JP2015008232A - Rare earth magnet and method for manufacturing the same - Google Patents

Rare earth magnet and method for manufacturing the same Download PDF

Info

Publication number
JP2015008232A
JP2015008232A JP2013133188A JP2013133188A JP2015008232A JP 2015008232 A JP2015008232 A JP 2015008232A JP 2013133188 A JP2013133188 A JP 2013133188A JP 2013133188 A JP2013133188 A JP 2013133188A JP 2015008232 A JP2015008232 A JP 2015008232A
Authority
JP
Japan
Prior art keywords
rare earth
thermal conductivity
powder
magnetic
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013133188A
Other languages
Japanese (ja)
Inventor
前田 徹
Toru Maeda
前田  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2013133188A priority Critical patent/JP2015008232A/en
Publication of JP2015008232A publication Critical patent/JP2015008232A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rare earth magnet which is less prone to the reduction in the magnetic characteristic even at high temperature, and a method for manufacturing the same.SOLUTION: A rare earth magnet 1 comprises: a plurality of coated magnetic particles 2 having magnetic particles 20 consisting of a rare earth-iron alloy containing a rare earth element and an iron group element and a heat shield layer 22 covering an outer periphery of the magnetic particle 20; and a bond phase 3 between the coated magnetic particles 2 and bonding coated magnetic particles 2 each other. The bond phase 3 consists of a composite material containing a resin and a filler dispersed into the resin. The thermal conductivity κof the composite material is higher than that κof the component of the heat shield layer 22. The thermal conductivity κof the component of the heat shield layer 22 is lower than that κof the above rare earth-iron alloy.

Description

本発明は、永久磁石などに利用される希土類磁石、及び希土類磁石の製造方法に関するものである。特に、高温でも磁気特性が低下し難い希土類磁石に関する。   The present invention relates to a rare earth magnet used for a permanent magnet and the like, and a method for producing the rare earth magnet. In particular, the present invention relates to a rare earth magnet whose magnetic properties are not easily lowered even at high temperatures.

モータや発電機などに利用される永久磁石には、希土類磁石が広く利用されている。希土類磁石は、ネオジム(Nd)、鉄(Fe)、硼素(B)を含む合金からなるネオジム磁石が代表的である。従来のネオジム磁石として、原料の磁性粉末を成形してから焼結した焼結磁石、図3に示すように磁性粉末200が樹脂300によって結合された樹脂ボンド磁石100がある。樹脂ボンド磁石では、Nd−Fe−B系合金よりも更に磁気特性に優れる材質として、サマリウム(Sm)、鉄、窒素(N)を含むSm−Fe−N系合金が検討されている。   Rare earth magnets are widely used as permanent magnets used in motors and generators. The rare earth magnet is typically a neodymium magnet made of an alloy containing neodymium (Nd), iron (Fe), and boron (B). As a conventional neodymium magnet, there is a sintered magnet obtained by forming and sintering a raw magnetic powder, and a resin bonded magnet 100 in which a magnetic powder 200 is bonded by a resin 300 as shown in FIG. For resin-bonded magnets, Sm—Fe—N alloys containing samarium (Sm), iron, and nitrogen (N) have been studied as materials having better magnetic properties than Nd—Fe—B alloys.

焼結磁石や樹脂ボンド磁石以外の希土類磁石として、特許文献1では、Nd−Fe−B系合金の粉末を水素化した水素化粉末を原料粉末とし、この原料粉末を圧縮成形した粉末成形体に脱水素処理を施した圧縮磁石(圧粉磁石)を開示している。特許文献2では、Sm−Fe系合金の粉末を水素化した水素化粉末を原料粉末とし、この原料粉末を圧縮成形した粉末成形体に脱水素処理を施した後、更に窒化処理を施したSm−Fe−N系合金の圧縮磁石を開示している。   In Patent Document 1, as a rare earth magnet other than a sintered magnet or a resin bonded magnet, a hydrogenated powder obtained by hydrogenating a powder of an Nd-Fe-B alloy is used as a raw material powder, and a powder molded body obtained by compression molding this raw material powder is used. A compression magnet (powder magnet) subjected to dehydrogenation treatment is disclosed. In Patent Document 2, a hydrogenated powder obtained by hydrogenating a powder of an Sm—Fe-based alloy is used as a raw material powder, and a powder molded body obtained by compression molding the raw material powder is subjected to dehydrogenation treatment, and further subjected to nitriding treatment. A compression magnet of -Fe-N alloy is disclosed.

特許第5059955号公報Japanese Patent No. 5059955 特許第5059929号公報Japanese Patent No. 5059929

使用時の温度が高い場合であっても磁気特性の低下が少なく、優れた磁気特性を有する希土類磁石の開発が望まれている。   There is a demand for the development of a rare earth magnet having excellent magnetic properties with little decrease in magnetic properties even when the temperature during use is high.

希土類磁石(特にネオジム磁石)は、使用時の温度が高いと、減磁することが知られている。そのため、希土類磁石には、高温環境であっても、例えば、自動車のエンジンの近傍に配置されるモータや発電機などに利用される永久磁石のように最高温度が200℃程度になる使用環境であっても、磁気特性が低下し難いことが望まれる。   Rare earth magnets (particularly neodymium magnets) are known to demagnetize when the temperature during use is high. For this reason, rare earth magnets are used in environments where the maximum temperature is about 200 ° C., even in high temperature environments, such as permanent magnets used in motors, generators, and the like that are arranged in the vicinity of automobile engines. Even if it exists, it is desired that a magnetic characteristic does not fall easily.

上述の高温環境となる車載用途などの磁石では、使用時の温度が、低温(例えば、自動車が使用される屋外の温度)から上述の最高温度までの広い範囲で変化し得る。この温度変化によって、上記磁石には、熱のフロー(熱の出入り)が生じ得る。上述の焼結磁石や圧縮磁石では、外部からの熱は、磁石を構成するNd−Fe−B系合金といった合金を伝わる。しかし、磁石を構成する合金自体は、熱伝導性がよくなく、外部からの熱が侵入すると、熱が上記合金内に留まり、磁石が高温になり易い。そのため、従来の焼結合金や従来の圧縮磁石では、高温になると、磁気特性が低下し易い。   In a magnet for in-vehicle use that is in the above-described high temperature environment, the temperature during use can vary in a wide range from a low temperature (for example, an outdoor temperature where an automobile is used) to the above-mentioned maximum temperature. Due to this temperature change, heat flow (heat in / out) can occur in the magnet. In the above-described sintered magnet and compressed magnet, heat from the outside is transmitted through an alloy such as an Nd—Fe—B alloy constituting the magnet. However, the alloy constituting the magnet itself has poor heat conductivity, and when heat from the outside enters, the heat stays in the alloy, and the magnet is likely to become high temperature. Therefore, in the conventional sintered alloy and the conventional compressed magnet, the magnetic characteristics are likely to be lowered at a high temperature.

上述の従来の樹脂ボンド磁石では、使用時の温度が高くなると、樹脂が溶融したり分解したりするため、上述の車載用途のような高温環境での使用に適さず、使用時の温度が低い用途に制限される。仮に、樹脂が分解などしなかった場合でも、従来の樹脂ボンド磁石に利用されている樹脂は、Nd−Fe−B系合金といった合金よりも熱伝導率が低い。そのため、樹脂に囲まれた上記合金に外部からの熱が伝わり難いものの、一旦、上記合金に熱が伝わると、熱伝導性に劣る上記樹脂に阻害されて磁石内に熱が留まり易い。磁石内に熱が留まることで上記合金が高温になり、温度上昇に伴う磁気特性の低下を招く。従って、従来の樹脂ボンド磁石では、高温環境では使用できない、又は磁気特性が大きく低下し得る。   In the above-described conventional resin bonded magnet, when the temperature at the time of use becomes high, the resin melts or decomposes, so that it is not suitable for use in a high temperature environment such as the above-mentioned in-vehicle use, and the temperature at the time of use is low. Limited to use. Even if the resin is not decomposed, the resin used for the conventional resin bonded magnet has a lower thermal conductivity than an alloy such as an Nd—Fe—B alloy. Therefore, although it is difficult for heat from the outside to be transmitted to the alloy surrounded by the resin, once the heat is transmitted to the alloy, the resin is hindered by the resin having poor thermal conductivity and heat tends to stay in the magnet. When the heat stays in the magnet, the alloy becomes a high temperature, causing a decrease in magnetic properties as the temperature rises. Therefore, the conventional resin bonded magnet cannot be used in a high temperature environment, or the magnetic properties may be greatly deteriorated.

そこで、本発明の目的の一つは、高温でも磁気特性が低下し難い希土類磁石を提供することにある。また、本発明の他の目的は、高温でも磁気特性が低下し難い希土類磁石を製造することができる希土類磁石の製造方法を提供することにある。   Accordingly, one of the objects of the present invention is to provide a rare earth magnet in which the magnetic properties are not easily lowered even at high temperatures. Another object of the present invention is to provide a method for producing a rare earth magnet capable of producing a rare earth magnet that is less likely to deteriorate in magnetic properties even at high temperatures.

本発明の希土類磁石は、希土類元素と鉄族元素とを含む希土類−鉄系合金からなる磁性粒子と、前記磁性粒子の外周を覆う遮熱層とを備える複数の被覆磁性粒子と、前記被覆磁性粒子の間に介在して前記被覆磁性粒子同士を結合する結合相とを備える。前記結合相は、樹脂と前記樹脂中に分散するフィラーとを含む複合材料から構成される。前記複合材料の熱伝導率κRBが前記遮熱層の構成材料の熱伝導率κよりも高い。前記遮熱層の構成材料の熱伝導率κが前記希土類−鉄系合金の熱伝導率κよりも低い。 The rare earth magnet of the present invention includes a plurality of coated magnetic particles comprising magnetic particles made of a rare earth-iron alloy containing a rare earth element and an iron group element, a heat shielding layer covering the outer periphery of the magnetic particles, and the coated magnetism. A binder phase that is interposed between the particles and bonds the coated magnetic particles to each other. The binder phase is composed of a composite material including a resin and a filler dispersed in the resin. The thermal conductivity κ RB of the composite material is higher than the thermal conductivity κ b of the constituent material of the heat shield layer. The thermal conductivity κ b of the constituent material of the heat shield layer is lower than the thermal conductivity κ r of the rare earth-iron alloy.

本発明の希土類磁石の製造方法は、以下の準備工程と、被覆工程と、混合工程と、成形工程とを備える。
準備工程 希土類元素と鉄族元素とを含む希土類−鉄系合金からなる磁性粉末を準備する工程。
被覆工程 前記磁性粉末を構成する各磁性粒子の表面を覆うように、前記希土類−鉄系合金の熱伝導率κよりも熱伝導率が低い材料によって遮熱層を形成して被覆磁性粉末を製造する工程。
混合工程 樹脂とフィラーとを含み、前記遮熱層の構成材料の熱伝導率κよりも熱伝導率が高い複合材料の粉末と、前記被覆磁性粉末とを混合した混合粉末を製造する工程。
成形工程 前記混合粉末を成形して、前記被覆磁性粉末を構成する各被覆磁性粒子間に前記複合材料からなる結合相が介在する磁石素材を製造する工程。
The method for producing a rare earth magnet of the present invention includes the following preparation step, coating step, mixing step, and forming step.
Preparation step A step of preparing a magnetic powder made of a rare earth-iron alloy containing a rare earth element and an iron group element.
Coating step A thermal barrier layer is formed of a material having a thermal conductivity lower than the thermal conductivity κ r of the rare earth-iron-based alloy so as to cover the surface of each magnetic particle constituting the magnetic powder, and the coated magnetic powder is formed. Manufacturing process.
Mixing process The process of manufacturing the mixed powder which mixed the powder of the composite material which has resin and a filler, and whose thermal conductivity is higher than the thermal conductivity (kappa) b of the constituent material of the said heat shielding layer, and the said covering magnetic powder.
Molding step The step of molding the mixed powder to produce a magnet material in which a binder phase composed of the composite material is interposed between the coated magnetic particles constituting the coated magnetic powder.

本発明の希土類磁石は、高温でも磁気特性が低下し難い。本発明の希土類磁石の製造方法は、高温でも磁気特性が低下し難い希土類磁石を製造することができる。   The rare earth magnet of the present invention hardly deteriorates in magnetic properties even at high temperatures. The method for producing a rare earth magnet according to the present invention can produce a rare earth magnet that hardly deteriorates in magnetic properties even at high temperatures.

実施形態の希土類磁石を説明する模式図である。It is a schematic diagram explaining the rare earth magnet of an embodiment. 試験例1における磁束量の測定方法を説明する説明図である。It is explanatory drawing explaining the measuring method of the magnetic flux amount in the test example 1. FIG. 従来の樹脂ボンド磁石を説明する模式図である。It is a schematic diagram explaining the conventional resin bond magnet.

[本発明の実施の形態の説明]
最初に本発明の実施形態の内容を列記して説明する。
[Description of Embodiment of the Present Invention]
First, the contents of the embodiment of the present invention will be listed and described.

(1) 実施形態に係る希土類磁石は、複数の被覆磁性粒子と、上記被覆磁性粒子の間に介在する結合相とを備える。各被覆磁性粒子は、希土類元素と鉄族元素とを含む希土類−鉄系合金からなる磁性粒子と、上記磁性粒子の外周を覆う遮熱層とを備える。上記結合相は、樹脂と上記樹脂中に分散するフィラーとを含む複合材料から構成され、上記被覆磁性粒子同士を結合する。上記複合材料の熱伝導率κRBが上記遮熱層の構成材料の熱伝導率κよりも高い。上記遮熱層の構成材料の熱伝導率κが上記希土類−鉄系合金の熱伝導率κよりも低い。つまり、実施形態の希土類磁石は、各構成要素の熱伝導率について以下の関係式を満たす。
結合相の熱伝導率κRB>遮熱層の熱伝導率κ
遮熱層の熱伝導率κ<希土類−鉄系合金の熱伝導率κ
(1) The rare earth magnet according to the embodiment includes a plurality of coated magnetic particles and a binder phase interposed between the coated magnetic particles. Each coated magnetic particle includes a magnetic particle made of a rare earth-iron-based alloy containing a rare earth element and an iron group element, and a heat shielding layer that covers the outer periphery of the magnetic particle. The binder phase is composed of a composite material including a resin and a filler dispersed in the resin, and bonds the coated magnetic particles to each other. The thermal conductivity κ RB of the composite material is higher than the thermal conductivity κ b of the constituent material of the heat shield layer. The thermal conductivity κ b of the constituent material of the heat shield layer is lower than the thermal conductivity κ r of the rare earth-iron alloy. That is, the rare earth magnet of the embodiment satisfies the following relational expression for the thermal conductivity of each component.
Thermal conductivity of binder phase κ RB > Thermal conductivity of thermal barrier layer κ b
Thermal conductivity of thermal barrier layer κ b <Thermal conductivity of rare earth-iron alloy κ r

実施形態の希土類磁石は、以下の理由によって、使用時の温度が高い場合(特に120℃以上、更に160℃以上、とりわけ200℃以上)であっても、磁気特性が低下し難く、優れた磁気特性を有する。   The rare earth magnet according to the embodiment has excellent magnetic properties because the magnetic properties are hardly lowered even when the temperature during use is high (particularly 120 ° C. or higher, more preferably 160 ° C. or higher, particularly 200 ° C. or higher) for the following reasons. Has characteristics.

実施形態の希土類磁石は、希土類−鉄系合金及び結合相の双方よりも熱伝導率が低い材料から構成される遮熱層を備える(κ<κRB,κ)。このような実施形態の希土類磁石に外部からの熱が侵入すると、この外部からの熱は、磁石を構成する材料のうち、熱伝導率が相対的に大きい結合相を伝わり易く、熱伝導率が相対的に最も小さい遮熱層に伝わり難い。従って、上記外部からの熱は、遮熱層の内側に存在する磁性粒子に伝わり難くなる。このように磁性粒子は、上記外部からの熱を磁性粒子に伝わり難くする遮熱層に覆われることで、上記外部からの熱によって加熱され難い。 The rare earth magnet of the embodiment includes a heat shield layer made of a material having lower thermal conductivity than both the rare earth-iron-based alloy and the binder phase (κ bRB , κ r ). When heat from the outside enters the rare earth magnet of such an embodiment, the heat from the outside easily propagates through a binder phase having a relatively large thermal conductivity among the materials constituting the magnet, and the thermal conductivity is low. Difficult to be transmitted to the smallest heat shield layer. Therefore, the heat from the outside is hardly transmitted to the magnetic particles existing inside the heat shield layer. As described above, the magnetic particles are not easily heated by the heat from the outside by being covered with the heat shielding layer that makes it difficult to transfer the heat from the outside to the magnetic particles.

一方、結合相は、上記外部からの熱を積極的に通過させる放熱経路として機能する。結合相の熱伝導率κRBが高いほど、結合相が放熱経路として良好に機能できる。このような結合相を備える実施形態の希土類磁石は、磁石全体でみれば、放熱し易い磁石、つまり、上記外部からの熱が留まり難い磁石といえる。磁性粒子は、上述の低熱伝導の遮熱層を介してこのような結合相に囲まれていることで、上記外部からの熱によって更に加熱され難い、といえる。 On the other hand, the binder phase functions as a heat dissipation path through which heat from the outside is actively passed. The higher the thermal conductivity κ RB of the binder phase, the better the binder phase can function as a heat dissipation path. The rare earth magnet according to the embodiment having such a binder phase can be said to be a magnet that easily dissipates heat, that is, a magnet that hardly retains heat from the outside as viewed from the whole magnet. It can be said that the magnetic particles are more difficult to be heated by the heat from the outside because they are surrounded by such a binder phase through the above-described low thermal conductive thermal barrier layer.

従って、実施形態の希土類磁石は、樹脂を含んでいながらも、上記外部からの熱に起因する温度上昇に伴う磁気特性の低下を低減できる。   Therefore, the rare earth magnet of the embodiment can reduce a decrease in magnetic characteristics due to a temperature increase caused by the heat from the outside, while containing a resin.

(2) 実施形態の希土類磁石の一例として、上記遮熱層の構成材料の熱伝導率κが3W/m・K以下であり、上記複合材料の熱伝導率κRBが20W/m・K以上である形態が挙げられる。 (2) As an example of the rare earth magnet of the embodiment, the thermal conductivity κ b of the constituent material of the thermal barrier layer is 3 W / m · K or less, and the thermal conductivity κ RB of the composite material is 20 W / m · K. The form which is the above is mentioned.

Nd−Fe−B系合金やSm−Fe−N系合金といった希土類−鉄系合金の熱伝導率κは、6W/m・K〜8W/m・K程度、せいぜい10W/m・K程度である。上記形態では、遮熱層の熱伝導率κが希土類−鉄系合金の熱伝導率κの1/2以下程度であることから、遮熱層の存在によって、外部からの熱が磁性粒子に更に伝わり難い。かつ、上記形態では、結合相を構成する複合材料の熱伝導率κRBが十分に高い。具体的には熱伝導率κRBが希土類−鉄系合金の熱伝導率κの2倍以上程度であることから、外部からの熱を結合相に積極的に通過させられて、磁石外に更に放熱し易い。従って、上記形態は、高温でも磁気特性の低下が更に少ない。 The thermal conductivity κ r of rare earth-iron alloys such as Nd—Fe—B alloys and Sm—Fe—N alloys is about 6 W / m · K to 8 W / m · K, at most about 10 W / m · K. is there. In the above embodiment, since the thermal conductivity κ b of the thermal barrier layer is about ½ or less of the thermal conductivity κ r of the rare earth-iron alloy, the heat from the outside is caused by the presence of the thermal barrier layer. It is difficult to communicate further. And in the said form, the heat conductivity (kappa) RB of the composite material which comprises a binder phase is high enough. Specifically, since the thermal conductivity κ RB is about twice or more of the thermal conductivity κ r of the rare earth-iron-based alloy, external heat can be actively passed through the binder phase, and the outside of the magnet. Furthermore, it is easy to dissipate heat. Therefore, the above-described form is further less deteriorated in magnetic properties even at high temperatures.

(3) 実施形態の希土類磁石の一例として、上記希土類−鉄系合金がNd−Fe−B系合金、又はSm−Fe−N系合金である形態が挙げられる。   (3) As an example of the rare earth magnet of the embodiment, a form in which the rare earth-iron alloy is an Nd—Fe—B alloy or an Sm—Fe—N alloy.

Nd−Fe−B系合金は常温での磁気特性に優れるため、上記形態は、高温で磁気特性が低下しても優れた磁気特性を有するNd−Fe−B系磁石とすることができる。Sm−Fe−N系合金は高温でも磁気特性が更に低下し難いため、上記形態は、高温でも優れた磁気特性を有するSm−Fe−N系磁石とすることができる。   Since the Nd—Fe—B based alloy is excellent in magnetic properties at room temperature, the above form can be an Nd—Fe—B based magnet having excellent magnetic properties even when the magnetic properties are reduced at high temperatures. Since the Sm—Fe—N-based alloy is unlikely to further deteriorate in magnetic properties even at high temperatures, the above form can be an Sm—Fe—N-based magnet having excellent magnetic properties even at high temperatures.

(4) 実施形態の希土類磁石の一例として、上記遮熱層の構成材料が以下の(i)〜(iii)の少なくとも1種を含む形態が挙げられる。
(i) チタン(Ti),ジルコニウム(Zr),及び珪素(Si)から選択される1種以上の元素を含む酸化物
(ii) マグネシウム(Mg),カリウム(K),及びアルミニウム(Al)から選択される1種以上の金属元素を含む金属酸化物と、Siを含む酸化物とを含む複合酸化物
(iii) チタン酸金属塩
(4) As an example of the rare earth magnet of the embodiment, a form in which the constituent material of the heat shield layer includes at least one of the following (i) to (iii) is given.
(I) Oxide containing at least one element selected from titanium (Ti), zirconium (Zr), and silicon (Si) (ii) From magnesium (Mg), potassium (K), and aluminum (Al) Composite oxide containing metal oxide containing one or more selected metal elements and oxide containing Si (iii) metal titanate

上述の特定の非金属無機材料(酸化物、複合酸化物、チタン酸金属塩)はいずれも、その熱伝導率κが希土類−鉄系合金の熱伝導率κよりも十分に低く、3W/m・K以下である。このような特定の材質からなる遮熱層を備えることで、上記形態は、外部からの熱が磁性粒子に更に伝わり難い。かつ、上述の特定の非金属無機材料はいずれも、結合相の熱伝導率κRBに比較して十分に熱伝導率が低いため、結合相が放熱経路として良好に機能できる。また、上述の特定の非金属無機材料はいずれも、耐熱性に優れており、200℃程度であれば分解などせずに問題なく使用できる。更に、上述の特定の非金属無機材料はいずれも、希土類−鉄系合金や結合相と反応しない。従って、上記形態は、遮熱層がその機能を良好に発揮でき、高温でも磁気特性が低下し難い。 Any of the above-mentioned specific non-metallic inorganic materials (oxides, composite oxides, metal titanates) has a thermal conductivity κ b sufficiently lower than the thermal conductivity κ r of the rare earth-iron-based alloy. / M · K or less. By providing the heat shield layer made of such a specific material, the above-described form makes it difficult for heat from the outside to be further transmitted to the magnetic particles. And since all the above-mentioned specific nonmetallic inorganic materials have heat conductivity sufficiently low compared with thermal conductivity (kappa RB) of a binder phase, a binder phase can function favorably as a thermal radiation path | route. Moreover, all the above-mentioned specific nonmetallic inorganic materials are excellent in heat resistance, and if it is about 200 degreeC, it can be used without a problem without decomposition | disassembly. Furthermore, none of the specific non-metallic inorganic materials described above reacts with rare earth-iron alloys or binder phases. Therefore, in the above embodiment, the heat shielding layer can perform its function well, and the magnetic properties are not easily lowered even at high temperatures.

(5) 実施形態の希土類磁石の一例として、上記希土類磁石の表面の少なくとも一部にめっき層を備える形態が挙げられる。   (5) As an example of the rare earth magnet of the embodiment, a form in which a plating layer is provided on at least a part of the surface of the rare earth magnet can be mentioned.

上記めっき層は、耐食機能、装飾機能などの種々の機能に加えて、放熱経路としても利用できる。従って、上記形態は、耐食性や美観に優れる上に、外部からの熱が磁石内に伝わることを低減したり、磁石内に更に留まり難くしたりすることができる。   The plating layer can be used as a heat dissipation path in addition to various functions such as a corrosion resistance function and a decoration function. Therefore, the above-mentioned form is excellent in corrosion resistance and aesthetics, and can reduce the transfer of heat from the outside into the magnet, or can make it difficult to stay in the magnet.

実施形態の希土類磁石を製造可能な製造方法の一例として、例えば、以下の希土類磁石の製造方法が挙げられる。
(6) 実施形態に係る希土類磁石の製造方法は、以下の準備工程と、被覆工程と、混合工程と、成形工程とを備える。
準備工程 希土類元素と鉄族元素とを含む希土類−鉄系合金からなる磁性粉末を準備する工程。
被覆工程 上記磁性粉末を構成する各磁性粒子の表面を覆うように、遮熱層を形成して被覆磁性粉末を製造する工程。上記遮熱層は、上記希土類−鉄系合金の熱伝導率κよりも熱伝導率が低い材料によって形成する。
混合工程 樹脂とフィラーとを含む複合材料の粉末と、上記被覆磁性粉末とを混合した混合粉末を製造する工程。上記複合材料は、上記遮熱層の構成材料の熱伝導率κよりも熱伝導率が高いものとする。
成形工程 上記混合粉末を成形して、上記被覆磁性粉末を構成する各被覆磁性粒子間に上記複合材料からなる結合相が介在する磁石素材を製造する工程。
As an example of the manufacturing method which can manufacture the rare earth magnet of embodiment, the following manufacturing methods of the rare earth magnet are mentioned, for example.
(6) The manufacturing method of the rare earth magnet according to the embodiment includes the following preparation process, covering process, mixing process, and forming process.
Preparation step A step of preparing a magnetic powder made of a rare earth-iron alloy containing a rare earth element and an iron group element.
Coating step A step of producing a coated magnetic powder by forming a heat shielding layer so as to cover the surface of each magnetic particle constituting the magnetic powder. The thermal barrier layer, the rare earth - formed by material having lower thermal conductivity than the thermal conductivity kappa r of an iron alloy.
Mixing process The process of manufacturing the mixed powder which mixed the powder of the composite material containing resin and a filler, and the said coating | coated magnetic powder. The composite material has a higher thermal conductivity than the thermal conductivity κ b of the constituent material of the heat shield layer.
Molding step A step of molding the mixed powder to produce a magnet material in which a binder phase composed of the composite material is interposed between the coated magnetic particles constituting the coated magnetic powder.

実施形態の希土類磁石の製造方法は、磁性粒子の表面に上述の熱伝導率の関係式を満たす特定の材料によって遮熱層を形成し、上述の熱伝導率の関係式を満たす特定の複合材料と被覆磁性粉末とを混合して成形する、という単純な工程によって、上述の高温でも優れた磁気特性を有する希土類磁石(代表的には実施形態の希土類磁石)を製造できる。   The manufacturing method of the rare earth magnet of the embodiment includes a specific composite material that forms a heat shielding layer on a surface of a magnetic particle with a specific material satisfying the above-described thermal conductivity relation and satisfies the above-described thermal conductivity relation A rare earth magnet (typically, the rare earth magnet of the embodiment) having excellent magnetic properties even at the above-described high temperature can be manufactured by a simple process of mixing and molding the coated magnetic powder.

(7) 実施形態の希土類磁石の製造方法の一例として、上記成形工程では、上記混合粉末の成形を磁場印加中で行う形態が挙げられる。   (7) As an example of the method for producing a rare earth magnet according to the embodiment, in the molding step, the mixed powder may be molded while applying a magnetic field.

上記形態は、磁性粉末の配向性を高められることから磁気特性に優れる磁気異方性の希土類磁石を製造することができる。   In the above embodiment, since the orientation of the magnetic powder can be enhanced, a magnetic anisotropic rare earth magnet having excellent magnetic properties can be produced.

[本発明の実施形態の詳細]
以下、図面を参照して、実施形態に係る希土類磁石、及び実施形態に係る希土類磁石の製造方法を説明する。図面において同一符号は同一名称物を示す。また、図1,図3では、分かり易いように、被覆磁性粉末や磁性粉末は、断面を示す。なお、本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。例えば、後述する試験例1について希土類−鉄系合金の組成、原料粉末や磁性粒子の大きさ、遮熱層の材質、結合相の組成や複合材料の大きさ、被覆磁性粉末の充填率、製造条件(遮熱層の形成方法、成形圧力など)を適宜変更することができる。
[Details of the embodiment of the present invention]
Hereinafter, with reference to drawings, the rare earth magnet concerning an embodiment and the manufacturing method of the rare earth magnet concerning an embodiment are explained. In the drawings, the same reference numerals indicate the same names. Moreover, in FIG. 1, FIG. 3, for easy understanding, a covering magnetic powder and a magnetic powder show a cross section. In addition, this invention is not limited to these illustrations, is shown by the claim, and is intended that all the changes within the meaning and range equivalent to the claim are included. For example, in Test Example 1 to be described later, the composition of the rare earth-iron alloy, the size of the raw material powder and magnetic particles, the material of the heat shielding layer, the composition of the binder phase and the size of the composite material, the filling rate of the coated magnetic powder, production Conditions (such as a method for forming a heat shielding layer and a molding pressure) can be appropriately changed.

(希土類磁石)
実施形態の希土類磁石1は、希土類−鉄系合金からなる磁性粉末を主体とし、樹脂を主体とする結合相3によって磁石形状を維持する樹脂ボンド磁石である。実施形態の希土類磁石1は、磁性粉末を構成する各磁性粒子20の外周が特定の材質からなる遮熱層22で覆われた被覆磁性粒子2を備える点、及び被覆磁性粒子2同士を結合する結合相3が特定の材質である点で、従来の樹脂ボンド磁石100(図3)と異なる。以下、被覆磁性粉末(被覆磁性粒子2)、遮熱層22、結合相3を順に説明する。
(Rare earth magnet)
The rare earth magnet 1 according to the embodiment is a resin bonded magnet whose main shape is a magnetic powder made of a rare earth-iron alloy and whose magnet shape is maintained by a binder phase 3 mainly composed of a resin. The rare earth magnet 1 according to the embodiment includes the coated magnetic particles 2 in which the outer periphery of each magnetic particle 20 constituting the magnetic powder is covered with a heat shielding layer 22 made of a specific material, and couples the coated magnetic particles 2 to each other. It differs from the conventional resin bond magnet 100 (FIG. 3) in that the binder phase 3 is a specific material. Hereinafter, the coated magnetic powder (coated magnetic particle 2), the heat shielding layer 22, and the binder phase 3 will be described in order.

・被覆磁性粉末
・・磁性粉末
磁性粉末(磁性粒子20)を構成する希土類−鉄系合金は、希土類元素と鉄族元素とを含む。希土類元素は、スカンジウム(Sc)、イットリウム(Y)、ランタノイド、及びアクチノイドから選択される1種以上の元素が挙げられる。特に、希土類元素として、Nd、Sm、プラセオジム(Pr)、セリウム(Ce)、ジスプロシウム(Dy)、及びYから選択される少なくとも1種の元素を含むと、磁気特性に優れて好ましい。とりわけ、Ndを含むと常温での磁気特性に優れ、Smを含むと高温での磁気特性の低下が少なく好ましい。
Coated magnetic powder Magnetic powder The rare earth-iron-based alloy constituting the magnetic powder (magnetic particles 20) contains a rare earth element and an iron group element. Examples of the rare earth element include one or more elements selected from scandium (Sc), yttrium (Y), lanthanoids, and actinoids. In particular, it is preferable that the rare earth element includes at least one element selected from Nd, Sm, praseodymium (Pr), cerium (Ce), dysprosium (Dy), and Y because of excellent magnetic properties. In particular, when Nd is contained, the magnetic properties at room temperature are excellent, and when Sm is contained, the magnetic properties at high temperature are hardly lowered.

Ndを含む組成では、Ndの含有量が28質量%以上35質量%以下であることが好ましい。Smを含む組成では、Smの含有量が24質量%以上27質量%以下であることが好ましい。NdFe14Bなどの化学量論比である28質量%以上である場合、SmFe17などの化学量論比である24質量%以上である場合、結晶粒界に希土類元素のリッチ相が存在することができる。好ましくは希土類元素のリッチ相が均一的に分散した結晶組織とすることができる。このような結晶組織は、結晶粒子が希土類元素のリッチ相によって磁気的に孤立された組織といえ、磁気特性に優れて好ましい。Ndの含有量が35質量%以下、Smの含有量が27質量%以下であると、希土類元素のリッチ相が結晶粒界に極薄く存在できる。希土類元素の含有量に関するこの欄に記載の事項は、NdFe14B、SmFe17といった化合物の他、PrFe14B,SmFe11TiN,LaFe11Siなどについても、同様に考えられる。 In the composition containing Nd, the Nd content is preferably 28% by mass or more and 35% by mass or less. In the composition containing Sm, the Sm content is preferably 24% by mass or more and 27% by mass or less. When the stoichiometric ratio of Nd 2 Fe 14 B and the like is 28% by mass or more, and when the stoichiometric ratio of Sm 2 Fe 17 N 3 and the like is 24% by mass or more, rare earth elements are present at the grain boundaries. A rich phase can be present. Preferably, a crystal structure in which a rich phase of rare earth elements is uniformly dispersed can be obtained. Such a crystal structure can be said to be a structure in which crystal grains are magnetically isolated by a rare earth element rich phase, and is preferable because of excellent magnetic properties. When the Nd content is 35% by mass or less and the Sm content is 27% by mass or less, the rich phase of the rare earth element can exist extremely thinly at the crystal grain boundary. The matters described in this column regarding the rare earth element content are the same for compounds such as Nd 2 Fe 14 B and Sm 2 Fe 17 N 3 as well as Pr 2 Fe 14 B, SmFe 11 TiN, LaFe 11 Si and the like. Conceivable.

鉄族元素は、Fe、コバルト(Co)、及びニッケル(Ni)から選択される1種以上の元素が挙げられる。代表的には、Feを主体(50質量%超)とする形態が挙げられる。その他、例えば、FeとCoとの双方を含む形態が挙げられる。   Examples of the iron group element include one or more elements selected from Fe, cobalt (Co), and nickel (Ni). A typical example is a form mainly composed of Fe (over 50 mass%). In addition, the form containing both Fe and Co is mentioned, for example.

希土類元素及び鉄族元素以外の元素として、B、N、及び炭素(C)から選択される1種以上の元素を含む形態が代表的である。BやCの含有量は、0.1質量%以上5.0質量%以下、更に0.5質量%以上1.5質量%以下が挙げられる。Nの含有量は、1質量%以上10質量%以下、更に2.5質量%以上5.0質量%以下が挙げられる。   As an element other than the rare earth element and the iron group element, a form containing one or more elements selected from B, N, and carbon (C) is typical. Examples of the content of B and C include 0.1% by mass or more and 5.0% by mass or less, and further 0.5% by mass or more and 1.5% by mass or less. The N content is 1% by mass or more and 10% by mass or less, and further 2.5% by mass or more and 5.0% by mass or less.

その他の添加元素として、ガリウム(Ga)、銅(Cu)、Al、Si、Ti、マンガン(Mn)及びニオブ(Nb)から選択される1種以上の元素が挙げられる。これらの添加元素の含有量(複数の場合には合計含有量)は、0.1質量%以上20質量%以下、更に0.1質量%以上5質量%以下が挙げられる。これらの元素を含有することで、例えば、保磁力の向上などの効果が望める。   Examples of other additive elements include one or more elements selected from gallium (Ga), copper (Cu), Al, Si, Ti, manganese (Mn), and niobium (Nb). The content of these additive elements (the total content in the case of plural elements) is 0.1% by mass or more and 20% by mass or less, and further 0.1% by mass or more and 5% by mass or less. By containing these elements, for example, an effect such as improvement in coercive force can be expected.

具体的な希土類-鉄系合金の組成としては、Nd−Fe−B合金(例えば、NdFe14B)、Nd−Fe−Co−B合金、Nd−Fe−C合金、Nd−Fe−Co−C合金、Sm−Fe−N合金(例えば、SmFe17)、Sm−Ti−Fe−N合金(例えば、SmTiFe11)などが挙げられる。Nd−Fe−B系合金は常温での磁気特性に優れることから、Nd−Fe−B系合金の希土類磁石1は、高温で磁気特性が低下した場合でも、高い磁気特性を有することができる。Sm−Fe−N系合金は高温での磁気特性の低下がNd−Fe−B系合金と比較して少ないことから、Sm−Fe−N系合金の希土類磁石1は、高温でも磁気特性が低下し難く、高い磁気特性を有することができる。 Specific compositions of rare earth-iron alloys include Nd—Fe—B alloys (for example, Nd 2 Fe 14 B), Nd—Fe—Co—B alloys, Nd—Fe—C alloys, Nd—Fe—Co. -C alloy, Sm-Fe-N alloy (e.g., Sm 2 Fe 17 N 3) , Sm-Ti-Fe-N alloy (e.g., Sm 1 Ti 1 Fe 11 N 1) , and the like. Since the Nd—Fe—B based alloy has excellent magnetic properties at room temperature, the rare earth magnet 1 of the Nd—Fe—B based alloy can have high magnetic properties even when the magnetic properties deteriorate at high temperatures. Since the Sm—Fe—N alloy has a lower magnetic property at high temperatures than the Nd—Fe—B alloy, the rare earth magnet 1 of the Sm—Fe—N alloy has a reduced magnetic property even at high temperatures. It is difficult to achieve high magnetic properties.

希土類磁石1における磁性粒子20の組成、遮熱層22の組成、及び結合相3の組成はいずれも、例えば、希土類磁石1の断面をとり、断面における磁性粒子20、遮熱層22、結合相3についてそれぞれ、X線回折によって行うことで求められる。   The composition of the magnetic particles 20, the composition of the heat shielding layer 22, and the composition of the binder phase 3 in the rare earth magnet 1 are all taken, for example, from the section of the rare earth magnet 1, and the magnetic particles 20, the heat shield layer 22, the binder phase in the section. Each of 3 is obtained by X-ray diffraction.

磁性粉末の大きさとして、例えば、平均粒径は1μm以上100μm以下程度が挙げられる。磁性粉末の粒径とは、磁性粒子20の断面形状が実質的に円形状である場合にはこの円の直径とし、非円形状である場合には、磁石断面における磁性粒子20の面積と等価な面積を有する円の直径(等価面積円の直径)とする。   Examples of the size of the magnetic powder include an average particle diameter of about 1 μm to 100 μm. The particle diameter of the magnetic powder is the diameter of this circle when the cross-sectional shape of the magnetic particle 20 is substantially circular, and is equivalent to the area of the magnetic particle 20 in the cross-section of the magnet when it is non-circular. The diameter of a circle having a large area (the diameter of an equivalent area circle).

希土類−鉄系合金を構成する各結晶粒は、微細であると保磁力といった磁気特性に優れて好ましい。例えば、平均結晶粒径が、10μm以下、更に5μm以下、特に1μm以下、更には500nm以下といったナノオーダーが挙げられる。結晶粒径とは、希土類磁石1の断面をとり、断面を顕微鏡観察し、この断面に存在する結晶粒の等価面積円の直径とする。平均結晶粒径は、100個以上の結晶粒径の平均とする。この結晶粒径や上述の磁性粉子20の粒径、その他後述する種々のパラメータを、顕微鏡観察像を用いて算出する場合には、市販の画像処理ソフトを用いると容易に行える。   It is preferable that each crystal grain constituting the rare earth-iron-based alloy is excellent in magnetic properties such as coercive force if it is fine. For example, nano-order such as an average crystal grain size of 10 μm or less, further 5 μm or less, particularly 1 μm or less, and further 500 nm or less can be mentioned. The crystal grain size is taken as a diameter of an equivalent area circle of crystal grains existing in this cross section by taking a cross section of the rare earth magnet 1 and observing the cross section with a microscope. The average crystal grain size is an average of 100 or more crystal grain sizes. When calculating the crystal grain size, the grain size of the magnetic powder 20 described above, and other various parameters described later using a microscope observation image, it can be easily performed using commercially available image processing software.

・・遮熱層
遮熱層22は、磁性粒子20の外周を覆って、磁石外部からの熱が磁性粒子20を構成する希土類−鉄系合金内に伝達されることを低減するための被覆である。遮熱層22は、磁性粒子20の表面全体を実質的に覆って磁性粒子20の表面が露出しないように存在すると、結合相3を介して磁性粒子20に侵入し得る外部からの熱をより確実に低減できる。但し、磁性粒子20への外部からの熱伝達を低減できれば、磁性粒子20の表面の一部が遮蔽層22から露出していることを許容する。この場合でも、磁性粒子20の表面に対して50面積%以上の領域、更に70面積%以上の領域が遮熱層22によって覆われていることが好ましい。
.. Heat shield layer The heat shield layer 22 covers the outer periphery of the magnetic particle 20 and is a coating for reducing the heat transferred from the outside of the magnet into the rare earth-iron alloy constituting the magnetic particle 20. is there. If the thermal barrier layer 22 is present so as to substantially cover the entire surface of the magnetic particle 20 so that the surface of the magnetic particle 20 is not exposed, more heat from the outside that can penetrate into the magnetic particle 20 via the binder phase 3 is obtained. It can be reliably reduced. However, if heat transfer from the outside to the magnetic particles 20 can be reduced, a part of the surface of the magnetic particles 20 is allowed to be exposed from the shielding layer 22. Even in this case, it is preferable that the area of 50 area% or more, and further the area of 70 area% or more with respect to the surface of the magnetic particle 20 is covered with the heat shielding layer 22.

遮熱層22は、磁性粒子20への外部からの熱侵入を低減するために、その構成材料の熱伝導率κが上述の希土類−鉄系合金(磁性粒子20)の熱伝導率κよりも低いものとする。かつ、後述する結合相3に優先的に熱が伝わるように、遮熱層22の構成材料の熱伝導率κは結合相3の熱伝導率κRBよりも(十分に)低いものとする。遮熱層22の熱伝導率κが低いほど、磁性粒子20への熱伝達を低減できることから、遮熱層22の熱伝導率κは希土類−鉄系合金の熱伝導率κの1/2以下が好ましい。具体的には、遮熱層22の熱伝導率κは、5W/m・K以下、更に3W/m・K以下、2.5W/m・K以下、特に2.0W/m・K以下が好ましい。遮熱層22の構成材料は、このような低熱伝導の材料とする。希土類磁石1における遮熱層22の構成材料の特性(熱伝導率など)や結合相3を構成する複合材料の特性(熱伝導率など)は、上述のように組成を分析し、この組成と同様の組成を有する試験片を作製し、この試験片を用いて測定するとよい。 In order to reduce the heat intrusion from the outside to the magnetic particles 20, the heat shielding layer 22 has a thermal conductivity κ b of the constituent material of which is the thermal conductivity κ r of the rare earth-iron alloy (magnetic particles 20). Lower than. In addition, the thermal conductivity κ b of the constituent material of the thermal barrier layer 22 is (sufficiently) lower than the thermal conductivity κ RB of the binder phase 3 so that heat is preferentially transmitted to the binder phase 3 described later. . Since heat transfer to the magnetic particles 20 can be reduced as the thermal conductivity κ b of the thermal barrier layer 22 is lower, the thermal conductivity κ b of the thermal barrier layer 22 is 1 of the thermal conductivity κ r of the rare earth-iron alloy. / 2 or less is preferable. Specifically, the thermal conductivity κ b of the heat shield layer 22 is 5 W / m · K or less, 3 W / m · K or less, 2.5 W / m · K or less, particularly 2.0 W / m · K or less. Is preferred. The constituent material of the heat shielding layer 22 is such a material having low heat conduction. The characteristics of the constituent material of the heat shielding layer 22 in the rare earth magnet 1 (such as thermal conductivity) and the characteristics of the composite material constituting the binder phase 3 (such as thermal conductivity) are analyzed for the composition as described above. A test piece having a similar composition may be prepared and measured using this test piece.

かつ、遮熱層22の構成材料は、磁性粒子20を構成する希土類−鉄系合金及び結合相3の構成材料のいずれとも実質的に反応せず、磁石使用時の最高温度において割れや分解などが生じない程度の耐熱性を有するものとする。このような構成材料として、金属酸化物などの金属化合物やチタン酸金属塩といった非金属無機材料が挙げられる。   In addition, the constituent material of the heat shielding layer 22 does not substantially react with any of the constituent materials of the rare earth-iron alloy and the binder phase 3 constituting the magnetic particles 20, and cracks, decomposes, etc. at the maximum temperature when the magnet is used. It shall have heat resistance to the extent that does not occur. Examples of such constituent materials include metal compounds such as metal oxides and non-metallic inorganic materials such as metal titanates.

具体的な非金属無機材料として、例えば、Ti,Zr,及びSiから選択される1種以上の元素を含む酸化物が挙げられる。より具体的には、チタン酸化物(Ti、2W/m・K〜4W/m・K程度)、ジルコニア(ZrO、3W/m・K程度)、シリカ(SiO、1.5W/m・K程度)から選択される1種の酸化物が挙げられる。別の非金属無機材料として、Mg,K,及びAlから選択される1種以上の金属元素を含む金属酸化物と、Siを含む酸化物とを含む複合酸化物が挙げられる。より具体的には、MgOとSiOとAlとを含むもの、例えば、コージライト(cordierite,MgAl(AlSi18),2MgO・2Al・5SiO,2W/m・K程度)、MgOとSiOとKOとAlとを含むもの、例えば、マコール(コーニング・インコーポレイテッドの登録商標、1.5W/m・K程度)などが挙げられる。別の非金属無機材料として、チタン酸アルミニウム(0.9W/m・K〜2.0W/m・K程度)などのチタン酸金属塩が挙げられる。 Specific examples of the non-metallic inorganic material include an oxide containing one or more elements selected from Ti, Zr, and Si. More specifically, titanium oxide (Ti 2 O 5 , about 2 W / m · K to 4 W / m · K), zirconia (ZrO 2 , about 3 W / m · K), silica (SiO 2 , 1.5 W) / M · K)). As another non-metallic inorganic material, a composite oxide containing a metal oxide containing one or more metal elements selected from Mg, K, and Al and an oxide containing Si can be given. More specifically, a material containing MgO, SiO 2 and Al 2 O 3 , for example, cordierite, Mg 2 Al 3 (AlSi 5 O 18 ), 2MgO · 2Al 2 O 3 · 5SiO 2 , 2W / m · K), and MgO, SiO 2 , K 2 O, and Al 2 O 3 , for example, Macor (registered trademark of Corning Incorporated, about 1.5 W / m · K). Another non-metallic inorganic material is a metal titanate such as aluminum titanate (about 0.9 W / m · K to about 2.0 W / m · K).

上述の酸化物、複合酸化物、チタン酸金属塩はいずれも、熱伝導率が低い上に(概ね3W/m・K以下)、耐熱性にも優れており、200℃程度では問題なく使用できる。また、これらの酸化物、複合酸化物、チタン酸金属塩はいずれも、例えば、粉体塗装によって磁性粒子20の表面に遮熱層22を容易に形成でき、被覆磁性粒子2の製造性にも優れる。遮蔽層22は、これらの酸化物、複合酸化物、及びチタン酸金属塩から選択される1種のみを含む形態の他、2種以上を組み合わせて含む形態とすることができる。このような混合組成の遮蔽層22は、粉体塗装を用いることで容易に形成できる。又は、遮熱層22は、異なる材質からなる多層構造とすることができる。このような多層構造の遮蔽層22は、粉体塗装を用いて多段回で行うことで容易に形成できる。   All of the above-mentioned oxides, composite oxides, and metal titanates have low thermal conductivity (approximately 3 W / m · K or less) and excellent heat resistance, and can be used without problems at about 200 ° C. . In addition, any of these oxides, composite oxides, and metal titanates can easily form the heat shielding layer 22 on the surface of the magnetic particles 20 by powder coating, for example, and the productivity of the coated magnetic particles 2 is also improved. Excellent. The shielding layer 22 may have a form including a combination of two or more, in addition to a form including only one selected from these oxides, composite oxides, and metal titanates. The shielding layer 22 having such a mixed composition can be easily formed by using powder coating. Alternatively, the heat shield layer 22 may have a multilayer structure made of different materials. The shielding layer 22 having such a multilayer structure can be easily formed by performing multi-stage using powder coating.

遮熱層22の平均厚さ(多層構造の場合には合計厚さ)は、例えば、100nm以上5μm以下程度、更に500nm以上1μm以下程度が挙げられる。上記平均厚さが上述の範囲を満たすことで、遮蔽層22が厚過ぎることによる希土類磁石1における磁性成分(磁性粒子20)の割合の低下を抑制して、磁性成分が十分に多い希土類磁石1とすることができる。上記平均厚さが上述の範囲を満たすことで、遮蔽層22が薄過ぎることによる断熱効果が小さくなることを抑制して、高温でも磁気特性が低下し難く、優れた磁気特性を有する希土類磁石1とすることができる。遮熱層22の厚さは、形成条件(例えば、粉体塗装を行う場合には処理時間や使用する原料粉末の粒径など)によって調整することができる。遮熱層22の平均厚さの算出は、例えば、断面を顕微鏡観察し、この断面に存在する30個以上の被覆磁性粒子2について被覆の厚さを測定し、その平均を求めることで行える。   The average thickness of the heat shield layer 22 (total thickness in the case of a multilayer structure) is, for example, about 100 nm to 5 μm, and further about 500 nm to 1 μm. When the average thickness satisfies the above range, a decrease in the ratio of the magnetic component (magnetic particles 20) in the rare earth magnet 1 due to the shielding layer 22 being too thick is suppressed, and the rare earth magnet 1 having a sufficiently large magnetic component. It can be. When the average thickness satisfies the above-mentioned range, the heat insulating effect due to the shielding layer 22 being too thin is suppressed, and the magnetic properties are hardly lowered even at high temperatures, and the rare earth magnet 1 having excellent magnetic properties. It can be. The thickness of the heat shielding layer 22 can be adjusted by forming conditions (for example, when performing powder coating, the processing time, the particle size of the raw material powder to be used, etc.). The average thickness of the heat shielding layer 22 can be calculated by, for example, observing a cross section under a microscope, measuring the thickness of the coating of 30 or more coated magnetic particles 2 existing in the cross section, and obtaining the average.

・希土類磁石における被覆磁性粉末の含有量
実施形態の希土類磁石1は、上述の磁性粒子20が遮熱層22に覆われてなる複数の被覆磁性粒子2を主体とし、希土類磁石1に対する被覆磁性粒子2の充填率(以下、単に充填率と呼ぶ)が60体積%以上である。充填率が高いほど、希土類磁石1における磁性成分(磁性粒子20)の割合が高く、磁気特性に優れることから、充填率は65体積%以上、更に70体積%以上が好ましい。但し、充填率が高過ぎると、結合相3の含有量が少なくなり、結合相3の介在による熱が留まり難いという効果が低減するため、充填率は80体積%以下、更に75体積%以下が好ましい。希土類磁石1における被覆磁性粉末の充填率は、例えば、希土類磁石1の断面をとり、断面を顕微鏡観察し、この断面に占める被覆磁性粉末の面積割合を求め、この面積割合を体積割合に換算することで求めることができる。又は、上記充填率は、希土類磁石1から結合相3を除去して結合相3の体積を求めて、{被覆磁性粉末の体積=(希土類磁石1の体積−結合相3の体積)/希土類磁石1の体積}×100を用いて求めることができる。
Content of Coated Magnetic Powder in Rare Earth Magnet The rare earth magnet 1 of the embodiment is mainly composed of a plurality of coated magnetic particles 2 in which the magnetic particles 20 described above are covered with a heat shielding layer 22, and the coated magnetic particles for the rare earth magnet 1. The filling rate of 2 (hereinafter simply referred to as the filling rate) is 60% by volume or more. The higher the filling rate, the higher the ratio of the magnetic component (magnetic particles 20) in the rare earth magnet 1 and the better the magnetic properties. Therefore, the filling rate is preferably 65% by volume or more, and more preferably 70% by volume or more. However, if the filling rate is too high, the content of the binder phase 3 is reduced, and the effect that heat due to the inclusion of the binder phase 3 is less likely to be reduced is reduced. Therefore, the filling factor is 80% by volume or less, and further 75% by volume or less. preferable. The filling rate of the coated magnetic powder in the rare earth magnet 1 is obtained, for example, by taking a cross section of the rare earth magnet 1 and observing the cross section with a microscope, obtaining an area ratio of the coated magnetic powder in the cross section, and converting the area ratio into a volume ratio. Can be obtained. Alternatively, the filling rate may be determined by removing the binder phase 3 from the rare earth magnet 1 and determining the volume of the binder phase 3 {volume of coated magnetic powder = (volume of the rare earth magnet 1−volume of the binder phase 3) / rare earth magnet. 1 volume} × 100.

・・結合相
結合相3は、希土類磁石1の表面の任意の点から、別の任意の点に連続して存在し、希土類磁石1の内部において網目状に存在する。このように連続的に存在することで、結合相3は、上述の被覆磁性粒子2間に介在して、希土類磁石1に侵入し得る外部からの熱を通過させる放熱経路として機能することができる。図1において二点鎖線の矢印は、熱の流れを示す。また、結合相3は、上述のように網目状に存在して被覆磁性粒子2(孤立相)を保持するための磁石の骨格を形成する。
.. Binder Phase The binder phase 3 exists continuously from an arbitrary point on the surface of the rare earth magnet 1 to another arbitrary point, and exists in a network form inside the rare earth magnet 1. By being continuously present in this way, the binder phase 3 can be interposed between the coated magnetic particles 2 described above and function as a heat dissipation path through which heat from the outside that can enter the rare earth magnet 1 can pass. . In FIG. 1, the two-dot chain line arrow indicates the flow of heat. Further, the binder phase 3 exists in a network shape as described above and forms a skeleton of a magnet for holding the coated magnetic particles 2 (isolated phase).

結合相3は、上述の放熱機能を良好に発揮するために、その構成材料の熱伝導率κRBが高いことが好ましい。ここで、希土類−鉄系合金(磁性粒子20)と結合相3との間には上述の熱伝導率が低い遮熱層22が存在して、希土類−鉄系合金に外部からの熱が伝わり難いことから、希土類−鉄系合金と結合相3とについては、いずれの熱伝導率が高くても、結合相3が放熱経路として機能できる。しかし、結合相3の熱伝導率κRBが高いほど、希土類磁石1内に熱が留まり難く、ひいては磁性粒子20への熱伝達を低減できることから、結合相3の熱伝導率κRBは、上述の希土類−鉄系合金(磁性粒子20)の熱伝導率κより高いことが好ましく、希土類−鉄系合金の熱伝導率κの2倍以上が好ましい。具体的には、結合相3の熱伝導率κRBは、15W/m・K以上、更に20W/m・K以上、30W/m・K以上が好ましく、上限は特に設けない。結合相3の構成材料は、樹脂を含有しつつも、このような高熱伝導の材料となるように樹脂中に熱伝導性に優れるフィラーを含有する複合材料とする。 The binder phase 3 preferably has a high thermal conductivity κ RB of its constituent materials in order to exhibit the above-described heat dissipation function satisfactorily. Here, between the rare earth-iron-based alloy (magnetic particles 20) and the binder phase 3, the above-described heat shielding layer 22 having a low thermal conductivity exists, and heat from the outside is transmitted to the rare earth-iron-based alloy. Since the rare earth-iron alloy and the binder phase 3 are difficult, the binder phase 3 can function as a heat dissipation path regardless of which thermal conductivity is high. However, as the thermal conductivity kappa RB binding phase 3 is high, heat is hardly remain in the rare earth magnet 1, since it can reduce the turn heat transfer to the magnetic particles 20, the thermal conductivity kappa RB binding phase 3, above It is preferably higher than the thermal conductivity κ r of the rare earth-iron-based alloy (magnetic particles 20), and is preferably at least twice the thermal conductivity κ r of the rare-earth-iron-based alloy. Specifically, the thermal conductivity κ RB of the binder phase 3 is preferably 15 W / m · K or more, more preferably 20 W / m · K or more, and 30 W / m · K or more, and there is no particular upper limit. The constituent material of the binder phase 3 is a composite material containing a filler having excellent thermal conductivity in the resin so as to become such a high thermal conductivity material while containing the resin.

上記複合材料のうち、ベースとなる樹脂は、耐熱性に優れる樹脂、具体的には、耐熱温度が180℃以上、更に200℃以上、特に250℃以上程度を有する樹脂が好ましい。例えば、熱硬化性樹脂では、分解温度が高いもの、具体的には180℃以上、更に200℃以上であるものが好ましい。例えば、熱可塑性樹脂では、ガラス転移温度が高いもの、具体的には、180℃以上、更に200℃以上であるものが好ましい。具体的な樹脂は、エポキシ樹脂、ポリアミド樹脂、ポリイミド樹脂、及びアクリル樹脂から選択される1種の樹脂が挙げられる。特に、エポキシ樹脂、ポリイミド樹脂、アクリル樹脂といった熱硬化性樹脂は、耐熱性に優れて好ましい。その他、ベースとなる樹脂として、ポリフェニレンサルファイド(PPS)樹脂、ポリエチレン(PE)樹脂、及びポリエーテルエーテルケトン(PEEK)樹脂の少なくとも1種の樹脂が挙げられる。   Of the composite materials, the base resin is preferably a resin having excellent heat resistance, specifically, a resin having a heat resistance temperature of 180 ° C. or higher, more preferably 200 ° C. or higher, particularly about 250 ° C. or higher. For example, a thermosetting resin having a high decomposition temperature, specifically, 180 ° C. or higher, more preferably 200 ° C. or higher is preferable. For example, a thermoplastic resin having a high glass transition temperature, specifically, 180 ° C. or higher, more preferably 200 ° C. or higher is preferable. Specific examples of the resin include one resin selected from an epoxy resin, a polyamide resin, a polyimide resin, and an acrylic resin. In particular, thermosetting resins such as epoxy resins, polyimide resins, and acrylic resins are preferable because of their excellent heat resistance. In addition, examples of the base resin include at least one resin such as a polyphenylene sulfide (PPS) resin, a polyethylene (PE) resin, and a polyether ether ketone (PEEK) resin.

上記複合材料のうち、フィラーの具体的な材質は、非金属無機材料や金属材料が挙げられる。非金属無機材料は、例えば、グラファイト(119W/m・K〜165W/m・K程度)、カーボン、カーボンナノチューブ(最大2000W/m・K程度)といった炭素材料、窒化珪素(Si、20W/m・K〜150W/m・K程度)、アルミナ(Al、20W/m・K〜30W/m・K程度)、窒化アルミニウム(AlN、200W/m・K〜250W/m・K程度)、窒化ほう素(BN、50W/m・K〜65W/m・K程度)、炭化珪素(SiC、50W/m・K〜130W/m・K程度)といった化合物などが挙げられる。これらの非金属無機材料はいずれも、熱伝導性に優れる上に、耐熱性にも優れる。金属は、錫(Sn、66.6W/m・K)、亜鉛(Zn、121W/m・K)、銅(Cu、398W/m・K)、アルミニウム(Al、237W/m・K)、及びこれらの金属元素を含む合金などが挙げられる。また、フィラーとする金属は、軟磁性金属(例えば、ニッケルなど)以外の金属が好ましい。 Among the composite materials, specific materials for the filler include non-metallic inorganic materials and metal materials. Nonmetallic inorganic materials include, for example, carbon materials such as graphite (about 119 W / m · K to about 165 W / m · K), carbon, carbon nanotubes (up to about 2000 W / m · K), silicon nitride (Si 3 N 4 , 20 W). / M · K to 150 W / m · K), alumina (Al 2 O 3 , 20 W / m · K to 30 W / m · K), aluminum nitride (AlN, 200 W / m · K to 250 W / m · K) Grade), boron nitride (BN, about 50 W / m · K to about 65 W / m · K), silicon carbide (SiC, about 50 W / m · K to about 130 W / m · K), and the like. All of these non-metallic inorganic materials are excellent in heat conductivity and heat resistance. The metals are tin (Sn, 66.6 W / m · K), zinc (Zn, 121 W / m · K), copper (Cu, 398 W / m · K), aluminum (Al, 237 W / m · K), and Examples include alloys containing these metal elements. The metal used as the filler is preferably a metal other than a soft magnetic metal (for example, nickel).

上記フィラーは、上述の非金属無機材料及び金属から選択される1種の粉末、又は複数種の粉末とする。フィラーの形状・大きさは特に問わない。例えば、形状は、断面円形状などの粒状の他、繊維状などでもよい。例えば、平均粒径(断面が非円形状の場合、粒子の最大長さとする)は、0.1μm以上10μm以下程度が挙げられる。複合材料中のフィラーの含有量は、複合材料の熱伝導率κRBが上述の熱伝導率の関係式を満たす範囲で適宜選択することができる。フィラー自体の熱伝導率にもよるが、例えば、フィラーの含有量は、複合材料の全量(樹脂とフィラーとの合計量)に対して15体積%以上が挙げられる。複合材料中のフィラーが多いほど、結合相3の熱伝導率κRBが高い傾向にあることから、例えば、フィラーの含有量を上述の複合材料の全量に対して20体積%以上とすることができる。フィラーが多過ぎると、被覆磁性粒子2同士を主として結合する樹脂の量が相対的に少なくなり、磁石の強度の低下を招く恐れがある。従って、フィラーの含有量は、上述の複合材料の全量に対して50体積%以下、更に35体積%以下程度が利用し易いと考えられる。フィラーは、市販品を利用することができる。また、このようなフィラーを含有する、いわゆるエンジニアプラスチックを利用することができる。 The filler is one kind of powder selected from the above-mentioned non-metallic inorganic materials and metals, or a plurality of kinds of powders. The shape and size of the filler are not particularly limited. For example, the shape may be a fiber shape in addition to a granular shape such as a circular cross section. For example, the average particle size (when the cross section is non-circular, the maximum particle length) is about 0.1 μm or more and 10 μm or less. The content of the filler in the composite material can be selected as appropriate as long as the thermal conductivity κ RB of the composite material satisfies the above-described relational expression of thermal conductivity. Although depending on the thermal conductivity of the filler itself, for example, the filler content is 15% by volume or more with respect to the total amount of the composite material (total amount of resin and filler). Since the thermal conductivity κ RB of the binder phase 3 tends to be higher as the filler in the composite material is larger, for example, the filler content may be 20% by volume or more with respect to the total amount of the composite material. it can. If there are too many fillers, the amount of the resin that mainly binds the coated magnetic particles 2 to each other relatively decreases, which may cause a decrease in the strength of the magnet. Therefore, it is considered that the filler content is easily 50% by volume or less, more preferably about 35% by volume or less with respect to the total amount of the composite material described above. A commercially available product can be used as the filler. Moreover, what is called an engineered plastic containing such a filler can be utilized.

結合相3の含有量が多いほど、外部から侵入し得る熱を磁石外に効率よく放熱できる。しかし、結合相3の含有量が多過ぎると、上述のように充填率の低下を招くことから、希土類磁石1における結合相3の含有量は、20体積%以上、更に25体積%以上40体積%以下が好ましい。   The greater the content of the binder phase 3, the more efficiently the heat that can enter from the outside can be radiated out of the magnet. However, if the content of the binder phase 3 is too large, the filling rate is lowered as described above. Therefore, the content of the binder phase 3 in the rare earth magnet 1 is 20 volume% or more, and further 25 volume% or more and 40 volume. % Or less is preferable.

・・めっき層
実施形態の希土類磁石1は、その表面の少なくとも一部にめっき層(図示せず)を備える形態とすることができる。めっき層は、耐食層、装飾層などとして機能する上に、めっき層の構成金属を、磁性粒子20を構成する希土類−鉄系合金よりも熱伝導性に優れるものとすると、放熱経路としての機能も期待できる。
.. Plating layer The rare earth magnet 1 of the embodiment may be provided with a plating layer (not shown) on at least a part of its surface. If the plating layer functions as a corrosion-resistant layer, a decoration layer, etc., and the constituent metal of the plating layer is more excellent in thermal conductivity than the rare earth-iron-based alloy constituting the magnetic particles 20, it functions as a heat dissipation path. Can also be expected.

めっき層の構成金属は、Ni(90.5W/m・K)、Sn、Cu、Al、及びこれらの金属元素を含む合金などが挙げられる。特に、めっき層の構成金属がNi、Al、その合金である場合、耐食性に優れて好ましい。めっき層は、単層構造でも、多層構造でもよい。   Examples of the constituent metal of the plating layer include Ni (90.5 W / m · K), Sn, Cu, Al, and alloys containing these metal elements. In particular, when the constituent metal of the plating layer is Ni, Al, or an alloy thereof, it is preferable because of excellent corrosion resistance. The plating layer may have a single layer structure or a multilayer structure.

めっき層の平均厚さ(多層の場合には合計厚さ)は、例えば、3μm以上20μm以下程度が挙げられる。めっき層の厚さは、形成条件によって調整することができる。めっき層の平均厚さの算出は、例えば、断面を顕微鏡観察し、この断面における20点以上の厚さを測定し、その平均を求めることで行える。   The average thickness (total thickness in the case of a multilayer) of the plating layer is, for example, about 3 μm or more and 20 μm or less. The thickness of the plating layer can be adjusted depending on the formation conditions. The average thickness of the plating layer can be calculated by, for example, observing the cross section with a microscope, measuring the thickness of 20 or more points in the cross section, and obtaining the average.

めっき層の形成領域は、適宜選択することができる。希土類磁石1の表面全体に亘ってめっき層を備える形態とすると、耐食性、装飾性、放熱性に更に優れる上に、マスキングなどが不要であり、製造性にも優れる。   The formation region of the plating layer can be selected as appropriate. When the plating layer is provided over the entire surface of the rare earth magnet 1, the corrosion resistance, the decorativeness, and the heat dissipation are further improved, and masking is not required, and the productivity is excellent.

(希土類磁石の製造方法)
実施形態の希土類磁石の製造方法は、以下の準備工程、被覆工程、混合工程、成形工程を備え、上述した高熱伝導の複合材料からなる結合相3を備える樹脂ボンド磁石(希土類磁石1)を製造することができる。以下各工程を順に説明する。
(Rare earth magnet manufacturing method)
The manufacturing method of the rare earth magnet of the embodiment includes the following preparation process, coating process, mixing process, and molding process, and manufactures a resin bonded magnet (rare earth magnet 1) including the binder phase 3 made of the above-described high thermal conductivity composite material. can do. Hereinafter, each process will be described in order.

・準備工程
この工程では、原料粉末を用意する。この製造方法によって最終的に得られる希土類磁石を構成する各磁性粒子の組成や大きさなどは、原料粉末の組成や大きさなどを実質的に維持する。従って、この工程では、所望の組成などを有する希土類磁石を製造できるように、原料粉末として、上述したNd−Fe−B系合金やSm−Fe−N系合金などの希土類−鉄系合金からなる所望の大きさの磁性粉末を用意する。この磁性粉末は、例えば、ストリップキャスト法やアトマイズ法などの公知の粉末の製造方法を利用して製造することができる。
-Preparation process In this process, raw material powder is prepared. The composition and size of each magnetic particle constituting the rare earth magnet finally obtained by this manufacturing method substantially maintains the composition and size of the raw material powder. Therefore, in this step, the raw material powder is made of the rare earth-iron alloy such as the Nd—Fe—B alloy or Sm—Fe—N alloy described above so that a rare earth magnet having a desired composition can be manufactured. A magnetic powder having a desired size is prepared. This magnetic powder can be manufactured using, for example, a known powder manufacturing method such as a strip casting method or an atomizing method.

特に、原料粉末は、HDDR(Hydrogenation Decomposition Desorption Recombination)処理を施したものを利用することができる。HDDR処理によって、希土類−鉄系合金の結晶粒径を小さくすることができる(例えば、平均結晶粒径が10μm以下)。従って、原料粉末にHDDR処理を行ったものを用いると、微細組織によって、保磁力が高いといった磁気特性に優れる希土類磁石が得られて好ましい。HDDR処理の条件は、公知の条件を利用できる。   In particular, the raw material powder that has been subjected to HDDR (Hydrogen Deposition Decomposition Recombination) treatment can be used. By the HDDR treatment, the crystal grain size of the rare earth-iron alloy can be reduced (for example, the average crystal grain size is 10 μm or less). Therefore, it is preferable to use a raw material powder that has been subjected to HDDR treatment, because a rare earth magnet having excellent magnetic properties such as high coercive force can be obtained by a fine structure. As conditions for the HDDR process, known conditions can be used.

Sm−Fe−N系合金の希土類磁石を製造する場合には、Sm−Fe系合金の粉末を用意して、HDDR処理を適宜施した後、窒化処理を行ったものを原料粉末に用いるとよい。窒化処理の条件は、公知の条件を利用できる。   When manufacturing a rare earth magnet of an Sm—Fe—N alloy, it is recommended to prepare a powder of an Sm—Fe alloy, appropriately perform HDDR treatment, and then perform nitriding treatment as a raw material powder. . Known conditions can be used as the nitriding conditions.

原料粉末が所望の大きさや形状となるように、適宜な時期に粉砕や分級を行うことができる。原料粉末の平均粒径を例えば、1μm以上100μm以下程度とすると、(1)酸化し難い、(2)HDDR処理を施し易い、(3)成形し易い、(4)成形時に磁場を印加する場合、印加する磁場によって配向性を高め易い、(5)取り扱い易いといった利点がある。   Grinding and classification can be performed at an appropriate time so that the raw material powder has a desired size and shape. When the average particle size of the raw material powder is, for example, about 1 μm or more and 100 μm or less, (1) difficult to oxidize, (2) easy to perform HDDR processing, (3) easy to form, (4) when applying a magnetic field during forming There are advantages that the orientation is easily improved by the applied magnetic field and (5) easy to handle.

・被覆工程
この工程では、準備した原料粉末(磁性粉末)を構成する各磁性粒子の表面に、上述の特定の材料からなる遮熱層を形成して被覆磁性粉末を得る。遮熱層の形成には、粉体塗装が好適に利用できる。粉体塗装は、(1)焼付温度が比較的低温であるため、遮熱層の形成時に磁性粉末の熱損傷を防止できる、(2)磁性粒子の表面全体に亘って均一的な厚さの遮熱層を形成し易い、(3)遮熱層の厚さの制御が行い易い、(4)種々の材質に適用できる、といった利点がある。粉体塗装を行う場合、上述の酸化物やチタン酸金属塩などの特定の非金属無機材料からなる粉末を用意して、粉末の付着を行う。粉体塗装用の粉末の大きさ(平均粒径)は、適宜選択することができる。但し、粉体塗装用の粉末が大き過ぎると、磁性粒子の表面を良好に覆うことができず、磁性粒子の表面における露出領域が多くなる恐れがある。従って、粉体塗装用の粉末の平均粒径は、磁性粒子の平均粒径に対して1/10以下程度、更に1/15以下程度を満たすことが好ましい。具体的には、上記粉末の平均粒径は、0.1μm以上3μm以下程度が挙げられる。粉体塗装の条件は、金属粒子に非金属無機材料を被覆するときの公知の条件を利用することができる。具体的な粉体塗装としては、静電粉体塗装、流動浸漬塗装が挙げられる。静電塗装では、遮熱層の原料(上述の酸化物などの非金属無機材料)の表面に帯電可能な樹脂などをコーティングしたり、上記遮熱層の原料に水酸化処理を施したりしたものを利用することが挙げられる。焼付時に上記樹脂などを除去するとよい。
-Coating process In this process, the thermal insulation layer which consists of the above-mentioned specific material is formed in the surface of each magnetic particle which comprises the prepared raw material powder (magnetic powder), and coating magnetic powder is obtained. Powder coating can be suitably used for forming the heat shielding layer. In powder coating, (1) since the baking temperature is relatively low, heat damage of the magnetic powder can be prevented during the formation of the heat shielding layer. (2) The thickness of the magnetic particles is uniform across the entire surface of the magnetic particles. There are advantages that it is easy to form a heat shield layer, (3) it is easy to control the thickness of the heat shield layer, and (4) it can be applied to various materials. When performing powder coating, a powder made of a specific non-metallic inorganic material such as the above-described oxide or metal titanate is prepared, and the powder is attached. The size (average particle diameter) of the powder for powder coating can be appropriately selected. However, if the powder for powder coating is too large, the surface of the magnetic particles cannot be satisfactorily covered, and the exposed area on the surface of the magnetic particles may increase. Therefore, the average particle diameter of the powder for powder coating preferably satisfies about 1/10 or less, more preferably about 1/15 or less with respect to the average particle diameter of the magnetic particles. Specifically, the average particle size of the powder is about 0.1 μm or more and 3 μm or less. As the conditions for powder coating, known conditions for coating metal particles with a nonmetallic inorganic material can be used. Specific powder coating includes electrostatic powder coating and fluidized immersion coating. In electrostatic coating, the surface of the heat shield layer raw material (non-metallic inorganic material such as the above-mentioned oxide) is coated with a chargeable resin or the like, or the heat shield layer raw material is subjected to hydroxylation treatment Can be used. The above resin or the like may be removed during baking.

・混合工程
この工程では、作製した被覆磁性粉末と、結合相となる複合材料の粉末とを混合して混合粉末を得る。複合材料の粉末は、平均粒径が1μm以上100μm以下程度のものであると、取り扱い易い上に、被覆磁性粉末と混合し易いと期待される。複合材料の粉末は、上述のベースの樹脂と、所望の組成のフィラーとを混合して作製する。具体的には、ベースの樹脂を液体状にしてフィラーを混合した後、混合物を硬化して、適宜粉砕することで、複合材料の粉末が得られる。複合材料の粉末の配合量は、希土類磁石における被覆磁性粉末の充填率が60体積%以上80体積%以下程度となる範囲で適宜選択するとよい。例えば、複合材料の粉末の配合量は、混合粉末の全量に対して、20体積%以上40体積%以下程度、質量割合では2.5質量%以上13質量%以下程度が挙げられる。混合には、適宜なミキサーを利用するとよい。
-Mixing process In this process, the produced coated magnetic powder and a composite material powder to be a binder phase are mixed to obtain a mixed powder. When the composite material powder has an average particle diameter of about 1 μm or more and 100 μm or less, it is expected that the powder is easy to handle and can be easily mixed with the coated magnetic powder. The composite material powder is prepared by mixing the above-described base resin and a filler having a desired composition. Specifically, after the base resin is made liquid and the filler is mixed, the mixture is cured and appropriately pulverized to obtain a composite powder. The blending amount of the composite material powder may be appropriately selected within a range in which the filling rate of the coated magnetic powder in the rare earth magnet is about 60% by volume to 80% by volume. For example, the blending amount of the composite material powder is about 20% by volume to 40% by volume and the mass ratio is about 2.5% by mass to 13% by mass with respect to the total amount of the mixed powder. For mixing, an appropriate mixer may be used.

・成形工程
この工程では、作製した混合粉末を成形して、被覆磁性粒子間に複合材料からなる結合相が介在する磁石素材を得る。成形には、所望の形状の金型を利用するとよい。成形圧力は、例えば、196MPa(2ton/cm)以上980MPa(10ton/cm)以下程度が挙げられる。成形圧力が大きいほど、緻密化できる。ここで、遮熱層を粉体塗装によって形成すると、遮熱層は、図1に示すような微細な粒子の堆積層となることから、その表面が凹凸形状となる。そのため、被覆磁性粒子2は、複合材料との接触面積が多くなり、成形によって複合材料と十分に絡み合うことができる。従って、実施形態の希土類磁石の製造方法は、被覆磁性粒子2同士が複合材料(結合相3)によって強固に固定された希土類磁石1を製造できる。
-Molding process In this process, the produced mixed powder is molded to obtain a magnet material in which a binder phase composed of a composite material is interposed between coated magnetic particles. For molding, a mold having a desired shape may be used. Molding pressure is, for example, 196MPa (2ton / cm 2) or more 980MPa (10ton / cm 2) include the degree or less. As the molding pressure increases, the densification can be achieved. Here, when the heat-insulating layer is formed by powder coating, the heat-insulating layer becomes a deposited layer of fine particles as shown in FIG. Therefore, the coated magnetic particle 2 has a large contact area with the composite material, and can be sufficiently entangled with the composite material by molding. Therefore, the manufacturing method of the rare earth magnet of the embodiment can manufacture the rare earth magnet 1 in which the coated magnetic particles 2 are firmly fixed by the composite material (binding phase 3).

成形時、磁場を印加すると磁性粒子の配向性が高められる。結果として磁性粒子を構成する結晶の配向性を高められて、配向性に優れる磁気異方性磁石を製造できる。印加磁場の大きさは、0.5T以上10T以下程度、更に1.5T以上10T以下程度が挙げられる。印加磁場が大きいほど、配向性を高められ、磁気特性に優れる希土類磁石が得られる。磁場の印加には、常電導コイルを備える常電導磁石、超電導コイルを備える超電導磁石のいずれも利用できる。例えば、等方性磁石を形成する場合には、成形時に磁場を印加しなくてよい。   When a magnetic field is applied during molding, the orientation of the magnetic particles is enhanced. As a result, the orientation of the crystals constituting the magnetic particles can be enhanced, and a magnetic anisotropic magnet having excellent orientation can be produced. The magnitude of the applied magnetic field is about 0.5T to 10T, and further about 1.5T to 10T. The larger the applied magnetic field, the higher the orientation and the rare earth magnet having excellent magnetic properties. For the application of the magnetic field, either a normal conducting magnet having a normal conducting coil or a superconducting magnet having a superconducting coil can be used. For example, when an isotropic magnet is formed, it is not necessary to apply a magnetic field during molding.

成形工程や上述の被覆工程の雰囲気は、非酸化性雰囲気や低酸素雰囲気(酸素が20体積%未満)とすると、磁性粒子の酸化を防止できて好ましい。一方、大気雰囲気とすると、雰囲気制御が容易であり、作業性に優れる。成形工程では大気雰囲気とした場合でも、被覆磁性粒子が遮熱層を備えることで、大気中の酸素や水分などをある程度遮断できるため、磁性粒子の酸化をある程度防止できる。   The atmosphere in the molding step and the above-described coating step is preferably a non-oxidizing atmosphere or a low oxygen atmosphere (oxygen is less than 20% by volume) because it can prevent oxidation of magnetic particles. On the other hand, when the atmosphere is used, the atmosphere control is easy and the workability is excellent. Even in an air atmosphere in the molding process, since the coated magnetic particles are provided with a heat shielding layer, oxygen and moisture in the air can be blocked to some extent, so that oxidation of the magnetic particles can be prevented to some extent.

成形時の潤滑性を高めるために、被覆磁性粉末に潤滑剤を適宜混合したり、金型の内面に潤滑剤を塗布したりすることができる。   In order to improve the lubricity during molding, a lubricant can be appropriately mixed with the coated magnetic powder, or a lubricant can be applied to the inner surface of the mold.

・・その他の工程
・・・めっき工程
この工程では、上記成形工程を経て得られた磁石素材の表面の少なくとも一部にめっき層を形成する。めっき層の形成には、電気めっき法(電解めっき法)、無電解めっき法などの公知のめっき法が利用できる。磁石素材の表面の一部にのみめっき層を形成する場合、めっき不要箇所にはマスキングを施す。磁石素材中の樹脂成分が多い場合などでは樹脂部分にめっきが十分に密着しない恐れがある。この場合、例えば、めっき前に、適宜、導電性樹脂などのプライマ処理などを施して導電性を付与すると、特に電気めっき法を利用する場合に、磁石素材とめっき層との密着性を高められる。
.. Other steps: plating step In this step, a plating layer is formed on at least part of the surface of the magnet material obtained through the molding step. For the formation of the plating layer, a known plating method such as an electroplating method (electrolytic plating method) or an electroless plating method can be used. When the plating layer is formed only on a part of the surface of the magnet material, masking is applied to the plating unnecessary portion. When there are many resin components in a magnet raw material, there exists a possibility that plating may not fully adhere to a resin part. In this case, for example, if the conductivity is imparted by appropriately applying a primer treatment such as a conductive resin before plating, the adhesion between the magnet material and the plating layer can be improved particularly when the electroplating method is used. .

・・・着磁工程
上記成形工程やめっき工程などを経て得られた磁石素材に着磁することで、希土類磁石が得られる。
... Magnetization process A rare earth magnet can be obtained by magnetizing a magnet material obtained through the molding process or plating process.

[試験例1]
希土類−鉄系合金のボンド磁石を作製し、高温での磁気特性の変化を調べた。ここでは、Nd−Fe−B系合金の組成を有する樹脂ボンド磁石と、Sm−Fe−N系合金の組成を有する樹脂ボンド磁石とを形成する。
[Test Example 1]
A rare earth-iron alloy bonded magnet was fabricated, and changes in magnetic properties at high temperatures were investigated. Here, a resin bonded magnet having a composition of Nd—Fe—B based alloy and a resin bonded magnet having a composition of Sm—Fe—N based alloy are formed.

Nd−Fe−B系合金の組成を有する樹脂ボンド磁石(試料No.1−1〜No.1−4,No.1−101〜No.1−103,No.1−111,No.1−112)では、原料粉末として、Nd−Fe−B系合金からなる磁性粉末を用意する。ここでは、32質量%Nd−5質量%Co−0.5質量%Ga−1.0質量%B−残部Feという組成の溶湯を用いて、ストリップキャスト法によって合金片を作製する。得られた合金片にHDDR処理を施して、再結合合金片を作製する。ここでは、水素雰囲気中、830℃×1.5時間の条件で水素化処理を施した後、ロータリーポンプ(RP)にて排気を行って真空雰囲気とし(最終真空度=0.5Pa)、830℃×1.0時間の条件で脱水素処理を施す。得られた再結合合金片を窒素雰囲気中(酸素濃度が体積割合で2000ppm以下)で粉砕する。粉砕には、市販の粉砕装置(篩)を用い、平均粒径が40μm以上75μm以下の粉末となるように調整する。平均粒径は、レーザ回折式粒度分布装置により、積算重量が50%となる粒径(50%粒径)を測定する(以下、粉末の平均粒径について同様である)。この粉末を原料の磁性粉末(約8W/m・K)とする。   Resin bonded magnets having compositions of Nd—Fe—B alloys (Sample No. 1-1 to No. 1-4, No. 1-101 to No. 1-103, No. 1-111, No. 1- In 112), a magnetic powder made of an Nd—Fe—B alloy is prepared as a raw material powder. Here, an alloy piece is produced by a strip casting method using a molten metal having a composition of 32 mass% Nd-5 mass% Co-0.5 mass% Ga-1.0 mass% B-balance Fe. The obtained alloy piece is subjected to HDDR treatment to produce a recombined alloy piece. Here, after performing a hydrogenation process in a hydrogen atmosphere under the conditions of 830 ° C. × 1.5 hours, the rotary pump (RP) is evacuated to form a vacuum atmosphere (final vacuum degree = 0.5 Pa). Dehydrogenation treatment is performed under the conditions of ° C x 1.0 hour. The obtained recombined alloy piece is pulverized in a nitrogen atmosphere (oxygen concentration is 2000 ppm or less by volume). For the pulverization, a commercially available pulverizer (sieve) is used, and the average particle size is adjusted to be 40 μm or more and 75 μm or less. The average particle diameter is determined by measuring the particle diameter (50% particle diameter) with an integrated weight of 50% using a laser diffraction particle size distribution device (hereinafter, the same applies to the average particle diameter of the powder). This powder is used as a raw magnetic powder (about 8 W / m · K).

Sm−Fe−N系合金の組成を有する樹脂ボンド磁石(試料No.1−5)では、まず、Sm−Fe系合金の粉末を用意する。ここでは、24.5質量%Sm−残部Feという組成の溶湯を用いて、ストリップキャスト法によって合金片を作製する。得られた合金片にHDDR処理を施して、再結合合金片を作製する。ここでは、水素雰囲気中、780℃×1.5時間の条件で水素化処理を施した後、ロータリーポンプにて排気を行って真空雰囲気とし(最終真空度=0.5Pa)、780℃×1.0時間の条件で脱水素処理を施す。得られた再結合合金片を窒素雰囲気中(酸素濃度が体積割合で2000ppm以下)で粉砕する。粉砕には、市販の粉砕装置(篩)を用い、平均粒径が20μm以上53μm以下の粉末となるように調整する。この粉末に、更に、アンモニアと水素との混合ガスのフロー雰囲気中、310℃×20時間の条件で窒化処理を施してSm−Fe−N合金を形成する。この工程によって、原料の磁性粉末(約7W/m・K)を得る。   In the resin bond magnet (sample No. 1-5) having the composition of the Sm—Fe—N alloy, first, a powder of the Sm—Fe alloy is prepared. Here, an alloy piece is produced by a strip casting method using a molten metal having a composition of 24.5 mass% Sm-balance Fe. The obtained alloy piece is subjected to HDDR treatment to produce a recombined alloy piece. Here, after performing a hydrogenation process in a hydrogen atmosphere under the conditions of 780 ° C. × 1.5 hours, the rotary pump is evacuated to form a vacuum atmosphere (final vacuum level = 0.5 Pa), and 780 ° C. × 1. Dehydrogenation is performed for 0 hour. The obtained recombined alloy piece is pulverized in a nitrogen atmosphere (oxygen concentration is 2000 ppm or less by volume). For the pulverization, a commercially available pulverizer (sieve) is used, and the average particle size is adjusted to 20 to 53 μm. This powder is further subjected to nitriding treatment in a flow atmosphere of a mixed gas of ammonia and hydrogen under conditions of 310 ° C. × 20 hours to form an Sm—Fe—N alloy. By this step, a raw magnetic powder (about 7 W / m · K) is obtained.

次に、試料No.1−1〜No.1−5,No.1−111,No.1−112については、作製した各組成の磁性粉末を構成する各磁性粒子の表面に、表1に示す材質の非金属無機材料からなる被覆を形成して、被覆磁性粉末を得る。ここでは、いずれの試料も、表1に示す材質からなり、平均粒径が1μmの粉末を用いて粉体塗装によって上記被覆を形成する(平均厚さ=3μm程度)。非金属無機材料の粉末は、市販品が利用できる。非金属無機材料の熱伝導率(W/m・K)を表1に示す。熱伝導率は、表1に示す各非金属無機材料を用いて10mmφ×2mm厚さの円板の焼結体を別途作製し、この焼結体を試料として、レーザフラッシュ法にて評価した(JIS R 1611−2010参照)。   Next, sample No. 1-1-No. 1-5, No. 1 1-111, no. With respect to 1-112, a coating made of a nonmetallic inorganic material of the material shown in Table 1 is formed on the surface of each magnetic particle constituting the magnetic powder having each composition produced to obtain a coated magnetic powder. Here, all the samples are made of the materials shown in Table 1, and the coating is formed by powder coating using powder having an average particle diameter of 1 μm (average thickness = about 3 μm). Commercially available products can be used as the powder of the nonmetallic inorganic material. Table 1 shows the thermal conductivity (W / m · K) of the nonmetallic inorganic material. The thermal conductivity was evaluated by a laser flash method by separately producing a sintered body of a disk having a thickness of 10 mmφ × 2 mm using each non-metallic inorganic material shown in Table 1, and using this sintered body as a sample ( JIS R 1611-2010).

表1に示す樹脂とカーボンとを含む複合材料の粉末を用意する。ここでは、カーボンは、市販の粉末を利用し(平均粒径1.5μm程度)、その添加量は、複合材料の熱伝導率が表1に示す値となるように調整する。ここでは、熱伝導率が10W/m・Kのものと、20W/m・Kのものと用意する。カーボン粒子に分散剤(オレイン酸)を被覆した後、表1に示す樹脂を融点又は軟化点以上に昇温して液体状にし、被覆したカーボン粒子を投入して混練した後、冷却・冷凍粉砕を行って、平均粒径10μm程度に粉末化した複合材料を用意する。作製した試料No.1−1〜No.1−5,No.1−111,No.1−112の被覆磁性粉末と、用意した複合材料の粉末とをそれぞれ混合して、混合粉末を得る。また、試料No.1−101〜No.1−103については上記被覆を形成していない磁性粉末と、用意した複合材料の粉末とをそれぞれ混合して、混合粉末を得る。   A composite powder containing the resin and carbon shown in Table 1 is prepared. Here, as the carbon, commercially available powder is used (average particle diameter of about 1.5 μm), and the amount of carbon added is adjusted so that the thermal conductivity of the composite material becomes the value shown in Table 1. Here, those having a thermal conductivity of 10 W / m · K and those having a thermal conductivity of 20 W / m · K are prepared. After coating carbon particles with a dispersant (oleic acid), the resin shown in Table 1 is heated to a temperature above the melting point or softening point to form a liquid, and the coated carbon particles are added and kneaded, and then cooled and frozen and pulverized To prepare a composite material pulverized to an average particle size of about 10 μm. The prepared sample No. 1-1-No. 1-5, No. 1 1-111, no. The coated magnetic powder 1-112 and the prepared composite powder are mixed to obtain a mixed powder. Sample No. 1-101-No. For 1-103, the magnetic powder not formed with the coating and the prepared composite material powder are mixed to obtain a mixed powder.

作製した混合粉末をそれぞれ、1.5Tの磁場印加中で成形して成形体を得る。成形圧力は、490MPa(5ton/cm)とする。成形体は、10mm×10mm、厚さが7mmの直方体である。作製した成形体における被覆磁性粉末又は磁性粉末の充填率(体積%)を表1に示す。ここでは、充填率は、各成形体の断面をとり、この断面に占める被覆磁性粉末の面積割合又は磁性粉末の面積割合を求め、この面積割合を体積割合に換算することで求める。換算は、例えば、体積割合=面積割合の1.5乗が挙げられる。なお、成形体における充填率は、成形体の成形密度に対する成形体の真密度の割合に実質的に等しい。 Each of the produced mixed powders is molded while applying a magnetic field of 1.5 T to obtain a molded body. The molding pressure is 490 MPa (5 ton / cm 2 ). The molded body is a rectangular parallelepiped having a size of 10 mm × 10 mm and a thickness of 7 mm. Table 1 shows the filling rate (volume%) of the coated magnetic powder or magnetic powder in the produced molded body. Here, the filling rate is obtained by taking a cross section of each molded body, obtaining an area ratio of the coated magnetic powder or an area ratio of the magnetic powder in the cross section, and converting the area ratio into a volume ratio. The conversion is, for example, 1.5% of volume ratio = area ratio. The filling rate in the molded body is substantially equal to the ratio of the true density of the molded body to the molding density of the molded body.

得られた各試料の成形体のうち、試料No.1−1〜No.1−5,No.1−111,No.1−112ではいずれも、被覆磁性粉末を形成する各被覆磁性粒子(上述の組成のNd−Fe−B系合金の粒子又はSm−Fe−N合金の粒子の表面に、表1に示す材質の非金属無機材料の被覆を備える粒子)の間に、表1に示す熱伝導率を有する複合材料からなる結合相が介在している。試料No.1−101〜No.1−103ではいずれも、磁性粉末を形成する各磁性粒子(上述の組成のNd−Fe−B系合金の粒子)の間に、表1に示す熱伝導率を有する複合材料からなる結合相が介在している。組織の観察、及び組成の分析は、成形体を切断して、断面を顕微鏡観察すること、断面をX線回折によって組成を分析することによって行う。   Among the obtained molded articles of each sample, sample No. 1-1-No. 1-5, No. 1 1-111, no. In 1-11-2, each coated magnetic particle forming the coated magnetic powder (on the surface of the Nd-Fe-B alloy particle or Sm-Fe-N alloy particle having the above-described composition, Between the particles having a coating of a non-metallic inorganic material, a binder phase made of a composite material having thermal conductivity shown in Table 1 is interposed. Sample No. 1-101-No. In 1-103, a binder phase composed of a composite material having the thermal conductivity shown in Table 1 is present between the magnetic particles forming the magnetic powder (Nd—Fe—B alloy particles having the above-described composition). Intervene. The observation of the structure and the analysis of the composition are performed by cutting the molded body and observing the cross section under a microscope, and analyzing the cross section by X-ray diffraction.

更に、各試料の成形体の表面全体にNiめっき層を形成して、めっき付き成形体を得る。めっき層の形成は、上記成形体に公知のプライマ処理(パラジウム/錫処理+化学ニッケルメッキ)を施した後、電気めっきによって行った。めっき層の平均厚さは15μmである。   Furthermore, a Ni plating layer is formed on the entire surface of the molded body of each sample to obtain a molded body with plating. Formation of the plating layer was performed by electroplating after performing a known primer treatment (palladium / tin treatment + chemical nickel plating) on the molded body. The average thickness of the plating layer is 15 μm.

作製した各試料のめっき付き成形体について、常温(ここでは25℃)の磁束量(Gs=0.0001T)、200℃の磁束量(Gs)、及び常温の磁束量に対する200℃の磁束量の比(=200℃/25℃比)を表1に示す。磁束量はガウス換算した値である。上記磁束量の比が大きいほど、200℃といった高温であっても、磁束量が低下し難いといえる。磁束量の測定は、市販のフラックスメーターを用いて行う。200℃の磁束量は、以下のように測定する。図2に示すように、恒温槽50内を200℃に維持すると共に、恒温槽50内に水冷銅板52を配置する。水冷銅板52は、図示しない冷却装置によって60℃に維持する。この水冷銅板52の上に試料Sを載置する。すると、試料Sは、恒温槽50内に収納されていることで200℃に加熱されながら、直方体の試料Sのうち水冷銅板52に接触する一面(載置面)は水冷銅板52によって冷却される。そのため、試料Sは、その表面のうち上記載置面以外の面から、その内部を経て、上記載置面に向かって熱のフローが生じ得る。この試料Sの上方にサーチコイル62を配置し、試料Sが発する磁束をサーチコイル62によって捉える。サーチコイル62の両端を恒温槽50の外部に配置したフラックスメーター60に接続して、フラックスメーター60によって、磁束量を測定する。ここでは、200℃の恒温槽50内に配置された水冷銅板52上に試料Sを載置してから1時間保持した後、磁束量を測定する。   About the produced molded object with plating of each sample, the magnetic flux amount (Gs = 0.0001T) of normal temperature (here 25 degreeC), the magnetic flux amount (Gs) of 200 degreeC, and the magnetic flux amount of 200 degreeC with respect to the magnetic flux amount of normal temperature The ratio (= 200 ° C./25° C. ratio) is shown in Table 1. The amount of magnetic flux is a Gaussian converted value. It can be said that as the ratio of the magnetic flux amount is larger, the magnetic flux amount is less likely to decrease even at a high temperature of 200 ° C. The amount of magnetic flux is measured using a commercially available flux meter. The amount of magnetic flux at 200 ° C. is measured as follows. As shown in FIG. 2, the interior of the constant temperature bath 50 is maintained at 200 ° C., and a water-cooled copper plate 52 is disposed in the constant temperature bath 50. The water-cooled copper plate 52 is maintained at 60 ° C. by a cooling device (not shown). A sample S is placed on the water-cooled copper plate 52. Then, while the sample S is stored in the thermostat 50 and heated to 200 ° C., one surface (mounting surface) of the rectangular parallelepiped sample S that contacts the water-cooled copper plate 52 is cooled by the water-cooled copper plate 52. . Therefore, the sample S can generate a heat flow from the surface other than the above placement surface to the above placement surface through the inside thereof. A search coil 62 is disposed above the sample S, and the magnetic flux generated by the sample S is captured by the search coil 62. Both ends of the search coil 62 are connected to a flux meter 60 disposed outside the thermostat 50, and the amount of magnetic flux is measured by the flux meter 60. Here, after the sample S is placed on the water-cooled copper plate 52 disposed in the thermostat 50 at 200 ° C. and held for 1 hour, the amount of magnetic flux is measured.

Figure 2015008232
Figure 2015008232

試料No.1−1〜No.1−5のめっき付き成形体はいずれも、Nd−Fe−B系合金やSm−Fe−N系合金といった希土類−鉄系合金からなる磁性粒子の外周に、希土類−鉄系合金の熱伝導率κよりも熱伝導率κが低い材料からなる被覆を備えると共に、この被覆磁性粒子間に上記被覆の熱伝導率κよりも熱伝導率κRBが高い結合相を備える。このような試料No.1−1〜No.1−5のめっき付き成形体はいずれも、表1に示すように、結合相を有するものの上記被覆を有していない試料No.1−101〜No.1−103に比較して、200℃/25℃比が高いことが分かる。ここでは、試料No.1−1〜No.1−5はいずれも、200℃/25℃比が50%以上である。即ち、試料No.1−1〜No.1−5はいずれも、高温でも磁気特性が低下し難いことが分かる。この理由は、試料No.1−1〜No.1−5は、熱伝導率κRBが大きい結合相を十分に有することで結合相を放熱経路に利用できると共に、熱伝導率κが小さい被覆によって外部からの熱が上記被覆を介して磁性粒子に伝わり難くなったため、と考えられる。ここでは試料No.1−1〜No.1−5はいずれも、結合相の熱伝導率κRBが20W/m・K以上であり、被覆の熱伝導率κ及び希土類−鉄系合金の熱伝導率κの双方よりも十分に大きく、結合相の含有量が29体積%である。また、試料No.1−1〜No.1−5はいずれも、被覆の熱伝導率κが3W/m・K以下であり、この被覆は遮熱層として機能しているといえる。上記被覆を備えず、高熱伝導の結合相のみを備える場合には、磁性粒子は、高熱伝導の結合相を介して伝達された外部からの熱によって加熱され易くなり、磁気特性が低下し易い、と考えられる。 Sample No. 1-1-No. In any of the 1-5 plated bodies, the thermal conductivity of the rare earth-iron alloy is formed on the outer periphery of the magnetic particles made of a rare earth-iron alloy such as Nd—Fe—B alloy or Sm—Fe—N alloy. provided with a coating consisting of kappa r thermal conductivity kappa b is less material than, the thermal conductivity kappa RB than the thermal conductivity kappa b of the coating between the covered magnetic particles comprises a high binder phase. Such sample No. 1-1-No. As shown in Table 1, all of the molded products with plating of 1-5 had a binder phase but had no coating as described above. 1-101-No. It can be seen that the ratio of 200 ° C./25° C. is higher than that of 1-103. Here, Sample No. 1-1-No. 1-5 has a 200 ° C./25° C. ratio of 50% or more. That is, sample no. 1-1-No. As for 1-5, it turns out that a magnetic characteristic does not fall easily even if it is high temperature. This is because sample no. 1-1-No. 1-5 has a binder phase having a large thermal conductivity κ RB so that the binder phase can be used as a heat dissipation path, and heat from the outside is magnetized through the coating by a coating having a small thermal conductivity κ b. This is thought to be because it became difficult to reach the particles. Here, Sample No. 1-1-No. 1-5 has a thermal conductivity κ RB of the binder phase of 20 W / m · K or more, which is sufficiently higher than both the thermal conductivity κ b of the coating and the thermal conductivity κ r of the rare earth-iron alloy. It is large and the content of the binder phase is 29% by volume. Sample No. 1-1-No. In all of 1-5, the thermal conductivity κ b of the coating is 3 W / m · K or less, and it can be said that this coating functions as a heat shielding layer. When the magnetic particles are not provided with the above-described coating and have only a high thermal conductivity binder phase, the magnetic particles are easily heated by the external heat transmitted through the high thermal conductivity binder phase, and the magnetic properties are likely to deteriorate. it is conceivable that.

上述のように200℃/25℃比が大きい試料No.1−1〜No.1−5のめっき付き成形体(磁石素材)は、着磁して希土類磁石に利用した場合、例えば、200℃といった高温での使用でも、磁気特性の低下が少ないと期待される。特に、Nd−Fe−B系合金を主体とする試料No.1−1〜No.1−4のめっき付き成形体では、常温での磁気特性に優れることから、高温で磁気特性が低下したした場合でも高い磁気特性を有することが分かる。特に、Sm−Fe−N系合金を主体とする試料No.1−5のめっき付き成形体では、高温でも磁気特性がより低下し難いことが分かる。   As described above, the sample No. 1-1-No. When the 1-5 plated molded body (magnet material) is magnetized and used for a rare earth magnet, it is expected that there is little decrease in magnetic properties even when used at a high temperature of 200 ° C., for example. In particular, sample Nos. Mainly composed of Nd—Fe—B alloys. 1-1-No. It can be seen that the molded body with plating 1-4 has excellent magnetic properties at room temperature, and thus has high magnetic properties even when the magnetic properties deteriorate at high temperatures. In particular, sample Nos. Mainly composed of Sm—Fe—N alloys. It can be seen that in the molded body with plating of 1-5, the magnetic properties are more difficult to deteriorate even at high temperatures.

一方、被覆を備える場合でも、試料No.1−111のように結合相の熱伝導率が低いと、試料No.1−1〜No.1−5と比較して、200℃/25℃比が小さくなることが分かる。この理由は、熱伝導性に劣る結合相によって、磁石内に熱が留まり易くなったため、と考えられる。   On the other hand, even when the coating is provided, the sample No. When the thermal conductivity of the binder phase is low like 1-111, sample no. 1-1-No. It can be seen that the ratio of 200 ° C./25° C. is smaller than that of 1-5. The reason for this is considered that heat is likely to stay in the magnet due to the binder phase having poor thermal conductivity.

他方、被覆と高熱伝導の結合相との双方を備える場合でも、試料No.1−112のように被覆の構成材料の熱伝導率が高いと(ここでは20W/m・Kであり、希土類−鉄系合金の熱伝導率κよりも高い)、200℃/25℃比が小さくなることが分かる。この理由は、被覆の熱伝導率が高いことで、高熱伝導の結合相を介して伝達された外部からの熱が被覆を経て磁性粒子にも伝えられ易くなったため、と考えられる。 On the other hand, even when both the coating and the high thermal conductivity binder phase are provided, the sample No. When the thermal conductivity of the constituent material of the coating is high as in 1-112 (here, 20 W / m · K, higher than the thermal conductivity κ r of the rare earth-iron alloy), the ratio of 200 ° C./25° C. It turns out that becomes small. The reason for this is considered to be that the heat conductivity of the coating is high, so that heat from the outside transmitted through the binder phase having high thermal conductivity is easily transmitted to the magnetic particles through the coating.

なお、試料No.1−101〜No.1−103は、常温での磁束量が試料No.1−1などと比較して高い。この理由は、上述の被覆の構成材料が非磁性材であり、試料No.1−101〜No.1−103は、上記被覆を有していない、即ち被覆の非磁性成分を実質的に含まないため、と考えられる。   Sample No. 1-101-No. 1-103 shows that the amount of magnetic flux at room temperature is Sample No. Higher than 1-1. This is because the constituent material of the above-mentioned coating is a non-magnetic material, and sample No. 1-101-No. It is considered that 1-103 does not have the above-described coating, that is, substantially does not include the nonmagnetic component of the coating.

本発明の希土類磁石は、永久磁石、例えば、各種のモータ、特に、ハイブリッド自動車やハードディスクドライブなどに具備される高速モータに用いられる永久磁石に利用することができる。特に、本発明の希土類磁石は、高温環境、例えば、最高温度が200℃程度になるような環境での用途に好適である。本発明の希土類磁石の製造方法は、希土類磁石の製造に好適に利用することができる。   The rare earth magnet of the present invention can be used as a permanent magnet, for example, a permanent magnet used in various motors, in particular, a high-speed motor provided in a hybrid vehicle or a hard disk drive. In particular, the rare earth magnet of the present invention is suitable for use in a high temperature environment, for example, an environment where the maximum temperature is about 200 ° C. The method for producing a rare earth magnet of the present invention can be suitably used for producing a rare earth magnet.

1 希土類磁石 2 被覆磁性粒子 20 磁性粒子 22 遮熱層
3 結合相
S 試料
50 恒温槽 52 水冷銅板
60 フラックスメーター 62 サーチコイル
100 樹脂ボンド磁石 200 磁性粉末 300 樹脂
DESCRIPTION OF SYMBOLS 1 Rare earth magnet 2 Coated magnetic particle 20 Magnetic particle 22 Heat insulation layer 3 Bonded phase S Sample 50 Constant temperature bath 52 Water-cooled copper plate 60 Flux meter 62 Search coil 100 Resin bond magnet 200 Magnetic powder 300 Resin

Claims (7)

希土類元素と鉄族元素とを含む希土類−鉄系合金からなる磁性粒子と、前記磁性粒子の外周を覆う遮熱層とを備える複数の被覆磁性粒子と、
前記被覆磁性粒子の間に介在して前記被覆磁性粒子同士を結合する結合相とを備え、
前記結合相は、樹脂と前記樹脂中に分散するフィラーとを含む複合材料から構成され、
前記複合材料の熱伝導率κRBが前記遮熱層の構成材料の熱伝導率κよりも高く、
前記遮熱層の構成材料の熱伝導率κが前記希土類−鉄系合金の熱伝導率κよりも低い希土類磁石。
A plurality of coated magnetic particles comprising a magnetic particle comprising a rare earth-iron-based alloy containing a rare earth element and an iron group element, and a heat shielding layer covering the outer periphery of the magnetic particle;
A binder phase that is interposed between the coated magnetic particles and bonds the coated magnetic particles,
The binder phase is composed of a composite material including a resin and a filler dispersed in the resin,
The thermal conductivity κ RB of the composite material is higher than the thermal conductivity κ b of the constituent material of the thermal barrier layer,
A rare earth magnet in which the thermal conductivity κ b of the constituent material of the heat shield layer is lower than the thermal conductivity κ r of the rare earth-iron alloy.
前記遮熱層の構成材料の熱伝導率κが3W/m・K以下であり、
前記複合材料の熱伝導率κRBが20W/m・K以上である請求項1に記載の希土類磁石。
The thermal conductivity κ b of the constituent material of the heat shield layer is 3 W / m · K or less,
The rare earth magnet according to claim 1, wherein the composite material has a thermal conductivity κ RB of 20 W / m · K or more.
前記希土類−鉄系合金は、Nd−Fe−B系合金、又はSm−Fe−N系合金である請求項1又は請求項2に記載の希土類磁石。   The rare earth magnet according to claim 1 or 2, wherein the rare earth-iron alloy is an Nd-Fe-B alloy or an Sm-Fe-N alloy. 前記遮熱層の構成材料は、以下の(i)〜(iii)の少なくとも1種を含む請求項1〜請求項3のいずれか1項に記載の希土類磁石。
(i) Ti,Zr,及びSiから選択される1種以上の元素を含む酸化物
(ii) Mg,K,及びAlから選択される1種以上の金属元素を含む金属酸化物と、Siを含む酸化物とを含む複合酸化物
(iii) チタン酸金属塩
The constituent material of the said heat-shielding layer is a rare earth magnet of any one of Claims 1-3 containing at least 1 sort (s) of the following (i)-(iii).
(I) an oxide containing one or more elements selected from Ti, Zr and Si (ii) a metal oxide containing one or more metal elements selected from Mg, K and Al; and Si And oxide containing oxide (iii) metal titanate
前記希土類磁石の表面の少なくとも一部にめっき層を備える請求項1〜請求項4のいずれか1項に記載の希土類磁石。   The rare earth magnet according to any one of claims 1 to 4, wherein a plating layer is provided on at least a part of the surface of the rare earth magnet. 希土類元素と鉄族元素とを含む希土類−鉄系合金からなる磁性粉末を準備する準備工程と、
前記磁性粉末を構成する各磁性粒子の表面を覆うように、前記希土類−鉄系合金の熱伝導率κよりも熱伝導率が低い材料によって遮熱層を形成して被覆磁性粉末を製造する被覆工程と、
樹脂とフィラーとを含み、前記遮熱層の構成材料の熱伝導率κよりも熱伝導率が高い複合材料の粉末と、前記被覆磁性粉末とを混合した混合粉末を製造する混合工程と、
前記混合粉末を成形して、前記被覆磁性粉末を構成する各被覆磁性粒子間に前記複合材料からなる結合相が介在する磁石素材を製造する成形工程とを備える希土類磁石の製造方法。
Preparing a magnetic powder comprising a rare earth-iron alloy containing a rare earth element and an iron group element;
A coated magnetic powder is produced by forming a heat shielding layer with a material having a thermal conductivity lower than the thermal conductivity κ r of the rare earth-iron alloy so as to cover the surface of each magnetic particle constituting the magnetic powder. A coating process;
A mixing step of producing a mixed powder obtained by mixing a powder of a composite material containing a resin and a filler and having a thermal conductivity higher than the thermal conductivity κ b of the constituent material of the thermal barrier layer, and the coated magnetic powder;
A rare earth magnet manufacturing method comprising: forming the mixed powder, and manufacturing a magnet material in which a binder phase composed of the composite material is interposed between the coated magnetic particles constituting the coated magnetic powder.
前記成形工程では、前記混合粉末の成形を磁場印加中で行う請求項6に記載の希土類磁石の製造方法。   The method for producing a rare earth magnet according to claim 6, wherein in the forming step, the mixed powder is formed while a magnetic field is applied.
JP2013133188A 2013-06-25 2013-06-25 Rare earth magnet and method for manufacturing the same Pending JP2015008232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013133188A JP2015008232A (en) 2013-06-25 2013-06-25 Rare earth magnet and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013133188A JP2015008232A (en) 2013-06-25 2013-06-25 Rare earth magnet and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2015008232A true JP2015008232A (en) 2015-01-15

Family

ID=52338323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013133188A Pending JP2015008232A (en) 2013-06-25 2013-06-25 Rare earth magnet and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2015008232A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106158209A (en) * 2016-08-29 2016-11-23 京磁材料科技股份有限公司 A kind of modified neodymium iron boron magnetic body and preparation method thereof
DE102017101049A1 (en) 2016-01-25 2017-07-27 Minebea Co., Ltd. BONDED RARE MAGNET
JP2018532259A (en) * 2015-08-20 2018-11-01 エクスタリック コーポレイションXtalic Corporation Magnet containing aluminum manganese alloy coating layer and related method
CN111653403A (en) * 2020-05-13 2020-09-11 烟台正海磁性材料股份有限公司 High-resistivity sintered R-Fe-B permanent magnet and preparation method thereof
JP2021077882A (en) * 2019-11-06 2021-05-20 有研稀土新材料股▲フン▼有限公司 Composite rare earth anisotropic bond magnet and manufacture method therefor
CN114870078B (en) * 2022-05-19 2023-08-18 华中科技大学同济医学院附属同济医院 Magnetic composite net sheet for assisting urination and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018532259A (en) * 2015-08-20 2018-11-01 エクスタリック コーポレイションXtalic Corporation Magnet containing aluminum manganese alloy coating layer and related method
DE102017101049A1 (en) 2016-01-25 2017-07-27 Minebea Co., Ltd. BONDED RARE MAGNET
US10629342B2 (en) 2016-01-25 2020-04-21 Minebea Mitsumi Inc. Rare earth bonded magnet
CN106158209A (en) * 2016-08-29 2016-11-23 京磁材料科技股份有限公司 A kind of modified neodymium iron boron magnetic body and preparation method thereof
JP2021077882A (en) * 2019-11-06 2021-05-20 有研稀土新材料股▲フン▼有限公司 Composite rare earth anisotropic bond magnet and manufacture method therefor
JP7004787B2 (en) 2019-11-06 2022-01-21 有研稀土新材料股▲フン▼有限公司 Composite rare earth anisotropic bond magnet and its manufacturing method
JP7004787B6 (en) 2019-11-06 2022-06-07 有研稀土新材料股▲フン▼有限公司 Composite rare earth anisotropic bond magnet and its manufacturing method
CN111653403A (en) * 2020-05-13 2020-09-11 烟台正海磁性材料股份有限公司 High-resistivity sintered R-Fe-B permanent magnet and preparation method thereof
CN111653403B (en) * 2020-05-13 2022-07-12 烟台正海磁性材料股份有限公司 High-resistivity sintered R-Fe-B permanent magnet and preparation method thereof
CN114870078B (en) * 2022-05-19 2023-08-18 华中科技大学同济医学院附属同济医院 Magnetic composite net sheet for assisting urination and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101378089B1 (en) R-t-b sintered magnet
JP2015008232A (en) Rare earth magnet and method for manufacturing the same
JP5218869B2 (en) Rare earth-iron-nitrogen alloy material, method for producing rare earth-iron-nitrogen alloy material, rare earth-iron alloy material, and method for producing rare earth-iron alloy material
JP2021122061A (en) MAGNETIC POWDER CONTAINING Sm-Fe-N-BASED CRYSTAL PARTICLE, SINTERED MAGNET PRODUCED FROM THE SAME, METHOD FOR PRODUCING THE MAGNETIC POWDER, AND METHOD FOR PRODUCING THE SINTERED MAGNET
CN102959647B (en) R-T-B based rare earth element permanent magnet, motor, automobile, generator, wind power generation plant
WO2011145477A1 (en) Powder for magnetic member, powder compact, and magnetic member
JP2014027268A (en) Sintered magnet
JP6094612B2 (en) Method for producing RTB-based sintered magnet
KR20100016577A (en) R-t-b sintered magnet
JP2018041777A (en) Metal bond magnet and method for manufacturing the same
CN110942881B (en) Rare earth magnet and method for producing same
JP4968519B2 (en) Permanent magnet and method for manufacturing the same
JP2020095989A (en) Rare earth magnet and rotary machine
JP2015008231A (en) Rare earth magnet and method for manufacturing the same
JP2015008233A (en) Method for manufacturing rare earth magnet
EP4119262A1 (en) Iron base rare earth boron-based isotropic magnet alloy
JP2015122395A (en) Method for manufacturing r-t-b-based sintered magnet
JP5359383B2 (en) Magnet molded body and manufacturing method thereof
JP2018174314A (en) R-T-B based sintered magnet
JP2020095992A (en) Sintered magnet and rotary machine
JP2016042527A (en) Rare earth anisotropic magnet material and method for producing the same, and rare earth magnet precursor material and method for producing the same
JP6513623B2 (en) Method of manufacturing isotropic bulk magnet
JP2007005668A (en) Rare earth magnet and its manufacturing method
JP2020053437A (en) Rare earth magnet and manufacturing method therefor
JP2016149397A (en) R-t-b-based sintered magnet