードは所定の姿勢で保持される。
励起光フィルター130は、例えば、バンドパスフィルターおよび直線偏光フィルターを含み、光源110から出射された励起光αを整波する。レーザーダイオード(光源110)からの励起光αは、若干の波長分布幅を有しているため、バンドパスフィルターは、レーザーダイオードからの励起光αを中心波長のみの狭帯域光にする。また、レーザーダイオード(光源110)からの励起光αは、完全な直線偏光ではないため、直線偏光フィルターは、レーザーダイオードからの励起光αを完全な直線偏光の光にする。励起光フィルター130は、金属膜220にP波成分が入射するように励起光αの偏光方向を調整する半波長板を含んでいてもよい。
金属膜220に対する励起光αの入射角θ(図1参照)は、SPRにより形成される増強電場の強度が最も強くなり、その結果として蛍光物質からの蛍光βの強度が最も強くなる角度が好ましい。この後説明するように、本実施の形態のSPFS装置100では、回折格子230において表面プラズモンの定在波を発生させることで、回折格子230の近傍に形成される増強電場の強度をより強くする。したがって、励起光αの入射角θは、表面プラズモンの定在波を発生させるために、回折格子230のピッチや励起光αの波長、金属膜220を構成する金属の種類などに応じて適切に選択される。励起光αの最適な入射角θは、各種条件の変更により変わるため、SPFS装置100は、励起光αの光軸とチップ200とを相対的に回転させることで入射角θを調整する第1角度調整部(図示省略)を有することが好ましい。たとえば、第1角度調整部は、励起光αの光軸と金属膜220との交点を中心として、励起光照射ユニットまたはチップ200を回転させればよい。
第1集光レンズ140、蛍光フィルター150、第2集光レンズ160および光検出部170は、蛍光検出ユニットを構成する。蛍光検出ユニットは、励起光照射ユニットに対して、励起光αの光軸と金属膜220との交点を通り、かつ金属膜220に対して垂直な直線を挟むように配置されている。蛍光検出ユニットは、回折格子230(反応場)上の蛍光物質から放出される蛍光βを検出する。
第1集光レンズ140および第2集光レンズ160は、迷光の影響を受けにくい共役光学系を構成する。第1集光レンズ140と第2集光レンズ160との間を進行する光は、略平行光となる。第1集光レンズ140および第2集光レンズ160は、金属膜220上の蛍光像を光検出部170の受光面上に結像させる。
蛍光フィルター150は、第1集光レンズ140と第2集光レンズ160との間に配置されている。蛍光フィルター150は、例えば、カットフィルターおよび減光(ND)フィルターを含み、光検出部170に到達する光から蛍光β以外のノイズ成分(例えば、励起光αや外光など)を除去したり、光検出部170に到達する光の光量を調整したりする。
光検出部170は、金属膜220上の蛍光像を検出する。たとえば、光検出部170は、感度およびSN比が高い光電子増倍管である。光検出部170は、アバランシェ・フォトダイオード(APD)やフォトダイオード(PD)、CCDイメージセンサなどであってもよい。
金属膜220の垂線に対する蛍光検出ユニットの光軸の角度は、回折格子230(反応場)から放出される蛍光βの強度が最大となる角度(蛍光ピーク角)であることが好ましい。したがって、SPFS装置100は、蛍光検出ユニットの光軸とチップ200とを相対的に回転させることで蛍光検出ユニットの光軸の角度を調整する第2角度調整部(図示省略)を有することが好ましい。たとえば、第2角度調整部は、蛍光検出ユニットの光軸と金属膜220との交点を中心として、蛍光検出ユニットまたはチップ200を回転させればよい。
制御部180は、励起光照射ユニット(光源110)、蛍光検出ユニット(光検出部170)、励起光照射ユニットおよび蛍光検出ユニットの角度調整部(第1角度調整部および第2角度調整部)の動作を制御する。また、制御部180は、光検出部170からの出力信号(蛍光シグナル)を解析することにより、被検出物質の存在またはその量を分析する。制御部180は、例えば、ソフトウェアを実行するコンピュータである。
次に、SPFS装置100の検出動作について説明する。図3は、SPFS装置100の動作手順の一例を示すフローチャートである。この例では、捕捉体として1次抗体が金属膜220上に固定化されている。
まず、測定の準備をする(工程S10)。具体的には、SPFS装置100の所定の位置にチップ200を設置する。また、チップ200の金属膜220上に保湿剤が存在する場合は、1次抗体が適切に被検出物質を捕捉できるように、金属膜220上を洗浄して保湿剤を除去する。
次いで、検体中の被検出物質と1次抗体とを反応させる(1次反応、工程S20)。具体的には、金属膜220上に検体を提供して、検体と1次抗体とを接触させる。検体中に被検出物質が存在する場合は、被検出物質の少なくとも一部は1次抗体に結合する。この後、金属膜220上を緩衝液などで洗浄して、1次抗体に結合しなかった物質を除去する。検体および被検出物質の種類は、特に限定されない。検体の例には、血液や血清、血漿、尿、鼻孔液、唾液、***などの体液およびその希釈液が含まれる。また、被検出物質の例には、核酸(DNAやRNAなど)、タンパク質(ポリペプチドやオリゴペプチドなど)、アミノ酸、糖質、脂質およびこれらの修飾分子が含まれる。
次いで、1次抗体に結合した被検出物質を蛍光物質で標識する(2次反応、工程S30)。具体的には、蛍光物質で標識された2次抗体を含む蛍光標識液を金属膜220上に提供して、1次抗体に結合した被検出物質と蛍光標識液とを接触させる。蛍光標識液は、例えば、蛍光物質で標識された2次抗体を含む緩衝液である。被検出物質が1次抗体に結合している場合は、被検出物質の少なくとも一部は、蛍光物質で標識される(図5A参照)。この後、金属膜220上を緩衝液などで洗浄し、遊離の2次抗体などを除去する。なお、1次反応と2次反応の順番は、これに限定されない。たとえば、被検出物質を2次抗体に結合させた後に、これらの複合体を含む液体を金属膜220上に提供してもよい。また、金属膜220上に検体と蛍光標識液を同時に提供してもよい。
次いで、励起光αを金属膜220に照射して、蛍光物質から放出される蛍光βの強度を測定する(工程S40)。具体的には、制御部180は、光源110に励起光αを出射させる。同時に、制御部180は、光検出部170に金属膜220からの蛍光βの強度を検出させる。光検出部170は、測定結果を制御部180に出力する。
最後に、制御部180は、光検出部170からの出力信号(蛍光シグナル)を解析して、被検出物質の存在または被検出物質の量を分析する(工程S50)。
以上の手順により、検体中の被検出物質の存在または被検出物質の量を検出することができる。
本実施の形態のSPFS装置100は、表面プラズモンの定在波を利用して蛍光物質を効率的に励起することを特徴とする。したがって、本実施の形態のSPFS装置100では、励起光αを回折格子230に照射したときに回折格子230において表面プラズモンの定在波が発生するように、回折格子230のピッチΛ(nm)、回折格子230のフィルファクターf、真空中の励起光αの波長λ(nm)、および回折格子230に対する励起光αの入射角θ(°)が設定される。そこで、これらのパラメータの決定方法について、次に説明する。
回折格子230に励起光αを照射してSPRが発生した場合、表面プラズモンの波数kspは、以下の式(6)のように定義される。
Figure 2015021889
sp:表面プラズモンの波数
λ:真空中の励起光αの波長(nm)
n:回折格子230上の媒体(誘電体)の屈折率
ε:回折格子230上の媒体(誘電体)の誘電率=n
ε:回折格子230を構成する金属の誘電率
また、回折格子230において表面プラズモンの定在波が発生する場合は、以下の式(7)の条件が満たされる。式(7)の条件が満たされる場合、表面プラズモンは、回折格子230によりブラッグ反射されて反対方向に伝播する。これにより、定在波が発生する。
Figure 2015021889
sp:表面プラズモンの波数
:励起光αの波数=2π/(λ/n)
λ:真空中の励起光αの波長(nm)
n:回折格子230上の媒体(誘電体)の屈折率
θ:励起光αの格子面に対する入射角(°)
M,N:整数
K:格子ベクトル=2π/Λ
Λ:回折格子230のピッチ(nm)
上記式(7)において、Mは、表面プラズモンの回折次数を意味し、Nは、回折格子230における電磁波の次数を意味する。MおよびNは、θが以下の式(8)および式(9)を満たす範囲内で任意に選択されうる。
Figure 2015021889
Figure 2015021889
励起光αを回折格子230に照射してSPRが発生し、かつ回折格子230において表面プラズモンの定在波が発生する場合は、上記式(6)および式(7)より、以下の式(10)が成立する。
Figure 2015021889
上記式(10)は、以下の式(11)のように書き換えられる。
Figure 2015021889
したがって、回折格子230上の媒体(誘電体)の誘電率εおよび回折格子230(金属)の誘電率εが決まっている場合は、表面プラズモンの定在波を発生させるための回折格子230のピッチΛは、上記式(11)により励起光αの波長λに応じて決定されうる。逆に言えば、表面プラズモンの定在波を発生させるための励起光αの波長λは、上記式(11)により回折格子230のピッチΛに応じて決定されうる。
また、上記式(7)は、以下の式(12)のように書き換えられる。
Figure 2015021889
したがって、表面プラズモンの定在波を発生させるための励起光αの入射角θは、上記式(11)により決定される励起光αの波長λおよび回折格子230のピッチΛに応じて決定されうる。励起光αの入射角θは、上記式(12)を満たすことが最も好ましいが、上記式(12)を満たす角度の前後の角度であってもよい。具体的には、励起光αの入射角θは、蛍光物質からの蛍光の強度が上記式(12)を満たすときの蛍光物質からの蛍光の強度(ピーク強度)に対して50%以上となる範囲内であればよい。
たとえば、回折格子230上の媒体が水(屈折率n=1.33、誘電率ε≒1.77)であり、回折格子230が金(誘電率ε≒−12)からなり、励起光αの波長λが640nmであると仮定する。M,Nは、それぞれ−1,3と設定する。なお、回折格子230の誘電率εは複素数であるが、実数部に比べて虚数部が小さいため、虚数部を無視している。また、励起光αの波長は真空中と空気中とで異なるが、その違いは非常に小さいため、ここではその違いを無視している。
この条件において、各数値を上記式(11)に代入すると、以下の式(13)のように、表面プラズモンの定在波を発生させるための回折格子230のピッチΛ(nm)が約666nmであることが求められる。
Figure 2015021889
さらに、各数値を上記式(12)に代入すると、以下の式(14)のようになる。したがって、表面プラズモンの定在波を発生させるための励起光αの最も好ましい入射角θ(°)が約21°であることが求められる。
Figure 2015021889
なお、上記式(11)および式(12)を満たしていても、回折格子230のフィルファクターf(Λに対する凸部の幅の割合)が以下の式(15)を満たしていない場合は、m次の高調波の振幅hmが0となり、表面プラズモンの定在波を発生させることができない。したがって、回折格子230のフィルファクターfは、以下の式(15)を満たすことが好ましい。
Figure 2015021889
l,m:1〜5の範囲内の整数
上記式(15)は、次のように導かれる。まず、表面プラズモンのm次の高調波の振幅hmは、以下の式(16)で求められる。
Figure 2015021889
d:回折格子230の凹部の深さ(凸部の高さ)(nm)
f:回折格子230のフィルファクター
Λ:回折格子230のピッチ(nm)
m:表面プラズモンの高調波の次数(整数)
表面プラズモンの定在波を発生させるためには、以下の式(17)を満たすことが必要である。したがって、式(16)および式(17)より、以下の式(18)が導かれる。式(18)を解くと、以下の式(19)となる。式(19)は、上記式(15)のように書き換えられる。
Figure 2015021889
Figure 2015021889
Figure 2015021889
l:整数
なお、実用上は、1〜5次の高調波の振幅を考慮すればよいと考えられる。また、回折格子230のフィルファクターfは、0〜1の範囲内の数値である。よって、lおよびmは、1〜5の範囲内の整数である。
このように、本実施の形態のSPFS装置100では、回折格子230のピッチΛ(nm)、回折格子230のフィルファクターf、真空中の励起光αの波長λ(nm)、および回折格子230に対する励起光αの入射角θ(°)が、上記式(11)、式(12)および式(15)を満たすように設定される。したがって、本実施の形態のSPFS装置100は、励起光αを回折格子230に照射することで、回折格子230において表面プラズモンの定在波を発生させることができ、その結果として、回折格子230上の蛍光物質を励起するための光子数を顕著に増大させることができる。たとえば、回折格子のピッチΛは、0.1〜10μmの範囲内から選択され、回折格子230におけるフィルファクターfは、0.1〜0.9の範囲内から上記式(15)を満たすものが選択され、励起光αの波長λは、300〜800nmの範囲内から選択され、励起光αの入射角θは5〜70°の範囲内から選択される。
図4は、表面プラズモンの定在波の電荷分布の例を示す図である。図4Aは、長距離伝播状態を示す図であり、図4Bは、短距離伝播状態を示す図である。図4Aは、表面プラズモンの分散曲線におけるバンドギャップの高エネルギー側のバンドギャップ端(ωモード)における表面プラズモンの定在波の電荷分布を示している。一方、図4Bは、バンドギャップの低エネルギー側のバンドギャップ端(ωモード)における表面プラズモンの定在波の電荷分布を示している。
図4Aに示されるように、ωモードでは、回折格子230の凹部で電場が大きくなり、媒体(誘電体)側への電場の侵入長さが大きくなる。一方、図4Bに示されるように、ωモードでは、回折格子230の凸部で電場が大きくなり、媒体(誘電体)側への電場の侵入長さが小さくなる。回折格子230から離れて位置する蛍光物質を励起する観点からは、ωモードがより好ましいが、ωモードでも回折格子230上の光子数を顕著に増大させることができる。なお、図4A,Bに示される電荷分布は一例であり、回折格子230の形状により電荷分布はこれ以外の態様となりうる。
以上のように、本実施の形態のSPFS装置100は、表面プラズモンの定在波を利用して蛍光物質を効率的に励起することができるため、従来のSPFS装置に比べてより高感度に被検出物質を検出することができる。
なお、上記実施の形態では、金属膜220側から励起光αをチップ200に照射する例について説明したが、基板210側から励起光αをチップ200に照射してもよい。
[実施の形態2]
図5は、本発明の実施の形態2に係るSPFS装置300の構成を示す模式図である。図5に示されるように、SPFS装置300は、光源110、コリメートレンズ120、励起光フィルター130、第1集光レンズ140、蛍光フィルター150、第2集光レンズ160、光検出部170、振動付与部310および制御部180を有する。実施の形態2に係るSPFS装置300は、振動付与部310をさらに有する点において実施の形態1に係るSPFS装置100と異なる。そこで、実施の形態1に係るSPFS装置100と同じ構成要素については同一の符号を付し、説明を省略する。
振動付与部310は、回折格子230上の反応場(捕捉体)に結合した、蛍光物質で標識された被検出物質に、所定の振動数で面方向を含む方向に振動を加える。ここで「面方向を含む方向の振動」とは、振動方向が面方向(水平方向)の成分を含むことを意味する。本実施の形態では、振動付与部310は、高圧電源312と、高圧電源312に接続された一対の電極314とを含む。一対の電極314は、回折格子230(反応場)を挟むように配置されている。高圧電源312は、交流電圧または極性を交互に入れ替えたパルス状の電圧を電極314間に印加することが可能である。したがって、振動付与部310は、回折格子230上の反応場に対して極性を所定の周波数で変化する交番電界を加えることができる。反応場に結合した被検出物質が正または負の電荷を帯びている場合は、被検出物質は交番電界により振動させられる。電圧は、例えば数百V以下であり、好ましくは数十V以下である。振動付与部310が加える振動の周波数は、反応場(捕捉体)に結合した被検出物質が共振する周波数、またはそれ未満の周波数であることが好ましい。たとえば、周波数は、数Hz〜数十Hz程度である。
図6は、反応場に結合した被検出物質の振動を説明するための模式図である。この図では、回折格子230の表面(例えば、凹条の底面)を拡大して示している。また、一対の電極314に印加されている電圧の極性も示している。図6Aに示される例では、金属膜220(回折格子230)に固定化された1次抗体410(捕捉体)に、被検出物質420が結合している。また、被検出物質420に、蛍光物質440で標識された2次抗体430が結合している。被検出物質420、2次抗体430および蛍光物質440からなる複合体は、負の電荷を有しているものとする。このような特異的結合SPにより金属膜220に結合した複合体に加え、非特異的結合USにより金属膜220に結合した複合体も存在する。非特異的結合USの例には、金属膜220への被検出物質420または他の物質450の直接的結合、金属膜220への2次抗体430の直接的結合などが含まれる。
図6Bおよび図6Cに示されるように、反応場に交番電界を印加すると、反応場に特異的または非特異的に結合した物質のうち、正または負の電荷を有する物質は、金属膜220の面方向を含む方向に振動させられる。このとき、特異的結合SPにより結合している複合体と、非特異的結合USにより結合している複合体(物質)とでは、その長さおよび質量が異なる。したがって、各成分の振動のしかたはそれぞれ異なるものとなる。たとえば、金属膜220に2次抗体430が直接結合している場合は、反応場に交番電界を印加しても、この2次抗体430はほとんど振動しない。また、金属膜220に被検出物質420が直接結合しており、かつこの被検出物質420に2次抗体430が結合している場合は、この非特異的結合USにより結合している複合体の共振周波数は、特異的結合SPにより結合している複合体の共振周波数よりも大きい。したがって、これらの振動の違いを検出することができれば、特異的結合SPにより結合した複合体と、非特異的結合USにより結合した複合体とを区別することができる。
ここで、特異的結合SPにより結合している複合体の共振周波数について説明する。複合体の共振周波数を算出するために、図7に示される倒立振り子モデルを用いてタンパク質の運動方程式について検討する。
図7に示されるように、タンパク質の質量をm、タンパク質の長さをl、ばね定数をk、タンパク質の基点からばねの作用点までの長さをh、溶媒による粘性減衰係数をCとしたとき、慣性モーメント、転倒モーメント、ばねの復元力および復元モーメントは、以下のようになる。
慣性モーメント: J=ml
転倒モーメント: mg・l・sinθ≒mgl・θ
ばねの復元力 : −k・hθ
復元モーメント: −k・hθ・h=−k・h・θ
この場合、運動方程式は、以下の式(20)のように表される。
Figure 2015021889
上記式(20)は、以下の式(21)のように書き換えられる。
Figure 2015021889
ここで、重力およびばね復元力による共振角周波数をωnとすると、以下の式(22)および式(23)が成立する。式(22)において、ξは減衰比である。
Figure 2015021889
Figure 2015021889
上記式(22)および式(23)を利用すると、上記式(21)は、以下の式(24)のように表される
Figure 2015021889
溶媒の粘性減衰を含めた全体での共振周期Tは、以下の式(25)のとおりとなる。
Figure 2015021889
ここで、タンパク質の基点からばねの作用点までの長さh、タンパク質の長さl、タンパク質の質量m、重力加速度g、ばね定数kを以下のように仮定する。
h=l=1.8×10−9(m)
m=6.17×10−22(kg)
g=9.8(m/t
k=2.5(N/m)=2.5(kg/t
そうすると、kt、慣性モーメントJおよび共振角周波数ωnは、以下のとおりとなる。
kt=kh−mgl≒0.81×10−15(kgm/t
J=m×l=6.17×10−22×(18×10−9=1.99908×10−37(kgm
ωn=√(kt/J)≒0.636×1011(Hz)
溶媒(水)の粘度ηおよびタンパク質の大きさ(半径)rを以下のように仮定する。
η=0.89(cP)=0.89×10−3(kg/(mt))
r=5(nm)
そうすると、タンパク質の体積V、粘性減衰係数C、減衰比ξ、共振周期Tおよび共振周波数fは、以下のとおりとなる。
V=4/3πr=5.236×10−25(m
C=η×V=0.89×10−3×5.236×10−25≒4.66004×10−28(kgm/t)
ξ=C/(2ωn×J)=4.66004×10−28/(2×0.636×1011×1.99908×10−37
T=2π/(ωn×√(1−ξ))≒9.88×10−11(t)
f=1/T≒10(GHz)
より粘度の高い溶媒を選択することで、特異的結合SPにより結合している複合体の共振周波数fを任意の値に設定することができる。共振周波数fは、数Hz程度が好ましい。
図8は、回折格子230上の電場強度の分布の例を示すグラフである。図8に示されるように、電場強度は、回折格子230の形状に対応して周期的に変化する。このような状況において、反応場に交番電界を印加して、反応場に特異的または非特異的に結合した複合体を金属膜220の面方向を含む方向に振動させると、これらの複合体の周囲の電場強度が周期的に変化する。したがって、これらの複合体に含まれる蛍光物質からの蛍光強度も周期的に変化する。
前述のとおり、特異的結合SPにより結合している複合体と、非特異的結合USにより結合している複合体(物質)とでは、その長さおよび質量が異なる。非特異的結合USにより結合している複合体の共振周波数は、特異的結合SPにより結合している複合体の共振周波数よりも大きい。したがって、図9に示されるように、非特異的結合USにより結合している複合体からの蛍光シグナルの周波数は、特異的結合SPにより結合している複合体からの蛍光シグナルの周波数よりも大きくなる。
SPFS装置300の説明に戻る。制御部180は、励起光照射ユニット(光源110)、蛍光検出ユニット(光検出部170)、励起光照射ユニットおよび蛍光検出ユニットの角度調整部、ならびに振動付与部310の動作を制御する。また、制御部180は、光検出部170からの出力信号(蛍光シグナル)を周波数解析することにより、特異的結合SPにより結合している複合体からの蛍光シグナルを他の蛍光シグナル(ノイズ)から分離して、被検出物質の存在またはその量を分析する。制御部180は、例えば、ソフトウェアを実行するコンピュータである。
たとえば、制御部180は、光検出部170からの出力信号(蛍光シグナル)をバンドパスフィルターまたはローパスフィルターを通すことで、特異的結合SPにより結合している複合体からの蛍光シグナルを他の蛍光シグナル(ノイズ)から分離することができる。また、制御部180は、光検出部170からの出力信号(蛍光シグナル)に対して周波数変換処理(例えば高速フーリエ変換)を行い、特異的結合SPにより結合している複合体の振動周波数における蛍光強度を算出することで、被検出物質の存在またはその量を分析することもできる。さらに、制御部180は、光検出部170からの出力信号(蛍光シグナル)に対して周波数変換処理(例えば高速フーリエ変換)を行い、得られた信号を所定の振動周波数を通すフィルターに通し、フィルターを通過した信号に対して周波数逆変換処理(例えば高速フーリエ逆変換)を行うことで、特異的結合SPにより結合している複合体からの蛍光シグナルを他の蛍光シグナル(ノイズ)から分離することもできる。
次に、SPFS装置300の検出動作について説明する。図10は、SPFS装置300の動作手順の一例を示すフローチャートである。この例では、捕捉体として1次抗体410が金属膜220上に固定化されている。
まず、測定の準備をする(工程S10)。具体的には、SPFS装置300の所定の位置にチップ200を設置する。次いで、検体中の被検出物質420と1次抗体410とを反応させる(1次反応、工程S20)。次いで、1次抗体410に結合した被検出物質420を蛍光物質440で標識する(2次反応、工程S30)。これらの各工程は、実施の形態1に係るSPFS装置100の各工程と同じである。
次いで、1次抗体410に結合した、蛍光物質440で標識されている被検出物質420に所定の周波数の振動を加える(工程S40)。具体的には、制御部180は、振動付与部310に交番電界を印加させて、被検出物質420に所定の周波数の振動を加えさせる(図6Bおよび図6C参照)。
次いで、被検出物質420に所定の周波数の振動を加えた状態で、励起光αを金属膜220に照射して、蛍光物質440から放出される蛍光βの強度を測定する(工程S50)。具体的には、制御部180は、光源110に励起光αを出射させる。同時に、制御部180は、光検出部170に金属膜220からの蛍光βの強度を検出させる。光検出部170は、測定結果を制御部180に出力する。
最後に、制御部180は、光検出部170からの出力信号(蛍光シグナル)に対して周波数解析を行い、特異的結合SPに由来する蛍光シグナルを分離して、被検出物質の存在または被検出物質の量を分析する(工程S60)。
以上の手順により、特異的結合SPに由来する蛍光シグナルを分離して、検体中の被検出物質の存在または被検出物質の量を高精度に検出することができる。
前述のとおり、本実施の形態では、回折格子230の表面に、捕捉体が略均一に固定化されている。したがって、回折格子230の凹部の底面に位置する被検出物質420からの蛍光強度の変化と、凸部の頂面に位置する被検出物質420からの蛍光強度の変化とが、互いに打ち消しあうことも考えられる。しかしながら、回折格子230の凹部の底面と凸部の頂面とでは、電場強度に大きな差があるため、凸部の頂面における蛍光強度の変化は、凹部の底面における蛍光強度の変化に比べて非常に小さい。このため、このようなことはほとんど問題とならない。また、蛍光検出ユニット内にマスクを配置して特定の領域(例えば、電場強度が小さい領域)からの蛍光を遮蔽したり、光検出部170で検出した蛍光像における特定の領域(例えば、電場強度が大きい領域)についてのみ周波数解析を行ったりすることで、このような問題をより確実に回避してもよい。
以上のように、実施の形態2に係るSPFS装置300は、実施の形態1に係るSPFS装置100の効果に加え、特異的結合SPに由来する蛍光シグナルを分離することができるため、非特異的吸着が生じている場合でも被検出物質を高精度に検出することができるという効果を有する。
なお、本実施の形態では、振動付与部310が交番電界を印加して被検出物質に振動を加える例について説明したが、被検出物質に振動を加える手段はこれに限定されない。たとえば、この場合、振動付与部310は、金属膜220を1つの壁面とする流路の他の壁面を振動させることで被検出物質に振動を加えてもよい。また、振動付与部310は、金属膜220を1つの壁面とする流路内において液体を往復させることで被検出物質に振動を加えてもよい。さらに、振動付与部310は、周波数1×10〜1×1013Hzの電磁波を照射して分子を振動させることで被検出物質に振動を加えてもよい。
また、本実施の形態では、振動付与部310が被検出物質を主として金属膜220の面方向に振動させる例について説明したが、振動付与部310は被検出物質を金属膜220の厚み方向に振動させてもよい(本願発明者らによる特開2011−80935号公報参照)。SPRにより形成される増強電場は金属膜220のごく近傍にのみ存在するため、被検出物質を金属膜220の厚み方向に振動させても、振動に応じて蛍光物質から放出される蛍光の強度が変化する。また、被検出物質を金属膜220の厚み方向に振動させる場合も、特異的結合SPにより結合した複合体と、非特異的結合USにより結合した複合体とでは、蛍光シグナルの周波数が異なる。したがって、被検出物質を金属膜220の厚み方向に振動させる場合も、上記実施の形態と同様に、特異的結合SPに由来する蛍光シグナルを分離して、検体中の被検出物質の存在または被検出物質の量を高精度に検出することができる。振動付与部310は、被検出物質を金属膜220の面方向に振動させてもよいし、厚み方向に振動させてもよいし、面方向および厚み方向に振動させてもよい。
本発明に係る表面プラズモン増強蛍光測定方法および表面プラズモン増強蛍光測定装置は、被検出物質を高い信頼性で測定することができるため、例えば臨床検査などに有用である。
100,300 表面プラズモン増強蛍光測定装置(SPFS装置)
110 光源
120 コリメートレンズ
130 励起光フィルター
140 第1集光レンズ
150 蛍光フィルター
160 第2集光レンズ
170 光検出部
180 制御部
200 チップ
210 基板
220 金属膜
230 回折格子
310 振動付与部
312 高圧電源
314 電極
410 1次抗体
420 被検出物質
430 2次抗体
440 蛍光物質
α 励起光
β 蛍光

Claims (12)

  1. 被検出物質を標識する蛍光物質が、表面プラズモン共鳴に基づく電場により励起されて発した蛍光を検出して、前記被検出物質の存在またはその量を検出する表面プラズモン増強蛍光測定方法であって、
    回折格子を形成された金属膜と、前記回折格子に固定化された捕捉体と、前記捕捉体に結合した、蛍光物質で標識された被検出物質とを有するチップを準備する工程と、
    前記回折格子において表面プラズモンの定在波が発生するように、前記回折格子に励起光を照射する工程と、
    前記蛍光物質から放出された蛍光を検出して蛍光シグナルを得る工程と、
    を含む、表面プラズモン増強蛍光測定方法。
  2. 前記回折格子のピッチΛ(nm)および真空中の前記励起光の波長λ(nm)は、以下の式(1)を満たし、
    前記回折格子のフィルファクターfは、以下の式(2)を満たし、
    前記回折格子に対する前記励起光の入射角θ(°)は、以下の式(3)〜式(5)を満たすか、または前記蛍光物質からの蛍光の強度が以下の式(3)〜式(5)を満たすときの前記蛍光物質からの蛍光の強度に対して50%以上となる範囲内である、
    請求項1に記載の表面プラズモン増強蛍光測定方法。
    Figure 2015021889
    Figure 2015021889
    Figure 2015021889
    Figure 2015021889
    Figure 2015021889
    [上記式(1)〜(3)において、εは前記回折格子上の媒体の誘電率であり、εは前記回折格子を構成する金属の誘電率であり、nは前記媒体の屈折率であり、MおよびNは整数であり、lおよびmは1〜5の範囲内の整数である。]
  3. 前記回折格子に励起光を照射する工程では、前記捕捉体に結合した前記被検出物質に所定の周波数で前記金属膜の面方向を含む方向の振動を加え、
    前記蛍光シグナルを周波数解析することにより被検出物質の存在またはその量を分析する工程をさらに含む、
    請求項1または請求項2に記載の表面プラズモン増強蛍光測定方法。
  4. 前記被検出物質に加えられる前記振動の周波数は、前記捕捉体に結合した前記被検出物質が共振する周波数未満であるか、または前記捕捉体に結合した前記被検出物質が共振する周波数である、請求項3に記載の表面プラズモン増強蛍光測定方法。
  5. 回折格子を形成された金属膜と、前記回折格子に固定化された捕捉体と、前記捕捉体に結合した、蛍光物質で標識された被検出物質とを有するチップを装着され、励起光を前記回折格子に照射することで、被検出物質の存在またはその量を検出する表面プラズモン増強蛍光測定装置であって、
    増強された電場により前記蛍光物質を励起して蛍光を放出させるために、前記励起光を前記回折格子に照射する光源と、
    前記蛍光物質からの蛍光を検出する光検出部と、を有し、
    前記光源は、前記回折格子において表面プラズモンの定在波が発生するように、前記励起光を前記回折格子に照射する、
    表面プラズモン増強蛍光測定装置。
  6. 前記回折格子のピッチΛ(nm)および真空中の前記励起光の波長λ(nm)は、以下の式(1)を満たし、
    前記回折格子のフィルファクターfは、以下の式(2)を満たし、
    前記回折格子に対する前記励起光の入射角θ(°)は、以下の式(3)〜式(5)を満たすか、または前記蛍光物質からの蛍光の強度が以下の式(3)〜式(5)を満たすときの前記蛍光物質からの蛍光の強度に対して50%以上となる範囲内である、
    請求項5に記載の表面プラズモン増強蛍光測定装置。
    Figure 2015021889
    Figure 2015021889
    Figure 2015021889
    Figure 2015021889
    Figure 2015021889
    [上記式(1)〜(3)において、εは前記回折格子上の媒体の誘電率であり、εは前記回折格子を構成する金属の誘電率であり、nは前記媒体の屈折率であり、MおよびNは整数であり、lおよびmは1〜5の範囲内の整数である。]
  7. 前記捕捉体に結合した前記被検出物質に、所定の周波数で前記金属膜の面方向を含む方向の振動を加える振動付与部をさらに有し、
    前記振動付与部により前記被検出物質に振動を加えた状態で、前記光検出部により前記蛍光物質からの蛍光を検出し、前記光検出部からの出力信号を周波数解析することにより被検出物質の存在またはその量を分析する、
    請求項5または請求項6に記載の表面プラズモン増強蛍光測定装置。
  8. 前記振動付与部が加える前記振動の周波数は、前記捕捉体に結合した前記被検出物質が共振する周波数未満であるか、または前記捕捉体に結合した前記被検出物質が共振する周波数である、請求項7に記載の表面プラズモン増強蛍光測定装置。
  9. 前記振動付与部は、交番電界を印加することで前記被検出物質に振動を加える、請求項7または請求項8に記載の表面プラズモン増強蛍光測定装置。
  10. 前記振動付与部は、前記金属膜を1つの壁面とする流路の他の壁面を振動させることで前記被検出物質に振動を加える、請求項7または請求項8に記載の表面プラズモン増強蛍光測定装置。
  11. 前記振動付与部は、前記金属膜を1つの壁面とする流路内において液体を往復させることで前記被検出物質に振動を加える、請求項7または請求項8に記載の表面プラズモン増強蛍光測定装置。
  12. 前記振動付与部は、周波数1×10〜1×1013Hzの電磁波を照射することで前記被検出物質に振動を加える、請求項7または請求項8に記載の表面プラズモン増強蛍光測定装置。
JP2013151564A 2013-07-22 2013-07-22 表面プラズモン増強蛍光測定方法および表面プラズモン増強蛍光測定装置 Expired - Fee Related JP6263887B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013151564A JP6263887B2 (ja) 2013-07-22 2013-07-22 表面プラズモン増強蛍光測定方法および表面プラズモン増強蛍光測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013151564A JP6263887B2 (ja) 2013-07-22 2013-07-22 表面プラズモン増強蛍光測定方法および表面プラズモン増強蛍光測定装置

Publications (2)

Publication Number Publication Date
JP2015021889A true JP2015021889A (ja) 2015-02-02
JP6263887B2 JP6263887B2 (ja) 2018-01-24

Family

ID=52486453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013151564A Expired - Fee Related JP6263887B2 (ja) 2013-07-22 2013-07-22 表面プラズモン増強蛍光測定方法および表面プラズモン増強蛍光測定装置

Country Status (1)

Country Link
JP (1) JP6263887B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176845A (ja) * 2015-03-20 2016-10-06 コニカミノルタ株式会社 測定方法および測定装置
JP2017020957A (ja) * 2015-07-14 2017-01-26 地方独立行政法人東京都立産業技術研究センター 表面プラズモン共鳴測定装置及びそのチップ
JPWO2017138411A1 (ja) * 2016-02-08 2018-12-06 コニカミノルタ株式会社 形状測定方法、形状測定装置、検出方法および検出装置
CN109374591A (zh) * 2018-12-17 2019-02-22 浙江大学 基于全介质人工微结构超表面的荧光增强芯片
WO2019087853A1 (ja) * 2017-11-06 2019-05-09 コニカミノルタ株式会社 生体物質定量方法、画像処理装置及びプログラム

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04501462A (ja) * 1988-11-10 1992-03-12 バイアコア・アクチエボラーグ 光学バイオセンサ装置
JP2001164296A (ja) * 1999-12-08 2001-06-19 Ecologica:Kk 洗濯助剤及びその使用方法
JP2002169189A (ja) * 2000-11-30 2002-06-14 Canon Inc 表示装置の製造方法
JP2006337038A (ja) * 2005-05-31 2006-12-14 Matsushita Electric Ind Co Ltd サンプル中のリガンドの分析方法およびサンプル中のリガンドを分析する装置
JP2008286778A (ja) * 2007-04-16 2008-11-27 National Institute Of Advanced Industrial & Technology 周期構造を有するマイクロプレートおよびそれを用いた表面プラズモン励起増強蛍光顕微鏡または蛍光マイクロプレートリーダー
JP2009204486A (ja) * 2008-02-28 2009-09-10 Fujifilm Corp センシング装置及び物質検出方法
JP2010502996A (ja) * 2006-09-08 2010-01-28 マグヌッソン、ロバート 角度ダイバーシチ、スペクトルダイバーシチ、モードダイバーシチ、及び偏光ダイバーシチを用いて高精度検出を小型構成で行なう導波モード共振センサ
JP2011508199A (ja) * 2007-12-20 2011-03-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 標的粒子を検出するためのマイクロエレクトロニクスセンサデバイス
JP2011080935A (ja) * 2009-10-09 2011-04-21 Konica Minolta Holdings Inc 測定方法及び表面プラズモン増強蛍光測定装置
JP2012047621A (ja) * 2010-08-27 2012-03-08 Konica Minolta Holdings Inc プラズモン励起センサチップおよびこれを用いたアッセイ法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04501462A (ja) * 1988-11-10 1992-03-12 バイアコア・アクチエボラーグ 光学バイオセンサ装置
JPH04504765A (ja) * 1988-11-10 1992-08-20 フアーマシア・ビオセンソル・アクチエボラーグ 光学インターフェース手段
JP2001164296A (ja) * 1999-12-08 2001-06-19 Ecologica:Kk 洗濯助剤及びその使用方法
JP2002169189A (ja) * 2000-11-30 2002-06-14 Canon Inc 表示装置の製造方法
JP2006337038A (ja) * 2005-05-31 2006-12-14 Matsushita Electric Ind Co Ltd サンプル中のリガンドの分析方法およびサンプル中のリガンドを分析する装置
JP2010502996A (ja) * 2006-09-08 2010-01-28 マグヌッソン、ロバート 角度ダイバーシチ、スペクトルダイバーシチ、モードダイバーシチ、及び偏光ダイバーシチを用いて高精度検出を小型構成で行なう導波モード共振センサ
JP2008286778A (ja) * 2007-04-16 2008-11-27 National Institute Of Advanced Industrial & Technology 周期構造を有するマイクロプレートおよびそれを用いた表面プラズモン励起増強蛍光顕微鏡または蛍光マイクロプレートリーダー
JP2011508199A (ja) * 2007-12-20 2011-03-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 標的粒子を検出するためのマイクロエレクトロニクスセンサデバイス
JP2009204486A (ja) * 2008-02-28 2009-09-10 Fujifilm Corp センシング装置及び物質検出方法
JP2011080935A (ja) * 2009-10-09 2011-04-21 Konica Minolta Holdings Inc 測定方法及び表面プラズモン増強蛍光測定装置
JP2012047621A (ja) * 2010-08-27 2012-03-08 Konica Minolta Holdings Inc プラズモン励起センサチップおよびこれを用いたアッセイ法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Multicolor Surface Plasmon Resonance Imaging of Ink Jet-Printed Protein Microarrays", ANALYTICAL CHEMISTRY, vol. 79, no. 14, JPN6017020990, 15 June 2007 (2007-06-15), US, pages 5124 - 5132, ISSN: 0003682074 *
"Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon", OPTICS EXPRESS, vol. 16, no. 13, JPN6017020988, 18 June 2008 (2008-06-18), US, pages 9781 - 9790, ISSN: 0003658048 *
"Surface Plasmon Resonance Imaging of Biomolecular Interactions on a Grating-Based Sensor Array", ANALYTICAL CHEMISTRY, vol. 78, no. 6, JPN6017020989, 21 January 2006 (2006-01-21), US, pages 2009 - 2018, ISSN: 0003682073 *
岡本隆之、梶川浩太郎, プラズモニクス−基礎と応用−, vol. 初版, JPN7017001848, 1 October 2010 (2010-10-01), JP, pages 5 - 7, ISSN: 0003658047 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176845A (ja) * 2015-03-20 2016-10-06 コニカミノルタ株式会社 測定方法および測定装置
JP2017020957A (ja) * 2015-07-14 2017-01-26 地方独立行政法人東京都立産業技術研究センター 表面プラズモン共鳴測定装置及びそのチップ
JPWO2017138411A1 (ja) * 2016-02-08 2018-12-06 コニカミノルタ株式会社 形状測定方法、形状測定装置、検出方法および検出装置
WO2019087853A1 (ja) * 2017-11-06 2019-05-09 コニカミノルタ株式会社 生体物質定量方法、画像処理装置及びプログラム
JPWO2019087853A1 (ja) * 2017-11-06 2020-12-24 コニカミノルタ株式会社 生体物質定量方法、画像処理装置及びプログラム
JP7160047B2 (ja) 2017-11-06 2022-10-25 コニカミノルタ株式会社 生体物質定量方法、画像処理装置及びプログラム
CN109374591A (zh) * 2018-12-17 2019-02-22 浙江大学 基于全介质人工微结构超表面的荧光增强芯片
CN109374591B (zh) * 2018-12-17 2024-02-06 浙江大学 基于全介质人工微结构超表面的荧光增强芯片

Also Published As

Publication number Publication date
JP6263887B2 (ja) 2018-01-24

Similar Documents

Publication Publication Date Title
JP6565934B2 (ja) 表面プラズモン増強蛍光測定装置および表面プラズモン増強蛍光測定方法
US7057732B2 (en) Imaging platform for nanoparticle detection applied to SPR biomolecular interaction analysis
JP6263887B2 (ja) 表面プラズモン増強蛍光測定方法および表面プラズモン増強蛍光測定装置
US20100068824A1 (en) Sensing method, sensing device, inspection chip, and inspection kit
US20160138095A1 (en) Molecular manipulation system and method
Zhang et al. Quantification of single-molecule protein binding kinetics in complex media with prism-coupled plasmonic scattering imaging
MX2014008372A (es) Dispositivo para su uso en la deteccion de afinidades de aglutinacion.
WO2018021238A1 (ja) 検出チップ、検出システムおよび検出方法
US20130164861A1 (en) Biological molecule detecting apparatus and biological molecule detecting method
JP5703098B2 (ja) 生体分子検出装置および生体分子検出方法
JP6263884B2 (ja) 表面プラズモン増強蛍光測定装置および表面プラズモン増強蛍光測定方法
US20130217035A1 (en) Biological molecule detecting apparatus and biological molecule detecting method
JP6631538B2 (ja) 検出チップおよび検出方法
JP2019012034A (ja) 検出チップ、検出キット、検出システムおよび被検出物質の検出方法
JP6627778B2 (ja) 検出装置および検出方法
JP6414205B2 (ja) 表面プラズモン増強蛍光測定装置および表面プラズモン増強蛍光測定方法
JP2015111063A (ja) 表面プラズモン増強蛍光測定方法および表面プラズモン増強蛍光測定装置
JP6586884B2 (ja) チップおよび表面プラズモン増強蛍光測定方法
JP2007085744A (ja) 表面プラズモン共鳴の測定装置及び測定方法
JP6711285B2 (ja) 検出方法、検出装置およびチップ
JP2012233860A (ja) 生体試料中の分析対象物のアッセイ方法及びそれに用いたpoct装置
Rengevych et al. Visualization of submicron Si-rods by SPR-enhanced total internal reflection microscopy
Petrou et al. Interferometry-Based Immunoassays
WO2004102160A2 (en) Imaging platform for nanoparticle detection applied to spr biomolecular interaction analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171204

R150 Certificate of patent or registration of utility model

Ref document number: 6263887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees