JP2015008343A - 撮像装置および撮像画像の形成方法 - Google Patents

撮像装置および撮像画像の形成方法 Download PDF

Info

Publication number
JP2015008343A
JP2015008343A JP2013131827A JP2013131827A JP2015008343A JP 2015008343 A JP2015008343 A JP 2015008343A JP 2013131827 A JP2013131827 A JP 2013131827A JP 2013131827 A JP2013131827 A JP 2013131827A JP 2015008343 A JP2015008343 A JP 2015008343A
Authority
JP
Japan
Prior art keywords
gradation
imaging
image
resolution
composite image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013131827A
Other languages
English (en)
Inventor
高山 淳
Atsushi Takayama
淳 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2013131827A priority Critical patent/JP2015008343A/ja
Publication of JP2015008343A publication Critical patent/JP2015008343A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Studio Devices (AREA)
  • Cameras In General (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Television Systems (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

【課題】本発明は、広いダイナミックレンジを持ちつつ、各画素の各出力特性におけるバラツキを低減できる撮像装置およびこの撮像装置を用いた撮像画像の形成方法を提供する。【解決手段】本発明の撮像装置IMは、各光軸が互いに平行となるように配列された複数の撮像光学系13と、複数の撮像光学系13に対応し、各撮像面が互いに同一平面となるように配列され、複数の撮像光学系13それぞれによって各撮像面に結像された被写体の光学像をそれぞれ撮像する複数の撮像部11とを備え、複数の撮像部11は、互いに異なる少なくとも2種類以上の光電変換特性を含み、複数の撮像部11それぞれは、1種類の光電変換特性の1または複数の光電変換素子から成る。【選択図】図2

Description

本発明は、物体(被写体)の光学像を撮像する撮像装置に関する。そして、本発明は、この撮像装置を用いられる撮像画像の形成方法に関する。
近年、撮像装置には、受光感度に対し広いダイナミックレンジが求められている。特に、前方を監視するために車両に搭載された撮像装置は、夜間、例えばヘッドライト等の高輝度被写体およびその背景の暗い低輝度被写体を共に撮像することになり、前記高輝度被写体を撮像しても飽和せずに、かつ、前記低輝度被写体も充分な階調で撮像する必要が生じる。すなわち、撮像装置は、明るい領域の白飛びや暗い領域の黒つぶれを回避し、被写体のディテールを失うことなく画像形成する必要がある。このため、このような車載の撮像装置は、前記広いダイナミックレンジが求められる。
このような広いダイナミックレンジを持つ光電変換素子として、入射光に対して出力が線形に変化する特性と、入射光に対して出力が対数的に変化する特性とを有するいわゆるリニアログセンサが知られている。このリニアログセンサを用いた撮像装置は、例えば、特許文献1に開示されている。
この特許文献1に開示された固体撮像装置は、マトリクス状に配列された複数の画素から成る画素アレイを備える固体撮像装置であって、前記画素アレイは、n(nは2以上の整数)が増大するにつれて解像度が低くなるように第1〜第nの画素群に区画され、nが2である場合に、第1の画素群の各画素は、入射光に対して出力が線形に変化する特性と、入射光に対して出力が対数的に変化する特性とを有し、第2の画素群の各画素は、入射光に対して出力が線形に変化する特性を有している。
特開2009−272820号公報
ところで、前記リニアログセンサは、センサ毎に出力特性が比較的大きくばらついてしまう。このため、各画素に前記リニアログセンサを用いた撮像装置は、各画素の各出力特性におけるバラツキを補正する必要があり、このバラツキの補正に画素数に応じて比較的大きな容量のメモリ等の比較的大きなリソースが必要である。
本発明は、上述の事情に鑑みて為された発明であり、その目的は、広いダイナミックレンジを持ちつつ、各画素の各出力特性におけるバラツキを低減できる撮像装置およびこの撮像装置を用いた撮像画像の形成方法を提供することである。
本発明者は、種々検討した結果、上記目的は、以下の本発明により達成されることを見出した。すなわち、本発明の一態様にかかる撮像装置は、複数の撮像光学系と、前記複数の撮像光学系に対応し、各撮像面が互いに同一平面となるように配列され、前記複数の撮像光学系それぞれによって前記各撮像面に結像された被写体の光学像をそれぞれ撮像する複数の撮像部とを備え、前記複数の撮像部は、互いに異なる少なくとも2種類以上の光電変換特性を含み、前記複数の撮像部それぞれは、1種類の光電変換特性の1または複数の光電変換素子から成ることを特徴とする。そして、好ましくは、上述の撮像装置において、前記複数の撮像光学系は、例えば各光軸が互いに平行となるように配列される。
このような撮像装置では、複数の撮像部は、互いに異なる少なくとも2種類の光電変換特性を含むので、1種類の光電変換特性の場合に較べてダイナミックレンジを広くすることが可能となる。そして、このような撮像装置では、複数の撮像部それぞれは、1種類の光電変換特性の1または複数の光電変換素子から成るので、各撮像部ごとに、バラツキの少ない出力特性を持つ光電変換素子を用いることが可能となる。例えば、各撮像部ごとに、バラツキの少ない線形変換特性の光電変換素子や、バラツキの少ない対数変換特性の光電変換素子を用いることが可能となる。このため、このような撮像装置は、広いダイナミックレンジを持ちつつ、各画素の各出力特性におけるバラツキを低減できる。
また、他の一態様では、上述の撮像装置において、前記複数の撮像部は、入射光に対して出力が線形に変化する線形変換特性を持つ第1光電変換素子から成る複数の第1撮像部と、入射光に対して出力が対数的に変化する対数変換特性を持つ第2光電変換素子から成る複数の第2撮像部とを含むことを特徴とする。
このような撮像装置は、低照度でノイズの少ない比較的な高感度な線形変換特性を持つ第1光電変換素子から成る複数の第1撮像部と、広ダイナミックレンジでバラツキの少ない対数変換特性を持つ第2光電変換素子から成る複数の第2撮像部とを含み、これら第1および第2撮像部の第1および第2光電変換特性(各画像)を合成することで、より広ダイナミックレンジで高感度でさらに低バラツキな画像を実現できる。
また、他の一態様では、上述の撮像装置において、前記第1光電変換素子の第1リセット電圧は、前記第2光電変換素子の第2リセット電圧より高電位であることを特徴とする。
このような撮像装置は、前記第1光電変換素子の第1リセット電圧が前記第2光電変換素子の第2リセット電圧より高電位であるので、前記第1光電変換素子と前記第2光電変換素子とを異なる動作条件で動作させることができる。
また、他の一態様では、これら上述の撮像装置において、異なる画素構造が容易に併存可能であり、前記第1光電変換素子は、完全転送型または埋め込み型ホトダイオードであり、前記第2光電変換素子は、表面型ホトダイオードであることを特徴とする。
このような撮像装置は、低照度でノイズの少ない比較的な高感度な完全転送型または埋め込み型ホトダイオードの第1光電変換素子から成る複数の第1撮像部と、広ダイナミックレンジでバラツキの少ない表面型ホトダイオードの第2光電変換素子から成る複数の第2撮像部とを含み、これら第1および第2撮像部による各画像を合成することで、より広ダイナミックレンジで高感度でさらに低バラツキな画像を実現できる。
また、他の一態様では、これら上述の撮像装置において、前記複数の撮像部は、同一半導体ウェハ上に一体的に形成されていることを特徴とする。
このような撮像装置は、前記複数の撮像部が同一半導体ウェハ上に一体的に形成されるので、出力特性のバラツキを低減できる。さらに、各撮像部の受光面が同一平面上に配置することが容易である。また、このような撮像装置は、前記複数の撮像部を同一半導体ウェハ上に一体的に形成しても、前記複数の撮像部それぞれが1種類の光電変換特性の1または複数の光電変換素子から成るので、同一撮像部内に異なる光電変換特性を持つ光電変換素子が混在して形成されている場合に較べて、配線領域を低減できるから、開口率(受光面積)を大きくできる。したがって、このような撮像装置は、前記混在して形成されている場合に較べて、高感度化できる。
また、他の一態様では、これら上述の撮像装置において、前記複数の第1撮像部それぞれから出力される各第1画像信号に基づいて超解像処理によって第1高解像度合成画像を作成する第1高解像度合成画像作成部と、前記複数の第2撮像部それぞれから出力される各第2画像信号に基づいて超解像処理によって第2高解像度合成画像を作成する第2高解像度合成画像作成部と、前記第1高解像度合成画像作成部で作成された第1高解像度合成画像および前記第2高解像度合成画像作成部で作成された第2高解像度合成画像に基づいてよりダイナミックレンジの広い高解像度広合成画像を作成する高解像度合成画像作成部とをさらに備えることを特徴とする。
このような撮像装置は、高解像度合成画像を作成するので、高解像度かつ広ダイナミックレンジな画像が得られる。
また、他の一態様では、これら上述の撮像装置において、前記複数の第1撮像部それぞれから出力される各第1画像信号に基づいて第1階調範囲の複数の第1階調画像信号と前記第1階調範囲より明るい第2階調範囲の複数の第2階調画像信号とに分離する第1階調分離部と、前記複数の第2撮像部それぞれから出力される各第2画像信号に基づいて前記第2階調範囲の複数の第3階調画像信号と前記第2階調範囲より明るい第3階調範囲の複数の第4階調画像信号とに分離する第2階調分離部と、前記第1階調範囲の複数の第1階調画像信号に基づいて超解像処理によって第1階調高解像度合成画像を作成する第1階調高解像度合成画像作成部と、前記第2階調範囲の複数の第2および第3階調画像信号に基づいて超解像処理によって第2階調高解像度合成画像を作成する第2階調高解像度合成画像作成部と、前記第3階調範囲の複数の第4階調画像信号に基づいて超解像処理によって第3階調高解像度合成画像を作成する第3階調高解像度合成画像作成部と、前記第1階調高解像度合成画像作成部で作成された第1階調高解像度合成画像、前記第2階調高解像度合成画像作成部で作成された第2階調高解像度合成画像および前記第3階調高解像度合成画像作成部で作成された第3階調高解像度合成画像に基づいてよりダイナミックレンジの広い高解像度合成画像を作成する第2高解像度合成画像作成部とをさらに備えることを特徴とする。
このような撮像装置は、前記複数の第1撮像部それぞれから出力される各第1画像信号から低輝度画像および中輝度画像を作成し、前記複数の第2撮像部それぞれから出力される各第2画像信号から中輝度画像および高輝度画像を作成し、各第1画像信号に起因する中輝度画像と各第2画像信号に起因する中輝度画像とを合成し、そして、これら低輝度画像、合成中輝度画像および高輝度画像を合成して高解像度合成画像を作成する。このため、このような撮像装置は、低輝度領域でノイズが少なく、高輝度領域で広いダイナミックレンジを持ち、バラツキの少ない高解像度合成画像を得ることができる。
また、他の一態様では、これら上述の撮像装置において、前記複数の撮像部に対応し、撮像面側に配置された複数の色フィルタ部をさらに備え、前記色フィルタ部は、赤色フィルタ、第1緑色フィルタ、第2緑色フィルタおよび青色フィルタを2次元マトリックス状に配列したフィルタであることを特徴とする。
この構成によれば、いわゆるベイヤー配列の色フィルタを用いた撮像装置が実現できる。
また、他の一態様では、これら上述の撮像装置において、前記複数の撮像部に対応し、撮像面側に配置された複数の色フィルタ部をさらに備え、前記色フィルタ部は、黄色フィルタ、マゼンダ色フィルタ、シアン色フィルタおよび緑色フィルタを2次元マトリックス状に配列したフィルタであることを特徴とする。
この構成によれば、いわゆる補色フィルタを用いた撮像装置が実現できる。
また、他の一態様では、これら上述の撮像装置において、前記複数の撮像部に対応し、撮像面側に配置された複数の色フィルタ部をさらに備え、前記色フィルタ部は、第1白色フィルタ、黄色フィルタ、赤色フィルタおよび第2白色フィルタを2次元マトリックス状に配列したフィルタであることを特徴とする。
この構成によれば、白色フィルタを用いた撮像装置が実現できる。
また、他の一態様では、これら上述の撮像装置において、前記複数の撮像部に対応し、撮像面側に配置された複数の色フィルタ部をさらに備え、前記色フィルタ部は、白色フィルタ、赤外フィルタ、赤色フィルタおよび黄色フィルタを2次元マトリックス状に配列したフィルタであることを特徴とする。
この構成によれば、赤外フィルタを用いた撮像装置が実現できる。すなわち、このような撮像装置は、赤外フィルタの光電変換素子によって輝度を補ったカラー画像を形成できる。例えば、このような撮像装置は、夜間などの暗い環境下で撮像した場合でも、赤外線を反射する人や動物等の被写体をより明瞭に表現したカラー画像を形成できる。
また、他の一態様にかかる撮像画像の形成方法は、これら上述のいずれかの撮像装置で用いられる撮像画像の形成方法であって、前記複数の第1撮像部それぞれから出力される各第1画像信号に基づいて超解像処理によって第1高解像度合成画像を作成する第1高解像度合成画像作成工程と、前記複数の第2撮像部それぞれから出力される各第2画像信号に基づいて超解像処理によって第2高解像度合成画像を作成する第2高解像度合成画像作成工程と、前記第1高解像度合成画像作成工程で作成された第1高解像度合成画像および前記第2高解像度合成画像作成工程で作成された第2高解像度合成画像に基づいてよりダイナミックレンジの広い高解像度合成画像を作成する高解像度合成画像作成部とをさらに備えることを特徴とする。
この構成によれば、高解像度合成画像を作成するので、高解像度かつ広ダイナミックレンジな画像が得られる。
また、他の一態様にかかる撮像画像の形成方法は、これら上述のいずれかの撮像装置で用いられる撮像画像の形成方法であって、前記複数の第1撮像部それぞれから出力される各第1画像信号に基づいて第1階調範囲の複数の第1階調画像信号と前記第1階調範囲より明るい第2階調範囲の複数の第2階調画像信号とに分離する第1階調分離工程と、前記複数の第2撮像部それぞれから出力される各第2画像信号に基づいて前記第2階調範囲の複数の第3階調画像信号と前記第2階調範囲より明るい第3階調範囲の複数の第4階調画像信号とに分離する第2階調分離工程と、前記第1階調範囲の複数の第1階調画像信号に基づいて超解像処理によって第1階調高解像度合成画像を作成する第1階調高解像度合成画像作成工程と、前記第2階調範囲の複数の第2および第3階調画像信号に基づいて超解像処理によって第2階調高解像度合成画像を作成する第2階調高解像度合成画像作成工程と、前記第3階調範囲の複数の第4階調画像信号に基づいて超解像処理によって第3階調高解像度合成画像を作成する第3階調高解像度合成画像作成工程と、前記第1階調高解像度合成画像作成工程で作成された第1階調高解像度合成画像、前記第2階調高解像度合成画像作成工程で作成された第2階調高解像度合成画像および前記第3階調高解像度合成画像作成工程で作成された第3階調高解像度合成画像に基づいてよりダイナミックレンジの広い高解像度合成画像を作成する第2高解像度合成画像作成工程とをさらに備えることを特徴とする。
このような撮像画像の形成方法は、前記複数の第1撮像部それぞれから出力される各第1画像信号から低輝度画像および中輝度画像を作成し、前記複数の第2撮像部それぞれから出力される各第2画像信号から中輝度画像および高輝度画像を作成し、各第1画像信号に起因する中輝度画像と各第2画像信号に起因する中輝度画像とを合成し、そして、これら低輝度画像、合成中輝度画像および高輝度画像を合成して高解像度合成画像を作成する。このため、このような撮像画像の形成方法は、低輝度領域でノイズが少なく、高輝度領域で広いダイナミックレンジを持ち、バラツキの少ない高解像度合成画像を得ることができる。
本発明にかかる撮像装置は、広いダイナミックレンジを持ちつつ、各画素の各出力特性におけるバラツキを低減できる。そして、本発明は、このような撮像装置に用いられる撮像画像の形成方法を提供できる。
実施形態における撮像装置の構成を示すブロック図である。 図1に示す撮像装置における撮像ユニットの構成を示す斜視図である。 図2に示す撮像ユニットにおける第1態様の撮像部の構成を示す斜視図である。 図2に示す撮像ユニットにおける第2態様の撮像部の構成を示す斜視図である。 図2に示す撮像ユニットにおけるフィルタ部の構成を示す平面図である。 図2に示す撮像ユニットにおける他の態様のフィルタ部を説明するための図である。 図2に示す撮像ユニットの電気的な構成を示すブロック図である。 図2に示す撮像ユニットにおける撮像部の電気的な構成を示すブロック図である。 図2に示す撮像ユニットにおける第1撮像部に用いられる第1光電変換素子の構成を示す回路図である。 図9に示す第1光電変換素子の第1光電変換特性(出力特性)を示す図である。 図9に示す第1光電変換素子の動作を説明するためのタイミングチャートである。 図2に示す撮像ユニットにおける第2撮像部に用いられる第2光電変換素子の構成を示す回路図である。 図12に示す第2光電変換素子の第2光電変換特性(出力特性)を示す図である。 図12に示す第2光電変換素子の動作を説明するためのタイミングチャートである。 実施形態における撮像装置の第1態様の高解像度化画像処理部を説明するための図である。 実施形態における撮像装置の第2態様の高解像度化画像処理部を説明するための図である。 図13および図14にそれぞれ示す第1および第2光電変換特性を纏めて示す図である。 図15に示す第1および第2光電変換特性を合成した撮像部の光電変換特性を示す図である。 図2に示す撮像ユニットにおける第1および第2撮像部の第1および第2光電変換素子の各開口面積を説明するための図である。 比較例として、1個の画素に第1および第2光電変換素子を並置して設けた場合における前記第1および第2光電変換素子の各開口面積を説明するための図である。
以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。また、本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。
図1は、実施形態における撮像装置の構成を示すブロック図である。図2は、図1に示す撮像装置における撮像ユニットの構成を示す斜視図である。図3は、図2に示す撮像ユニットにおける第1態様の撮像部の構成を示す斜視図である。図4は、図2に示す撮像ユニットにおける第2態様の撮像部の構成を示す斜視図である。図5は、図2に示す撮像ユニットにおけるフィルタ部(第1態様のフィルタ部)の構成を示す平面図である。図6は、図2に示す撮像ユニットにおける他の態様のフィルタ部を説明するための図である。図6(A)は、第2態様のフィルタ部を示し、図6(B)は、第3態様のフィルタ部を示し、図6(C)は、第4態様のフィルタ部を示し、そして、図6(D)は、第5態様のフィルタ部を示す。図7は、図2に示す撮像ユニットの電気的な構成を示すブロック図である。図8は、図2に示す撮像ユニットにおける撮像部の電気的な構成を示すブロック図である。図9は、図2に示す撮像ユニットにおける第1撮像部に用いられる第1光電変換素子の構成を示す回路図である。図10は、図9に示す第1光電変換素子の第1光電変換特性(出力特性)を示す図である。図10の横軸は、対数目盛で示す入射光強度であり、その縦軸は、線形目盛で示す出力(センサ出力)である。図11は、図9に示す第1光電変換素子の動作を説明するためのタイミングチャートである。図11の横軸は、時間であり、その縦軸は、レベルである。図11には、上から下へ順に、φRST_FD、φVSEN、φTXおよびFDの各駆動タイミングが示されている。図12は、図2に示す撮像ユニットにおける第2撮像部に用いられる第2光電変換素子の構成を示す回路図である。図13は、図12に示す第2光電変換素子の第2光電変換特性(出力特性)を示す図である。図13の横軸は、対数目盛で示す入射光強度であり、その縦軸は、線形目盛で示す出力(センサ出力)である。図14は、図12に示す第2光電変換素子の動作を説明するためのタイミングチャートである。図14の横軸は、時間であり、その縦軸は、レベルである。図14には、上から下へ順に、φRST_SC、φVSENおよびPVSSの各駆動タイミングが示されている。図15は、実施形態における撮像装置の第1態様の高解像度化画像処理部を説明するための図である。図16は、実施形態における撮像装置の第2態様の高解像度化画像処理部を説明するための図である。図17は、図13および図14にそれぞれ示す第1および第2光電変換特性を纏めて示す図である。図18は、図15に示す第1および第2光電変換特性を合成した撮像部の光電変換特性を示す図である。図17および図18の各横軸は、対数目盛で示す入射光強度であり、それら各縦軸は、線形目盛で示す出力(センサ出力)である。
実施形態における撮像装置は、物体(被写体)の光学像を撮像し、被写体の画像を生成する装置であり、少なくとも2種類以上の光電変換特性を所定の領域単位に持つことで受光感度に対し広いダイナミックレンジを有している。すなわち、実施形態における撮像装置は、低輝度の被写体から高輝度の被写体まで比較的広い輝度範囲を持つ被写体を撮像できる。このような撮像装置IMは、例えば、図1に示すように、撮像ユニット1と、高解像度化画像処理部2と、画像処理部3と、システムコントロール部4とを備える。
撮像ユニット1は、物体(被写体)の光学像を受光面(撮像面)に結像し、この受光面に結像された被写体の光学像を撮像して画像信号を例えばRAWデータとして出力する装置である。撮像ユニット1は、高解像度化画像処理部2に接続され、この画像信号を高解像度化画像処理部2へ出力する。このような撮像ユニット1は、例えば図2に示すように、複数の撮像部11と、前記複数の撮像部11それぞれに対応して設けられる複数の撮像光学系13とを備え、前記複数の撮像部11それぞれに対応して設けられる例えば図5に示す複数のフィルタ部12(図2では図示が省略されている)を撮像部11の受光面の入射光側にさらに備えている。
複数の撮像光学系13は、それぞれ、当該撮像光学系13に対応する撮像部11の受光面に被写体の光学像を結像する光学素子である。1個の撮像光学系13は、その光軸に沿って1または複数の光学レンズを備える。複数の撮像光学系13は、この図において、各光軸が互いに略平行となるように配列される。したがって、複数の撮像光学系13を介して被写体の光学像をそれぞれ撮像する複数の撮像部11は、略同じ被写体を写した画像信号を生成することになる。図2に示す例では、複数の撮像光学系13は、複数の撮像部11に対応して線形独立な2方向、より具体的には互いに直交するX方向およびY方向の2方向に2次元マトリクス状に配列されている。図2には、説明の便宜上、撮像部11の配列態様および個数に合わせて4行4列に2次元マトリクス状に配列された16個の撮像光学系13−11〜13−44が示されている。光軸に関し、必ずしも全ての撮像光学系13が平行である必要はない。
複数の撮像部11は、それぞれ、撮像光学系13によって受光面に結像された被写体の光学像を撮像して画像信号を出力するものである。複数の撮像部11は、複数の撮像光学系13に対応し、各撮像面が互いに同一平面となるように配列される。図2に示す例では、複数の撮像部11は、線形独立な2方向、より具体的には互いに直交するX方向およびY方向の2方向に2次元マトリクス状に配列されている。図2には、説明の便宜上、4行4列に2次元マトリクス状に配列された16個の撮像部11−11〜11−44が示されている。2次元マトリクス状における1行1列の位置に配置された撮像部11−11には、2次元マトリクス状における同じ1行1列の位置に配置された撮像光学系13−11が対応し、2次元マトリクス状における1行2列の位置に配置された撮像部11−12には、2次元マトリクス状における同じ1行2列の位置に配置された撮像光学系13−12が対応し、このように2次元マトリクス状における同じ行数(n)および列数(m)の位置に配置された撮像部11−nmと撮像光学系13−nmとが互いに対応している(n、mは正の整数)。
そして、本実施形態では、複数の撮像部11は、互いに異なる少なくとも2種類以上の光電変換特性を含み、これら複数の撮像部11それぞれは、1種類の光電変換特性の1または複数の光電変換素子から成っている。例えば、本実施形態では、1個の撮像部11は、1種類の光電変換特性を持つ、3行4列の12個の光電変換素子を備えている。より具体的には、複数の撮像部11は、入射光に対して出力が線形に変化する線形変換特性(線形出力特性)を持つ複数の第1光電変換素子1111から成る複数の第1撮像部111と、入射光に対して出力が対数的に変化する対数変換特性(対数出力特性)を持つ複数の第2光電変換素子1112から成る複数の第2撮像部112とを含む。光電変換素子は、入射した入射光の光エネルギーをその光量に応じた電気エネルギーに変換する素子であり、前記第1光電変換素子1111は、例えば図10に示すように、光エネルギーを線形的に比例するように電気エネルギーに変換する例えばいわゆる完全転送型ホトダイオードであり、前記第2光電変換素子1112は、例えば図13に示すように、光エネルギーを対数的に比例するように電気エネルギーに変換する例えばいわゆる表面型ホトダイオードである。これら第1および第2光電変換素子1111、1112は、後に、さらに詳述される。図2に示す例では、1または複数の第1光電変換素子1111から成る複数の第1撮像部111と、1または複数の第2光電変換素子1112から成る複数の第2撮像部112とは、2次元マトリクス状の配列において、市松模様(チェッカーフラッグ)のように、交互に配置されている。
これら複数の第1撮像部111および複数の第2撮像部112を含む複数の撮像部11は、例えば、図3に示すように、複数の第1撮像部111aおよび複数の第2撮像部112aが同一の半導体ウェハ(例えばシリコンウェハ)上に一体的に形成された第1態様の複数の撮像部11aであってよい。また例えば、これら複数の第1撮像部111および複数の第2撮像部112を含む複数の撮像部11は、例えば、図4に示すように、個別部品の複数の第1撮像部111bおよび個別部品の複数の第2撮像部112bが同一の基板上に2次元マトリクス状に配列された第2態様の複数の撮像部11bであってよい。
複数のフィルタ部12は、それぞれ、入射した光のうち所定の波長範囲の光を透過する光学フィルタ素子である。複数のフィルタ部12は、複数の撮像部11に対応し、撮像面の光の入射側に配置される。本実施形態では、撮像光学系13と撮像部11との間にフィルタ部12が配置される。すなわち、フィルタ部12は、撮像光学系13の像面側に配置される。なお、フィルタ部12は、撮像光学系13の物体側に配置されてもよい。本実施形態では、図5に示す例では、複数のフィルタ部12は、複数の撮像部11に対応して線形独立な2方向、より具体的には互いに直交するX方向およびY方向の2方向に2次元マトリクス状に配列されている。図5には、説明の便宜上、撮像部11の配列態様および個数に合わせて4行4列に2次元マトリクス状に配列された16個のフィルタ部12−11〜12−44が示されている。2次元マトリクス状における1行1列の位置に配置された撮像部11−11には、2次元マトリクス状における同じ1行1列の位置に配置されたフィルタ部12−11が対応し、2次元マトリクス状における1行2列の位置に配置された撮像部11−12には、2次元マトリクス状における同じ1行2列の位置に配置されたフィルタ部12−12が対応し、このように2次元マトリクス状における同じ行数(n)および列数(m)の位置に配置された撮像部11−nmとフィルタ部12−nmとが互いに対応している(n、mは正の整数)。したがって、本実施形態では、撮像光学系13は、フィルタ部12を介して撮像部11と対応する。
そして、本実施形態では、図5に示す例では、複数のフィルタ部12は、赤色フィルタ(R)、第1および第2白色フィルタ(W)、緑色フィルタ(G)を2行2列で2次元マトリックス状に配列した色フィルタ部および緑色フィルタ(G)、第1および第2白色フィルタ(W)、青色フィルタ(B)を2行2列で2次元マトリックス状に配列した色フィルタ部から成る第1単位色フィルタ部を2次元マトリックス状に配列したものである。赤色フィルタは、赤色の波長帯域の光を透過するフィルタであり、白色フィルタは、可視光の波長帯域の光を透過するフィルタであり、緑色フィルタは、緑色の波長帯域の光を透過するフィルタであり、そして、青色フィルタは、青色の波長帯域の光を透過するフィルタである。各色フィルタは、それぞれ、1個の撮像部11が本実施形態では3行4列の12個の光電変換素子1111、1112から成ることから、これに応じて3行4列の12個のフィルタ素子から成る。後述の図6(A)ないし図6(D)に示す第2ないし第5態様の各色フィルタも同様である。線形変換特性の第1撮像部111に白色フィルタまたは緑フィルタを対応させることで、低照度での感度が最大限に確保される。対数変換特性の第2撮像部112に赤、緑および青の各色フィルタを対応させることで、高輝度の被写体でも飽和しないカラー画像が得られる。
複数のフィルタ部12は、図5に示す第1態様に限定されるものではなく、他の態様であってもよい。例えば、図6(A)に示すように、複数のフィルタ部12は、赤色フィルタ(R)、第1緑色フィルタ(G)、第2緑色フィルタ(G)および青色フィルタ(B)を2行2列で2次元マトリックス状に配列した第2単位色フィルタ部を2次元マトリックス状に配列した第2態様の複数のフィルタ部であってよい。すなわち、複数のフィルタ部12は、いわゆるベイヤー配列で配列される。また例えば、図6(B)に示すように、複数のフィルタ部12は、黄色フィルタ(Ye)、マゼンダ色フィルタ(Mg)、シアン色フィルタ(Cy)および緑色フィルタ(G)を2行2列で2次元マトリックス状に配列した第3単位色フィルタ部を2次元マトリックス状に配列した第3態様の複数のフィルタ部であってよい。黄色フィルタは、黄色の波長帯域の光を透過するフィルタであり、マゼンダ色フィルタは、マゼンダ色の波長帯域の光を透過するフィルタであり、そして、シアン色フィルタは、シアン色の波長帯域の光を透過するフィルタである。すなわち、複数のフィルタ部12は、いわゆる補色フィルタである。また例えば、図6(C)に示すように、複数のフィルタ部12は、第1白色フィルタ(W)、黄色フィルタ(Ye)、赤色フィルタ(R)および第2白色フィルタ(W)を2行2列で2次元マトリックス状に配列した第4単位色フィルタ部を2次元マトリックス状に配列した第4態様の複数のフィルタ部であってよい。
また例えば、図6(D)に示すように、複数のフィルタ部12は、第1白色フィルタ(W)、赤外色フィルタ(Ir)、赤色フィルタ(R)および黄色フィルタ(Ye)を2行2列で2次元マトリックス状に配列した第5単位色フィルタ部を2次元マトリックス状に配列した第5態様の複数のフィルタ部であってよい。この第5態様の複数のフィルタ部12によれば、赤外色フィルタ(Ir)を介して受光する撮像部11によって輝度を補ったカラー画像を形成できる。例えば、このような第5態様の複数のフィルタ部12を備えた撮像装置IMは、夜間などの暗い環境下で撮像した場合でも、赤外線を反射する人や動物等の被写体をより明瞭に表現したカラー画像を形成できる。
なお、上述では、各撮像部111、112ごとに、単一の色フィルタが配置されたが、1つの撮像部111、112に複数の色フィルタが配置されてもよい。この場合、各色フィルタごとの画像信号で後述の超解像処理が実施される。
このような構造の撮像ユニット1は、電気的には、図7に示すように、例えば、上述の複数の撮像部11と、制御部14と、出力部15とを備える。制御部14は、複数の撮像部11それぞれに接続され、システムコントロール部4の制御信号Csに従って例えばクロック信号、同期信号およびレジスタ制御信号等の各信号を前記複数の撮像部11それぞれに出力することで、前記複数の撮像部11の撮像動作を制御するものである。出力部15は、複数の撮像部11それぞれに接続され、制御部14の制御に従って前記複数の撮像部11が被写体の光学像を撮像することによってそれぞれ生成した各画像信号を前記複数の撮像部11から得て画像出力Siとして高解像度化画像処理部2へ出力するものである。
このような撮像ユニット1における複数の撮像部11(複数の第1撮像部11aおよび複数の第2撮像部11b)は、それぞれ、電気的には、図8に示すように、画素アレイ部113と、制御回路114と、ローデコーダ115と、カラムデコーダ116と、カラムADCアレイ部117と、センスアンプ118と、LVDS119とを備える。
画素アレイ部113は、2次元マトリクス状に配列された複数の光電変換素子(複数の画素)を備える。本実施形態では、上述したように、3行4列の12個の光電変換素子を備える。撮像部11が第1撮像部111である場合には、画素アレイ部113は、複数の第1光電変換素子1111を備える。また、撮像部11が第2撮像部112である場合には、画素アレイ部113は、複数の第2光電変換素子1112を備える。
制御回路114は、前記制御部14から供給されたクロック信号、同期信号およびレジスタ制御信号に従って画素アレイ部113の各光電変換素子の出力を取り出すためにローデコーダ115、カラムデコーダ116およびカラムADCアレイ部117を制御するものである。
ローデコーダ115は、制御回路114および画素アレイ部113それぞれに接続され、画素アレイ部113の各光電変換素子を垂直走査するための回路である。ローデコーダ115は、例えば、垂直走査回路とドライバ回路とを備える。前記垂直走査回路は、例えば、シフトレジスタにより構成され、制御回路114から出力される垂直同期信号に同期して、画素アレイ部113の各行をサイクリックに選択することで、画素アレイ部113を垂直走査する。ドライバ回路は、画素制御信号を生成し、垂直走査回路により選択された行に属する各光電変換素子に画素制御信号を出力することで、各光電変換素子を駆動させる。
カラムADCアレイ部117は、制御回路114および画素アレイ部113それぞれに接続され、画素アレイ部113の列ごとに設けられた複数のアナログデジタル変換回路(カラムADC回路)を備え、アナログ信号からデジタル信号に変換するための回路である。例えば、前記複数のカラムADC回路は、画素アレイ部113の各列に対応する垂直信号ラインVideoを介して各列の光電変換素子と接続され、前記垂直走査回路により選択された行の光電変換素子からノイズ信号およびシグナル信号を読み出す。そして、前記複数のカラムADC回路は、それぞれ、読み出したノイズ信号およびシグナル信号に対して相関二重サンプリング処理を行って画像信号を取得する。そして、前記複数のカラムADC回路は、それぞれ、この取得した画像信号に対してアナログデジタル変換を行い、デジタルの画像信号を保持する。この変換したデジタルの画像信号は、カラムデコーダ116によってカラムADCアレイ部117からセンスアンプ118へ出力される。
カラムデコーダ116は、制御回路114および画素アレイ部113それぞれに接続され、画素アレイ部113の各光電変換素子を水平走査するための回路である。カラムデコーダ116は、例えば、シフトレジスタにより構成され、制御回路114から出力される水平同期信号に同期した列選択信号を出力することで、1水平走査期間において、各列の前記カラムADC回路をサイクリックに選択し、カラムADCアレイ部117を水平走査し、各列のカラムADC回路が保持するデジタル信号をセンスアンプ118に順次に出力させる。
センスアンプ118は、カラムADCアレイ部117およびLVDS119それぞれに接続され、カラムADCアレイ部117から出力された画像信号を増幅するための回路である。この増幅した画像信号は、センスアンプ118からLVDS119へ出力される。
LVDS119は、LVDS(Low Voltage differential signaling)規格に準拠したシリアライザにより構成され、センスアンプ118からパラレルで出力された信号を差動増幅してシリアルに変換し、高解像度化画像処理部2へ出力する回路である。
このような構成の撮像部11が第1撮像部111である場合に、画素アレイ部113に用いられる第1光電変換素子1111は、上述したように、本実施形態では、例えば図10に示す、線形変換特性の出力特性を持つ完全転送型ホトダイオードである。この完全転送型ホトダイオードは、より具体的には、例えば、図9に示すように、埋め込み型のホトダイオードPD1と、例えばNMOS(N−type metal−oxide−semiconductor)の4個のトランジスタQ1〜Q4とを備えて構成される。ホトダイオードPD1のアノードは、接地ラインPVSSに接続され、そのカソードは、トランジスタQ11に接続される。トランジスタQ11は、トランジスタQ12を介して電源ラインAVDDに接続される。トランジスタQ14は、トランジスタQ13を介して電源ラインAVDDに接続され、トランジスタQ14の出力(ドレイン)は、カラムADCアレイ部117に接続される垂直信号ラインVideoに接続される。
トランジスタQ11は、光電変換によってホトダイオードPD1に蓄積された電荷をフローティングディーフュージョン(浮遊拡散層、floating diffusion)FDに転送するための転送トランジスタである。トランジスタQ12は、フローティングディーフュージョンFDをリセットするためのリセットトランジスタである。トランジスタQ13は、フローティングディーフュージョンFDの電荷を電位に変換するための増幅トランジスタである。トランジスタQ14は、行選択スイッチとして機能する行選択トランジスタである。
このため、トランジスタQ11のゲートは、ローデコーダ115に接続されるφTXラインに接続され、トランジスタQ11のゲートには、前記画素制御信号の一つの転送信号φTXが入力される。トランジスタQ12のゲートは、ローデコーダ115に接続されるφRST_FDラインに接続され、トランジスタQ12のゲートには、前記画素制御信号の一つのフローティングディーフュージョンFDをリセットするためのリセット信号φRST_FDが入力される。トランジスタQ13のゲートは、トランジスタQ11とトランジスタQ12との接続点のフローティングディーフュージョンFDに接続される。トランジスタQ14のゲートは、ローデコーダ115に接続されるφVSENラインに接続され、トランジスタQ14のゲートには、前記画素制御信号の一つの行選択信号φVSENが入力される。
このような構成の第1光電変換素子1111には、図11に示すタイミングチャートのリセット信号φRST_FD、行選択信号φVSENおよび転送信号φTXが入力され、フローティングディーフュージョンFDの電位が変化する。すなわち、タイミングt1でリセット信号φRST_FD、行選択信号φVSENおよび転送信号φTXがそれぞれハイレベル、ローレベルおよびハイレベルとされる。タイミングt1では、リセット信号φRST_FDおよび転送信号φTXが共にハイレベルとされることで、ホトダイオードPD1が電源電位にリセットされる。これによって第1光電変換素子1111は、逆バイアス状態のホトダイオードモードで動作することになる。続いて、タイミングt2でリセット信号φRST_FD、行選択信号φVSENおよび転送信号φTXが全てローレベルとされる。続いて、タイミングt3でリセット信号φRST_FD、行選択信号φVSENおよび転送信号φTXがそれぞれハイレベル、ローレベルおよびローレベルとされ、フローティングディーフュージョンFDが電源電位にリセットされる。続いて、タイミングt4でリセット信号φRST_FD、行選択信号φVSENおよび転送信号φTXがそれぞれローレベル、ハイレベルおよびローレベルとされる。このタイミングt4では、ノイズ信号がサンプルされる。続いて、タイミングt5でリセット信号φRST_FD、行選択信号φVSENおよび転送信号φTXがそれぞれローレベル、ローレベルおよびハイレベルとされ、ホトダイオードから電荷がフローティングディーフュージョンFDに読み出される。続いて、タイミングt6でリセット信号φRST_FD、行選択信号φVSENおよび転送信号φTXがそれぞれローレベル、ハイレベルおよびローレベルとされる。このタイミングt6では、シグナル信号がサンプルされる。そして、タイミングt7でリセット信号φRST_FD、行選択信号φVSENおよび転送信号φTXがそれぞれハイレベル、ローレベルおよびローレベルとされる。第1光電変換素子1111では、このような図11に示すタイミングチャートのリセット信号φRST_FD、行選択信号φVSENおよび転送信号φTXによって、光電変換でホトダイオードPD1に蓄積された電荷がフローティングディーフュージョンFDに転送され、フローティングディーフュージョンFDに転送された電荷に基づく電位がトランジスタQ13によって増幅され、トランジスタQ14を介して垂直信号ラインVideoから取り出される。こうして第1光電変換素子1111では、光電変換でホトダイオードPD1に蓄積された電荷に基づく画像信号が取り出される。そして、以後、タイミングt1ないしタイミングt7が繰り返され、画像信号が順次に取り出される。
一方、このような構成の撮像部11が第2撮像部112である場合に、画素アレイ部113に用いられる第2光電変換素子1112は、上述したように、本実施形態では、例えば図13に示す、対数変換特性の出力特性を持つ表面型ホトダイオードである。この表面型ホトダイオードは、より具体的には、例えば、図12に示すように、表面型のホトダイオードPD2と、4個のトランジスタQ21〜Q24とを備えて構成される。2個のトランジスタQ22、Q24は、例えばNMOS(N−type metal−oxide−semiconductor)のトランジスタであり、残余の2個のトランジスタQ21、Q23は、例えばPMOS(P−type metal−oxide−semiconductor)のトランジスタである。ホトダイオードPD2のアノードは、接地ラインPVSSに接続され、そのカソードは、トランジスタQ21のゲートに接続される。トランジスタQ21のゲートは、トランジスタQ22を介して接地ラインPVSSに接続される。トランジスタQ21は、接地ラインPVSSに接続されるとともに、トランジスタQ23を介して電源ラインPVDDに接続される。これら直列接続のトランジスタQ21とトランジスタQ23との接続点は、トランジスタQ24を介してカラムADCアレイ部117に接続される垂直信号ラインVideoに接続される。
トランジスタQ21は、光電変換によってホトダイオードPD2に蓄積された電荷を電位に変換するための増幅トランジスタである。トランジスタQ22は、ホトダイオードPD2をリセットするためのリセットトランジスタである。トランジスタQ23は、トランジスタQ21にバイアスを掛けるためのバイアストランジスタである。トランジスタQ24は、行選択スイッチとして機能する行選択トランジスタである。
このため、トランジスタQ22のゲートは、ローデコーダ115に接続されるφRST_SCラインに接続され、トランジスタQ22のゲートには、前記画素制御信号の一つのリセット信号φRST_SCが入力される。トランジスタQ23のゲートは、ローデコーダ115に接続されるBiasラインに接続され、トランジスタQ23のゲートには、前記画素制御信号の一つのトランジスタQ21のバイアスを制御するためのバイアス信号Biasが入力される。トランジスタQ24のゲートは、ローデコーダ115に接続されるφVSENラインに接続され、トランジスタQ24のゲートには、前記画素制御信号の一つの行選択信号φVSENが入力される。
このような構成の第2光電変換素子1112には、図14に示すタイミングチャートのリセット信号φRST_SCおよび行選択信号φVSENが入力され、ホトダイオードPD2の電位が変化する。すなわち、タイミングt1でリセット信号φRST_SCおよび行選択信号φVSENがそれぞれハイレベルおよびローレベルとされる。すなわち、リセット信号φRST_SCがハイレベルとされることで、ホトダイオードPD2がゼロバイアス(PVSS)にリセットされる。これによって第2光電変換素子1112は、太陽電池モードで動作することになる。続いて、タイミングt2、t3それぞれでリセット信号φRST_SCおよび行選択信号φVSENがそれぞれローレベルおよびローレベルとされる。タイミングt2〜タイミングt3は、ホトダイオードPD2の露光時間である。続いて、タイミングt4でリセット信号φRST_SCおよび行選択信号φVSENがそれぞれローレベルおよびハイレベルとされる。このタイミングt4では、シグナル信号がサンプルされる。続いて、タイミングt5でリセット信号φRST_SCおよび行選択信号φVSENがそれぞれローレベルおよびローレベルとされ、信号電荷がサンプルされる。続いて、タイミングt6でリセット信号φRST_SCおよび行選択信号φVSENがそれぞれハイレベルおよびハイレベルとされる。このタイミングt6では、ノイズ信号がサンプルされる。そして、タイミングt7それぞれでリセット信号φRST_SCおよび行選択信号φVSENがそれぞれローレベルおよびローレベルとされる。第2光電変換素子1112では、このような図14に示すタイミングチャートのリセット信号φRST_FDおよび行選択信号φVSENによって、光電変換でホトダイオードPD2に蓄積された電荷に基づく電位がトランジスタQ21によって増幅され、トランジスタQ24を介して垂直信号ラインVideoから取り出される。こうして第2光電変換素子1112では、光電変換でホトダイオードPD2に蓄積された電荷に基づく画像信号が取り出される。そして、以後、タイミングt1ないしタイミングt7が繰り返され、画像信号が順次に取り出される。
図1に戻って、高解像度化画像処理部2は、撮像ユニット1から入力された複数の画像信号Siに超解像処理を施して複数の高解像度合成画像を生成し、これら複数の高解像度合成画像に広ダイナミックレンジ化する画像合成処理を施してダイナミックレンジの広い高解像度合成画像を作成するものである。超解像処理は、複数の低解像度画像からより解像度の高い1つの高解像度画像を生成する公知の画像処理技術であり、例えば、1つのシーン(被写体)を撮像した複数の画像間に生じるサブピクセルオーダの変位に基づいて画像を重畳することにより高解像度画像を生成する。広ダイナミックレンジ化する画像合成処理は、ダイナミックレンジの異なる複数の画像から、よりダイナミックレンジの広い画像を生成する公知の画像処理技術である。高解像度化画像処理部2は、画像処理部3に接続され、この生成した高解像度合成画像を画像処理部3へ出力する。
本実施形態では、第1撮像部111の画像信号による画像と、第2撮像部112の画像信号による画像とは、それら各光電変換特性α、βが上述のように異なって各階調特性が異なる。このため、複数の第1撮像部111の各画像信号による各画像と、複数の第2撮像部112の各画像信号による各画像とは、それぞれ独立に超解像処理される。なお、各色フィルタごとの画像信号で超解像処理が実施されることになる。そして、このように独立に超解像処理された第1および第2高解像度合成画像が画像合成される。
より具体的には、高解像度化画像処理部2は、例えば、複数の第1撮像部111それぞれから出力される各第1画像信号に基づいて超解像処理によって第1高解像度合成画像を作成する第1高解像度合成画像作成部と、複数の第2撮像部112それぞれから出力される各第2画像信号に基づいて超解像処理によって第2高解像度合成画像を作成する第2高解像度合成画像作成部と、前記第1高解像度合成画像作成部で作成された第1高解像度合成画像および前記第2高解像度合成画像作成部で作成された第2高解像度合成画像に基づいてよりダイナミックレンジの広い高解像度合成画像を作成する高解像度合成画像作成部とを備える第1態様の高解像度化画像処理部2aであってよい。このような第1態様の高解像度化画像処理部2aでは、図15に示すように、複数の第1撮像部111それぞれから各第1画像信号Si11(Si11−1、Si11−2、Si11−3、・・・)が高解像度化画像処理部2aに入力されると、前記第1高解像度合成画像作成部は、これら複数の第1撮像部111の各第1画像信号Si11に超解像処理を施し(S11)、これによって1個の第1高解像度合成画像Ss1を生成する。複数の第2撮像部112それぞれから各第2画像信号Si12(Si12−1、Si12−2、Si12−3、・・・)が高解像度化画像処理部2aに入力されると、前記第2高解像度合成画像作成部は、これら複数の第2撮像部112の各第2画像信号Si12に超解像処理を施し(S12)、これによって第2高解像度合成画像Ss2を生成する。そして、前記超高解像度合成画像作成部は、これら第1および第2高解像度合成画像Ss1、Ss2に、広ダイナミックレンジ化する画像合成処理を施し(S13)、これによってよりダイナミックレンジの広い高解像度合成画像Sc1を生成する。この高解像度合成画像Sc1は、第1および第2光電変換素子1111、1112の各光電変換特性α、βを合成した例えば図18に示す光電変換特性を持つ光電変換素子で撮像した画像と同等の広ダイナミックレンジの画像となる。このような高解像度化画像処理部2aを備えることで、本実施形態の撮像装置IMは、高解像度かつ広ダイナミックレンジな画像が得られる。
また例えば、本実施形態では、高解像度化画像処理部2は、前記複数の第1撮像部それぞれから出力される各第1画像信号に基づいて第1階調範囲の複数の第1階調画像信号と前記第1階調範囲より明るい第2階調範囲の複数の第2階調画像信号とに分離する第1階調分離部と、前記複数の第2撮像部それぞれから出力される各第2画像信号に基づいて前記第2階調範囲の複数の第3階調画像信号と前記第2階調範囲より明るい第3階調範囲の複数の第4階調画像信号とに分離する第2階調分離部と、前記第1階調範囲の複数の第1階調画像信号に基づいて超解像処理によって第1階調高解像度合成画像を作成する第1階調高解像度合成画像作成部と、前記第2階調範囲の複数の第2および第3階調画像信号に基づいて超解像処理によって第2階調高解像度合成画像を作成する第2階調高解像度合成画像作成部と、前記第3階調範囲の複数の第4階調画像信号に基づいて超解像処理によって第3階調高解像度合成画像を作成する第3階調高解像度合成画像作成部と、前記第1階調高解像度合成画像作成部で作成された第1階調高解像度合成画像、前記第2階調高解像度合成画像作成部で作成された第2階調高解像度合成画像および前記第3階調高解像度合成画像作成部で作成された第3階調高解像度合成画像に基づいてよりダイナミックレンジの広い高解像度合成画像を作成する第2高解像度合成画像作成部とをさらに備える第2態様の高解像度化画像処理部2bであってよい。
このような第2態様の高解像度化画像処理部2bでは、図16に示すように、複数の第1撮像部111それぞれから各第1画像信号Si11が高解像度化画像処理部2bに入力されると、前記第1階調分離部は、第1階調範囲の複数の第1階調画像信号Si11d(Si11d−1、Si11d−2、Si11d−3、・・・)と前記第1階調範囲より明るい第2階調範囲の複数の第2階調画像信号Si11m(Si11m−1、Si11m−2、Si11m−3、・・・)とに分離する(S21)。例えば、図17に示すように、光強度が予め設定された所定の閾値TH1未満の入射光を第1光電変換素子1111で光電変換することによって第1撮像部111で得られる画像信号が、第1階調画像信号Si11dとされ、光強度が予め設定された所定の閾値TH1以上の入射光を第1光電変換素子1111で光電変換することによって第1撮像部111で得られる画像信号が、第2階調画像信号Si11mとされる。なお、図17において、第1光電変換素子1111の光電変換特性は、光電変換特性αである。前記所定の閾値TH1は、例えば、入射光の強度0から、第2光電変換素子1112からの画像信号のノイズが許容できる最小限の光強度に設定される。また、飽和領域の光電変換出力は、使用されない。このように前記所定の閾値TH1を設定することによって、第1画像信号Si11は、第1撮像部111で撮像した画像において、被写体の相対的に暗い領域を撮像した第1階調画像信号Si11dと、被写体の相対的に明るい領域を撮像した第2階調画像信号Si11mとに分離できる。
前記第2階調分離部は、前記第2階調範囲の複数の第3階調画像信号Si12m(Si12m−1、Si12m−2、Si12m−3、・・・)と前記第2階調範囲より明るい第3階調範囲の複数の第4階調画像信号Si12b(Si12b−1、Si12b−2、Si12b−3、・・・)とに分離する(S22)。例えば、図17に示すように、光強度が前記所定の閾値TH1以上で予め設定された所定の閾値TH2未満の入射光を第2光電変換素子1112で光電変換することによって第2撮像部112で得られる画像信号が、第3階調画像信号Si12mとされ、光強度が予め設定された所定の閾値TH2以上の入射光を第2光電変換素子1112で光電変換することによって第2撮像部112で得られる画像信号が、第4階調画像信号Si12bとされる。なお、図17において、第2光電変換素子1112の光電変換特性は、光電変換特性βである。前記所定の閾値TH2は、例えば、第1光電変換素子1111が飽和する入射光の飽和強度付近の光強度に設定される。また、前記所定の閾値TH1未満の第2光電変換素子1112の光電変換出力は、一般にSN比が不良であるので、使用されない。このように前記所定の閾値TH2を設定することによって、第2画像信号Si12は、第2撮像部112で撮像した画像において、被写体の相対的に暗い領域を撮像した第3階調画像信号Si12mと、被写体の相対的に明るい領域を撮像した第4階調画像信号Si12bとに分離できる。
前記第1階調高解像度合成画像作成部は、第1階調範囲の複数の第1階調画像信号Si11dに超解像処理を施し(S23)、これによって第1階調高解像度合成画像Ssdを生成する。前記第2階調高解像度合成画像作成部は、第2階調範囲の複数の第2および第3階調画像信号Si11m、Si12mに超解像処理を施し(S24)、これによって第2階調高解像度合成画像Ssmを生成する。なお、この超解像処理(S24)の際に、複数の第2および第3階調画像信号Si11m、Si12mは、光電変換特性が異なるので、いずれかの光電変換特性に統一された後に処理される。例えば、複数の第2階調画像信号Si11mは、複数の第3階調画像信号Si12mに合わせるために対数変換特性に変換される。また逆に例えば、複数の第3階調画像信号Si12mは、複数の第2階調画像信号Si11mに合わせるために線形変換特性に変換されてもよい。前記第3階調高解像度合成画像作成部は、第3階調範囲の複数の第4階調画像信号Si12bに超解像処理を施し(S25)、これによって第3階調高解像度合成画像Ssbを生成する。
そして、前記第2高解像度合成画像作成部は、これら第1ないし第3階調高解像度合成画像Ssd、Ssm、Smbに、広ダイナミックレンジ化する画像合成処理を施し(S26)、これによってよりダイナミックレンジの広い高解像度合成画像Sc2を生成する。この広い高解像度合成画像Sc2は、第1および第2光電変換素子1111、1112の各光電変換特性α、βを合成した例えば図18に示す光電変換特性を持つ光電変換素子で撮像した画像と同等の広ダイナミックレンジの画像となる。なお、図18に示す光電変換特性は、上述から分かるように、入射光の光強度が0から閾値TH1までの範囲である場合では線形変換特性に基づき、入射光の光強度が閾値TH2以上の範囲である場合では対数変換特性に基づき、そして、入射光の光強度が閾値TH1から閾値TH2までの範囲である場合では、線形変換特性および対数変換特性に基づき形成される。
このような高解像度化画像処理部2bを備えることで、本実施形態の撮像装置IMは、複数の第1撮像部111それぞれから出力される各第1画像信号Si11から低輝度画像Si11dおよび中輝度画像Si11mを作成し、複数の第2撮像部112それぞれから出力される各第2画像信号Si12から中輝度画像Si12mおよび高輝度画像Si12bを作成し、各第1画像信号Si11に起因する中輝度画像Si11mと各第2画像信号Si12に起因する中輝度画像Si12mとを合成し、そして、これら低輝度画像の高解像度合成画像Ssd、合成中輝度画像Ssmおよび高輝度画像の高解像度合成画像Sdbを合成して高解像度合成画像Sc2を作成する。このため、このような第2態様の高解像度化画像処理部2bを備える撮像装置IMは、低輝度領域でノイズが少なく、高輝度領域で広いダイナミックレンジを持ち、バラツキの少ない高解像度合成画像を得ることができる。そして、入射光の光強度が閾値TH1から閾値TH2までの範囲である場合では、各第1画像信号Si11に起因する中輝度画像Si11mと各第2画像信号Si12に起因する中輝度画像Si12mとに基づき解像処理が実施されるので、より高解像度な画像を得ることができる。
図1に戻って、画像処理部3は、高解像度化画像処理部2によって処理された高解像度合成画像の画像信号に対し、例えば、ホワイトバランス処理、フィルタ処理、階調変換処理および色空間変換処理等のいわゆる通常の画像処理を施し、最終的な画像信号を生成するものであり、例えば、ISP(Image Signal Processor、画像処理線用プロセッサ)を備えて構成される。また、画像処理部3は、必要に応じて表示装置の特性に適合させたガンマ補正処理を行う。画像処理部3によって画像処理された画像信号Soは、図略のLCD表示装置等に出力され、表示され、あるいは送信機能によって外部に送信され、または記録媒体に記憶される。
システムコントロール部4は、撮像ユニット1、高解像度化画像処理部2および画像処理部3等それぞれに接続され、撮像装置IMの全体制御を司る図略の上位のコントロール部の制御に従って、撮像ユニット1、高解像度化画像処理部2および画像処理部3等の各部を当該各部の機能に応じて制御する。
このような構成の撮像装置IMでは、被写体(物体)からの光が撮像ユニット1に入射される。この被写体からの光は、複数の撮像光学系13それぞれによって複数のフィルタ部12それぞれを介して複数の撮像部11における各撮像面にそれぞれ結像される。複数の撮像部11は、それぞれ、被写体の光学像を光電変換する。すなわち、複数の第1撮像部111は、それぞれ、線形変換特性の第1光電変換特性αで被写体の光学像を光電変換し、第1画像信号を出力する。そして、複数の第2撮像部112は、それぞれ、対数変換特性の第2光電変換特性βで被写体の光学像を光電変換し、第2画像信号を出力する。これら複数の第1および第2画像信号は、撮像ユニット1から高解像度化画像処理部2へ出力される。
高解像度化画像処理部2は、撮像ユニット1から当該高解像度化画像処理部2に入力されたこれら複数の画像信号に超解像処理を施して複数の高解像度合成画像を生成し、これら複数の高解像度合成画像に広ダイナミックレンジ化する画像合成処理を施してダイナミックレンジの広い高解像度合成画像を作成する。そして、高解像度化画像処理部2は、これら生成した複数の高解像度合成画像を画像合成処理し、ダイナミックレンジのより広い高解像度合成画像を作成する。この解像度合成画像信号は、高解像度化画像処理部2から画像処理部3へ出力される。
画像処理部3は、この解像度合成画像信号に通常の画像処理を施し、最終的な画像信号を生成する。そして、この最終的な画像信号は、例えば、図略の表示装置へ出力され、前記表示装置に被写体の画像が表示される。
以上、説明したように、本実施形態における撮像装置IMでは、複数の撮像部11は、互いに異なる少なくとも2種類の光電変換特性α、βを含むので、1種類の光電変換特性の場合に較べてダイナミックレンジを広くすることが可能となる。そして、本実施形態における撮像装置IMでは、複数の撮像部11それぞれは、1種類の光電変換特性α(β)の1または複数の光電変換素子1111(1112)から成るので、各撮像部111(112)ごとに、バラツキの少ない出力特性を持つ光電変換素子1111(1112)を用いることが可能となる。例えば、各撮像部111(112)ごとに、バラツキの少ない線形変換特性αの第1光電変換素子1111や、バラツキの少ない対数変換特性βの第2光電変換素子1112を用いることが可能となる。このため、本実施形態における撮像装置IMは、広いダイナミックレンジを持ちつつ、各画素の各出力特性におけるバラツキを低減できる。
より具体的には、本実施形態における撮像装置IMは、低照度でノイズの少ない比較的な高感度な第1線形変換特性αを持つ完全転送型ホトダイオードの第1光電変換素子1111から成る複数の第1撮像部111と、広ダイナミックレンジでバラツキの少ない対数変換特性βを持つ表面型ホトダイオードの第2光電変換素子1112から成る複数の第2撮像部112とを含み、これら第1および第2撮像部111、112の第1および第2光電変換特性α、β(各画像)を合成することで、より広ダイナミックレンジで高感度でさらに低バラツキな画像を実現できる。
また、本実施形態における撮像装置IMは、第1光電変換素子1111の第1リセット電圧が第2光電変換素子1112の第2リセット電圧より高電位であるので、第1光電変換素子1111と第2光電変換素子1112とを異なる動作条件で動作させることができる。より具体的には、第1光電変換素子1111の第1リセット電圧は、電源ラインAVDDの駆動電圧であり、第1光電変換素子1111のホトダイオードPD1が高電位でリセットされる。これによって第1光電変換素子1111は、逆バイアス状態のホトダイオードモードで動作することになる。一方、第2光電変換素子1112の第2リセット電圧は、接地ラインPVDDの接地電圧0であり、第2光電変換素子1112のホトダイオードPD2がゼロバイアス(接地電圧0)でリセットされる。これによって第2光電変換素子1112は、太陽電池モードで動作することになる。
また、本実施形態における撮像装置IMは、一態様では、同一の半導体ウェハ上に一体的に形成した第1態様の複数の撮像部11aを用いて構成される。このような構成の撮像装置IMは、前記複数の撮像部11aが同一半導体ウェハ上に一体的に形成されるので、出力特性のバラツキを低減できる。さらに、各撮像部11aの受光面が同一平面上に配置することが容易である。また、このような構成の撮像装置IMは、前記複数の撮像部11aを同一半導体ウェハ上に一体的に形成しても、前記複数の撮像部11aそれぞれが1種類の光電変換特性の1または複数の光電変換素子から成るので、同一撮像部内に異なる光電変換特性を持つ光電変換素子が混在して形成されている場合に較べて、配線領域を低減できるから、開口率(開口面積、受光面積)を大きくできる。したがって、このような構成の撮像装置IMは、前記混在して形成されている場合に較べて、高感度化できる。
図19は、図2に示す撮像ユニットにおける第1および第2撮像部の第1および第2光電変換素子の各開口面積を説明するための図である。図19(A)は、第1光電変換素子1111を示し、図19(B)は、第2光電変換素子1112を示す。図20は、比較例として、1個の画素に第1および第2光電変換素子を並置して設けた場合における前記第1および第2光電変換素子の各開口面積を説明するための図である。
より具体的には、複数の撮像部11aにおける第1撮像部111の第1光電変換素子1111では、その開口部Ap1の開口面積Aap1は、図19(A)に示すように、単位画素領域Pxの面積Apxのうち、互いに平行に延びるφVSENライン、φRST_FDラインおよびφTXラインの第1配線領域の面積およびこれに直交する垂直信号ラインVideoの第2配線領域の面積を除いた面積となる。複数の撮像部11aにおける第2撮像部112の第2光電変換素子1112では、その開口部Ap2の開口面積Aap2は、図19(B)に示すように、単位画素領域Pxの面積Apxのうち、互いに平行に延びるφVSENライン、BiasラインおよびφRST_SCラインの第3配線領域の面積およびこれに直交する垂直信号ラインVideoの第4配線領域の面積を除いた面積となる。
一方、第1および第2光電変換素子1111、1112が混在する場合、例えば、図20に示すように、互いに隣接する画素に第1および第2光電変換素子1111、1112が形成される場合では、その各開口部Ap3の開口面積Aap3は、図20に示すように、単位画素領域Pxの面積Apxのうち、互いに平行に延びるφVSENライン、Biasライン、φTXライン、φRST_FDラインおよびφRST_SCラインの第5配線領域の面積およびこれに直交する2本の垂直信号ラインVideoの第6配線領域の面積を除いた面積の半分となる。
したがって、第1光電変換素子の開口面積Aap1は、大略、BiasラインおよびφRST_SCラインの配線に要する配線領域だけ狭く、第2光電変換素子の開口面積Aap2は、大略、φTXラインおよびφRST_FDラインの配線に要する配線領域だけ狭くなる。
さらに、1個の画素に第1および第2光電変換素子1111、1112を形成する場合には、その各開口面積は、さらに狭くなる。
このように第1態様の複数の撮像部11aは、第1および第2光電変換素子1111、1112を混在して形成する場合に較べて、開口率(開口面積、受光面積)を大きくできる。
また、本実施形態における撮像装置IMは、一態様では、個別部品の複数の第1撮像部111bおよび個別部品の複数の第2撮像部112bを同一の基板上に2次元マトリクス状に配列した第2態様の複数の撮像部11bを用いて構成される。このような構成の撮像装置IMは、個別部品を用いるので、良品を選別して配列できるので、バラツキを低減でき、撮像装置IMの歩留まりを容易に向上できる。
本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
IM 撮像装置
PD1 埋め込み型のホトダイオード
PD2 表面型のホトダイオード
α 第1光電変換特性(線形変換特性)
β 第2光電変換特性(対数変換特性)
1 撮像ユニット
2 高解像度化画像処理部
11 複数の撮像部
111 第1撮像部
112 第2撮像部
1111 第1光電変換素子
1112 第2光電変換素子

Claims (13)

  1. 複数の撮像光学系と、
    前記複数の撮像光学系に対応し、各撮像面が互いに同一平面となるように配列され、前記複数の撮像光学系それぞれによって前記各撮像面に結像された被写体の光学像をそれぞれ撮像する複数の撮像部とを備え、
    前記複数の撮像部は、互いに異なる少なくとも2種類以上の光電変換特性を含み、
    前記複数の撮像部それぞれは、1種類の光電変換特性の1または複数の光電変換素子から成ること
    を特徴とする撮像装置。
  2. 前記複数の撮像部は、
    入射光に対して出力が線形に変化する線形変換特性を持つ第1光電変換素子から成る複数の第1撮像部と、
    入射光に対して出力が対数的に変化する対数変換特性を持つ第2光電変換素子から成る複数の第2撮像部とを含むこと
    を特徴とする請求項1に記載の撮像装置。
  3. 前記第1光電変換素子の第1リセット電圧は、前記第2光電変換素子の第2リセット電圧より高電位であること
    を特徴とする請求項2に記載の撮像装置。
  4. 前記第1光電変換素子は、完全転送型または埋め込み型ホトダイオードであり、
    前記第2光電変換素子は、表面型ホトダイオードであること
    を特徴とする請求項2または請求項3に記載の撮像装置。
  5. 前記複数の撮像部は、同一半導体ウェハ上に一体的に形成されていること
    を特徴とする請求項1ないし請求項4のいずれか1項に記載の撮像装置。
  6. 前記複数の第1撮像部それぞれから出力される各第1画像信号に基づいて超解像処理によって第1高解像度合成画像を作成する第1高解像度合成画像作成部と、
    前記複数の第2撮像部それぞれから出力される各第2画像信号に基づいて超解像処理によって第2高解像度合成画像を作成する第2高解像度合成画像作成部と、
    前記第1高解像度合成画像作成部で作成された第1高解像度合成画像および前記第2高解像度合成画像作成部で作成された第2高解像度合成画像に基づいてよりダイナミックレンジの広い高解像度合成画像を作成する高解像度合成画像作成部とをさらに備えること
    を特徴とする請求項1ないし請求項5のいずれか1項に記載の撮像装置。
  7. 前記複数の第1撮像部それぞれから出力される各第1画像信号に基づいて第1階調範囲の複数の第1階調画像信号と前記第1階調範囲より明るい第2階調範囲の複数の第2階調画像信号とに分離する第1階調分離部と、
    前記複数の第2撮像部それぞれから出力される各第2画像信号に基づいて前記第2階調範囲の複数の第3階調画像信号と前記第2階調範囲より明るい第3階調範囲の複数の第4階調画像信号とに分離する第2階調分離部と、
    前記第1階調範囲の複数の第1階調画像信号に基づいて超解像処理によって第1階調高解像度合成画像を作成する第1階調高解像度合成画像作成部と、
    前記第2階調範囲の複数の第2および第3階調画像信号に基づいて超解像処理によって第2階調高解像度合成画像を作成する第2階調高解像度合成画像作成部と、
    前記第3階調範囲の複数の第4階調画像信号に基づいて超解像処理によって第3階調高解像度合成画像を作成する第3階調高解像度合成画像作成部と、
    前記第1階調高解像度合成画像作成部で作成された第1階調高解像度合成画像、前記第2階調高解像度合成画像作成部で作成された第2階調高解像度合成画像および前記第3階調高解像度合成画像作成部で作成された第3階調高解像度合成画像に基づいてよりダイナミックレンジの広い高解像度合成画像を作成する第2高解像度合成画像作成部とをさらに備えること
    を特徴とする請求項1ないし請求項5のいずれか1項に記載の撮像装置。
  8. 前記複数の撮像部に対応し、撮像面側に配置された複数の色フィルタ部をさらに備え、
    前記色フィルタ部は、赤色フィルタ、第1緑色フィルタ、第2緑色フィルタおよび青色フィルタを2次元マトリックス状に配列したフィルタであること
    を特徴とする請求項1ないし請求項7のいずれか1項に記載の撮像装置。
  9. 前記複数の撮像部に対応し、撮像面側に配置された複数の色フィルタ部をさらに備え、
    前記色フィルタ部は、黄色フィルタ、マゼンダ色フィルタ、シアン色フィルタおよび緑色フィルタを2次元マトリックス状に配列したフィルタであること
    を特徴とする請求項1ないし請求項7のいずれか1項に記載の撮像装置。
  10. 前記複数の撮像部に対応し、撮像面側に配置された複数の色フィルタ部をさらに備え、
    前記色フィルタ部は、第1白色フィルタ、黄色フィルタ、赤色フィルタおよび第2白色フィルタを2次元マトリックス状に配列したフィルタであること
    を特徴とする請求項1ないし請求項7のいずれか1項に記載の撮像装置。
  11. 前記複数の撮像部に対応し、撮像面側に配置された複数の色フィルタ部をさらに備え、
    前記色フィルタ部は、白色フィルタ、赤外フィルタ、赤色フィルタおよび黄色フィルタを2次元マトリックス状に配列したフィルタであること
    を特徴とする請求項1ないし請求項7のいずれか1項に記載の撮像装置。
  12. 請求項1ないし請求項5のいずれか1項に記載の撮像装置で用いられる撮像画像の形成方法であって、
    前記複数の第1撮像部それぞれから出力される各第1画像信号に基づいて超解像処理によって第1高解像度合成画像を作成する第1高解像度合成画像作成工程と、
    前記複数の第2撮像部それぞれから出力される各第2画像信号に基づいて超解像処理によって第2高解像度合成画像を作成する第2高解像度合成画像作成工程と、
    前記第1高解像度合成画像作成工程で作成された第1高解像度合成画像および前記第2高解像度合成画像作成工程で作成された第2高解像度合成画像に基づいてよりダイナミックレンジの広い高解像度合成画像を作成する高解像度合成画像作成部とをさらに備えること
    を特徴とする撮像画像の形成方法。
  13. 請求項1ないし請求項5のいずれか1項に記載の撮像装置で用いられる撮像画像の形成方法であって、
    前記複数の第1撮像部それぞれから出力される各第1画像信号に基づいて第1階調範囲の複数の第1階調画像信号と前記第1階調範囲より明るい第2階調範囲の複数の第2階調画像信号とに分離する第1階調分離工程と、
    前記複数の第2撮像部それぞれから出力される各第2画像信号に基づいて前記第2階調範囲の複数の第3階調画像信号と前記第2階調範囲より明るい第3階調範囲の複数の第4階調画像信号とに分離する第2階調分離工程と、
    前記第1階調範囲の複数の第1階調画像信号に基づいて超解像処理によって第1階調高解像度合成画像を作成する第1階調高解像度合成画像作成工程と、
    前記第2階調範囲の複数の第2および第3階調画像信号に基づいて超解像処理によって第2階調高解像度合成画像を作成する第2階調高解像度合成画像作成工程と、
    前記第3階調範囲の複数の第4階調画像信号に基づいて超解像処理によって第3階調高解像度合成画像を作成する第3階調高解像度合成画像作成工程と、
    前記第1階調高解像度合成画像作成工程で作成された第1階調高解像度合成画像、前記第2階調高解像度合成画像作成工程で作成された第2階調高解像度合成画像および前記第3階調高解像度合成画像作成工程で作成された第3階調高解像度合成画像に基づいてよりダイナミックレンジの広い高解像度合成画像を作成する第2高解像度合成画像作成工程とをさらに備えること
    を特徴とする撮像画像の形成方法。
JP2013131827A 2013-06-24 2013-06-24 撮像装置および撮像画像の形成方法 Pending JP2015008343A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013131827A JP2015008343A (ja) 2013-06-24 2013-06-24 撮像装置および撮像画像の形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013131827A JP2015008343A (ja) 2013-06-24 2013-06-24 撮像装置および撮像画像の形成方法

Publications (1)

Publication Number Publication Date
JP2015008343A true JP2015008343A (ja) 2015-01-15

Family

ID=52338380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013131827A Pending JP2015008343A (ja) 2013-06-24 2013-06-24 撮像装置および撮像画像の形成方法

Country Status (1)

Country Link
JP (1) JP2015008343A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108270977A (zh) * 2018-03-06 2018-07-10 广东欧珀移动通信有限公司 控制方法及装置、成像设备、计算机设备及可读存储介质
US10321075B2 (en) 2016-11-16 2019-06-11 Canon Kabushiki Kaisha Imaging apparatus and imaging system
JP7185753B1 (ja) 2021-07-19 2022-12-07 采▲ぎょく▼科技股▲ふん▼有限公司 固体撮像素子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004336469A (ja) * 2003-05-08 2004-11-25 Fuji Film Microdevices Co Ltd 固体撮像素子、撮像装置、及び画像処理方法
JP2008289000A (ja) * 2007-05-18 2008-11-27 Sony Corp 画像入力処理装置、および、その方法
JP2012060602A (ja) * 2010-09-13 2012-03-22 Konica Minolta Opto Inc 撮像装置
WO2013027326A1 (ja) * 2011-08-23 2013-02-28 コニカミノルタアドバンストレイヤー株式会社 固体撮像装置
WO2013069445A1 (ja) * 2011-11-11 2013-05-16 富士フイルム株式会社 立体撮像装置及び画像処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004336469A (ja) * 2003-05-08 2004-11-25 Fuji Film Microdevices Co Ltd 固体撮像素子、撮像装置、及び画像処理方法
JP2008289000A (ja) * 2007-05-18 2008-11-27 Sony Corp 画像入力処理装置、および、その方法
JP2012060602A (ja) * 2010-09-13 2012-03-22 Konica Minolta Opto Inc 撮像装置
WO2013027326A1 (ja) * 2011-08-23 2013-02-28 コニカミノルタアドバンストレイヤー株式会社 固体撮像装置
WO2013069445A1 (ja) * 2011-11-11 2013-05-16 富士フイルム株式会社 立体撮像装置及び画像処理方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10321075B2 (en) 2016-11-16 2019-06-11 Canon Kabushiki Kaisha Imaging apparatus and imaging system
CN108270977A (zh) * 2018-03-06 2018-07-10 广东欧珀移动通信有限公司 控制方法及装置、成像设备、计算机设备及可读存储介质
JP7185753B1 (ja) 2021-07-19 2022-12-07 采▲ぎょく▼科技股▲ふん▼有限公司 固体撮像素子
JP2023014965A (ja) * 2021-07-19 2023-01-31 采▲ぎょく▼科技股▲ふん▼有限公司 固体撮像素子
US12027547B2 (en) 2021-07-19 2024-07-02 Visera Technologies Company Limited Solid-state image sensor

Similar Documents

Publication Publication Date Title
JP7264187B2 (ja) 固体撮像装置およびその駆動方法、並びに電子機器
JP6287058B2 (ja) 縮小光学系用の光電変換素子、画像読取装置、画像形成装置及び画像読取方法
US9978792B2 (en) Solid-state image sensor and camera which can detect visible light and infrared light at a high S/N ratio
US9438839B2 (en) Solid state imaging apparatus and imaging system using the same
KR101241702B1 (ko) 고체 촬상 소자, 그 구동 방법 및 촬상 장치
JP4821921B2 (ja) 固体撮像装置および電子機器
US11678075B2 (en) Image sensor that includes sensing pixels sharing a floating diffusion node and operation method thereof
US8411157B2 (en) Solid-state image pickup device and image pickup device
US9544513B2 (en) Image sensor having pixel architecture for capturing depth image and color image
JPWO2017009944A1 (ja) 固体撮像装置
US9883150B2 (en) Solid state imaging device, imaging device, and electronic device for control of color and luminance resolutions
JP2006080937A (ja) 物理情報取得方法および物理情報取得装置、並びに物理量分布検知の半導体装置、プログラム、および撮像モジュール
US20150312491A1 (en) Solid-state imaging device
US20150163430A1 (en) Solid state imaging device
JP6413401B2 (ja) 固体撮像素子
TWI822641B (zh) 光感測裝置
KR101246141B1 (ko) 광역 동적범위를 가지는 이미지 센서의 화소 회로 및 그 구동 방법
JP2022106861A (ja) 撮像素子
JP2015008343A (ja) 撮像装置および撮像画像の形成方法
US9716867B2 (en) Color filter array and image sensor having the same
JP6256054B2 (ja) 固体撮像素子及び撮像装置
JP6217338B2 (ja) 固体撮像素子及び撮像装置
JP6489247B2 (ja) 光電変換素子、画像読取装置、画像形成装置及び画像読取方法
CN112770069A (zh) 图像装置
JP6699772B2 (ja) 光電変換素子、画像読取装置、画像形成装置及び画像読取方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180814