JP2015019559A - Overhead transmission line support structure - Google Patents

Overhead transmission line support structure Download PDF

Info

Publication number
JP2015019559A
JP2015019559A JP2014010996A JP2014010996A JP2015019559A JP 2015019559 A JP2015019559 A JP 2015019559A JP 2014010996 A JP2014010996 A JP 2014010996A JP 2014010996 A JP2014010996 A JP 2014010996A JP 2015019559 A JP2015019559 A JP 2015019559A
Authority
JP
Japan
Prior art keywords
transmission line
power transmission
construction
line
overhead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014010996A
Other languages
Japanese (ja)
Other versions
JP5788033B2 (en
Inventor
神山 秀樹
Hideki Kamiyama
秀樹 神山
広二 赤坂
Hiroji Akasaka
広二 赤坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2014010996A priority Critical patent/JP5788033B2/en
Publication of JP2015019559A publication Critical patent/JP2015019559A/en
Application granted granted Critical
Publication of JP5788033B2 publication Critical patent/JP5788033B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Cable Installation (AREA)
  • Suspension Of Electric Lines Or Cables (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a workload and a cost for construction.SOLUTION: Overhead transmission lines 20 and 120 are supported by crossarms 14 which are arranged at upper and lower sides of each line. The number of the crossarms are twice or more the number of the overhead transmission lines. An insulation jumper wire 130 connects an overhead transmission line supported by a crossarm corresponding to a line at a lower or upper side thereof and an overhead transmission line supported by a crossarm corresponding to a line at an upper or lower side thereof.

Description

本発明は、架空送電線の工事方法に適した架空送電線支持構造物に関するものである。   The present invention relates to an overhead power transmission line support structure suitable for an overhead power transmission line construction method.

送電線の交換、回線の増設、鉄塔の建て替えなどの工事を行う際には、停電や片回線送電などが行われるが、その実施期間の短縮化を図るために、送電線の迂回路を形成する方法が知られている。
例えば、鉄塔の建て替え工事の際に、その工事用地を迂回する経路に沿って複数の支持柱を設置し、送電線から引き出されたジャンパー線を支持柱により支持することで迂回路を形成する工事方法が提案されている(例えば、特許文献1参照)。
When construction work such as replacement of transmission lines, expansion of lines, rebuilding of towers, etc. is performed, power outages and single-line power transmissions are carried out. In order to shorten the implementation period, a detour of the transmission line is formed. How to do is known.
For example, when rebuilding a steel tower, multiple support pillars are installed along a route that bypasses the construction site, and a detour is formed by supporting jumper wires drawn from power transmission lines with support pillars. A method has been proposed (see, for example, Patent Document 1).

特開平11−018225号公報Japanese Patent Laid-Open No. 11-018225

上記工事方法では、鉄塔の周囲に支持柱を設置するための用地が必須となる。しかしながら、住宅地や山間部では用地確保が困難であり、国立公園等のような自然保護地域では周囲の工事用地まで工事許可を得ることが困難な場合がある。さらに、地盤の悪い土地では支持柱を設置するための基礎工事が必要となり、作業負担や工事の規模が拡大する等の問題が生じていた。   In the construction method described above, a site for installing support pillars around the steel tower is essential. However, it is difficult to secure a site in a residential area or a mountainous area, and it may be difficult to obtain a construction permit up to the surrounding construction site in a nature conservation area such as a national park. In addition, foundation work for installing support pillars is necessary on poorly ground, which causes problems such as increased work burden and construction scale.

本発明は、工事用地の確保の困難を軽減できる架空送電線支持構造物を提供することを、その目的とする。   An object of the present invention is to provide an overhead power transmission line support structure that can reduce difficulty in securing a construction site.

架空送電線支持構造物にかかる本発明は、架空送電線を支持する腕金が回線ごとに上下に配置され、
前記腕金の本数を前記架空送電線の回線数の二倍以上とし、
下側又は上側の回線に対応する前記腕金に支持された架空送電線と、上側又は下側の回線に対応する前記腕金に支持された架空送電線とを、絶縁ジャンパー線で接続したことを特徴とする。
なおここで、上記架空送電線支持構造物には、腕金は少なくとも上側と下側の二回線分が設けられているが、より多くの腕金を設けることを除外する意味ではない。
The present invention according to the overhead power transmission line support structure, the brace that supports the overhead power transmission line is arranged up and down for each line,
The number of the metal braces is more than twice the number of the overhead power transmission lines,
The overhead transmission line supported by the armor corresponding to the lower or upper line and the overhead transmission line supported by the armor corresponding to the upper or lower line are connected by an insulating jumper line. It is characterized by.
Here, the overhead power transmission line support structure is provided with at least two upper and lower lines, but this does not exclude the provision of more arms.

上記架空送電線支持構造物によれば、例えば、架空送電線の工事を行う際に、既設の架空送電線の上方又は下方に迂回路を形成することができるので、迂回路を設けるための新たな工事用地を確保する負担を軽減でき、工事費用の軽減を図ることが可能となる。   According to the above overhead power transmission line support structure, for example, when constructing an overhead power transmission line, a detour can be formed above or below an existing overhead power transmission line. It is possible to reduce the burden of securing a large construction site and to reduce the construction cost.

また、工事区間外部の架空送電線と新設の架空送電線とを架空送電線支持構造物に沿って上下に設けられた絶縁ジャンパー線で接続して、工事区間外部の架空送電線の接続端部を上又は下へ移動させる作業を不要とし、接続の作業時間の迅速化を実現する。このため、迂回路接続のための停電或いは送電電力低下の時間の短縮が可能となる。   In addition, the overhead transmission line outside the construction section and the newly installed overhead transmission line are connected by the insulated jumper wires provided above and below the overhead transmission line support structure, and the connection end of the overhead transmission line outside the construction section This eliminates the need to move the switch up or down and speeds up the connection work time. For this reason, it is possible to shorten the time for power failure or reduced transmission power for bypass connection.

以上のように、本発明により、工事用地の確保の困難を軽減できる架空送電線支持構造物を提供することが可能となる。   As described above, according to the present invention, it is possible to provide an overhead power transmission line support structure that can reduce difficulty in securing a construction site.

発明の実施形態における架空線工事の対象となる工事区間の構成図である。It is a block diagram of the construction area used as the object of the overhead wire construction in embodiment of invention. 工事区間内の耐張鉄塔の平面図である。It is a top view of a tension steel tower in a construction section. 絶縁ジャンパー線取付工程を行った工事区間の構成図である。It is a block diagram of the construction area which performed the insulation jumper wire attachment process. 懸垂鉄塔における絶縁ジャンパー線の取り付け状態を示す拡大側面図である。It is an enlarged side view which shows the attachment state of the insulation jumper wire in a suspension tower. 絶縁ジャンパー線のケーブル取付端子の拡大正面図である。It is an enlarged front view of the cable attachment terminal of an insulation jumper wire. 図6(A)はケーブル取付端子に装備される内径の小さなカラーの側面図、図6(B)は正面図である。FIG. 6A is a side view of a collar with a small inner diameter provided in the cable mounting terminal, and FIG. 6B is a front view. 図7(A)はケーブル取付端子に装備される内径の大きなカラーの側面図、図7(B)は正面図である。FIG. 7A is a side view of a collar with a large inner diameter provided in the cable mounting terminal, and FIG. 7B is a front view. 絶縁ジャンパー線の束取りと載置状態を示した説明図である。It is explanatory drawing which showed the bundling of the insulation jumper wire, and the mounting state. 懸垂鉄塔における束取りを行った絶縁ジャンパー線の取り付け状態を示す拡大側面図である。It is an enlarged side view which shows the attachment state of the insulation jumper wire which bundled in the suspension tower. 鉄塔構築工程を行った工事区間の構成図である。It is a block diagram of the construction area which performed the steel tower construction process. 鉄塔構築工程後の耐張鉄塔の平面図である。It is a top view of a tension steel tower after a steel tower construction process. 架線工程を行った工事区間の構成図である。It is a block diagram of the construction area which performed the overhead wire process. 迂回路形成工程を行った工事区間の構成図である。It is a block diagram of the construction area which performed the detour formation process. 架空送電線交換工程を行った工事区間の構成図である。It is a block diagram of the construction area which performed the overhead power transmission line exchange process. 鉄塔撤去工程を行った工事区間の構成図である。It is a block diagram of the construction area which performed the steel tower removal process. 完了工事区間の両側に設けられた新規工事区間の構成図である。It is a block diagram of the new construction area provided in the both sides of the completion construction area. 絶縁ジャンパー線取付工程を行った新規工事区間の構成図である。It is a block diagram of the new construction area which performed the insulation jumper wire installation process. 鉄塔構築工程を行った新規工事区間の構成図である。It is a block diagram of the new construction area which performed the steel tower construction process. 架線工程を行った新規工事区間の構成図である。It is a block diagram of the new construction area which performed the overhead wire process. 迂回路形成工程を行った新規工事区間の構成図である。It is a block diagram of the new construction area which performed the detour formation process. 架空送電線交換工程を行った新規工事区間の構成図である。It is a block diagram of the new construction area which performed the overhead power transmission line exchange process. 鉄塔撤去工程を行った新規工事区間の構成図である。It is a block diagram of the new construction area which performed the steel tower removal process. 完了工事区間とその両側の設けられた新規工事区間を新たな工事完了区間とし、さらにその両側の新規工事区間も工事が完了した状態を示す構成図である。It is a block diagram which shows the state by which the completed construction area and the new construction area provided in the both sides were made into the new construction completion area, and also the new construction area of the both sides completed the construction. 架空送電線の交換・増設及び懸垂鉄塔の撤去の工事を行う工事区間の構成図である。It is a block diagram of the construction section which carries out the construction of exchanging / adding overhead power lines and removing suspended towers. 絶縁ジャンパー線取付工程を行った工事区間の構成図である。It is a block diagram of the construction area which performed the insulation jumper wire attachment process. 鉄塔構築工程を行った工事区間の構成図である。It is a block diagram of the construction area which performed the steel tower construction process. 架線工程を行った工事区間の構成図である。It is a block diagram of the construction area which performed the overhead wire process. 迂回路形成工程を行った工事区間の構成図である。It is a block diagram of the construction area which performed the detour formation process. 架空送電線交換工程を行った工事区間の構成図である。It is a block diagram of the construction area which performed the overhead power transmission line exchange process. 鉄塔撤去工程を行った工事区間の構成図である。It is a block diagram of the construction area which performed the steel tower removal process. 完了工事区間の両側の設けられた新規工事区間の構成図である。It is a block diagram of the new construction section provided on both sides of the completed construction section. 完了工事区間とその両側の設けられた新規工事区間を新たな工事完了区間とし、さらにその両側の新規工事区間も工事が完了した状態を示す構成図である。It is a block diagram which shows the state by which the completed construction area and the new construction area provided in the both sides were made into the new construction completion area, and also the new construction area of the both sides completed the construction. 鉄塔構築工程に替えて嵩上げ工程を行う場合の作業の進行を示す説明図である。It is explanatory drawing which shows progress of the operation | work in the case of performing a raising process instead of a steel tower construction process. 嵩上げ工程を行う場合の図33に続く作業の進行を示す説明図である。It is explanatory drawing which shows progress of the operation | work following FIG. 33 in the case of performing a raising process. 嵩上げ工程を行う場合の図34に続く作業の進行を示す説明図である。It is explanatory drawing which shows progress of the operation | work following FIG. 34 in the case of performing a raising process. 嵩上げ工程を行う場合の図35に続く作業の進行を示す説明図である。It is explanatory drawing which shows progress of the operation | work following FIG. 35 in the case of performing a raising process. 嵩上げ工程を行う場合の図36に続く作業の進行を示す説明図である。It is explanatory drawing which shows progress of the operation | work following FIG. 36 in the case of performing a raising process. 懸垂鉄塔における絶縁ジャンパー線の取り付け状態の他の例を示す拡大側面図である。It is an enlarged side view which shows the other example of the attachment state of the insulation jumper wire in a suspension tower. 懸垂鉄塔における絶縁ジャンパー線の取り付け状態のさらに他の例を示す拡大側面図である。It is an enlarged side view which shows the further another example of the attachment state of the insulation jumper wire in a suspension tower. 図39における絶縁ジャンパー線の支持状態を示すジャンパー線に沿った方向から見た図である。It is the figure seen from the direction along the jumper line which shows the support state of the insulation jumper line in FIG. 懸垂鉄塔における束取りを行った絶縁ジャンパー線の取り付け状態の他の例を示す拡大側面図である。It is an enlarged side view which shows the other example of the attachment state of the insulation jumper wire which bundled in the suspension tower.

[第1の実施形態の概要]
本発明の第1の実施形態として、複数の径間からなる工事区間において、架空送電線の回線の増設及び送電容量の大きな架空送電線への交換を行うための架空送電線の工事方法について図面を参照して説明する。
[Outline of First Embodiment]
As a first embodiment of the present invention, in a construction section consisting of a plurality of spans, a method for constructing an overhead power transmission line for increasing the number of overhead power transmission lines and exchanging with an overhead power transmission line having a large transmission capacity is illustrated. Will be described with reference to FIG.

[工事区間の鉄塔の構成]
送電線路の架空送電線の交換のための工事や回線を増す工事は、送電線路の沿線を複数の工事区間に区切り、工事区間毎に実施される。図1は、工事区間の一例を示すもので、この工事区間A内には、既存の鉄塔として、複数の耐張鉄塔10A及び懸垂鉄塔10Bが設置されている。
懸垂鉄塔10Bは、架空送電線から、主に下方への重力荷重が作用し、延線方向には荷重が殆ど生じない箇所で使用される。例えば、懸垂鉄塔10Bは、架空送電線の経路が直線となる区間内に設置される。
これに対して、耐張鉄塔10Aは、架空送電線から、下方への重力荷重だけでなく、延線方向に沿った張力も作用する箇所に使用される。例えば、耐張鉄塔10Aは、架空送電線の経路が屈曲する区間の屈曲部に設置されている。
図1は、両端に耐張鉄塔10A、10Aが設置され、それらの間に二本の懸垂鉄塔10B,10Bが設置された区間を工事区間Aとする場合を例示している。
[Configuration of the steel tower in the construction section]
The work for exchanging the overhead power transmission line and the work for increasing the number of lines are performed for each work section by dividing the line along the power transmission line into a plurality of work sections. FIG. 1 shows an example of a construction section. In this construction section A, a plurality of tension steel towers 10A and suspension steel towers 10B are installed as existing steel towers.
The suspension tower 10B is used at a place where a gravity load mainly acts downward from the overhead power transmission line and the load is hardly generated in the extending direction. For example, the suspension tower 10B is installed in a section where the route of the overhead power transmission line is a straight line.
On the other hand, the tension steel tower 10A is used not only in the gravity load downward from the overhead power transmission line but also in the location where the tension along the extending direction acts. For example, the tension steel tower 10A is installed in a bent portion of a section where the route of the overhead power transmission line is bent.
FIG. 1 exemplifies a case where a construction section A is a section in which tension steel towers 10A and 10A are installed at both ends and two suspension towers 10B and 10B are installed between them.

[鉄塔]
耐張鉄塔10A及び懸垂鉄塔10Bは、図1に示すように、いずれも上下方向に沿った複数の主材11と当該複数の主材11の間に水平又は斜め方向に沿って配置された複数の副材12とから全体が構築されている。
なお、図1では、耐張鉄塔10Aと懸垂鉄塔10Bとを簡略的に同一構造で図示しているが、実際には、耐張鉄塔10Aは、架空送電線(以下、「送電線」と記す。)20からの張力にも耐えられるように、懸垂鉄塔10Bよりも強度の高い構造に構成されている。
[Steel tower]
As shown in FIG. 1, the tensile steel tower 10 </ b> A and the suspended steel tower 10 </ b> B are both arranged in a horizontal or oblique direction between a plurality of main materials 11 along the vertical direction and the plurality of main materials 11. The whole is constructed from the secondary material 12.
In FIG. 1, the tension steel tower 10A and the suspended steel tower 10B are simply illustrated with the same structure, but actually, the tension steel tower 10A is described as an overhead power transmission line (hereinafter referred to as “transmission line”). .) The structure is stronger than the suspension tower 10B so that it can withstand the tension from 20.

耐張鉄塔10A及び懸垂鉄塔10Bは二回線鉄塔で、各鉄塔10A、10Bの両側には、三相交流の送電を行うための三本の送電線20,20,20が1組ずつ取り付けられている。すなわち、各鉄塔10A、10Bの側部には、腕金14,14,14が3段に、かつ、図2に示すように、両側に延出するように(図2では耐張鉄塔10Aのみ図示)設けられており、各腕金14に送電線20が取り付けられている。   Tensile tower 10A and suspension tower 10B are two-line towers, and on each side of each of towers 10A and 10B, three sets of transmission lines 20, 20, and 20 for three-phase AC transmission are attached. Yes. That is, on the side portions of the steel towers 10A and 10B, the armatures 14, 14, and 14 extend in three stages and on both sides as shown in FIG. 2 (in FIG. 2, only the tension steel tower 10A is shown). The transmission line 20 is attached to each brace 14.

図1に示すように、工事区間Aの端にある耐張鉄塔10Aの腕金14には、二本の送電線20,20の端部が個別に碍子15a,15aを介して連結されている。一方の送電線20は工事区間A内にあり、他方は、工事区間A外にある。
また、懸垂鉄塔10Bの腕金14には、この箇所を通過する送電線20が懸垂碍子15bを介して吊下げられている。
なお、図1に示す既設の送電線20は、送電容量が66[kV]の鋼心アルミ撚り線である。
As shown in FIG. 1, the ends of the two power transmission lines 20 and 20 are individually connected to the arm metal 14 of the tension steel tower 10A at the end of the construction section A via insulators 15a and 15a. . One transmission line 20 is in the construction section A, and the other is outside the construction section A.
In addition, a power transmission line 20 passing through this portion is suspended from a brace 14 of the suspension tower 10B via a suspension insulator 15b.
The existing power transmission line 20 shown in FIG. 1 is a steel core aluminum stranded wire having a power transmission capacity of 66 [kV].

耐張鉄塔10Aの腕金14に連結された二本の送電線20,20の端部には、一方から他方に渡って、相互間を電気的に接続するためのジャンパー線30が装備されている。
ジャンパー線30は、絶縁被覆されていないACSR(鋼心アルミ撚り線)からなる導線31と、導線31の両端部に装備されたケーブル取付端子32,32とを備えており、2つの半割部材で構成された取付端子32により送電線20に着脱可能に取り付けられている。
A jumper wire 30 is provided at the end of the two power transmission lines 20 and 20 connected to the arm bracket 14 of the tensile steel tower 10A so as to electrically connect them from one to the other. Yes.
The jumper wire 30 includes a conductive wire 31 made of an ACSR (steel core aluminum stranded wire) that is not insulated and cable attachment terminals 32 and 32 provided at both ends of the conductive wire 31, and includes two halved members. It is detachably attached to the power transmission line 20 by an attachment terminal 32 constituted by

また、図1に示すように、耐張鉄塔10A及び懸垂鉄塔10Bの頂上部には、亜鉛メッキ鋼線(又はアルミ覆鋼線)からなる架空地線25が架設されている。   Moreover, as shown in FIG. 1, an overhead ground wire 25 made of a galvanized steel wire (or an aluminum-clad steel wire) is installed at the top of the tension steel tower 10A and the suspended steel tower 10B.

[架空送電線の工事方法:絶縁ジャンパー線取付工程]
上記工事区間Aにおいて耐張鉄塔10A及び懸垂鉄塔10Bに対する架空送電線の回線増設工事及び架空送電線を交換する工事の方法を、工程ごとに順を追って説明する。
まず、図3に示すように、二本の耐張鉄塔10Aの各腕金14により支持されている工事区間A外の送電線20の端部と工事区間A内の送電線20の端部とを接続する全てのジャンパー線30を絶縁ジャンパー線130に交換する。
前記耐張鉄塔10Aのジャンパー線交換工事に続けて、送電線20の懸垂鉄塔10Bの懸垂碍子15bに吊下げられた部分を、図4に示すように、絶縁ジャンパー線130に置き換える。この工事は、次のように行う。
まず、送電線20の懸垂碍子15bに吊下げられた箇所から両側に所定寸法離れた位置に、ぞれぞれ引留め工具200を取りつける。両側の引留め工具200、200を、シリコーン碍子201を介して、鉄塔10Bの腕金14の懸垂碍子15bの上端部が取り付けられた箇所に引き留めた後、2つの引留め工具200,200間で送電線20を切断する。ついで、切断された両側の送電線20を絶縁ジャンパー線130で接続する。
絶縁ジャンパー線130は、支持具202で把持して懸垂碍子15bの下に吊り下げる。前記、引留め工具200には、カムアロング、クサビクランプ、圧縮クランプなどを利用できる。
[Construction method of overhead power transmission line: Insulation jumper wire installation process]
In the construction section A, the method of extending the overhead power transmission line and replacing the overhead power transmission line for the tension tower 10A and the suspension tower 10B will be described step by step.
First, as shown in FIG. 3, the end of the transmission line 20 outside the construction section A and the end of the transmission line 20 in the construction section A supported by each arm 14 of the two tension steel towers 10A. All the jumper wires 30 that connect to are replaced with insulated jumper wires 130.
Subsequent to the jumper wire replacement work of the tensile steel tower 10A, the portion of the power transmission line 20 suspended from the suspension insulator 15b of the suspension tower 10B is replaced with an insulated jumper wire 130 as shown in FIG. This construction is performed as follows.
First, the retaining tool 200 is attached to each of the positions separated from the part suspended from the suspension insulator 15b of the power transmission line 20 by a predetermined dimension on both sides. After holding the holding tools 200, 200 on both sides to the place where the upper end of the suspension lever 15b of the arm metal 14 of the steel tower 10B is attached via the silicone insulator 201, between the two holding tools 200, 200 The power transmission line 20 is cut. Next, the cut off power transmission lines 20 on both sides are connected by insulating jumper wires 130.
The insulating jumper wire 130 is held by the support 202 and suspended below the suspension lever 15b. As the retaining tool 200, a cam along, a wedge clamp, a compression clamp, or the like can be used.

この絶縁ジャンパー線130は、図5に示すように、二本の送電線20,20の電気的接続を行うケーブル131とその両端部に設けられた取付端子132,132とを備えている。
ケーブル131は、主に、導体部と、その外周に形成された絶縁層と、その外周に形成された遮蔽層と、その外周に設けられたシースとで構成されている。
As shown in FIG. 5, the insulating jumper wire 130 includes a cable 131 that electrically connects the two power transmission lines 20 and 20 and attachment terminals 132 and 132 provided at both ends thereof.
The cable 131 mainly includes a conductor portion, an insulating layer formed on the outer periphery thereof, a shielding layer formed on the outer periphery thereof, and a sheath provided on the outer periphery thereof.

取付端子132は、導体からなる二部材で構成され、ボルト締めによりケーブル131の導体部を挟持することで当該導体部と電気的に接続されている。また、取付端子132を構成する二部材には、双方の対向面に断面半円形の挟持溝133が形成されている。ボルト締めの際に、この挟持溝133に送電線20を挟み込むことにより、当該取付端子132を送電線20に装着し且つ電気的に接続する。   The attachment terminal 132 is composed of two members made of a conductor, and is electrically connected to the conductor portion by clamping the conductor portion of the cable 131 by bolting. Further, the two members constituting the attachment terminal 132 are formed with a holding groove 133 having a semicircular cross section on both opposing surfaces. At the time of bolting, the attachment line 132 is attached to the power transmission line 20 and electrically connected by sandwiching the power transmission line 20 in the holding groove 133.

なお、このケーブル取付端子132は、挟持溝133と架空送電線との間に、内径が異なる複数種類の円筒状のカラー134の中から適切なものを選択し介在させることにより、径の異なる種々の架空送電線に対する装着を可能としている。
例えば、絶縁ジャンパー線130は、既設の送電線20と後述する新設の架空送電線である送電線120(図13参照)とに接続される場合がある。新設の送電線120は、既設の送電線20よりも送電容量が大きく、その外径も既設の送電線20よりも大きくなっている。
このため、既設の送電線20に絶縁ジャンパー線130の取付端子132を装着する際には、図6に示すように、その外径が挟持溝133に一致し、その内径が既設の送電線20に適したカラー134が使用される。また、新設の送電線120に取付端子132を装着する際には、図7に示すように、既設の送電線20より太い新設の送電線120に合わせて内径を大きくしたカラー134が使用される(外径は挟持溝133に一致している)。
なお、いずれのカラー134も、円筒を直径方向に沿って二分割した良導体からなる二つの半円筒体から構成されているので、二部材から構成されるケーブル取付端子132をボルト締めにより装着する際には、その挟持圧がカラー134を介して架空送電線に作用し、強固に装着することが可能である。
The cable attachment terminal 132 has various diameters by selecting and interposing an appropriate one from a plurality of types of cylindrical collars 134 having different inner diameters between the holding groove 133 and the overhead power transmission line. It is possible to attach to the overhead power transmission line.
For example, the insulation jumper line 130 may be connected to the existing power transmission line 20 and a power transmission line 120 (see FIG. 13) which is a new overhead power transmission line described later. The newly installed transmission line 120 has a larger transmission capacity than the existing transmission line 20, and its outer diameter is larger than that of the existing transmission line 20.
For this reason, when the attachment terminal 132 of the insulation jumper wire 130 is attached to the existing power transmission line 20, the outer diameter thereof coincides with the holding groove 133, and the inner diameter thereof is the existing power transmission line 20 as shown in FIG. A suitable color 134 is used. Further, when attaching the attachment terminal 132 to the newly installed power transmission line 120, as shown in FIG. 7, a collar 134 having an inner diameter larger than that of the new power transmission line 120 thicker than the existing power transmission line 20 is used. (The outer diameter coincides with the clamping groove 133).
Since each collar 134 is composed of two semi-cylindrical bodies made of a good conductor obtained by dividing a cylinder into two along the diameter direction, when the cable mounting terminal 132 composed of two members is attached by bolting. The clamping pressure acts on the overhead power transmission line via the collar 134 and can be firmly attached.

上記絶縁ジャンパー線130は、絶縁ジャンパー線取付工程の次に行われる鉄塔構築工程での新規鉄塔の構築の際に、絶縁層及び遮蔽層によって接触、放電等を抑制して作業領域を確保するためのものである。   The insulation jumper wire 130 is used to secure a work area by suppressing contact, discharge, and the like by the insulation layer and the shielding layer when constructing a new tower in the tower construction process performed next to the insulation jumper line installation process. belongs to.

上記絶縁ジャンパー線取付工程では、絶縁ジャンパー線を取り付ける回線の送電を停止させる必要がある。このとき、この工事区間Aの鉄塔に架設されている二回線がいずれも同じ送電先に向かうものである場合には、片回線送電により、一回線ずつ送電を停止させて作業を行い、一回線分の送電を維持して完全な停電を回避することができる。
また、絶縁ジャンパー線を取り付ける二回線がそれぞれ異なる送電先に向かう場合には、それぞれの送電先への送電を停止させてジャンパー線30から絶縁ジャンパー線130への交換作業が行われる。
いずれの場合でも、ジャンパー線30及び絶縁ジャンパー線130は、送電線20に対する着脱がボルトを用いて容易に行うことができるので、片回線送電期間又は停電期間を短縮し、迅速な復帰を図ることが可能である。
In the insulating jumper wire attaching step, it is necessary to stop the power transmission of the line to which the insulating jumper wire is attached. At this time, if the two lines built on the steel tower in this construction section A are both directed to the same power transmission destination, work is performed by stopping the transmission one line at a time by one-line transmission. A minute power transmission can be maintained to avoid a complete power outage.
Further, when the two lines to which the insulating jumper wires are attached go to different power transmission destinations, the power transmission to the respective power transmission destinations is stopped and the replacement work from the jumper wires 30 to the insulating jumper wires 130 is performed.
In any case, since the jumper wire 30 and the insulated jumper wire 130 can be easily attached to and detached from the power transmission line 20 using bolts, the single-line power transmission period or the power failure period can be shortened and a quick return can be achieved. Is possible.

なお、耐張鉄塔10Aに取り付ける絶縁ジャンパー線130は、後述する迂回路形成工程でも使用することを視野において、耐張鉄塔10Aにおいて工事区間A内外の二本の送電線20を接続するために必要な長さよりも長くしておくことが望ましい。
その場合、過度な弛みが生じて下の送電線20との離隔距離が不足することがないように、耐張鉄塔10Aにおいては、図8に示すように、ケーブル131の余長分を環状にして結束バンドで束ねた束取り状態Tとし、水平な副材12の上に載置しておくことが望ましい。
また、懸垂鉄塔10Bにおいては、図9に示すように、懸垂碍子15bの両側(老番側と若番側)の張力バランスを確保するように、懸垂碍子15bの両側で束取り状態T,Tとして、引留め工具200、200等に吊下げておくことが望ましい。また、ケーブル131の両側の束取り状態T,Tの形成位置は、互いに離間するようにより径間側に形成することが望ましい。これにより、ケーブル131の束取り状態T,Tとなる部位とその下側に支持されている送電線20との離隔距離をより長く確保することが可能となる。
The insulation jumper wire 130 attached to the tension steel tower 10A is necessary for connecting the two power transmission lines 20 inside and outside the construction section A in the tension steel tower 10A with a view to use in a detour formation process described later. It is desirable to keep the length longer than the desired length.
In that case, in the tension tower 10A, as shown in FIG. 8, the extra length of the cable 131 is made annular so that excessive slack does not occur and the separation distance from the lower transmission line 20 does not become insufficient. Thus, it is desirable that the bundled state T is obtained by bundling with a bundling band and placed on the horizontal secondary material 12.
Further, in the suspended steel tower 10B, as shown in FIG. 9, the bundled states T, T on both sides of the suspended insulator 15b so as to secure the tension balance on both sides (older side and younger side) of the suspended insulator 15b. As described above, it is desirable to suspend the suspension tool 200, 200 or the like. In addition, it is desirable that the bundling states T and T on both sides of the cable 131 are formed on the span side so as to be separated from each other. Thereby, it becomes possible to ensure a longer separation distance between the portion of the cable 131 in the bundled state T, T and the power transmission line 20 supported on the lower side thereof.

[架空送電線の工事方法:鉄塔構築工程]
次に、工事区間内の全鉄塔10A,10Bを包み込み工法により個別に包み込みながら回線を増設した新規鉄塔を構築する鉄塔構築工程を行う。
包み込み工法とは、既設の鉄塔10A、10Bを撤去しないで、当該鉄塔10A、10Bを内側に取り込むようにして同じ敷地内に新規鉄塔を構築する工法である。新規鉄塔は、その主材及び副材が内側の鉄塔10A、10Bと干渉しないようにその寸法、配置等に考慮を払って設計されている。
図10に示すように、各耐張鉄塔10Aに対しては新規鉄塔としての耐張鉄塔110Aがその外側に構築され、各懸垂鉄塔10Bに対しては新規鉄塔としての懸垂鉄塔110Bがその外側に構築される。
なお、これら新規の鉄塔110A,110Bを構築する際には、予め各鉄塔10A,10Bから架空地線25が撤去される。
[Construction method for overhead transmission lines: steel tower construction process]
Next, a steel tower construction process is performed for constructing a new steel tower with an additional line while wrapping all the steel towers 10A and 10B in the construction section individually by the wrapping method.
The wrapping method is a method for constructing a new steel tower in the same site so as to take the steel towers 10A and 10B inside without removing the existing steel towers 10A and 10B. The new steel tower is designed in consideration of its size, arrangement, etc. so that the main material and sub-material do not interfere with the inner steel towers 10A, 10B.
As shown in FIG. 10, a tensile steel tower 110A as a new steel tower is constructed on the outside of each tensile steel tower 10A, and a suspended steel tower 110B as a new steel tower on the outside of each suspended steel tower 10B. Built.
In addition, when constructing these new steel towers 110A and 110B, the overhead ground wire 25 is removed from each steel tower 10A and 10B in advance.

新規鉄塔としての耐張鉄塔110A、懸垂鉄塔110Bは四回線鉄塔であり、内側の既設の鉄塔10A、10Bよりも高く構築される。この新規鉄塔としての耐張鉄塔110A、懸垂鉄塔110Bの両側面の下部にはそれぞれ一回線分の腕金114が設けられ、両側面の上部にそれぞれ一回線分の腕金114が設けられている。つまり、上部に二回線、下部に二回線の腕金114が設けられている。
新設の鉄塔110A、110Bの下側の二回線分の腕金114は、既設の鉄塔10A、10Bの腕金14に近い高さに設けられている。また、これら腕金14と腕金114とは、いずれも同じ方向に向かって両側面から延出されている。また、上側の二回線分の各腕金114はこれら下側の回線の各腕金114よりも上方に配置されている。
The tensile steel tower 110A and the suspended steel tower 110B as new steel towers are four-line steel towers, and are constructed higher than the existing steel towers 10A and 10B inside. Arms 114 for one line are respectively provided at the lower portions of both side surfaces of the tensile steel tower 110A and the suspended steel tower 110B as the new steel towers, and armatures 114 for one line are respectively provided at the upper portions of both side surfaces. . That is, the two-line brace 114 is provided at the top and the two-line at the bottom.
The arm metal 114 for the two lines below the new steel towers 110A and 110B is provided at a height close to the arm metal 14 of the existing steel towers 10A and 10B. The arm metal 14 and the arm metal 114 are both extended from both side surfaces in the same direction. Further, the upper braces 114 for the two upper lines are disposed above the lower braces 114 for these lower lines.

図11に示すように、耐張鉄塔110Aは、それぞれの腕金114が腕金14よりも長く延出されている(懸垂鉄塔110Bは図示していないが腕金114の長さについては耐張鉄塔110Aと同様である)。
耐張鉄塔110A(又は懸垂鉄塔110B)の一側面には、二回線分の六本の腕金114が上下に並び、その間隔は、新設する送電線120(図12参照)の送電容量に応じた離隔距離を考慮した距離になっている。
また、耐張鉄塔110A(又は懸垂鉄塔110B)は、その頂上部において、架空地線118(図12参照)を支持する腕金117を有している。
As shown in FIG. 11, each of the armatures 114 of the tension steel tower 110 </ b> A extends longer than the armmetal 14 (the suspension steel tower 110 </ b> B is not shown, but the length of the armature 114 is It is the same as the steel tower 110A).
On one side of the tensile steel tower 110A (or the suspended steel tower 110B), six arm brackets 114 for two lines are arranged vertically, and the interval depends on the transmission capacity of the newly installed transmission line 120 (see FIG. 12). It is a distance that takes into account the separation distance.
In addition, the tension steel tower 110A (or the suspended steel tower 110B) has a brace 117 that supports the overhead ground wire 118 (see FIG. 12) at the top.

前記絶縁ジャンパー線取付工程で取り付けた絶縁ジャンパー線130を介して送電がされる状態にされてから、この鉄塔構築工程が実行されるので、各鉄塔110A,110Bを包み込み工法で構築する場合に、作業領域を十分に確保することができ、各送電線20の送電を停止させることなく安全に鉄塔構築作業を行うことができる。   Since this steel tower construction process is executed after power is transmitted through the insulation jumper line 130 attached in the insulation jumper wire attachment process, when constructing each steel tower 110A, 110B by wrapping construction method, The work area can be sufficiently secured, and the steel tower construction work can be performed safely without stopping the power transmission of each power transmission line 20.

[架空送電線の工事方法:架線工程]
次に、工事区間A内の全鉄塔10A,10Bに支持された既設の送電線20の上側に新設の送電線120を架線する架線工程を実行する。
この架線工程では、図12に示すように、前記鉄塔構築工程で構築された各耐張鉄塔110A及び各懸垂鉄塔110Bの上側の二回線の腕金114に新設の送電線120が架線される。
新設の送電線120は、送電容量が275[kV]である鋼心アルミ撚り線であって、既設の送電線20よりも径の大きいものが使用される。
[Construction method of overhead power transmission line: overhead line process]
Next, an overhead line process is performed in which the new power transmission line 120 is installed above the existing power transmission line 20 supported by all the steel towers 10A and 10B in the construction section A.
In this overhead line process, as shown in FIG. 12, a new transmission line 120 is installed on the two arm braces 114 on the upper side of each tension steel tower 110A and each suspended steel tower 110B constructed in the steel tower construction process.
The newly installed transmission line 120 is a steel core aluminum stranded wire having a transmission capacity of 275 [kV] and has a diameter larger than that of the existing transmission line 20.

鉄塔間に新設の送電線120を架線する場合には、引き抜き工法或いは吊金工法等により鉄塔間に延線する作業を行う。
引き抜き工法では、隣接する二つの鉄塔に滑車を設置し、これらの間に牽引ロープを掛け渡す。そして、牽引ロープに送電線120を連結し、ウィンチにより牽引ロープを一方の鉄塔から他方の鉄塔側に引き寄せることで送電線120を鉄塔間に延線する。
また、吊金工法では、予め隣接する二つの鉄塔間にワイヤロープを架け渡す。そして、このワイヤロープに沿って移動するための移動車輪を備える複数の吊金装置を曳行ロープで曳行し、ワイヤロープに沿って一定間隔で吊金装置を展開させる。各吊金装置は、送電線120を送る滑車を備えており、予め滑車に掛け渡しておいた牽引ロープに送電線120を連結して引き寄せることで鉄塔間に延線することができる。
When a new transmission line 120 is installed between the steel towers, the work of extending between the steel towers is performed by a drawing method or a hanging method.
In the pulling method, pulleys are installed on two adjacent steel towers, and a tow rope is hung between them. And the power transmission line 120 is connected with a tow rope, and the power transmission line 120 is extended between steel towers by drawing a tow rope from one steel tower to the other steel tower side with a winch.
Moreover, in the hanging metal construction method, a wire rope is bridged between two adjacent steel towers in advance. Then, a plurality of lifting devices provided with moving wheels for moving along the wire rope are coasted by the coasting rope, and the lifting device is deployed at regular intervals along the wire rope. Each suspension device is provided with a pulley for sending the power transmission line 120, and can be extended between steel towers by connecting and pulling the power transmission line 120 to a tow rope that has been stretched around the pulley in advance.

延線された送電線120は、その両端部が図示しないクランプ部材を用いて耐張鉄塔110Aの腕金114に取り付けられた碍子15aに連結され、その途中部分が懸垂鉄塔110Bの腕金114の懸垂碍子15bに吊下げられて支持される。その際、送電線120が適正な張力及び適正な弛み量となるように調節する緊線作業が行われる。
このようにして、工事区間内の鉄塔110A、110Bに新しい送電線120を増設する。
また、工事区間内の鉄塔110A、110Bの上端の腕金117に架空地線118の架線を行う。
The both ends of the extended power transmission line 120 are connected to the insulator 15a attached to the arm metal 114 of the tension steel tower 110A using a clamp member (not shown), and the middle part of the power transmission cable 120 is connected to the arm metal 114 of the suspension steel tower 110B. It is suspended and supported by the hanging insulator 15b. At that time, a tightening operation is performed to adjust the power transmission line 120 to have an appropriate tension and an appropriate amount of slack.
In this manner, a new transmission line 120 is added to the steel towers 110A and 110B in the construction section.
Further, the overhead ground wire 118 is installed on the armor 117 at the upper end of the steel towers 110A and 110B in the construction section.

なお、上記架線工程の作業は、既設の送電線20より上方で行われるので、既設の送電線20の送電を停止させることなく行うことが可能である。   In addition, since the operation | work of the said overhead wire process is performed above the existing power transmission line 20, it can be performed without stopping the power transmission of the existing power transmission line 20. FIG.

[架空送電線の工事方法:切断工程]
次に、工事区間Aの両端部に位置する二本の耐張鉄塔10Aにおいて、工事区間A内の既設の送電線20を工事区間A外の送電線20から電気的に切断する切断工程を実行する。即ち、図12に示す、耐張鉄塔10Aの下側の回線において、工事区間A外の既設の送電線20と工事区間A内の既設の送電線20とを接続している絶縁ジャンパー線130の工事区間A内側の取付端子132(図11参照)を送電線20から外す。これにより、この絶縁ジャンパー線130を工事区間A内の既設の送電線20から切り離す。
また、この切断工程において、各懸垂鉄塔10Bの下側の二回線の全ての絶縁ジャンパー線130を撤去してもよい。
[Construction method for overhead transmission lines: cutting process]
Next, in the two tension steel towers 10A located at both ends of the construction section A, a cutting process for electrically disconnecting the existing transmission lines 20 in the construction section A from the transmission lines 20 outside the construction section A is executed. To do. That is, the insulation jumper wire 130 connecting the existing transmission line 20 outside the construction section A and the existing transmission line 20 inside the construction section A on the lower line of the tensile tower 10A shown in FIG. The attachment terminal 132 (see FIG. 11) inside the construction section A is removed from the transmission line 20. Thereby, this insulation jumper wire 130 is cut off from the existing power transmission line 20 in the construction section A.
Moreover, in this cutting process, you may remove all the insulated jumper wires 130 of the two lines below each suspension tower 10B.

なお、上記切断工程の作業は、絶縁ジャンパー線130を取り外す回線の送電を停止して行われるが、絶縁ジャンパー線130は、取付端子132のボルトを外すだけで容易に送電線20から取り外すことができるので、停電期間を短縮することが可能である。   The work of the above-described cutting process is performed by stopping the transmission of the line from which the insulation jumper wire 130 is removed. However, the insulation jumper wire 130 can be easily removed from the transmission line 20 simply by removing the bolt of the attachment terminal 132. It is possible to shorten the power outage period.

[架空送電線の工事方法:迂回路形成工程]
次に、工事区間の端部に位置する耐張鉄塔110Aにおいて、工事区間A外の送電線20の端部と工事区間内の新設の送電線120の端部とを絶縁ジャンパー線130により電気的に接続する迂回路形成工程を実行する。
この迂回路形成工程では、図13に示すように、切断工程で既設の送電線20から取り外された絶縁ジャンパー線130の取付端子132を、上方で支持された新設の送電線120の端部に取り付ける。また、絶縁ジャンパー線130は耐張鉄塔110Aに沿って上下に敷設される。
このようにして、工事区間Aの両端部において、工事区間A外の送電線20と工事区間A内の新設の送電線120とを絶縁ジャンパー線130により電気的に接続することにより迂回路が形成され、送電を再開できる。送電を再開すると、工事区間A外は送電線20で送電され、工事区間A内は新設の送電線120で送電される。
[Construction method of overhead transmission line: detour formation process]
Next, in the tension tower 110A located at the end of the construction section, the end of the transmission line 20 outside the construction section A and the end of the new transmission line 120 inside the construction section are electrically connected by an insulating jumper wire 130. The detour formation process connected to is performed.
In this detour formation process, as shown in FIG. 13, the attachment terminal 132 of the insulation jumper line 130 removed from the existing power transmission line 20 in the cutting process is attached to the end of the new power transmission line 120 supported above. Install. Moreover, the insulation jumper wire 130 is laid up and down along the tensile steel tower 110A.
In this way, at both ends of the construction section A, a bypass is formed by electrically connecting the transmission line 20 outside the construction section A and the new transmission line 120 inside the construction section A by the insulated jumper wires 130. And can resume power transmission. When power transmission is resumed, power is transmitted through the transmission line 20 outside the construction section A, and power is transmitted through the new transmission line 120 inside the construction section A.

なお、工事区間A外の送電線20と工事区間A内の送電線120とは、それぞれの支持されている端部が上下に離れているが、前述したように(図8参照)、絶縁ジャンパー線130のケーブル131を十分に長くして束取り状態Tとしておいたので、ここからケーブル131を引き出すことにより、同じ絶縁ジャンパー線130を上方に新設した送電線120に接続することが可能である。
仮に、絶縁ジャンパー線取付工程で取り付けた絶縁ジャンパー線130のケーブル131の長さが、工事区間Aの内外の既設の送電線20を接続するために必要な最小限の長さであった場合には、切断工程において、耐張鉄塔110A、110Aから絶縁ジャンパー線130を撤去し、この迂回路形成工程では、工事区間A外の既設の送電線20と工事区間A内の新設の送電線120を接続できる長さの絶縁ジャンパー線130を新たに取り付ける。
In addition, the transmission line 20 outside the construction section A and the transmission line 120 inside the construction section A are separated from each other at their supported ends, but as described above (see FIG. 8), the insulation jumper Since the cable 131 of the wire 130 is sufficiently long to be in the bundling state T, the same insulating jumper wire 130 can be connected to the newly installed transmission line 120 by pulling the cable 131 from here. .
If the length of the cable 131 of the insulation jumper wire 130 attached in the insulation jumper wire attachment process is the minimum length necessary for connecting the existing transmission line 20 inside and outside the construction section A. In the cutting process, the insulation jumper wires 130 are removed from the tensile towers 110A and 110A. In this detour formation process, the existing transmission line 20 outside the construction section A and the new transmission line 120 inside the construction section A are connected. An insulating jumper wire 130 having a length that can be connected is newly attached.

なお、この迂回路形成工程の作業中は、切断工程から引き続いて、回線の送電を停止させておく必要があるが、絶縁ジャンパー線130のケーブル取付端子132の着脱は、ボルトを操作するだけで容易に行うことができるので、停電期間を短縮することが可能である。
特に、絶縁ジャンパー線130のケーブル131の長さが十分に長い場合には、工事区間A外の送電線20に取り付けた取付端子132は装着したままでよく、工事区間A内のみ、取付端子132を新設の送電線120に取り付ける作業を行えばよいので、停電期間を短縮することが可能である。
During the work of the detour formation process, it is necessary to stop the transmission of the line following the cutting process, but the cable mounting terminal 132 of the insulated jumper wire 130 can be attached and detached only by operating the bolt. Since it can be performed easily, it is possible to shorten the power outage period.
In particular, when the length of the cable 131 of the insulating jumper wire 130 is sufficiently long, the attachment terminal 132 attached to the power transmission line 20 outside the construction section A may be left attached, and the attachment terminal 132 only in the construction section A. Since it is only necessary to perform an operation for attaching to the newly installed power transmission line 120, it is possible to shorten the power outage period.

[架空送電線支持構造物]
なお、図13に示す、既設の耐張鉄塔10Aと、包み込み工法によりその外側に構築された新設の耐張鉄塔110Aと、絶縁ジャンパー線130とからなる構造物は、本発明の架空送電線支持構造物の一実施形態である。
すなわち、この架空送電線支持構造物は、二回線分の架空送電線を支持する腕金14及び114が回線ごとに上下に配置されている。
また、絶縁ジャンパー線130は、絶縁層及び遮蔽層を有するものである。
この絶縁ジャンパー線130は、図3、図8を参照して説明したように、下側の腕金14に支持された二本の既設の送電線20,20の端部同士を接続する状態と、図13に示したように、下側の腕金14に支持された架空送電線(工事区間A外の送電線20)の端部と上側の腕金114に支持された送電線120の端部とを接続する状態とにつなぎ替えることができるものである。
つまり、耐張鉄塔110Aが上側の回線である新設の送電線120をその腕金114で支持しており、耐張鉄塔10Aが下側の回線である既設の送電線20をその腕金14で支持している。
そして、絶縁ジャンパー線130は、図12に示した、耐張鉄塔10Aの腕金14が延線方向の両側に支持する二本の送電線20,20を電気的に接続した状態から、図13に示した、耐張鉄塔10Aの腕金14に支持された工事区間A外の送電線20と耐張鉄塔110Aの腕金114に支持された新設の送電線120とを電気的に接続した状態に、つなぎ替えることが可能である。
従って、耐張鉄塔110Aと耐張鉄塔10Aと絶縁ジャンパー線130とにより、本発明の架空送電線の工事方法に適した「架空送電線支持構造物」を実現している。
[Overhead transmission line support structure]
In addition, the structure which consists of the existing tension steel tower 10A shown in FIG. 13, the new tension steel tower 110A constructed outside by the enveloping method, and the insulation jumper wire 130 is an overhead power transmission line support of the present invention. It is one Embodiment of a structure.
That is, in this overhead power transmission line support structure, the braces 14 and 114 that support the overhead power transmission lines for two lines are arranged vertically for each line.
The insulating jumper wire 130 has an insulating layer and a shielding layer.
As described with reference to FIGS. 3 and 8, the insulating jumper wire 130 connects the ends of the two existing power transmission lines 20, 20 supported by the lower arm 14. As shown in FIG. 13, the end of the overhead power transmission line (power transmission line 20 outside the construction section A) supported by the lower arm 14 and the end of the power transmission line 120 supported by the upper arm 114. It can be switched to the state of connecting the parts.
That is, the tension tower 110A supports the new transmission line 120, which is the upper line, with the arm metal 114, and the existing transmission line 20, where the tension tower 10A is the lower circuit, with the arm metal 14. I support it.
The insulated jumper wire 130 is shown in FIG. 12 from the state in which the two power transmission lines 20 and 20 supported on both sides in the extending direction of the armature 14 of the tensile tower 10A are electrically connected as shown in FIG. As shown in FIG. 2, the power transmission line 20 outside the construction section A supported by the arm 14 of the tension steel tower 10A and the new power transmission line 120 supported by the arm 114 of the tension steel tower 110A are electrically connected. It is possible to change the connection.
Accordingly, the “overhead power transmission line support structure” suitable for the overhead power transmission line construction method of the present invention is realized by the tension steel tower 110A, the tension steel tower 10A, and the insulation jumper wire 130.

[架空送電線の工事方法:送電線交換工程]
次に、工事区間の全ての鉄塔10A、10Bが支持する既設の送電線20を、図14に示すように、新しい送電線220(他の架空送電線)に交換する送電線交換工程を実行する。なお、新しい送電線220には、前述した上側の回線に架線した送電線120と同じ鋼心アルミ撚り線が使用されている。
この送電線交換工程では、まず、工事区間の鉄塔10A、10Bにより支持されている既設の送電線20を全て撤去する。各送電線20は、前記切断工程において全ての絶縁ジャンパー線130を外しておいた場合には、当該各送電線20の両端部において碍子15aと連結されたクランプ部材を取り外すことにより撤去することが可能である。
各送電線20の撤去が完了すると、次に、図14に示すように、工事区間A内の全鉄塔110A,110Bの下側回線用の腕金114に新しい架空送電線220を架線する。
この架線作業は、前述した上側回線に送電線120を架線した作業と同じ方法で行うことができる。
[Construction method for overhead transmission lines: Transmission line replacement process]
Next, as shown in FIG. 14, a transmission line replacement process is performed in which the existing transmission lines 20 supported by all the towers 10A and 10B in the construction section are replaced with new transmission lines 220 (other overhead transmission lines). . The new power transmission line 220 uses the same steel core aluminum stranded wire as the power transmission line 120 laid over the above-described upper line.
In this transmission line exchange process, first, all the existing transmission lines 20 supported by the steel towers 10A and 10B in the construction section are removed. Each power transmission line 20 may be removed by removing the clamp members connected to the insulator 15a at both ends of each power transmission line 20 when all the insulating jumper wires 130 are removed in the cutting step. Is possible.
When the removal of each power transmission line 20 is completed, next, a new overhead power transmission line 220 is installed on the lower metal brace 114 for all the steel towers 110A and 110B in the construction section A as shown in FIG.
This overhead line work can be performed in the same manner as the above-described work of placing the power transmission line 120 on the upper line.

即ち、引き抜き工法或いは吊金工法等により新しい架空送電線220を鉄塔間に延線し、緊線作業の後に、各腕金114の碍子15a,15bに架空送電線220を取り付けることで工事区間内の下側回線の送電線220の架線作業が完了する。   In other words, a new overhead power transmission line 220 is extended between steel towers by a pulling method or a hanging metal method, and after the squeezing work, the overhead power transmission line 220 is attached to the insulators 15a, 15b of each arm metal 114 so that it is within the construction section. The overhead line work of the lower transmission line 220 is completed.

上記送電線交換工程の作業は、既に上側の回線により送電の迂回路が確保されているので、送電をしたまま行うことが可能である。   The power transmission line replacement process can be performed while power is being transmitted because the power transmission detour has already been secured by the upper line.

[架空送電線の工事方法:鉄塔撤去工程]
次に、図15に示すように、工事区間A内の懸垂鉄塔10Bを撤去する。
上記鉄塔撤去工程の作業は、懸垂鉄塔10Bの上方を迂回して送電が行われているので、送電を停止させることなく実施可能である。
[Construction method of overhead power transmission line: steel tower removal process]
Next, as shown in FIG. 15, the suspended tower 10B in the construction section A is removed.
The work of the tower removal process is performed without stopping the power transmission because the power transmission is performed around the suspension tower 10B.

工事区間Aの両端に位置する耐張鉄塔10A,10Aは、その腕金14に、工事区間外の送電線20が取り付けられているので、まだ撤去されない。
後述するように、工事区間A外の送電線20が、後の工事で新しい架空送電線220に交換されると、当該工事区間A外の送電線20が耐張鉄塔10Aの腕金14から外されるので、この後、今回の工事区間Aの両端にある耐張鉄塔10A,10Aの撤去が行われる。
上記懸垂鉄塔10B,10Bの撤去作業が完了すると、この工事区間Aについては、回線の増設及び架空送電線の交換のための架空送電線の工事が完了する。
The tensile steel towers 10A and 10A located at both ends of the construction section A are not yet removed because the power lines 20 outside the construction section are attached to the arm brackets 14 thereof.
As will be described later, when the transmission line 20 outside the construction section A is replaced with a new overhead transmission line 220 in a later construction, the transmission line 20 outside the construction section A is removed from the arm bracket 14 of the tension tower 10A. Therefore, after this, removal of the tensile steel towers 10A and 10A at both ends of the current construction section A is performed.
When the removal work of the suspension towers 10B, 10B is completed, in this construction section A, the construction of the overhead power transmission line for the addition of the line and the replacement of the overhead power transmission line is completed.

[新規工事区間への遷移]
既に工事が完了した工事区間に隣接する新規工事区間に対して、架空送電線の回線の増設及び架空送電線の交換を行う架空送電線の工事方法について、図16〜図22を参照しつつ、さらに説明する。以下の説明では、既に工事が行われた工事区間Aを「完了工事区間A」、その沿線方向に隣接する工事区間Bを「新規工事区間B」と記載することがある。
この新規工事区間Bにおける工事も、前述の完了工事区間Aにおいて行った工事と略同様なので、異なる点を中心に説明することとし、共通する点は簡潔に説明する。
[Transition to new construction section]
With reference to FIGS. 16 to 22, a method for constructing an overhead power transmission line in which a new construction section adjacent to a construction section that has already been completed is added and the overhead power transmission line replaced. Further explanation will be given. In the following description, the construction section A in which construction has already been performed may be referred to as “complete construction section A”, and the construction section B adjacent in the direction along the line may be referred to as “new construction section B”.
Since the construction in this new construction section B is substantially the same as the construction performed in the above-mentioned completed construction section A, only the different points will be explained, and the common points will be explained briefly.

新規工事区間Bには、図16に示すように、完了工事区間Aの片側の端部に位置する耐張鉄塔10Aとこの耐張鉄塔10Aから沿線方向に並んだ懸垂鉄塔10Bと耐張鉄塔10Aとが含まれている。   In the new construction section B, as shown in FIG. 16, a tension steel tower 10A located at one end of the completed construction section A, and a suspension tower 10B and a tension steel tower 10A lined up along the line from the tension steel tower 10A. And are included.

この新規工事区間Bにおいても、送電線120を増設し、既設の送電線20を新しい送電線220に交換する工事は、前述の完了工事区間Aと同様に、[絶縁ジャンパー線取付工程]→[鉄塔構築工程]→[架線工程]→[切断工程]→[迂回路形成工程]→[送電線交換工程]→[鉄塔撤去工程]の順で行われる。   Also in this new construction section B, the construction of adding the transmission line 120 and replacing the existing transmission line 20 with the new transmission line 220 is performed in the same manner as the completed construction section A described above [Insulation jumper wire installation step] → [ It is performed in the order of steel tower construction process → overhead line process → cutting process → detour formation process → transmission line replacement process → steel tower removal process.

[絶縁ジャンパー線取付工程]
この新規工事区間Bの一端にある耐張鉄塔10Aのジャンパー線30を撤去し、図17に示すように、絶縁ジャンパー線130に交換する。新規工事区間Bと完了工事区間Aとが重なる箇所にある耐張鉄塔10Aには、既に絶縁ジャンパー線130が取り付けられているので、この耐張鉄塔10Aに対する工事は省かれる。
また、送電線20の懸垂鉄塔10Bに吊下げられた箇所を絶縁ジャンパー線130に交換する(図17参照)。
なお、上記絶縁ジャンパー線の取り付け作業時には、この工事区間Bの送電線20に対して片回線送電又は送電停止状態とする。
[Insulation jumper wire installation process]
The jumper wire 30 of the tensile steel tower 10A at one end of the new construction section B is removed and replaced with an insulated jumper wire 130 as shown in FIG. Since the insulation jumper wire 130 is already attached to the tension steel tower 10A in the place where the new construction section B and the completed construction section A overlap, the construction for the tension steel tower 10A is omitted.
Moreover, the part suspended by the suspension tower 10B of the power transmission line 20 is replaced | exchanged for the insulation jumper wire 130 (refer FIG. 17).
In addition, at the time of the installation work of the said insulation jumper wire, it is set as the one-line power transmission or the power transmission stop state with respect to the power transmission line 20 of this construction section B.

[鉄塔構築工程]
絶縁ジャンパー線取付工程が完了したら、この新規工事区間Bの送電線20を用いて送電を開始する。
そして、この送電再開状態で、鉄塔構築工程を実施する。鉄塔構築工程では、図18に示すように、包み込み工法により耐張鉄塔110A及び懸垂鉄塔110Bを構築する。なお、この場合も、新規工事区間Bと完了工事区間Aとが重なる箇所にある耐張鉄塔10Aに対する工事は省かれる。
[Steel tower construction process]
When the insulation jumper wire attaching process is completed, power transmission is started using the power transmission line 20 of the new construction section B.
And a steel tower construction process is implemented in this power transmission resumption state. In the steel tower construction process, as shown in FIG. 18, the tension steel tower 110A and the suspended steel tower 110B are constructed by the enclosing method. In this case as well, the construction for the tension tower 10A at the place where the new construction section B and the completed construction section A overlap is omitted.

[架線工程]
次いで、送電を継続した状態で、架線工程を実施する。架線工程では、図19に示すように、耐張鉄塔110A及び懸垂鉄塔110Bの上側の各腕金114に新しい送電線120を架線する。
[Overhead line process]
Next, an overhead wire process is performed in a state where power transmission is continued. In the overhead wire process, as shown in FIG. 19, a new power transmission line 120 is installed on each arm metal 114 above the tension steel tower 110 </ b> A and the suspension steel tower 110 </ b> B.

[切断工程]
さらに、この後、送電を停止した状態で、切断工程を実施する。切断工程では、工事区間Bの両端部に位置する耐張鉄塔10A、10Aに設けられた絶縁ジャンパー線130の工事区間B内側の端部を、工事区間B内の送電線20から外す。
なお、この切断工程が実施された後の絶縁ジャンパー線130の状態は、新規工事区間Bの一端側と他端側とでは異なっている。
すなわち、新規工事区間Bの完了工事区間Aと重なる一端側の位置にある耐張鉄塔110Aに設けた絶縁ジャンパー線130の新規工事区間B外(完了工事区間A側)の端部は、完了工事区間Aに新設した送電線120に接続されている。
これに対して、新規工事区間Bの他端側の位置にある耐張鉄塔110Aに設けた絶縁ジャンパー線130の新規工事区間B外(未工事側)の端部は、既設の送電線20に接続されている状態である。
[Cutting process]
Furthermore, after this, the cutting process is performed in a state where power transmission is stopped. In the cutting process, the ends inside the construction section B of the insulation jumper wires 130 provided in the tensile steel towers 10A and 10A located at both ends of the construction section B are removed from the power transmission line 20 in the construction section B.
In addition, the state of the insulation jumper wire 130 after this cutting process is implemented is different between the one end side and the other end side of the new construction section B.
That is, the end of the insulated jumper wire 130 outside the new construction section B (completed construction section A side) of the insulated jumper wire 130A located at one end side overlapping the completed construction section A of the new construction section B is the completed construction section. It is connected to a transmission line 120 newly established in section A.
In contrast, the end of the insulation jumper wire 130 provided on the tension tower 110A at the other end side of the new construction section B outside the new construction section B (unconstructed side) is connected to the existing transmission line 20. It is in a connected state.

[迂回路形成工程]
次いで、迂回路形成工程では、新規工事区間B内の既設の送電線20から外された絶縁ジャンパー線130の端部を、図20に示すように、新規工事区間Bに新設した上側回線の送電線120に接続する。
これにより、新規工事区間Bの上側回線の新設の送電線120が、完了工事区間Aの上側回線の送電線120と、未工事側の既設の送電線20と電気的に接続され、新規工事区間Bに新設された上側回線の送電線120を経路とする迂回路が形成される。そして、この迂回路を通じて送電を再開する。
[Bypass formation process]
Next, in the detour formation process, the end of the insulated jumper wire 130 removed from the existing transmission line 20 in the new construction section B is sent to the transmission of the upper line newly installed in the new construction section B as shown in FIG. Connect to the wire 120.
As a result, the new transmission line 120 on the upper line in the new construction section B is electrically connected to the transmission line 120 on the upper line in the completed construction section A and the existing transmission line 20 on the unconstructed side. A detour with the upper line transmission line 120 newly provided in B as a route is formed. Then, power transmission is resumed through this detour.

[送電線交換工程]
次いで、図21に示すように、送電線交換工程により、新規工事区間Bの下側回線の既設の送電線20を全て新規の架空送電線220に交換する。この時、前述のように迂回路が形成されているので、送電した状態で作業を行うことができる。
[Transmission line exchange process]
Next, as shown in FIG. 21, all the existing transmission lines 20 on the lower line of the new construction section B are replaced with new overhead transmission lines 220 by the transmission line replacement process. At this time, since the detour is formed as described above, the work can be performed in a state where power is transmitted.

[鉄塔撤去工程]
次いで、図22に示すように、鉄塔撤去工程により、新規工事区間Bの完了工事区間Aと重なる一端側の位置にある耐張鉄塔110Aと新規工事区間B内の懸垂鉄塔110Bの内側にある古い耐張鉄塔10A及び懸垂鉄塔10Bの撤去が行われ、当該新規工事区間の工事が完了する。
[Steel tower removal process]
Next, as shown in FIG. 22, the steel tower removal process causes the old steel tower 110 </ b> A located on one end side to overlap the completed construction section A of the new construction section B and the old inside the suspension tower 110 </ b> B in the new construction section B. Tensile tower 10A and suspension tower 10B are removed, and the construction of the new construction section is completed.

図22は、完了工事区間Aの沿線方向両側の新規工事区間Bに送電線120の回線増設及び送電線220への交換を行う工事方法が完了した状態を示す図である。
上述のように、送電線路の沿線を複数に区切って企画した工事区間の工事を順次行い、最終的に、図23に示すように、既設の送電線20を全て撤去し、新しい送電線120,220を敷設した送電線路を完成する。
FIG. 22 is a diagram illustrating a state in which the construction method of adding the transmission line 120 and replacing the transmission line 220 in the new construction section B on both sides of the completed construction section A is completed.
As described above, the construction of the construction section planned by dividing the line along the transmission line into a plurality of parts is sequentially performed. Finally, as shown in FIG. 23, all the existing transmission lines 20 are removed, and new transmission lines 120, The transmission line laid with 220 is completed.

[架空送電線の工事方法の技術的効果]
上述した架空送電線の工事方法では、工事区間内の各耐張鉄塔110A及び懸垂鉄塔110Bの上側回線の腕金114に支持された新設の送電線120とその両端部に接続された絶縁ジャンパー線130,130とにより、既設の送電線20に替わる迂回路の形成を行っている。
このため、既存の送電線路の沿線の外側に、工事のための迂回路を形成する用地を確保する必要がなく、用地確保が困難な地域でも工事を行うことができる。また、地盤の悪い地域でも迂回路を形成するための新たな用地に対する基礎工事を不要とする。
特に、新規の大型の鉄塔110A、110Bを、もとの低い鉄塔10A、10Bに対する包み込み工法で構築することにより、新たな用地確保の必要性をさらに低減することができる。
[Technical effect of overhead power line construction method]
In the above-described overhead power transmission line construction method, a new power transmission line 120 supported by the brace 114 on the upper line of each tensile steel tower 110A and suspension steel tower 110B in the construction section and insulated jumper wires connected to both ends thereof. 130 and 130 form a detour to replace the existing power transmission line 20.
For this reason, it is not necessary to secure a site for forming a detour for the work outside the existing transmission line, and the work can be performed even in an area where the site is difficult to secure. In addition, foundation work is not required for new sites to form detours in areas with poor ground.
In particular, by constructing new large steel towers 110A and 110B by the enclosing method for the original low steel towers 10A and 10B, the need for securing a new site can be further reduced.

また、前述の工事方法では、耐張鉄塔110Aに絶縁ジャンパー線130を当該鉄塔に上下に沿って設け、この絶縁ジャンパー線130で、工事区間内の上側に支持された新設の送電線120と工事区間外の送電線20とを接続したので、これら送電線20、120を接続するために、工事区間外の送電線20を鉄塔の下側の腕金14から上側の腕金114に付け替え直す作業が不要となり、効率的に工事を進めることが可能となる。   Further, in the construction method described above, the insulation jumper wire 130 is provided on the steel tower 110A along the top and bottom of the tensile tower 110A, and the new transmission line 120 supported on the upper side in the construction section and the construction work with the insulation jumper wire 130. Since the power transmission line 20 outside the section is connected, in order to connect the power transmission lines 20 and 120, the power transmission line 20 outside the construction section is reassigned from the lower arm 14 to the upper arm 114. Is no longer necessary, and construction can be carried out efficiently.

また、遮蔽層と絶縁層とを備えたケーブル131からなる絶縁ジャンパー線130を、通常のジャンパー線30に替えて、使用することで、耐張鉄塔10A又は懸垂鉄塔10Bの周囲に作業領域を容易に確保することができ、送電を止めることなく、耐張鉄塔110A及び懸垂鉄塔110Bの包み込み工法による構築を行うことが可能となる。   Further, by using an insulating jumper wire 130 made of a cable 131 having a shielding layer and an insulating layer instead of the normal jumper wire 30, a work area can be easily formed around the tension steel tower 10A or the suspension steel tower 10B. Therefore, it is possible to construct the tension steel tower 110A and the suspended steel tower 110B by the enclosing method without stopping the power transmission.

また、前述の実施形態の工事方法の絶縁ジャンパー線取付工程では、耐張鉄塔10Aにおいて工事区間内外の送電線20同士を接続する絶縁ジャンパー線130に長めのものを取り付け、迂回路形成工程では、この絶縁ジャンパー線130を用いて、工事区間外の送電線20と工事区間内の新設送電線120とを接続するので、絶縁ジャンパー線130の取付端子132の付け替える作業は、工事区間内の側のみ行えばよく、それぞれの工程で必要な長さの絶縁ジャンパー線を用いる場合に比較して、迂回路形成工程の作業効率を向上できる。また、絶縁ジャンパー線130の共用により、工事に用いる絶縁ジャンパー線の種類を減らして、工事コストの低減を図ることが可能となる。
なお、絶縁されている絶縁ジャンパー線130を用いたので、いずれかの接続状態において余長が生じたときには束取りし、鉄塔に載置しておく等して、ケーブル長を調節できるので、その取り扱いが容易である利点もある。
また、この絶縁ジャンパー線130に設けた取付端子132は、複数種類のカラー134を適宜選択して異なる径の送電線20、120に共用できるものなので、既設の送電線20と新設した送電線120の外径が異なる場合でも絶縁ジャンパー線130の流用が可能である。
Further, in the insulation jumper wire attaching step of the construction method of the above-described embodiment, a long one is attached to the insulation jumper wire 130 that connects the transmission lines 20 inside and outside the construction section in the tension tower 10A, and in the detour formation step, Since the insulated jumper wire 130 is used to connect the transmission line 20 outside the construction section and the new transmission line 120 within the construction section, the work for replacing the attachment terminal 132 of the insulation jumper line 130 is performed only on the side within the construction section. The work efficiency of the detour formation process can be improved as compared with the case where an insulation jumper wire having a length necessary for each process is used. In addition, by sharing the insulating jumper wire 130, it is possible to reduce the type of insulating jumper wire used for the construction and reduce the construction cost.
Since the insulated jumper wire 130 that is insulated is used, the cable length can be adjusted by bundling it and placing it on a steel tower, etc. There is also an advantage that it is easy to handle.
In addition, since the mounting terminal 132 provided on the insulating jumper wire 130 can be used for the transmission lines 20 and 120 having different diameters by appropriately selecting a plurality of types of collars 134, the existing transmission line 20 and the newly installed transmission line 120 are used. Even when the outer diameters of the wires are different, the insulating jumper wire 130 can be used.

[第2の実施形態]
図24〜図32は、本発明の工事方法の第2の実施形態を示すもので、前述の第1の実施形態と同様の箇所には同じ符号を付し、簡潔に説明にする。
この実施形態では、架空送電線の交換・増設の工事と合せて、工事区間Aにある懸垂鉄塔10Ba,10Bbのうち、懸垂鉄塔10Baを腕金の増設も行うことなく完全に撤去する工事を合せて行う。
[Second Embodiment]
FIGS. 24-32 shows 2nd Embodiment of the construction method of this invention, The same code | symbol is attached | subjected to the location similar to the above-mentioned 1st Embodiment, and it demonstrates simply.
In this embodiment, in addition to the construction for exchanging and extending the overhead power transmission line, the construction for completely removing the suspension tower 10Ba from the suspension towers 10Ba and 10Bb in the construction section A without adding a brace. Do it.

この実施形態の工事方法では、[絶縁ジャンパー線取付工程](図25参照)、[鉄塔構築工程](図26参照)及び[架線工程](図27参照)を実施する際に、撤去予定の懸垂鉄塔10Baを作業対象からは外して工事が進められる。各鉄塔10A、10A、10Bbに対して、図3、図10、図12で説明した手順と同様に各工程の作業が行われる。なお、架線工程では、新設の送電線120は懸垂鉄塔10Baを回避してその上側を通過するように架線される。   In the construction method of this embodiment, when the [insulation jumper wire installation step] (see FIG. 25), the [steel tower construction step] (see FIG. 26) and the [overhead wire step] (see FIG. 27) are performed, they are scheduled to be removed. The suspension tower 10Ba is removed from the work target and the work is proceeded. Each of the towers 10A, 10A, and 10Bb is performed in the same manner as in the procedures described with reference to FIGS. In the overhead line process, the newly installed power transmission line 120 is installed so as to avoid the suspension tower 10Ba and pass through the upper side thereof.

この後の[切断工程]、[迂回路形成工程]を実施して、図28に示すように、新設した送電線120を利用した迂回路を形成する。即ち、各鉄塔10A、10Aに対して、図13で説明した手順と同様に各工程の作業が行われる。
次いで図29に示すように[送電線交換工程]で既設の送電線20を新しい送電線220に交換する。即ち、鉄塔10A、10A、10Bbに対して、図14で説明した手順と同様に送電線交換工程の作業が行われる。このとき、新設の送電線220は懸垂鉄塔10Baを回避してその外側を通過するように架線される。
この後[鉄塔撤去工程]で、既設の懸垂鉄塔10Baと共に撤去すると、図30、図31の状態になり、工事区間Aの工事が終了する。
The subsequent [cutting step] and [detour forming step] are performed to form a detour using the newly established power transmission line 120 as shown in FIG. That is, the work of each process is performed on each of the steel towers 10A and 10A in the same manner as the procedure described in FIG.
Next, as shown in FIG. 29, the existing power transmission line 20 is replaced with a new power transmission line 220 in [transmission line replacement step]. That is, the power transmission line replacement process is performed on the steel towers 10A, 10A, and 10Bb in the same manner as the procedure described in FIG. At this time, the newly installed power transmission line 220 is wired so as to avoid the suspension tower 10Ba and pass through the outside thereof.
Thereafter, when the steel tower is removed together with the existing suspended steel tower 10Ba in the [steel tower removing step], the state shown in FIGS. 30 and 31 is obtained, and the construction of the construction section A is completed.

この後、順次、隣接する工事区間Bの工事を行う。工事区間Bは、前述した[絶縁ジャンパー線取付工程](図17参照)、[鉄塔構築工程](図18参照)、[架線工程](図19参照)、[切断工程]、[迂回路形成工程](図20参照)、[送電線交換工程](図21参照)及び[鉄塔撤去工程](図22参照)と同一の作業内容で工事を行う。
そして、最終的に図32に示すように、送電線路全体に、新しい送電線120を増設するとともに、既設の送電線20を新しい送電線220に交換する。
Thereafter, the construction of the adjacent construction section B is sequentially performed. The construction section B includes the [insulation jumper wire installation process] (see FIG. 17), [steel tower construction process] (see FIG. 18), [overhead wire process] (see FIG. 19), [cutting process], and [detour formation]. Work is carried out with the same work contents as [Process] (see FIG. 20), [Transmission line replacement process] (see FIG. 21) and [Steel tower removal process] (see FIG. 22).
Finally, as shown in FIG. 32, a new power transmission line 120 is added to the entire power transmission line, and the existing power transmission line 20 is replaced with a new power transmission line 220.

なお、この工事区間B内の懸垂鉄塔10Bも撤去の対象とすることが可能である。その場合には、工事区間Aの場合と同様に、撤去する懸垂鉄塔10Bに対しては[絶縁ジャンパー線取付工程]、[鉄塔構築工程]及び[架線工程]の作業を行わず、[切断工程]、[迂回路形成工程]、[送電線交換工程]の後に[鉄塔撤去工程]で撤去する。   The suspension tower 10B in the construction section B can also be removed. In that case, as in the construction section A, the [insulation jumper wire installation step], [steel tower construction step], and [overhead wire step] are not performed on the suspended steel tower 10B to be removed. ], [Bypass formation process], [Transmission line exchange process], then [Tower removal process].

[第3の実施形態]
前述した第1及び第2の実施形態における工事方法では、工事区間内の耐張鉄塔10A及び懸垂鉄塔10Bに対して包み込み工法で、より高い新規の耐張鉄塔110A及び懸垂鉄塔110Bを構築しているが、上方に回線増設の余地を得るために鉄塔10A、10Bを嵩上げ工法により、高くすることも可能である。
以下、発明の第3の実施形態として、鉄塔10A、10Bを嵩上げする嵩上げ工程とその前後の工程について説明する。
[Third Embodiment]
In the construction methods in the first and second embodiments described above, a higher new tension steel tower 110A and suspension steel tower 110B are constructed by wrapping the tension steel tower 10A and suspension steel tower 10B in the construction section. However, the steel towers 10A and 10B can be raised by a raising method in order to obtain room for additional lines upward.
Hereinafter, as a third embodiment of the invention, a raising step for raising the steel towers 10A and 10B and steps before and after that will be described.

まず、図33に示すように、嵩上げ工程の前に、耐張鉄塔10Aのジャンパー線30を絶縁ジャンパー線130に交換する(絶縁ジャンパー線取付工程)。また、図3で説明したのと同じ手順により、懸垂鉄塔10Bに対しても、絶縁ジャンパー線取付工程の作業を行う。
上記絶縁ジャンパー線取付工程は送電停止又は片回線送電で実施される。
First, as shown in FIG. 33, before the raising step, the jumper wire 30 of the tensile tower 10A is replaced with an insulating jumper wire 130 (insulating jumper wire attaching step). Moreover, the operation | movement of an insulation jumper wire attachment process is performed also with respect to the suspension tower 10B by the same procedure demonstrated in FIG.
The insulating jumper wire attaching step is performed by power transmission stop or single line power transmission.

そして、図34及び図35に示すように、耐張鉄塔10Aの上端部を平坦に改造した後に、二回線分の腕金14が形成された嵩上げ構造体を上方に取り付ける(嵩上げ工程)。懸垂鉄塔10Bにも同様に嵩上げ工程の作業を行う。
前述のように絶縁ジャンパー線を取り付けたので、この嵩上げ工程は送電状態で実施できる。
Then, as shown in FIGS. 34 and 35, after the upper end portion of the tension steel tower 10A is remodeled flat, the raised structure on which the arm 14 for two lines is formed is attached upward (raising step). Similarly, the lifting process is performed on the suspension tower 10B.
Since the insulating jumper wire is attached as described above, this raising step can be performed in a power transmission state.

そして、図36に示すように、耐張鉄塔10Aに追加された上側回線の各腕金14に新設の送電線120を架線とする(架線工程)。また、図12で説明したように、懸垂鉄塔10Bには、懸垂碍子15bを介して送電線120を懸垂支持する。
上記架線工程も送電状態で実施される。
Then, as shown in FIG. 36, the newly installed transmission line 120 is used as an overhead line for each arm 14 of the upper line added to the tensile tower 10A (overlaying step). In addition, as described with reference to FIG. 12, the power transmission line 120 is suspended and supported by the suspension tower 10B via the suspension insulator 15b.
The overhead wire process is also performed in a power transmission state.

その後、図37に示すように、工事区間外の送電線20に一端部が接続された絶縁ジャンパー線130の他端部を既設の送電線20から分離し、新設の送電線120に接続する(切断工程及び迂回路形成工程)。
上記切断工程及び迂回路形成工程は送電停止又は片回線送電で実施される。
Thereafter, as shown in FIG. 37, the other end of the insulation jumper wire 130 having one end connected to the transmission line 20 outside the construction section is separated from the existing transmission line 20 and connected to the new transmission line 120 ( Cutting step and detour forming step).
The disconnection process and the detour formation process are performed by power transmission stop or single line power transmission.

その後は、耐張鉄塔10Aの下側の回線で支持する既設の送電線20を撤去して新規の送電線220を架線する(架空送電線交換工程)。
各鉄塔10A、10Bに対する架空送電線交換工程は、図14の説明とほぼ同じ手順により実施されるが、嵩上げを行った各鉄塔10A、10Bの場合には、既設の送電線20を支持していた腕金14に新規の送電線220が架線される。
上記架空送電線交換工程は、迂回路が形成されているので送電状態で実施される。
Thereafter, the existing power transmission line 20 supported by the lower line of the tensile tower 10A is removed, and a new power transmission line 220 is installed (overhead power transmission line replacement process).
The overhead power transmission line exchange process for each of the steel towers 10A and 10B is performed according to substantially the same procedure as described in FIG. 14, but in the case of each of the steel towers 10A and 10B that have been raised, the existing power transmission lines 20 are supported. A new power transmission line 220 is placed on the arm 14.
The overhead power transmission line exchange process is performed in a power transmission state because a bypass is formed.

このように、鉄塔構築工程に替えて嵩上げ工程を行う場合には、鉄塔撤去工程は不要となるので、工事を短期で行うことが可能となる。また、鉄塔構築工程における包み込み工法では、新たな基礎の構築や工事用地が多少拡大する可能性があるが、嵩上げ工程ではそれらを殆ど不要とすることが可能である。   As described above, when the raising process is performed instead of the steel tower construction process, the steel tower removal process becomes unnecessary, so that the construction can be performed in a short time. In the enveloping method in the steel tower construction process, there is a possibility that the construction of a new foundation and the site for construction will be somewhat expanded, but it is possible to make them almost unnecessary in the raising process.

なお、図37に示す「架空送電線支持構造物」は、嵩上げされた耐張鉄塔10Aと絶縁ジャンパー線130とによって構成されている。この「架空送電線支持構造物」の嵩上げされた耐張鉄塔10Aには、架空送電線を支持する腕金14が回線ごとに上下に配置されている。そして、絶縁ジャンパー線130は、下側回線用の腕金14に支持された送電線20,20の端部同士を接続する状態と、下側回線用の腕金14に支持された架空送電線(工事区間外の送電線20)の端部と上側回線用の腕金14に支持された送電線120の端部とを接続する状態とにつなぎ替えることができるものである。
つまり、耐張鉄塔10Aが上側回線である新設の送電線120を、増設された腕金14で支持しており、耐張鉄塔10Aが下側回線である既設の送電線20を既設の腕金14で支持している。
そして、絶縁ジャンパー線130は、図35に示す、耐張鉄塔10Aの下側回線用の腕金14の両側に支持された二本の送電線20,20を電気的に接続した状態と、図37に示す、耐張鉄塔10Aの下側回線用の腕金14に支持された工事区間外の送電線20と耐張鉄塔10Aの上側回線用に増設された腕金14に支持された新設の送電線120とを電気的に接続した状態とにつなぎ替えることが可能である。
絶縁ジャンパー線130は、図37の状態に必要な長さのものであり、図35の状態では余長があるため、余長分は束取りされて、耐張鉄塔10Aの水平な箇所などに置かれている。
従って、耐張鉄塔10Aと絶縁ジャンパー線130とにより架空送電線の工事方向に適した「架空送電線支持構造物」を実現している。
Note that the “overhead power transmission line support structure” shown in FIG. 37 is composed of a raised tensile steel tower 10A and an insulating jumper wire 130. Arms 14 that support the overhead power transmission line are arranged vertically on each line in the elevated tensile steel tower 10A of the “overhead power transmission line support structure”. The insulation jumper wire 130 is connected to the ends of the power transmission lines 20 and 20 supported by the lower line arm 14 and the overhead power line supported by the lower line arm 14. It can be switched to a state in which the end of (the power transmission line 20 outside the construction section) and the end of the power transmission line 120 supported by the upper line brace 14 are connected.
In other words, the new transmission line 120 in which the tension steel tower 10A is the upper line is supported by the added arm bracket 14, and the existing transmission line 20 in which the tension tower 10A is the lower circuit is supported by the existing arm metal. 14 is supported.
And the insulated jumper wire 130 electrically connects the two power transmission lines 20 and 20 supported on both sides of the arm 14 for the lower line of the tension tower 10A shown in FIG. 37, a new transmission line 20 supported by a power transmission line 20 outside the construction section supported by a lower arm 14 for the tension tower 10A and an arm 14 extended for the upper circuit of the tension tower 10A. It is possible to switch to a state in which the power transmission line 120 is electrically connected.
The insulation jumper wire 130 has a length necessary for the state shown in FIG. 37. Since there is a surplus length in the state shown in FIG. 35, the surplus length is bundled and placed on a horizontal portion of the tensile steel tower 10A. It has been placed.
Therefore, the “overhead power transmission line support structure” suitable for the construction direction of the overhead power transmission line is realized by the tensile steel tower 10A and the insulating jumper wire 130.

[架空送電線の工事方法の他の例]
上記実施形態では、工事区間内に両側面に二回線分の腕金14を有する耐張鉄塔10Aと懸垂鉄塔10Bがある場合に、その回線の増設と架空送電線の交換を行う架空送電線の工事方法を例示したが、これに限られない。
例えば、工事区間内に、低い耐張鉄塔10A及び懸垂鉄塔10Bではなく、前記耐張鉄塔110A及び懸垂鉄塔110Bに相当する鉄塔(以下、耐張鉄塔110A、懸垂鉄塔110Bと記載して、説明を簡潔にする。)が当初から設けられており、下側(又は上側)の回線の腕金114のみに既設の送電線20が架線されて使用されており、上側(又は下側)の回線の腕金114には架線されずに全て未使用の場合に、上記工事方法を適用して回線の増設及び架空送電線の交換を行うことが可能である。
その場合、送電状態で、工事区間内の鉄塔110A,110Bの未使用の回線に新設の送電線120を架線する(架線工程)。
そして、送電停止又は片回線送電状態で、工事区間の両端の耐張鉄塔110Aにおいて、工事区間内外の既設送電線20の電気的接続を切断する(切断工程)。切断は、例えば、ジャンパー線30の撤去により行う。
そして、送電停止又は片回線送電状態で、工事区間の両端の耐張鉄塔110Aに上下に沿った絶縁ジャンパー線130を取り付け、これにより、工事区間外の既設の送電線20と工事区間内に新設した送電線120とを接続し、迂回路を形成する(迂回路形成工程)。
そして、送電を再開して、耐張鉄塔110A及び懸垂鉄塔110Bの下側(又は上側)の回線の腕金114に支持された既設の送電線20を撤去し、他の架空送電線220を新たに架線する(架空送電線交換工程)。
このように、工事区間内の鉄塔110A,110Bが上側又は下側に未使用の回線を有する場合には、鉄塔構築工程や嵩上げ工程を行うことなく、回線の増設と架空送電線の交換を行うことが可能である。
[Other examples of construction methods for overhead power transmission lines]
In the above embodiment, when there are a tension tower 10A and a suspension tower 10B having armatures 14 for two lines on both sides in the construction section, the overhead transmission line that performs the extension of the line and the replacement of the overhead transmission line is provided. Although the construction method was illustrated, it is not restricted to this.
For example, in the construction section, not the low tension steel tower 10A and the suspension tower 10B, but the steel tower corresponding to the tension steel tower 110A and the suspension steel tower 110B (hereinafter referred to as the tension steel tower 110A and the suspension tower 110B). Is simplified from the beginning, and the existing transmission line 20 is used only on the lower (or upper) line brace 114, and the upper (or lower) line is used. When the arm metal 114 is not overhead and is not used, it is possible to apply the above construction method to add a line and replace an overhead power transmission line.
In that case, the new transmission line 120 is installed on the unused line of the steel towers 110A and 110B in the construction section in the power transmission state (overhead line process).
Then, the electrical connection of the existing transmission lines 20 inside and outside the construction section is cut off at the tension towers 110A at both ends of the construction section in a power transmission stop or single-line power transmission state (cutting process). For example, the cutting is performed by removing the jumper wire 30.
Then, when the power transmission is stopped or in a single-line power transmission state, the insulation jumper wires 130 are attached to the tensile steel towers 110A at both ends of the construction section so as to be newly installed in the construction section and the existing transmission line 20 outside the construction section. The power transmission line 120 is connected to form a detour (detour formation step).
Then, power transmission is resumed, the existing power transmission line 20 supported by the arm (114) on the lower side (or upper side) of the tension tower 110A and the suspension tower 110B is removed, and another overhead power transmission line 220 is renewed. (Overhead transmission line exchange process).
As described above, when the towers 110A and 110B in the construction section have unused lines on the upper side or the lower side, the addition of the lines and the replacement of the overhead transmission lines are performed without performing the tower construction process or the raising process. It is possible.

また、上記の場合には、「架空送電線支持構造物」は、耐張鉄塔110Aと絶縁ジャンパー線130とによって構成されている。この「架空送電線支持構造物」の耐張鉄塔110Aには、架空送電線を支持する腕金114が回線ごとに上下に配置されている。そして、絶縁ジャンパー線130は、下側の回線に対応する腕金114に支持された送電線20,20の端部同士を接続する状態と、下側の回線に対応する腕金114に支持された架空送電線(工事区間外の送電線20)の端部と上側の回線に対応する腕金114に支持された送電線120の端部とを接続する状態とをつなぎ替えることができるものである。
従って、耐張鉄塔110Aと絶縁ジャンパー線130とにより架空送電線の工事方向に適した「架空送電線支持構造物」を実現している。
In the above case, the “overhead power transmission line support structure” is constituted by the tension steel tower 110 </ b> A and the insulating jumper wire 130. In the tension steel tower 110A of this “overhead power transmission line support structure”, a brace 114 that supports the overhead power transmission line is arranged vertically on each line. The insulating jumper wire 130 is supported by the arm metal 114 corresponding to the lower line and the state in which the ends of the power transmission lines 20 and 20 supported by the arm metal 114 corresponding to the lower line are connected to each other. The connection between the end of the overhead transmission line (the transmission line 20 outside the construction section) and the end of the transmission line 120 supported by the arm bracket 114 corresponding to the upper line can be switched. is there.
Therefore, the “overhead power transmission line support structure” suitable for the construction direction of the overhead power transmission line is realized by the tensile steel tower 110A and the insulating jumper wire 130.

[絶縁ジャンパー線の支持構造の他の例]
本発明の工事方法を実施する場合、既設の架空送電線が懸垂鉄塔に吊下げられていた箇所を絶縁ジャンパー線130に置き換えたときの構造は、図4、図9に示した構造以外にも考えられる。
例えば、図38に示すように、懸垂鉄塔10Bの懸垂碍子15bの上部にシリコーン碍子201を2つ取り付け、これらに圧縮クランプ等からなる引留め工具200Aを用いて既設の送電線20を接続した構造であっても良い。切り離された送電線20、20には、絶縁ジャンパー線130が取り付けられ、この絶縁ジャンパー線130は懸垂碍子15bの下に吊下げられている。
また、図39及び図40に示した構造は、懸垂碍子15bの下部に、絶縁ジャンパー線130を支持する部分(ジャンパー支持部)203aと、シリコーン碍子201を引き留めるワイヤー201aを支持する部分(碍子支持部)203bとを備える支持具203を設けた構造である。シリコーン碍子201には、引留め工具200Aを用いて既設の送電線20が接続されている。
図41は、腕金14の両側で支持される送電線20,20を接続するために必要な長さよりも十分に長い絶縁ジャンパー線130を上記支持具203を用いて支持する場合の構造を示しており、絶縁ジャンパー線130の余長を束取り状態Tにして、絶縁ジャンパー線130が下の送電線20に近づくのを防止している。また、懸垂碍子15bの両側で絶縁ジャンパー線130を束取り状態Tにすることで、懸垂碍子15bの両側の張力のバランスを取っている。
[Another example of insulation jumper wire support structure]
When carrying out the construction method of the present invention, the structure when the existing overhead power transmission line is suspended from the suspension tower is replaced with the insulated jumper wire 130, in addition to the structures shown in FIGS. Conceivable.
For example, as shown in FIG. 38, two silicone insulators 201 are attached to the upper part of the suspension insulator 15b of the suspension tower 10B, and the existing power transmission line 20 is connected to these using a retaining tool 200A made of a compression clamp or the like. It may be. An insulated jumper wire 130 is attached to the separated power transmission lines 20 and 20, and this insulated jumper wire 130 is suspended under the suspension insulator 15b.
Further, the structure shown in FIGS. 39 and 40 includes a portion (jumper support portion) 203a that supports the insulating jumper wire 130 and a portion that supports the wire 201a that holds the silicone insulator 201 (insulator support) at the lower portion of the suspended insulator 15b. Part) 203b is provided. The existing transmission line 20 is connected to the silicone insulator 201 using a retaining tool 200A.
FIG. 41 shows a structure in the case where an insulating jumper wire 130 that is sufficiently longer than a length necessary for connecting the power transmission lines 20 and 20 supported on both sides of the arm metal 14 is supported by the support 203. Thus, the surplus length of the insulating jumper wire 130 is set to the bundling state T to prevent the insulating jumper wire 130 from approaching the lower power transmission line 20. In addition, by setting the insulation jumper wires 130 in the bundled state T on both sides of the hanging insulator 15b, the tension on both sides of the hanging insulator 15b is balanced.

[その他]
なお、上記鉄塔10A,10B,110A,110Bでは、腕金14又は114が一本の送電線20又は120を支持する1導体の場合を例示したが、腕金14又は114は2導体、4導体、6導体、8導体などのように、複数本の架空送電線を支持するものであっても良い。
その場合、導体である架空送電線同士が接触しないように、複数の架空送電線の間には一定間隔でスペーサが設置される。また、複数導体の場合には、導体の本数に応じて複数のジャンパー線30又は130が使用される。
[Others]
In the steel towers 10A, 10B, 110A, and 110B, the case where the arm metal 14 or 114 is a single conductor that supports the single power transmission line 20 or 120 is illustrated, but the arm metal 14 or 114 is composed of two conductors and four conductors. , 6 conductors, 8 conductors, etc., may support a plurality of overhead power transmission lines.
In that case, spacers are installed at regular intervals between the plurality of overhead transmission lines so that the overhead transmission lines as conductors do not contact each other. In the case of a plurality of conductors, a plurality of jumper wires 30 or 130 are used according to the number of conductors.

また、上記鉄塔10A,10Bを二回線とする場合を例示したが、一回線鉄塔又はより多くの回線を有する鉄塔についても、上記架空送電線工事方法を適用することが可能である。その場合、鉄塔110A,110Bについては、鉄塔10A,10Bの二倍の回線を有し、鉄塔10A,10Bの回線と同数の回線が当該鉄塔10A,10Bの回線よりも上側又は下側に配置されていることが望ましい。
そして、これら鉄塔110A,110Bにおける、鉄塔10A,10Bの回線と同数であってその上側又は下側に配置された回線を迂回経路として利用することが望ましい。
Moreover, although the case where the said towers 10A and 10B are made into two lines was illustrated, it is possible to apply the said overhead power transmission line construction method also to the tower which has one line tower or more lines. In this case, the towers 110A and 110B have twice as many lines as the towers 10A and 10B, and the same number of lines as the towers 10A and 10B are arranged above or below the lines of the towers 10A and 10B. It is desirable that
And it is desirable to use the same number of lines in the towers 110A and 110B as the lines of the towers 10A and 10B and arranged on the upper side or the lower side as a detour path.

また、上記実施形態では、工事区間に鉄塔が四本設けられている場合を例示したが、鉄塔の本数はこれに限らず、より多い場合でも上述の工事方法を適用することが可能である。また、工事区間内の両端部にのみ耐張鉄塔が配置されている場合を例示したが、区間内の途中にも耐張鉄塔がある工事区間にも上記の工事方法を適用することは可能である。なお、その場合でも、迂回路形成工程において送電線20と送電線120とを絶縁ジャンパー線130により接続する作業が必須の耐張鉄塔110A,10Aは、工事区間の端部の鉄塔のみである。   Moreover, in the said embodiment, although the case where the four steel towers were provided in the construction area was illustrated, the number of steel towers is not restricted to this, The above-mentioned construction method is applicable even when there are many. In addition, although the case where the tension steel towers are arranged only at both ends in the construction section is illustrated, it is possible to apply the above construction method to a construction section where there is a tension steel tower in the middle of the section as well. is there. Even in such a case, the tension steel towers 110A and 10A in which the work of connecting the power transmission line 20 and the power transmission line 120 by the insulating jumper line 130 in the detour formation process is indispensable are only the steel towers at the end of the construction section.

10A,110A 耐張鉄塔
10B,10Ba,10Bb,110B 懸垂鉄塔
11 主材
12 副材
14,114 腕金
20 送電線(架空送電線)
30 ジャンパー線
31 導線
32 ケーブル取付端子
120 送電線(新設の架空送電線)
130 絶縁ジャンパー線
131 ケーブル
132 ケーブル取付端子
134 カラー
220 送電線(他の架空送電線)
A 完了工事区間(工事区間)
B 新規工事区間(工事区間)
T 束取り状態
10A, 110A Tensile tower 10B, 10Ba, 10Bb, 110B Suspension tower 11 Main material 12 Secondary material 14, 114 Arm metal 20 Transmission line (overhead transmission line)
30 Jumper wire 31 Conductor wire 32 Cable mounting terminal 120 Transmission line (new overhead transmission line)
130 Insulated jumper wire 131 Cable 132 Cable mounting terminal 134 Color 220 Power transmission line (other overhead power transmission line)
A Completed construction section (construction section)
B New construction section (construction section)
T Bundled state

Claims (1)

架空送電線を支持する腕金が回線ごとに上下に配置され、
前記腕金の本数を前記架空送電線の回線数の二倍以上とし、
下側又は上側の回線に対応する前記腕金に支持された架空送電線と、上側又は下側の回線に対応する前記腕金に支持された架空送電線とを、絶縁ジャンパー線で接続したことを特徴とする架空送電線支持構造物。
The braces that support the overhead power transmission line are placed one above the other,
The number of the metal braces is more than twice the number of the overhead power transmission lines,
The overhead transmission line supported by the armor corresponding to the lower or upper line and the overhead transmission line supported by the armor corresponding to the upper or lower line are connected by an insulating jumper line. A structure for supporting an overhead power transmission line.
JP2014010996A 2014-01-24 2014-01-24 Overhead power transmission line support structure Active JP5788033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014010996A JP5788033B2 (en) 2014-01-24 2014-01-24 Overhead power transmission line support structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014010996A JP5788033B2 (en) 2014-01-24 2014-01-24 Overhead power transmission line support structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013143432A Division JP5486120B1 (en) 2013-07-09 2013-07-09 Overhead power transmission line construction method and overhead power line support structure suitable for this method

Publications (2)

Publication Number Publication Date
JP2015019559A true JP2015019559A (en) 2015-01-29
JP5788033B2 JP5788033B2 (en) 2015-09-30

Family

ID=52440038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014010996A Active JP5788033B2 (en) 2014-01-24 2014-01-24 Overhead power transmission line support structure

Country Status (1)

Country Link
JP (1) JP5788033B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160114885A (en) * 2015-03-25 2016-10-06 이강주 Guide ring rope for transmission lines
CN114895419A (en) * 2022-04-06 2022-08-12 浙江泰仑电力集团有限责任公司 Optical cable tightening construction method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003180026A (en) * 2001-12-07 2003-06-27 Mitsubishi Cable Ind Ltd Jumper wire
JP2004357359A (en) * 2003-05-27 2004-12-16 Tokyo Electric Power Co Inc:The Steel tower reconstruction method
JP2006230131A (en) * 2005-02-18 2006-08-31 Tokyo Electric Power Co Inc:The Phase exchanging work method of overhead line
JP2012005263A (en) * 2010-06-17 2012-01-05 Hitachi Cable Ltd Overhead power line and construction method of surrounding of iron tower

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003180026A (en) * 2001-12-07 2003-06-27 Mitsubishi Cable Ind Ltd Jumper wire
JP2004357359A (en) * 2003-05-27 2004-12-16 Tokyo Electric Power Co Inc:The Steel tower reconstruction method
JP2006230131A (en) * 2005-02-18 2006-08-31 Tokyo Electric Power Co Inc:The Phase exchanging work method of overhead line
JP2012005263A (en) * 2010-06-17 2012-01-05 Hitachi Cable Ltd Overhead power line and construction method of surrounding of iron tower

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160114885A (en) * 2015-03-25 2016-10-06 이강주 Guide ring rope for transmission lines
KR101708994B1 (en) 2015-03-25 2017-02-21 이강주 Guide ring rope for transmission lines
CN114895419A (en) * 2022-04-06 2022-08-12 浙江泰仑电力集团有限责任公司 Optical cable tightening construction method
CN114895419B (en) * 2022-04-06 2023-09-08 浙江泰仑电力集团有限责任公司 Optical cable tightening construction method

Also Published As

Publication number Publication date
JP5788033B2 (en) 2015-09-30

Similar Documents

Publication Publication Date Title
RU2461935C1 (en) High-voltage overhead power transmission line and method of erection of high-voltage overhead power transmission line
KR101777080B1 (en) Uninterrupted power distribution method in which wires are separated in de-energized power lines state by using insulated live wire grip and bypass jumper cables
CN101888073A (en) On-load opened and segmented operating method of 10kV line
CN201323409Y (en) Tool for live line replacing of high voltage transmission line V-shaped insulator chain
CN201408939Y (en) Electrified arc extinguishing tool for dismounting and jointing cable tail wires with 10 kV
CN101277002B (en) Method for construction of charged assembling 10kV bi-gyrus distribution line concrete lever
JP5788033B2 (en) Overhead power transmission line support structure
JP5486120B1 (en) Overhead power transmission line construction method and overhead power line support structure suitable for this method
JP2002199563A (en) Method for branching overhead power transmission line
CN208015333U (en) A kind of 35kV double cables single pole rod rising device
JP2012105429A (en) Load sharing device, and construction method around steel tower using the same
JP2004171946A (en) Replacing method of whole or part of insulation device, and supporting device used for the method
JP5356288B2 (en) Temporary structure and construction method for overhead power transmission lines
CN108028517A (en) Live wire is set up, maintenance and repair method
JP2001112131A (en) Steel tower rebuilding method for aerial transmission limes
CN201312079Y (en) Clamping apparatus for live line replacement of suspended insulator in middle of 500KV untypical tangent tower via splicing method
JP4068011B2 (en) Steel tower rebuilding method
CN105449612A (en) A conductive wire insulation support plate apparatus
CN104377598A (en) Straightening device for double-insulator-suspended yoke plates on electric transmission line
JP2017038468A (en) Branch-side wire supporting method
CN201191741Y (en) Three phase conductive wire insulation fixing rack
JP2000270454A (en) Overhead transmission line and method of constructing pylons for the same
CN212849772U (en) Insulating tension balancing unit
CN204271535U (en) Transmission line is two hangs insulator yoke plate erection device
CN102969672B (en) Crossing-type straight-route clamp

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150728

R151 Written notification of patent or utility model registration

Ref document number: 5788033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350