JP2015009670A - Control device for hybrid vehicle - Google Patents

Control device for hybrid vehicle Download PDF

Info

Publication number
JP2015009670A
JP2015009670A JP2013136478A JP2013136478A JP2015009670A JP 2015009670 A JP2015009670 A JP 2015009670A JP 2013136478 A JP2013136478 A JP 2013136478A JP 2013136478 A JP2013136478 A JP 2013136478A JP 2015009670 A JP2015009670 A JP 2015009670A
Authority
JP
Japan
Prior art keywords
catalyst
internal combustion
combustion engine
electrically heated
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013136478A
Other languages
Japanese (ja)
Inventor
典昭 熊谷
Noriaki Kumagai
典昭 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013136478A priority Critical patent/JP2015009670A/en
Publication of JP2015009670A publication Critical patent/JP2015009670A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress deterioration of fuel consumption during recovery of a reduction of SOC due to temperature rise of a catalyst.SOLUTION: A control device for a hybrid vehicle, which includes an internal combustion engine 1 and an electric motor 2 for driving the vehicle and an electrically heated catalyst 4 installed in an exhaust passage of the internal combustion engine 1 and generating heat by application of electricity to heat the catalyst, comprises a catalyst temperature rising unit which supplies electric power to the electrically heated catalyst 4 to raise the temperature of the electrically heated catalyst 4, and a setting unit which sets a target output of the internal combustion engine 1 on the basis of electric energy supplied to the electrically heated catalyst 4 when raising the temperature of the electrically heated catalyst 4 by the catalyst temperature rising unit.

Description

本発明は、ハイブリッド車両の制御装置に関する。   The present invention relates to a control device for a hybrid vehicle.

ハイブリッド車両において、触媒暖機時に内燃機関の出力を増加させることで触媒を通過する排気から触媒へ与える熱を増加させ、内燃機関の出力の過剰分は発電機により回収してバッテリを充電する技術が知られている(例えば、特許文献1参照。)。   In a hybrid vehicle, increasing the output of the internal combustion engine when the catalyst warms up to increase the heat applied to the catalyst from the exhaust gas that passes through the catalyst, and the excess output of the internal combustion engine is recovered by the generator to charge the battery Is known (for example, see Patent Document 1).

ところで、ハイブリッド車両において、通電による発熱する発熱体に触媒を担持した電気加熱式触媒(EHC)を備えることがある。内燃機関の始動前から該電気加熱式触媒に通電すれば、内燃機関の始動直後から排気を浄化することができる。しかし、電気加熱式触媒への通電によりバッテリの残容量(SOC)が減少する。SOCを増加さるためには、燃費の悪化を伴う。そして、電気加熱式触媒を備えている場合においては、燃費の悪化を抑制しつつSOCを増加させる手段について検討の余地がある。   By the way, a hybrid vehicle may include an electrically heated catalyst (EHC) in which a catalyst is supported on a heating element that generates heat when energized. If the electric heating catalyst is energized before the internal combustion engine is started, the exhaust gas can be purified immediately after the internal combustion engine is started. However, the remaining capacity (SOC) of the battery is reduced by energizing the electrically heated catalyst. Increasing the SOC is accompanied by a deterioration in fuel consumption. In the case where the electrically heated catalyst is provided, there is room for study on means for increasing the SOC while suppressing the deterioration of fuel consumption.

特開2000−110604号公報JP 2000-110604 A 特開2009−262771号公報JP 2009-262771 A 特開平08−338235号公報JP 08-338235 A

本発明は、上記問題点に鑑みてなされたものであり、その目的は、触媒の温度上昇に伴うSOCの減少を回復させるときの燃費の悪化を抑制することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to suppress deterioration in fuel consumption when recovering a decrease in SOC accompanying a rise in catalyst temperature.

上記課題を達成するために本発明では、
車両を駆動するための内燃機関及び電動モータと、前記内燃機関の排気通路に設けられ通電により発熱して触媒を加熱する電気加熱式触媒と、を備えるハイブリッド車両の制御装置において、
前記電気加熱式触媒へ電力を供給して該電気加熱式触媒の温度を上昇させる触媒昇温部と、
前記触媒昇温部により前記電気加熱式触媒の温度を上昇させるときに該電気加熱式触媒へ供給された電力量に基づいて前記内燃機関の目標出力を設定する設定部と、
を備える。
In order to achieve the above object, in the present invention,
In a control apparatus for a hybrid vehicle, comprising: an internal combustion engine and an electric motor for driving a vehicle; and an electrically heated catalyst that is provided in an exhaust passage of the internal combustion engine and generates heat by energization to heat the catalyst.
A catalyst temperature raising unit for supplying electric power to the electrically heated catalyst to raise the temperature of the electrically heated catalyst;
A setting unit for setting a target output of the internal combustion engine based on the amount of electric power supplied to the electric heating catalyst when the temperature of the electric heating catalyst is raised by the catalyst heating unit;
Is provided.

ここで、電気加熱式触媒へ供給された電力量(以下、通電電力量ともいう。)に基づいて内燃機関の目標出力を設定して発電を行うことにより、内燃機関の動作点を最適化しつつバッテリのSOCを回復させることができる。これにより、燃費の悪化を抑制できる。   Here, by setting the target output of the internal combustion engine based on the amount of power supplied to the electrically heated catalyst (hereinafter also referred to as energized power amount) and generating power, the operating point of the internal combustion engine is optimized. The SOC of the battery can be recovered. Thereby, deterioration of fuel consumption can be suppressed.

本発明においては、前記設定部は、前記電気加熱式触媒へ供給された電力量が大きいほど、前記内燃機関の目標出力を大きくすることができる。   In this invention, the said setting part can enlarge the target output of the said internal combustion engine, so that the electric energy supplied to the said electrically heated catalyst is large.

ここで、内燃機関の目標出力を大きくすることにより、燃費を向上させることができる。したがって、通電電力量に応じて目標出力を大きくすれば、燃費を向上させることができる。   Here, the fuel consumption can be improved by increasing the target output of the internal combustion engine. Therefore, if the target output is increased according to the amount of energized power, the fuel efficiency can be improved.

本発明においては、前記設定部は、前記内燃機関の目標出力に基づいて、前記内燃機関の目標回転数及び目標トルクを設定し、前記内燃機関の排気が前記電気加熱式触媒を通過することにより該電気加熱式触媒の温度を低下させる特性である冷却特性に応じて、前記内燃機関の目標回転数及び目標トルクを補正することができる。   In the present invention, the setting unit sets a target rotational speed and a target torque of the internal combustion engine based on the target output of the internal combustion engine, and the exhaust of the internal combustion engine passes through the electric heating catalyst. The target rotational speed and target torque of the internal combustion engine can be corrected in accordance with the cooling characteristic that is a characteristic that lowers the temperature of the electrically heated catalyst.

内燃機関の運転状態によっては、電気加熱式触媒を通過する排気により該電気加熱式触媒が冷却される。これにより、電気加熱式触媒の温度が低下して触媒における浄化率が低下する虞がある。このときの冷却特性を考慮して目標回転数及び目標トルクを補正することで、触媒の温度低下による浄化能力の低下を抑制できる。   Depending on the operating state of the internal combustion engine, the electrically heated catalyst is cooled by the exhaust gas passing through the electrically heated catalyst. Thereby, there exists a possibility that the temperature of an electrically heated catalyst may fall and the purification rate in a catalyst may fall. By correcting the target rotational speed and the target torque in consideration of the cooling characteristics at this time, it is possible to suppress a decrease in purification capacity due to a decrease in catalyst temperature.

本発明によれば、触媒の温度上昇に伴うSOCの減少を回復させるときの燃費の悪化を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, the deterioration of a fuel consumption when recovering the fall of SOC accompanying the temperature rise of a catalyst can be suppressed.

実施例に係るハイブリッド車両の概略構成を示す図である。It is a figure which shows schematic structure of the hybrid vehicle which concerns on an Example. SOC回復制御中の内燃機関の出力と、燃費の向上率との関係を示した図である。It is the figure which showed the relationship between the output of the internal combustion engine in SOC recovery control, and the improvement rate of a fuel consumption. 電気加熱式触媒への通電電力量と、内燃機関の目標出力との関係を示した図である。It is the figure which showed the relationship between the energization electric power to an electrically heated catalyst, and the target output of an internal combustion engine. 実施例に係るSOC回復制御のフローを示したフローチャートである。It is the flowchart which showed the flow of SOC recovery control which concerns on an Example. 機関回転数と機関トルクと等出力線との関係を示した図である。It is the figure which showed the relationship between an engine speed, an engine torque, and an iso-output line. 図5に示した関係に対して電気加熱式触媒の冷却特性を考慮した図である。It is the figure which considered the cooling characteristic of the electrically heated catalyst with respect to the relationship shown in FIG.

以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に詳しく説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be exemplarily described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention only to those unless otherwise specified.

(実施例1)
図1は、本実施例に係るハイブリッド車両100の概略構成を示す図である。ハイブリッド車両100には内燃機関1が搭載されている。なお、内燃機関1は、ディーゼル機関であっても、また、ガソリン機関であってもよい。また、ハイブリッド車両100には、電動モータ2が搭載されている。この電動モータ2により、内燃機関1のクランク軸を回転させることやハイブリッド車両100を駆動することができる。
Example 1
FIG. 1 is a diagram illustrating a schematic configuration of a hybrid vehicle 100 according to the present embodiment. The hybrid vehicle 100 is equipped with the internal combustion engine 1. The internal combustion engine 1 may be a diesel engine or a gasoline engine. In addition, the electric vehicle 2 is mounted on the hybrid vehicle 100. The electric motor 2 can rotate the crankshaft of the internal combustion engine 1 or drive the hybrid vehicle 100.

内燃機関1には、排気通路3が接続されている。排気通路3の途中には、電気加熱式触媒4が設けられている。電気加熱式触媒4よりも上流側の排気通路3には、該排気通路3を流通する排気の温度を測定する温度センサ5が取り付けられている。温度センサ5は、排気の温度に応じた信号を出力する。この温度センサ5の出力信号に基づいて、電気加熱式触媒4の温度が求められる。なお、電気加熱式触媒4に温度センサを取り付けて、該電気加熱式触媒4の温度を測定してもよい。   An exhaust passage 3 is connected to the internal combustion engine 1. An electrically heated catalyst 4 is provided in the middle of the exhaust passage 3. A temperature sensor 5 for measuring the temperature of the exhaust gas flowing through the exhaust passage 3 is attached to the exhaust passage 3 upstream of the electrically heated catalyst 4. The temperature sensor 5 outputs a signal corresponding to the exhaust temperature. Based on the output signal of the temperature sensor 5, the temperature of the electrically heated catalyst 4 is obtained. A temperature sensor may be attached to the electrically heated catalyst 4 and the temperature of the electrically heated catalyst 4 may be measured.

本実施例に係る電気加熱式触媒4は、発熱体及び触媒を備えて構成されている。発熱体には、通電により発熱する材質のものが用いられる。発熱体の材料には、たとえばSiCを用いることができる。発熱体には、電極が2本接続されており、該電極間に電圧をかけることにより発熱体に通電される。この発熱体の電気抵抗により該発熱体が発熱する。   The electrically heated catalyst 4 according to this embodiment includes a heating element and a catalyst. As the heating element, a material that generates heat when energized is used. For example, SiC can be used as the material of the heating element. Two electrodes are connected to the heating element, and the heating element is energized by applying a voltage between the electrodes. The heating element generates heat due to the electrical resistance of the heating element.

この発熱体に触媒を担持させるか、または発熱体よりも下流側に触媒を備える。触媒は、発熱体からの熱を受けることができる範囲に備えられていればよい。触媒には、たとえば酸化触媒、三元触媒、吸蔵還元型NOx触媒、選択還元型NOx触媒などを挙げることができる。   A catalyst is supported on the heating element, or a catalyst is provided downstream of the heating element. The catalyst should just be provided in the range which can receive the heat from a heat generating body. Examples of the catalyst include an oxidation catalyst, a three-way catalyst, an occlusion reduction type NOx catalyst, and a selective reduction type NOx catalyst.

そして、内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU10が併設されている。このECU10は、CPUの他、各種のプログラム及びマップを記憶するROM、RAM等を備えており、内燃機関1の運転条件や運転者の要求に応じて内燃機関1を制御する。   The internal combustion engine 1 is also provided with an ECU 10 that is an electronic control unit for controlling the internal combustion engine 1. The ECU 10 includes a ROM, a RAM, and the like that store various programs and maps in addition to the CPU, and controls the internal combustion engine 1 according to the operating conditions of the internal combustion engine 1 and the driver's request.

ECU10には、上記センサの他、運転者がアクセルペダル11を踏み込んだ量に応じた電気信号を出力し機関負荷を検知するアクセル開度センサ12、および機関回転数を検知するクランクポジションセンサ13が電気配線を介して接続され、これら各種センサの出力信号がECU10に入力される。   In addition to the above sensors, the ECU 10 includes an accelerator opening sensor 12 for detecting an engine load by outputting an electric signal corresponding to the amount of depression of the accelerator pedal 11, and a crank position sensor 13 for detecting the engine speed. Connected via electrical wiring, the output signals of these various sensors are input to the ECU 10.

また、ECU10には、バッテリ20が接続されており、該ECU10は、バッテリ20の残容量(SOC)を算出する。また、ECU10には、電動モータ2及び電気加熱式触媒4が電気配線を介して接続されており、該ECU10は電動モータ2及び電気加熱式触媒4への通電を制御する。   Further, a battery 20 is connected to the ECU 10, and the ECU 10 calculates a remaining capacity (SOC) of the battery 20. Further, the electric motor 2 and the electric heating catalyst 4 are connected to the ECU 10 via electric wiring, and the ECU 10 controls energization to the electric motor 2 and the electric heating catalyst 4.

そしてECU10は、内燃機関1の始動時等において、電気加熱式触媒4の温度が低い場合には、該電気加熱式触媒4の温度を上昇させるための制御(触媒昇温制御)を行う。触媒昇温制御では、電気加熱式触媒4の目標温度と現時点での温度との差に基づいて必要となるエネルギを算出し、該エネルギに相当するだけの電力量を電気加熱式触媒4へ供給する。触媒昇温制御は、内燃機関1の始動前から開始される。例えば、電気加熱式触媒4の温度が所定温度まで上昇してから内燃機関1を始動させてもよい。なお、本実施例においては触媒昇温制御を実施するECU10が、本発明における触媒昇温部に相当する。   The ECU 10 performs control (catalyst temperature increase control) for increasing the temperature of the electrically heated catalyst 4 when the temperature of the electrically heated catalyst 4 is low at the time of starting the internal combustion engine 1 or the like. In the catalyst temperature increase control, the required energy is calculated based on the difference between the target temperature of the electrically heated catalyst 4 and the current temperature, and an amount of electric power corresponding to the energy is supplied to the electrically heated catalyst 4. To do. The catalyst temperature increase control is started before the internal combustion engine 1 is started. For example, the internal combustion engine 1 may be started after the temperature of the electrically heated catalyst 4 rises to a predetermined temperature. In this embodiment, the ECU 10 that performs the catalyst temperature rise control corresponds to the catalyst temperature raising portion in the present invention.

また、触媒昇温制御によりバッテリ20のSOCが減少するため、触媒昇温制御を実施した後に、バッテリ20に充電する制御であるSOC回復制御を実施する。バッテリ20からの電力は、電動モータ2にも供給されているため、SOCを早期に回復させることが望ましい。これに対して、SOC回復制御では、バッテリ20のSOCを内燃機関1による発電により回復させる。このため、SOC回復制御では、電動モータ2を駆動源としてハイブリッド車両100を走行させつつ、内燃機関1により発電を行う。なお、SOC回復制御時には、内燃機関1の暖機も促進される。   Further, since the SOC of the battery 20 is reduced by the catalyst temperature increase control, after the catalyst temperature increase control is performed, SOC recovery control that is control for charging the battery 20 is performed. Since the electric power from the battery 20 is also supplied to the electric motor 2, it is desirable to recover the SOC early. In contrast, in the SOC recovery control, the SOC of the battery 20 is recovered by power generation by the internal combustion engine 1. For this reason, in the SOC recovery control, the internal combustion engine 1 generates power while the hybrid vehicle 100 travels using the electric motor 2 as a drive source. Note that warm-up of the internal combustion engine 1 is also promoted during the SOC recovery control.

電動モータ2でハイブリッド車両100を走行させると、該電動モータ2が消費する電力によってバッテリ20のSOCが減少する。この場合、ECU10は、SOCが目標値まで回復するように、SOCの目標値と現時点での値との差に基づいて、内燃機関1の出力を増加する。このときには、内燃機関1の出力は所定出力で一定とされる。しかし、電気加熱式触媒4へ通電した場合に、SOCの目標値と現時点での値との差に基づいて内燃機関1の出力を単純に増加すると、燃費が悪化する虞がある。   When the hybrid vehicle 100 is driven by the electric motor 2, the SOC of the battery 20 is reduced by the electric power consumed by the electric motor 2. In this case, the ECU 10 increases the output of the internal combustion engine 1 based on the difference between the target SOC value and the current value so that the SOC recovers to the target value. At this time, the output of the internal combustion engine 1 is constant at a predetermined output. However, when the electric heating catalyst 4 is energized, if the output of the internal combustion engine 1 is simply increased based on the difference between the target SOC value and the current value, the fuel consumption may deteriorate.

これに対してSOC回復制御では、内燃機関1の目標出力を、SOCの目標値と現時点での値との差に基づいて算出される内燃機関1の出力よりも、さらに大きくする。これにより、発電量が増加するため、バッテリ20への充電を速やかに完了させることができる。   On the other hand, in the SOC recovery control, the target output of the internal combustion engine 1 is made larger than the output of the internal combustion engine 1 calculated based on the difference between the SOC target value and the current value. Thereby, since the electric power generation amount increases, the charging to the battery 20 can be completed quickly.

ここで、図2は、SOC回復制御中の内燃機関1の出力と、燃費の向上率との関係を示した図である。図2に示されるように、内燃機関1の出力が高いほど、燃費の向上率が高
くなる。したがって、SOC回復制御時に、内燃機関1の出力を高くすることで、燃費を向上させることができる。
Here, FIG. 2 is a diagram showing the relationship between the output of the internal combustion engine 1 during the SOC recovery control and the fuel efficiency improvement rate. As shown in FIG. 2, the higher the output of the internal combustion engine 1, the higher the fuel efficiency improvement rate. Therefore, the fuel efficiency can be improved by increasing the output of the internal combustion engine 1 during the SOC recovery control.

そして本実施例では、SOC回復制御時の内燃機関1の目標出力を、電気加熱式触媒4へ供給した電力量(以下、通電電力量ともいう。)に基づいて決定する。ここで、図3は、電気加熱式触媒4への通電電力量と、内燃機関1の目標出力との関係を示した図である。ベース制御とは、SOCの目標値と現時点での値との差に基づいて内燃機関1の出力を設定する制御である。このときの内燃機関1の目標出力は通電電力量に関わらず、Cとなる。また、ベース制御では、点火時期を遅角している。一方、本実施例では、電気加熱式触媒4への通電電力量が大きくなるほど、内燃機関1の目標出力を大きくしている。また、ベース制御よりも内燃機関1の目標出力を大きくしている。例えば、通電電力量がAの場合には、目標出力がBとなる。BはCより大きな値である。これにより、燃費の悪化を抑制できる。   In this embodiment, the target output of the internal combustion engine 1 during the SOC recovery control is determined based on the amount of power supplied to the electric heating catalyst 4 (hereinafter also referred to as energized power amount). Here, FIG. 3 is a diagram showing the relationship between the amount of electric power supplied to the electrically heated catalyst 4 and the target output of the internal combustion engine 1. The base control is control for setting the output of the internal combustion engine 1 based on the difference between the SOC target value and the current value. The target output of the internal combustion engine 1 at this time is C regardless of the energization power amount. In the base control, the ignition timing is retarded. On the other hand, in this embodiment, the target output of the internal combustion engine 1 is increased as the amount of electric power supplied to the electrically heated catalyst 4 increases. Further, the target output of the internal combustion engine 1 is made larger than that of the base control. For example, when the energization power amount is A, the target output is B. B is a value larger than C. Thereby, deterioration of fuel consumption can be suppressed.

図4は、本実施例に係るSOC回復制御のフローを示したフローチャートである。本ルーチンは、ECU10により所定の時間毎に実施される。   FIG. 4 is a flowchart showing a flow of SOC recovery control according to the present embodiment. This routine is executed every predetermined time by the ECU 10.

ステップS101では、SOC回復制御を実行する要求があるか否か判定される。例えば、触媒昇温制御が実施された場合に、SOC回復制御を実行する要求があると判定される。また、内燃機関1の始動時におけるバッテリ20のSOCが所定値未満の場合に、SOC回復制御を実行する要求があると判定してもよい。また、本ステップでは、暖機制御中であるか否か判定してもよい。ステップS101で肯定判定がなされた場合にはステップS102へ進み、一方、否定判定がなされた場合には本ルーチンを終了させる。   In step S101, it is determined whether there is a request to execute SOC recovery control. For example, when the catalyst temperature increase control is performed, it is determined that there is a request to execute the SOC recovery control. Further, when the SOC of the battery 20 at the time of starting the internal combustion engine 1 is less than a predetermined value, it may be determined that there is a request for executing the SOC recovery control. Further, in this step, it may be determined whether the warm-up control is being performed. If an affirmative determination is made in step S101, the process proceeds to step S102. On the other hand, if a negative determination is made, this routine is terminated.

ステップS102では、電気加熱式触媒4への通電電力量が算出される。この通電電力量は、電気加熱式触媒4へ供給した電力量である。   In step S102, the amount of electric power supplied to the electrically heated catalyst 4 is calculated. This energized power amount is the amount of power supplied to the electrically heated catalyst 4.

ステップS103では、内燃機関1の目標出力が算出される。目標出力は、図3の関係にしたがって算出される。図3の関係は、予め実験またはシミュレーション等により求めてECU10に記憶させておく。なお、本実施例においてはステップS103を処理するECU10が、本発明における設定部に相当する。   In step S103, the target output of the internal combustion engine 1 is calculated. The target output is calculated according to the relationship shown in FIG. The relationship shown in FIG. 3 is obtained in advance by experiments or simulations and stored in the ECU 10. In this embodiment, the ECU 10 that processes step S103 corresponds to the setting unit in the present invention.

ステップS104では、内燃機関1の目標回転数及び目標トルクが算出される。ここで、図5は、機関回転数と機関トルクと等出力線との関係を示した図である。図5において、夫々の出力において正味熱効率が高くなる領域を予め実験またはシミュレーション等により求めておく。そして、図5における等出力線の中で、ステップS103において算出される内燃機関1の目標出力と等しいか、又は、最も近い値の等出力線を選択する。さらに、選択した等出力線において正味熱効率が高くなる領域内となる機関回転数及び機関トルクを選択し、これらを目標回転数及び目標トルクとする。   In step S104, the target rotational speed and target torque of the internal combustion engine 1 are calculated. Here, FIG. 5 is a diagram showing the relationship between the engine speed, the engine torque, and the iso-output line. In FIG. 5, a region where the net thermal efficiency becomes high at each output is obtained in advance by experiments or simulations. Then, among the equal output lines in FIG. 5, an equal output line having a value equal to or closest to the target output of the internal combustion engine 1 calculated in step S103 is selected. Further, an engine speed and an engine torque that are within a region where the net thermal efficiency is high in the selected iso-output line are selected, and these are set as a target speed and a target torque.

このようにして算出される目標回転数及び目標トルクとなるように、内燃機関1の回転数及びトルクが調整される。このようにして、内燃機関1の動作点を最適化することができる。   The rotational speed and torque of the internal combustion engine 1 are adjusted so that the target rotational speed and target torque calculated in this way are obtained. In this way, the operating point of the internal combustion engine 1 can be optimized.

以上説明したように、本実施例によれば、内燃機関1の動作点を最適化しつつ、バッテリ20のSOCを回復させることができるので、燃費を向上させることができる。ここで、従来では、点火時期を遅角させつつ内燃機関1を定常運転して内燃機関及び触媒の暖機をすることがあった。この場合には、SOCに応じて内燃機関1の出力を上昇させることがあった。しかし、点火時期を遅角させるだけでも燃費が悪化するにもかかわらず、SOCを回復させようとして内燃機関1の出力を上げると、燃費がさらに悪化してしまう。一
方、本実施例では、点火時期の遅角は行わないで内燃機関1の出力を上昇させるので、燃費の悪化を抑制できる。
As described above, according to this embodiment, the SOC of the battery 20 can be recovered while optimizing the operating point of the internal combustion engine 1, so that the fuel consumption can be improved. Here, conventionally, the internal combustion engine 1 may be steadily operated while retarding the ignition timing to warm up the internal combustion engine and the catalyst. In this case, the output of the internal combustion engine 1 may be increased according to the SOC. However, even if the ignition timing is retarded, the fuel efficiency is deteriorated. However, if the output of the internal combustion engine 1 is increased in order to recover the SOC, the fuel efficiency is further deteriorated. On the other hand, in this embodiment, since the output of the internal combustion engine 1 is increased without retarding the ignition timing, it is possible to suppress deterioration in fuel consumption.

(実施例2)
本実施例では、内燃機関の目標出力から、内燃機関1の目標回転数及び目標トルクを算出するときの方法が実施例1と異なる。その他の装置などは実施例1と同じため説明を省略する。
(Example 2)
In this embodiment, the method for calculating the target rotational speed and target torque of the internal combustion engine 1 from the target output of the internal combustion engine is different from that of the first embodiment. Since other devices are the same as those of the first embodiment, the description thereof is omitted.

ここで、SOC回復制御中の内燃機関1の目標出力が同じであっても、機関回転数及び機関トルクによって、電気加熱式触媒4の冷却特性が異なる。この冷却特性は、内燃機関1の排気が電気加熱式触媒4を通過することにより該電気加熱式触媒4の温度を低下させる特性である。ここで、電気加熱式触媒4を通過する排気により該電気加熱式触媒4が冷却される場合があるが、排気の温度や排気の流量によって冷却の度合いが異なる。例えば、等出力の場合、機関回転数が高くなるほど、排気による冷却の影響度が小さくなる特性を有する。また、例えば、等出力の場合、機関トルクが低くなるほど、排気による冷却の影響度が小さくなる特性を有する。そして、実施例1に係るSOC回復制御で設定される内燃機関1の目標回転数及び目標トルクでは、排気による冷却の影響度が大きくなる虞があり、電気加熱式触媒4の温度が低くなる虞がある。   Here, even if the target output of the internal combustion engine 1 during the SOC recovery control is the same, the cooling characteristics of the electrically heated catalyst 4 differ depending on the engine speed and the engine torque. This cooling characteristic is a characteristic that lowers the temperature of the electrically heated catalyst 4 when the exhaust gas of the internal combustion engine 1 passes through the electrically heated catalyst 4. Here, the electrically heated catalyst 4 may be cooled by the exhaust gas passing through the electrically heated catalyst 4, but the degree of cooling varies depending on the exhaust gas temperature and the exhaust gas flow rate. For example, in the case of equal output, the higher the engine speed, the smaller the influence of cooling by exhaust. Further, for example, in the case of equal output, the lower the engine torque, the smaller the influence of cooling by exhaust gas. Then, at the target rotational speed and the target torque of the internal combustion engine 1 set in the SOC recovery control according to the first embodiment, the degree of influence of cooling by the exhaust may be increased, and the temperature of the electrically heated catalyst 4 may be decreased. There is.

そこで本実施例では、電気加熱式触媒4の冷却特性を考慮して内燃機関1の目標回転数及び目標トルクを算出する。ここで図6は、図5に示した関係に対して電気加熱式触媒4の冷却特性を考慮した図である。図6は、図5に対して、冷却特性に基づいて補正した後の図といえる。図6において、実線は等出力線を示し、破線は等冷却線を示している。等冷却線は、電気加熱式触媒4の冷却特性(冷却度合いの影響度または温度低下量としてもよい)が同じになる動作点を結んでできる線である。図6に示した関係は、図5に示した関係や電気加熱式触媒4の熱容量を考慮して求められる。なお、図6に示した関係は、予め実験またはシミュレーション等により求めることができる。   Therefore, in the present embodiment, the target rotational speed and target torque of the internal combustion engine 1 are calculated in consideration of the cooling characteristics of the electrically heated catalyst 4. Here, FIG. 6 is a diagram in which the cooling characteristics of the electrically heated catalyst 4 are taken into consideration with respect to the relationship shown in FIG. FIG. 6 can be said to be a diagram after correction based on the cooling characteristic with respect to FIG. In FIG. 6, a solid line indicates an iso-output line, and a broken line indicates an iso-cooling line. The isocooling line is a line formed by connecting operating points at which the cooling characteristics of the electrically heated catalyst 4 (which may be the degree of influence of the cooling degree or the amount of temperature decrease) are the same. The relationship shown in FIG. 6 is obtained in consideration of the relationship shown in FIG. 5 and the heat capacity of the electrically heated catalyst 4. The relationship shown in FIG. 6 can be obtained in advance by experiments or simulations.

図6において、Eは実施例1に係る動作点を示し、Fは本実施例に係る動作点を示す。図6の矢印の方向へ動作点が移動するほど、冷却による影響を小さくすることができるため、動作点を等出力線上に矢印の方向へ移動させる。すなわち、冷却による影響度が大きい場合には、冷却による影響度が小さくなる方向へ動作点を移動させる。なお、動作点は、所定の等冷却線上に達するまで移動してもよい。また、冷却による影響度が許容範囲となるだけ移動してもよい。また、電気加熱式触媒4における排気の浄化率が許容範囲となるように動作点を移動させてもよい。また、電気加熱式触媒4の温度低下量または温度低下率が許容範囲となるように動作点を移動させてもよい。また、冷却による影響度が大きくなるほど、動作点の移動量を大きくしてもよい。   In FIG. 6, E indicates an operating point according to the first embodiment, and F indicates an operating point according to the present embodiment. Since the influence of cooling can be reduced as the operating point moves in the direction of the arrow in FIG. 6, the operating point is moved in the direction of the arrow on the iso-output line. That is, when the degree of influence due to cooling is large, the operating point is moved in a direction in which the degree of influence due to cooling becomes small. Note that the operating point may move until it reaches a predetermined isocooling line. Moreover, you may move as long as the influence degree by cooling becomes an allowable range. Further, the operating point may be moved so that the exhaust gas purification rate in the electrically heated catalyst 4 falls within an allowable range. Further, the operating point may be moved so that the temperature decrease amount or the temperature decrease rate of the electrically heated catalyst 4 falls within an allowable range. Further, the amount of movement of the operating point may be increased as the influence of cooling increases.

本実施例では、図4のステップS104において、図5に示した関係を用いる代わりに、図6に示した関係を用いる。   In this embodiment, the relationship shown in FIG. 6 is used in step S104 of FIG. 4 instead of the relationship shown in FIG.

以上説明したように本実施例によれば、電気加熱式触媒4の温度低下を抑制できるため、排気の浄化をより促進させることができる。   As described above, according to this embodiment, the temperature reduction of the electrically heated catalyst 4 can be suppressed, so that exhaust purification can be further promoted.

1 内燃機関
2 電動モータ
3 排気通路
4 電気加熱式触媒
5 温度センサ
10 ECU
11 アクセルペダル
12 アクセル開度センサ
13 クランクポジションセンサ
20 バッテリ
100 ハイブリッド車両
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Electric motor 3 Exhaust passage 4 Electric heating type catalyst 5 Temperature sensor 10 ECU
11 Accelerator pedal 12 Accelerator opening sensor 13 Crank position sensor 20 Battery 100 Hybrid vehicle

Claims (3)

車両を駆動するための内燃機関及び電動モータと、前記内燃機関の排気通路に設けられ通電により発熱して触媒を加熱する電気加熱式触媒と、を備えるハイブリッド車両の制御装置において、
前記電気加熱式触媒へ電力を供給して該電気加熱式触媒の温度を上昇させる触媒昇温部と、
前記触媒昇温部により前記電気加熱式触媒の温度を上昇させるときに該電気加熱式触媒へ供給された電力量に基づいて前記内燃機関の目標出力を設定する設定部と、
を備えるハイブリッド車両の制御装置。
In a control apparatus for a hybrid vehicle, comprising: an internal combustion engine and an electric motor for driving a vehicle; and an electrically heated catalyst that is provided in an exhaust passage of the internal combustion engine and generates heat by energization to heat the catalyst.
A catalyst temperature raising unit for supplying electric power to the electrically heated catalyst to raise the temperature of the electrically heated catalyst;
A setting unit for setting a target output of the internal combustion engine based on the amount of electric power supplied to the electric heating catalyst when the temperature of the electric heating catalyst is raised by the catalyst heating unit;
A control apparatus for a hybrid vehicle comprising:
前記設定部は、前記電気加熱式触媒へ供給された電力量が大きいほど、前記内燃機関の目標出力を大きくする請求項1に記載のハイブリッド車両の制御装置。   The control device for a hybrid vehicle according to claim 1, wherein the setting unit increases the target output of the internal combustion engine as the amount of electric power supplied to the electric heating catalyst increases. 前記設定部は、前記内燃機関の目標出力に基づいて、前記内燃機関の目標回転数及び目標トルクを設定し、前記内燃機関の排気が前記電気加熱式触媒を通過することにより該電気加熱式触媒の温度を低下させる特性である冷却特性に応じて、前記内燃機関の目標回転数及び目標トルクを補正する請求項1または2に記載のハイブリッド車両の制御装置。   The setting unit sets a target rotational speed and a target torque of the internal combustion engine based on a target output of the internal combustion engine, and the exhaust gas of the internal combustion engine passes through the electric heating catalyst so that the electric heating catalyst The control apparatus for a hybrid vehicle according to claim 1 or 2, wherein the target rotational speed and the target torque of the internal combustion engine are corrected in accordance with a cooling characteristic that is a characteristic that lowers the temperature of the engine.
JP2013136478A 2013-06-28 2013-06-28 Control device for hybrid vehicle Pending JP2015009670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013136478A JP2015009670A (en) 2013-06-28 2013-06-28 Control device for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013136478A JP2015009670A (en) 2013-06-28 2013-06-28 Control device for hybrid vehicle

Publications (1)

Publication Number Publication Date
JP2015009670A true JP2015009670A (en) 2015-01-19

Family

ID=52303234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013136478A Pending JP2015009670A (en) 2013-06-28 2013-06-28 Control device for hybrid vehicle

Country Status (1)

Country Link
JP (1) JP2015009670A (en)

Similar Documents

Publication Publication Date Title
JP5333653B2 (en) Exhaust gas purification device for internal combustion engine
JP5790790B2 (en) Control device for internal combustion engine
CN111441851B (en) Abnormality detection device for electrically heated catalyst
CN111102042B (en) Exhaust gas purification device for internal combustion engine
JP5348336B2 (en) Failure detection device for electrically heated catalyst
CN111441850B (en) Abnormality detection device for electrically heated catalyst
JP7131402B2 (en) Abnormality detection device for electrically heated catalyst
US20180163592A1 (en) Exhaust gas purification apparatus for an internal combustion engine
CN109931127B (en) Exhaust gas purification device for internal combustion engine
US10302033B2 (en) Control system of internal combustion engine and control method for the control system
JP6996456B2 (en) Vehicle and vehicle control method
JP2014134187A (en) Electric heating catalyst warming-up control device
JP5786766B2 (en) Abnormality judgment system for electrically heated catalyst device
JP2009185777A (en) Catalyst warm-up control device
JP6390505B2 (en) Vehicle control device
JP2015009670A (en) Control device for hybrid vehicle
CN110131061B (en) Sensor system
JP6919207B2 (en) Hybrid vehicle
JP2012117496A (en) Control system for exhaust emission control device
JP5644649B2 (en) Vehicle control device
JP7416230B2 (en) Hybrid vehicle control method and hybrid vehicle control device
JP2023058326A (en) Controller of electric heating type catalyst
JP2022165778A (en) Controller of internal combustion engine