JP2015003941A - Transparent conductive film coating liquid and transparent conductive film employing the same - Google Patents

Transparent conductive film coating liquid and transparent conductive film employing the same Download PDF

Info

Publication number
JP2015003941A
JP2015003941A JP2013128193A JP2013128193A JP2015003941A JP 2015003941 A JP2015003941 A JP 2015003941A JP 2013128193 A JP2013128193 A JP 2013128193A JP 2013128193 A JP2013128193 A JP 2013128193A JP 2015003941 A JP2015003941 A JP 2015003941A
Authority
JP
Japan
Prior art keywords
fine particles
ito fine
transparent conductive
conductive film
ligand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013128193A
Other languages
Japanese (ja)
Other versions
JP6136623B2 (en
Inventor
有紀 山本
Arinori Yamamoto
有紀 山本
敏 羽村
Satoshi Hamura
敏 羽村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2013128193A priority Critical patent/JP6136623B2/en
Publication of JP2015003941A publication Critical patent/JP2015003941A/en
Application granted granted Critical
Publication of JP6136623B2 publication Critical patent/JP6136623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a transparent conductive film coating liquid that has a high dispersibility and that does not require the removal of ligands at high temperatures, and to provide a transparent conductive film expressing high transparency and high conductivity that is produced by film making the same and removing the dispersion medium.SOLUTION: Provided is a transparent conductive film coating liquid characterized to contain ITO fine particles in which ligands of macrocyclic π-conjugated compounds are coordinated in a plane direction with respect to the particle surface and which has an average particle size, measured by transmission electron microscope, of 3 to 60 nm, by 0.1 to 50 wt.%, and a transparent conductive film obtained by film making the same.

Description

本発明は、透明導電膜用の塗工液及びこれよりなる透明導電膜に関するものであり、より詳しくは、大環状π共役化合物が平面方向で配位しているITO微粒子を含む透明導電膜用塗工液、及びこれを製膜することで得られる、透明導電膜に関するものである。   The present invention relates to a coating liquid for a transparent conductive film and a transparent conductive film comprising the same, and more specifically, for a transparent conductive film containing ITO fine particles in which a macrocyclic π-conjugated compound is coordinated in a planar direction. The present invention relates to a coating liquid and a transparent conductive film obtained by forming the coating liquid.

パーソナル・デジタル・アシスタント(PDA)、ノートPC、OA機器、医療機器又はカーナビゲーションシステム等の電子機器においては、これらのディスプレイに入力手段を兼ね備える、タッチパネルが広く用いられている。   In an electronic device such as a personal digital assistant (PDA), a notebook PC, an OA device, a medical device, or a car navigation system, a touch panel having an input means on these displays is widely used.

このようなタッチパネルに用いられる透明導電膜としては、液晶ディスプレイ等の透明電極に用いられているスズを含有する酸化インジウム(以下、ITOと略すこともある)が、優れた透明性と電気導電性とを持ち合わせることからこれまで広く使用されている。   As a transparent conductive film used in such a touch panel, indium oxide containing tin (hereinafter sometimes abbreviated as ITO) used for transparent electrodes such as liquid crystal displays has excellent transparency and electrical conductivity. Has been widely used so far.

しかし、一般的にこれらスズを含有する酸化インジウムは、スパッタリング方式で蒸着されることから、工程が複雑であること、材料の使用効率が低いこと、また高価な真空製膜装置が必要であること、などの課題が指摘されている。   However, since indium oxide containing tin is generally deposited by sputtering, the process is complicated, the use efficiency of the material is low, and an expensive vacuum film forming apparatus is required. , Etc. are pointed out.

これに対し、真空工程を必要とせず、大面積や複雑形状の製膜が可能である塗工型の材料が注目されており、これまでに貴金属又は金属酸化物の微粒子分散液を塗工して得られる透明導電膜が報告されている。   On the other hand, a coating-type material that does not require a vacuum process and can form a film with a large area or a complicated shape has attracted attention. So far, a fine particle dispersion of noble metal or metal oxide has been applied. A transparent conductive film obtained in this manner has been reported.

そして、貴金属微粒子を用いるものは、具体的には表示装置の表示面上に金、銀、銅等の貴金属微粒子を液中に均一に分散させた塗布液を塗布し乾燥することで、導電性の透明貴金属薄膜を形成し、この透明貴金属薄膜の上層及び/又は下層に、これとは屈折率が異なる透明層を積層して電磁波遮蔽、帯電防止、反射防止等を図るものである。例えば、平均粒子径2〜200nmの範囲内の少なくとも銀を含む貴金属微粒子による導電層と、これと屈折率が異なる透明層とからなる電磁波遮蔽効果と反射防止効果に優れた透明導電膜(例えば特許文献1参照。)、が提案されている。   For those using noble metal fine particles, specifically, a conductive liquid in which noble metal fine particles such as gold, silver and copper are uniformly dispersed in the liquid is applied on the display surface of the display device and dried. The transparent noble metal thin film is formed, and a transparent layer having a refractive index different from that of the transparent noble metal thin film is laminated on the upper layer and / or the lower layer of the transparent noble metal thin film for electromagnetic wave shielding, antistatic, antireflection and the like. For example, a transparent conductive film excellent in electromagnetic wave shielding effect and antireflection effect comprising a conductive layer made of noble metal fine particles containing at least silver within an average particle diameter of 2 to 200 nm and a transparent layer having a different refractive index (for example, a patent) Reference 1)) has been proposed.

しかし、特許文献1に提案の方法においては、電磁波遮蔽効果は期待できるものの、銀の光透過スペクトルに依存して400〜500nmの透過光に吸収が生じ、導電膜が黄色に着色し、透過画像の色相が不自然に変化する、膜の光線透過率が低いため膜厚分布に起因した透過色のムラが目立ち易く生産性を悪化させる、塩霧環境では導電膜の表面抵抗率が上昇し電磁波遮蔽効果が低下するため、海岸等塩霧の影響を受け易い場所では耐久性が低下する、等の課題を有するものであった。   However, in the method proposed in Patent Document 1, although an electromagnetic wave shielding effect can be expected, depending on the light transmission spectrum of silver, absorption occurs in transmitted light of 400 to 500 nm, the conductive film is colored yellow, and the transmission image The hue of the film changes unnaturally, and because the light transmittance of the film is low, unevenness in the transmitted color due to the film thickness distribution is easily noticeable and the productivity is deteriorated. In a salt fog environment, the surface resistivity of the conductive film increases and electromagnetic waves Since the shielding effect is lowered, there is a problem that durability is lowered in a place that is easily affected by salt fog such as a coast.

また、金属酸化物微粒子を用いるものでは、スズ含有酸化インジウムの微粒子を有機溶媒に溶解または分散した塗布液を基材上に塗布し、乾燥・焼成することにより透明導電膜を作製する方法が提案されている。例えば、インジウム・スズ複合酸化物の粒子を含有するゾル組成物を塗布液として用い、この塗布液を基材上に塗布し、乾燥・焼成することにより、導電性酸化インジウム粒子からなる被膜を形成する方法(例えば特許文献2参照。)、が提案されている。   For those using metal oxide fine particles, a method for producing a transparent conductive film by applying a coating solution in which fine particles of tin-containing indium oxide are dissolved or dispersed in an organic solvent on a substrate, followed by drying and baking is proposed. Has been. For example, a sol composition containing particles of indium / tin composite oxide is used as a coating solution, and this coating solution is applied onto a substrate, dried and fired to form a film made of conductive indium oxide particles. A method (for example, refer to Patent Document 2) is proposed.

しかし、通常、塗布液に含まれるインジウム化合物は、無機または有機のインジウム塩など、いわゆる酸化インジウムの前駆体であり、このような分散液を基材上に塗工した後に乾燥しただけでは高い導電性、透明性を示す結晶性酸化インジウムの塗工膜は得られず、基材上に塗工した後の塗膜を400℃以上の高温で焼成し、インジウム塩を熱分解するとともに得られた酸化インジウムを結晶化することにより、はじめて高導電性の酸化インジウム被膜が形成されるものである。そして、特許文献2に提案されている方法においても、インジウム・スズ複合酸化物ゾル中の複合酸化物微粒子は、非晶質の酸化物であり、該非晶質の酸化物は、高温で焼成することにより結晶化させることを必要としており、実施例でも、500℃で焼成する工程を経て導電性被膜が形成されている。しかしながら、塗膜を高温、500℃程度の温度で加熱すると、基材がプラスチック基材である場合には基材が損傷してしまう、また基材がガラス基材である場合には基材に歪み、割れなどが生じるという、課題を発生する場合があった。   However, the indium compound contained in the coating solution is usually a so-called indium oxide precursor such as an inorganic or organic indium salt, and high conductivity can be obtained simply by applying such a dispersion on a substrate and then drying it. A coating film of crystalline indium oxide exhibiting properties and transparency was not obtained, and the coating film after coating on the substrate was baked at a high temperature of 400 ° C. or higher, and the indium salt was thermally decomposed and obtained. Only when indium oxide is crystallized, a highly conductive indium oxide film is formed. Also in the method proposed in Patent Document 2, the composite oxide fine particles in the indium-tin composite oxide sol are amorphous oxides, and the amorphous oxides are fired at a high temperature. In this embodiment, the conductive film is formed through a process of baking at 500 ° C. However, when the coating is heated at a high temperature of about 500 ° C., the base material is damaged when the base material is a plastic base material, and when the base material is a glass base material, the base material is damaged. There was a case where a problem such as distortion or cracking occurred.

そこで、高温での焼成工程を必要とせず、塗工及びプラスチック基材に適応可能な200℃以下の低温乾燥のみで高い導電性を発現させるために、結晶性の金属酸化物微粒子を塗工膜として用いることが期待される。   Therefore, in order to develop high conductivity only by low temperature drying at 200 ° C. or less that can be applied to coating and plastic substrates without requiring a high-temperature baking step, a crystalline metal oxide fine particle is applied to the coating film. It is expected to be used as

そして、400℃以上での高温による焼結を必要とせず、結晶性の金属酸化物微粒子を得る方法(例えば特許文献3、4参照。)、350℃以下の加熱により、常圧で結晶性のITO微粒子を得る方法(例えば特許文献5,6,7参照。)、さらにオレイルアミンの配位したスズ含有酸化インジウム微粒子合成(例えば非特許文献1参照。)、等が提案されている。   Then, a method of obtaining crystalline metal oxide fine particles without requiring sintering at a high temperature of 400 ° C. or higher (see, for example, Patent Documents 3 and 4), heating at 350 ° C. or lower, and crystalline Methods for obtaining ITO fine particles (see, for example, Patent Documents 5, 6, and 7), synthesis of tin-containing indium oxide fine particles coordinated with oleylamine (for example, see Non-Patent Document 1), and the like have been proposed.

特開平08−077832号公報(例えば特許請求の範囲参照。)Japanese Patent Application Laid-Open No. 08-077782 (for example, refer to the claims) 特開昭59−223229号公報(例えば特許請求の範囲参照。)Japanese Patent Laid-Open No. 59-223229 (for example, refer to the claims) 特開2004−123418号公報(例えば特許請求の範囲参照。)Japanese Unexamined Patent Application Publication No. 2004-123418 (see, for example, the claims) 特開2006−096636号公報(例えば特許請求の範囲参照。)Japanese Patent Laying-Open No. 2006-096636 (for example, refer to the claims) 特開2007−269617号公報(例えば特許請求の範囲参照。)Japanese Patent Laying-Open No. 2007-269617 (see, for example, the claims) 特開2009−084122号公報(例えば特許請求の範囲参照。)Japanese Patent Laying-Open No. 2009-084122 (for example, refer to the claims) 特開2011−126746号公報(例えば特許請求の範囲参照。)Japanese Patent Laying-Open No. 2011-126746 (for example, refer to the claims)

J.Am.Chem.Soc.2009,131,17736−17737J. et al. Am. Chem. Soc. 2009, 131, 17736-17737

しかし、特許文献3,4に提案の方法においては、加圧条件下での処理工程を必須とするものであり、大量生産プロセスに適したものとは言い難い上に、導電性の点においても課題を有するものであった。   However, in the methods proposed in Patent Documents 3 and 4, a treatment step under a pressurized condition is essential, and it is difficult to say that it is suitable for a mass production process, and also in terms of conductivity. It had a problem.

また粒子径の小さなITO微粒子は、一旦凝集すると再分散させることが難しく、単分散状態を長時間保持することが難しい。分散性を向上するために低分子分散剤や高分子分散剤(バインダー)等を添加して、微粒子表面を保護することで分散性は向上させる手法が知られているものの、これらの添加剤は絶縁性の有機物であるため、得られる透明導電膜の導電性を低下させてしまうという課題がある。これらの有機物は高温で加熱することで除去可能であるが、特にプラスチックフイルム基材に塗工した透明導電膜の場合、200℃以上の高温で乾燥することは難しく、実用的な手法とはいえない。例えば許文献5、6、7や非特許文献1に提案されるITO微粒子は、高沸点の有機物で表面を保護することで高い分散性を付与したものであり、塗工及び分散媒の除去のみで得られた塗工膜は、有機物が多く残留するために、透明導電膜として十分な導電性を発現することができない。すなわち、高い分散性を有し、かつ有機物を加熱除去せずに高い導電性を発現する透明導電膜が得られる塗工液については、これまでに報告されていない。   In addition, ITO fine particles having a small particle diameter are difficult to redisperse once aggregated, and it is difficult to maintain a monodispersed state for a long time. Although a technique for improving the dispersibility by adding a low molecular dispersant or a polymer dispersant (binder) to improve the dispersibility and protecting the surface of the fine particles is known, these additives are Since it is an insulating organic substance, there exists a subject that the electroconductivity of the transparent conductive film obtained will be reduced. Although these organic substances can be removed by heating at high temperature, it is difficult to dry at a high temperature of 200 ° C. or more, especially in the case of a transparent conductive film coated on a plastic film substrate, which is a practical technique. Absent. For example, the ITO fine particles proposed in Permitted Documents 5, 6, 7 and Non-Patent Document 1 are provided with high dispersibility by protecting the surface with organic substances having a high boiling point, and only coating and dispersion medium removal. The coating film obtained in (1) cannot exhibit sufficient conductivity as a transparent conductive film because a large amount of organic matter remains. That is, there has been no report on a coating liquid that has a high dispersibility and can obtain a transparent conductive film that exhibits high conductivity without heating and removing organic substances.

本発明者らは、上記課題を解決するために鋭意検討した結果、大環状π共役化合物が、微粒子に対して平面方向で配位したITO微粒子を含有する透明導電膜用塗工液が、高い分散性を有し、かつ製膜、分散溶媒除去のみで、配位子である大環状π共役化合物を除去することなく、高い導電性を発現する透明導電膜が製造可能であることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the coating liquid for transparent conductive film containing ITO fine particles in which the macrocyclic π-conjugated compound is coordinated in the plane direction with respect to the fine particles is high. It has been found that a transparent conductive film exhibiting high conductivity can be produced without removing the macrocyclic π-conjugated compound which is a ligand, only by film formation and dispersion solvent removal, The present invention has been completed.

すなわち本発明は、上記事実を鑑みてなされた、分散性が高く、かつ製膜後に配位子を高温で除去する必要のない、透明導電膜用塗工液、及びこれより製造される透明導電膜に関するものである。より詳しくは、配位子である大環状π共役化合物が、粒子表面に対して平面方向で配位しており、透過型電子顕微鏡により測定される平均粒子径が3〜60nmの範囲であるITO微粒子を、0.1〜50重量%含有することを特徴とする、透明導電膜用塗工液、及びこれを製膜、200℃以下で乾燥して得られる透明導電膜に関するものである。   That is, the present invention has been made in view of the above facts, and has a high dispersibility and does not require removal of the ligand at a high temperature after film formation, and a transparent conductive film produced therefrom. It relates to membranes. More specifically, the macrocyclic π-conjugated compound that is a ligand is coordinated in the plane direction with respect to the particle surface, and the average particle diameter measured by a transmission electron microscope is in the range of 3 to 60 nm ITO The present invention relates to a coating liquid for transparent conductive film, characterized by containing 0.1 to 50% by weight of fine particles, and a transparent conductive film obtained by film formation and drying at 200 ° C. or lower.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明は、透明導電膜用塗工液、及びこれより製造される透明導電膜に関するものである。より詳しくは、配位子である大環状π共役化合物が、粒子表面に対して平面方向で配位しており、透過型電子顕微鏡により測定される平均粒子径が3〜60nmの範囲であるITO微粒子を、0.1〜50重量%含有することを特徴とするものである。   The present invention relates to a coating liquid for transparent conductive film and a transparent conductive film produced therefrom. More specifically, the macrocyclic π-conjugated compound that is a ligand is coordinated in the plane direction with respect to the particle surface, and the average particle diameter measured by a transmission electron microscope is in the range of 3 to 60 nm ITO It contains 0.1 to 50% by weight of fine particles.

大環状π共役化合物を配位子に有するITO微粒子は、透過型電子顕微鏡により測定される平均粒子径が3〜60nmの範囲内であり、好ましくは4〜50nm、さらに好ましくは5〜40nmである。平均粒子径が3nm未満の場合、微粒子の比表面積が大きくなるために、粒子表面に配位する大環状π共役化合物の割合が増加し、製膜した際に、透明導電膜として十分な導電性を発現できない恐れがある。一方、平均粒子径が60nmを越える場合、配位子である大環状π共役化合物の分散力が不足し、微粒子の凝集が進行しやすくなるため、塗工液及び透明導電膜の透明性低下が懸念される。   The ITO fine particles having a macrocyclic π-conjugated compound as a ligand have an average particle diameter measured by a transmission electron microscope in the range of 3 to 60 nm, preferably 4 to 50 nm, more preferably 5 to 40 nm. . When the average particle diameter is less than 3 nm, the specific surface area of the fine particles increases, so the proportion of the macrocyclic π-conjugated compound coordinated on the particle surface increases, and when the film is formed, the conductive film has sufficient conductivity as a transparent conductive film. May not be able to be expressed. On the other hand, when the average particle diameter exceeds 60 nm, the dispersion force of the macrocyclic π-conjugated compound that is a ligand is insufficient, and the aggregation of the fine particles tends to proceed. Concerned.

大環状π共役化合物を配位子に有するITO微粒子の平均粒子径については、該ITO微粒子を適当な分散溶媒に分散させた、濃度0.01重量%以下の低濃度分散液を用意し、これをコロジオン膜展張したカーボンコーティング銅メッシュに滴下して分散溶媒を揮発させ、透過型顕微鏡で観察する方法により測定を行う。そして、ITO微粒子の平均粒子径の測定には、倍率20万倍で観察された像の写真を撮影し、300個以上のITO微粒子の粒子径を測定し、平均化することで、ITO微粒子の平均粒子径を求めることができる。   Regarding the average particle diameter of the ITO fine particles having the macrocyclic π-conjugated compound as a ligand, a low-concentration dispersion liquid having a concentration of 0.01% by weight or less in which the ITO fine particles are dispersed in an appropriate dispersion solvent is prepared. Is dropped onto a carbon-coated copper mesh on which a collodion film is spread to volatilize the dispersion solvent, and the measurement is performed by observing with a transmission microscope. The average particle diameter of the ITO fine particles is measured by taking a photograph of an image observed at a magnification of 200,000 times, measuring the particle diameters of 300 or more ITO fine particles, and averaging them. The average particle size can be determined.

本発明の透明導電膜用塗工液中のITO微粒子は、配位子として大環状π共役化合物を有するものであり、この大環状π共役化合物が分散溶媒と溶媒和するために、特殊な分散剤または特殊な操作を必要とすることなく、単に分散溶媒中に該ITO微粒子を添加するのみで、単分散性に優れる分散液を得ることができる。   The ITO fine particles in the coating liquid for transparent conductive film of the present invention have a macrocyclic π conjugated compound as a ligand, and this macrocyclic π conjugated compound solvates with the dispersion solvent, so that a special dispersion Without requiring an agent or a special operation, a dispersion having excellent monodispersibility can be obtained by simply adding the ITO fine particles to a dispersion solvent.

一般的に、微粒子の配位子として用いる有機物には、高分子や鎖長の長い低分子を使用することで、分散性を向上させるものが知られているが、本発明の透明導電膜用塗工液中のITO微粒子においては、大環状π共役化合物がITO微粒子の平面を覆う形で配位することで、長鎖長の付与や高分子化を行わずとも、優れた分散性を発現するITO微粒子を製造することが可能である。すなわち該ITO微粒子は、配位子である大環状π共役化合物が、平面方向でITO微粒子に配位していることを特徴とするものである。ここでいう平面方向での配位とは、図1中の(A)のような状態であり、(B)及び(C)のような状態とは区別するものとする。   In general, organic substances used as the ligand of fine particles are known to improve dispersibility by using a polymer or a small molecule having a long chain length, but for the transparent conductive film of the present invention. In the ITO fine particles in the coating liquid, the macrocyclic π-conjugated compound is coordinated so as to cover the plane of the ITO fine particles, so that it exhibits excellent dispersibility without giving a long chain length or polymerizing it. It is possible to produce ITO fine particles. That is, the ITO fine particle is characterized in that a macrocyclic π-conjugated compound as a ligand is coordinated to the ITO fine particle in a planar direction. The coordination in the planar direction here is a state as shown in FIG. 1 (A), and is distinguished from the states as shown in (B) and (C).

大環状π共役化合物とは、例えばポルフィリンやフタロシアニンのように、同一平面内に4つ以上の環状構造物を含む化合物、及びその誘導体のことをいい、1種類の化合物だけでなく、2種類以上の大環状π共役化合物を組み合わせて使用することもできる。これらの大環状π共役化合物は、大きな平面を有する化合物であり、この平面上でπ電子が共役することが知られている。このπ共役により、平面同士がπ−π相互作用によって積層しやすいだけでなく、ITO微粒子に平面配位することで、π共役軌道がITO微粒子の金属軌道と混成し、新たな軌道を形成することができる。すなわち、ITO微粒子の表面に平面配位することで、大環状π共役化合物のπ軌道とITO微粒子の金属軌道との間に軌道の相互作用が発生し、ITO微粒子、特に配位子層に特異的な電気特性を付与することが可能となる。この効果により、本発明におけるITO微粒子は、配位子である大環状π共役化合物にも導電性が生じるため、塗工及び分散溶媒の除去のみで、配位子を加熱除去することなく、高い導電性を発現する透明導電膜を形成することが可能となる。   The macrocyclic π-conjugated compound means a compound containing four or more cyclic structures in the same plane, such as porphyrin and phthalocyanine, and a derivative thereof, and not only one kind of compound but also two kinds or more. These macrocyclic π-conjugated compounds can also be used in combination. These macrocyclic π-conjugated compounds are compounds having a large plane, and it is known that π electrons are conjugated on this plane. By this π conjugation, not only the planes are easily stacked by π-π interaction, but also by coordinating with ITO fine particles, the π conjugate orbitals hybridize with the metal orbits of the ITO fine particles to form new orbits. be able to. In other words, orbital interaction occurs between the pi orbit of the macrocyclic π conjugated compound and the metal orbit of the ITO fine particle by planar coordination on the surface of the ITO fine particle, and is specific to the ITO fine particle, particularly the ligand layer. It becomes possible to give an electrical characteristic. Due to this effect, the ITO fine particles in the present invention are conductive even in the macrocyclic π-conjugated compound that is a ligand, so that it is high without removing the ligand by heating only by coating and removal of the dispersion solvent. A transparent conductive film that exhibits conductivity can be formed.

大環状π共役化合物の一例としては、例えば以下の一般式(1)〜(4)が挙げられる。   Examples of macrocyclic π-conjugated compounds include the following general formulas (1) to (4).

Figure 2015003941
Figure 2015003941

(式中、R〜R48はそれぞれ独立に、水素原子、ハロゲン原子、アミノ基、カルボキシル基、チオール基、ヒドロキシル基、炭素数1〜10の直鎖、分岐または環状アルキル基;末端にアミノ基、カルボキシル基、チオール基、ヒドロキシル基より選ばれるいずれかの官能基を有する炭素数1〜10の直鎖、分岐または環状のアルキル基;炭素鎖中に、酸素原子、硫黄原子、カルボニル基、エステル基、アミド基、イミノ基を含有する炭素数1〜10の直鎖または分岐または環状のアルキル基を表す。)
一般式(1)〜(4)で表される化合物の具体例としては、特に限定はなく例えば、以下の例示化合物を挙げることができ、
Wherein R 1 to R 48 are each independently a hydrogen atom, a halogen atom, an amino group, a carboxyl group, a thiol group, a hydroxyl group, a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms; A linear, branched or cyclic alkyl group having 1 to 10 carbon atoms having any functional group selected from a group, a carboxyl group, a thiol group and a hydroxyl group; an oxygen atom, a sulfur atom, a carbonyl group in the carbon chain; A C1-C10 linear, branched or cyclic alkyl group containing an ester group, an amide group or an imino group is represented.)
Specific examples of the compounds represented by the general formulas (1) to (4) are not particularly limited, and examples thereof include the following exemplified compounds.

Figure 2015003941
Figure 2015003941

Figure 2015003941
Figure 2015003941

Figure 2015003941
Figure 2015003941

Figure 2015003941
Figure 2015003941

その中でもITO微粒子に安定して配位可能であることから、例示化合物1−4、例示化合物1−7、例示化合物1−11、例示化合物1−14、例示化合物2−3、例示化合物2−5、例示化合物2−9、例示化合物2−12、例示化合物3−3、例示化合物3−4、例示化合物3−5、例示化合物3−9、例示化合物3−11、例示化合物3−12、例示化合物4−4、例示化合物4−5、例示化合物4−8、例示化合物4−10を用いることが特に好ましい。   Among them, since it can be stably coordinated to the ITO fine particles, Exemplary Compound 1-4, Exemplary Compound 1-7, Exemplary Compound 1-11, Exemplary Compound 1-14, Exemplary Compound 2-3, Exemplary Compound 2- 5, exemplary compound 2-9, exemplary compound 2-12, exemplary compound 3-3, exemplary compound 3-4, exemplary compound 3-5, exemplary compound 3-9, exemplary compound 3-11, exemplary compound 3-12, It is particularly preferable to use exemplified compound 4-4, exemplified compound 4-5, exemplified compound 4-8, and exemplified compound 4-10.

本発明の透明導電膜用塗工液におけるITO微粒子の製造方法としては、例えば、炭素数6〜24の、直鎖又は分岐のアルコール類またはアミン類を配位子として有するITO微粒子を反応前駆体(ITO微粒子前駆体)とし、配位子交換によって中間体である、炭素数20以下のカルボン酸化合物を配位子とするITO微粒子(ITO微粒子中間体)を製造し、さらに配位子交換によって、目的物である、大環状π共役化合物を配位子として有するITO微粒子(大環状化合物配位ITO微粒子)を製造することができる。   Examples of the method for producing ITO fine particles in the coating liquid for transparent conductive film of the present invention include, for example, ITO fine particles having 6 to 24 carbon atoms having linear or branched alcohols or amines as ligands as reaction precursors. (ITO fine particle precursor), an ITO fine particle (ITO fine particle intermediate) having a carboxylic acid compound having 20 or less carbon atoms, which is an intermediate by ligand exchange, is manufactured, and further by ligand exchange In addition, it is possible to produce ITO fine particles (macrocyclic compound coordinated ITO fine particles) having a macrocyclic π-conjugated compound as a ligand, which is a target product.

ITO微粒子前駆体の製造方法としては、例えば前出の炭素数6〜24の、直鎖又は分岐のアルコール類またはアミン類を用いる非特許文献1にある、1工程での合成手法を挙げることができる。   Examples of the method for producing the ITO fine particle precursor include the one-step synthesis method described in Non-Patent Document 1 using linear or branched alcohols or amines having 6 to 24 carbon atoms described above. it can.

用いる炭素数6〜24の、直鎖又は分岐のアルコール類またはアミン類としては、ITO微粒子に対し単座配位、多座配位のいずれの形態を有するものでもよく、例えばヘキサノール、オクタノール、2−エチルヘキサノール、デカノール、ラウリルアルコール、ミリスチルアルコール、ヘキサデカノール、オレイルアルコール、テトラコサノール、ヘキシルアミン、オクチルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、ステアリルアミン、ノナデシルアミン、オレイルアミン、ヘキサメチレンジアミン等を挙げることができる。   The linear or branched alcohols or amines having 6 to 24 carbon atoms to be used may have either a monodentate coordination or a multidentate coordination with respect to the ITO fine particles. For example, hexanol, octanol, 2- Ethylhexanol, decanol, lauryl alcohol, myristyl alcohol, hexadecanol, oleyl alcohol, tetracosanol, hexylamine, octylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexa Examples include decylamine, heptadecylamine, stearylamine, nonadecylamine, oleylamine, hexamethylenediamine, and the like.

ITO微粒子中間体は、ITO微粒子前駆体を、配位子交換することにより製造することができる。なお、ここでいうカルボン酸化合物とは、カルボキシル基を少なくとも1つ以上有する、構造中の炭素数が20以下である低分子化合物のことである。すなわち、モノカルボン酸だけでなく、ジカルボン酸、トリカルボン酸、テトラカルボン酸、その他カルボン酸誘導体を含むものである。また、1種類だけでなく、2種類以上のカルボン酸化合物を組み合わせて使用することもできる。カルボン酸化合物としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、マルガリン酸、ステアリン酸などの飽和モノカルボン酸、オレイン酸、リノール酸、リノレン酸、アラキドン酸、エイコサペンタエン酸などの不飽和モノカルボン酸、安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸、没食子酸、メリト酸、ケイ皮酸などの芳香族カルボン酸、シュウ酸、マロン酸、酒石酸、コハク酸、イタコン酸、グルタル酸、アジピン酸、α−ケトグルタル酸、リンゴ酸、オキサロ酢酸、フマル酸、マレイン酸などのジカルボン酸、クエン酸、イソクエン酸、オキサロコハク酸、アコニット酸などのトリカルボン酸、エチレンテトラカルボン酸、メソーブタン−1,2,3,4−テトラカルボン酸などのテトラカルボン酸などが挙げられる。また、上記のカルボン酸化合物の中でも特にシュウ酸、マロン酸、コハク酸より選ばれるカルボン酸化合物1種類以上を配位子とすることで、特に高い分散性を有するITO微粒子中間体を得ることができる。これは、シュウ酸、マロン酸、コハク酸がいずれもITOへの配位が容易な構造であり、かつ水等の汎用溶媒に対し、高い溶解性を示す化合物であるためである。   The ITO fine particle intermediate can be produced by ligand exchange of the ITO fine particle precursor. In addition, the carboxylic acid compound here is a low molecular compound having at least one carboxyl group and having 20 or less carbon atoms in the structure. That is, it includes not only monocarboxylic acids but also dicarboxylic acids, tricarboxylic acids, tetracarboxylic acids, and other carboxylic acid derivatives. Further, not only one type but also two or more types of carboxylic acid compounds can be used in combination. Examples of carboxylic acid compounds include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, margaric acid, stearic acid, etc. Saturated monocarboxylic acids, oleic acid, linoleic acid, linolenic acid, arachidonic acid, eicosapentaenoic acid and other unsaturated monocarboxylic acids, benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, gallic acid, melicic acid, Aromatic carboxylic acids such as cinnamate, oxalic acid, malonic acid, tartaric acid, succinic acid, itaconic acid, glutaric acid, adipic acid, α-ketoglutaric acid, malic acid, oxaloacetic acid, fumaric acid, maleic acid and other dicarboxylic acids, Tricarbohydrates such as citric acid, isocitric acid, oxalosuccinic acid and aconitic acid Acid, ethylene tetracarboxylic acid, tetracarboxylic acids such as Mesobutan-1,2,3,4-tetracarboxylic acid. In addition, among the above carboxylic acid compounds, particularly by using one or more carboxylic acid compounds selected from oxalic acid, malonic acid, and succinic acid as a ligand, an ITO fine particle intermediate having particularly high dispersibility can be obtained. it can. This is because oxalic acid, malonic acid, and succinic acid all have a structure that allows easy coordination to ITO, and is a compound that exhibits high solubility in general-purpose solvents such as water.

ITO微粒子中間体を製造する配位子交換反応においては、溶媒を用いることが好ましく、使用する溶媒としては、配位子とするカルボン酸化合物を溶解するものであれば特に制限はなく、例えば、水、メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノール、ヘキサノール、ヘプタノール、オクタノール、デカノール、シクロヘキサノール、及びテルピネオール等のアルコール類、エチレングリコール、及びプロピレングリコール等のグリコール類、アセトン、メチルエチルケトン、及びジエチルケトン等のケトン類、酢酸エチル、酢酸ブチル、及び酢酸ベンジル等のエステル類、メトキシエタノール、及びエトキシエタノール等のエーテルアルコール類、ジオキサン、及びテトラヒドロフラン等のエーテル類、N,N−ジメチルホルムアミド、エタノールアミン、ジエタノールアミン、トリエタノールアミン等の酸アミド、アミン類、ベンゼン、トルエン、キシレン、トリメチルベンゼン、及びドデシルベンゼン等の芳香族炭化水素類、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、オクタデカン、ノナデカン、エイコサン、及びトリメチルペンタン等の長鎖アルカン、シクロヘキサン、シクロヘプタン、および、シクロオクタン等の環状アルカン等の常温で液体の溶媒を適宜選択して使用すればよい。   In the ligand exchange reaction for producing the ITO fine particle intermediate, it is preferable to use a solvent, and the solvent to be used is not particularly limited as long as it dissolves a carboxylic acid compound as a ligand. Water, methanol, ethanol, propanol, isopropyl alcohol, butanol, hexanol, heptanol, octanol, decanol, cyclohexanol, alcohols such as terpineol, glycols such as ethylene glycol and propylene glycol, acetone, methyl ethyl ketone, and diethyl ketone Ketones, esters such as ethyl acetate, butyl acetate and benzyl acetate, ether alcohols such as methoxyethanol and ethoxyethanol, ethers such as dioxane and tetrahydrofuran, N Acid amides such as N-dimethylformamide, ethanolamine, diethanolamine, triethanolamine, amines, aromatic hydrocarbons such as benzene, toluene, xylene, trimethylbenzene, and dodecylbenzene, hexane, heptane, octane, nonane, decane A liquid solvent at room temperature such as a long-chain alkane such as undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, octadecane, nonadecane, eicosane, and trimethylpentane, and a cyclic alkane such as cyclohexane, cycloheptane, and cyclooctane. Select and use.

カルボン酸化合物の量は、速やかに配位子交換反応を進行させるため、ITO微粒子前駆体に対し、大過剰のカルボン酸化合物を用いることが好ましい。ここでいう大過剰とは、ITO微粒子前駆体中の、インジウムとスズの合計モル数に対し、3倍以上のモル数のカルボン酸化合物を使用することをいう。   The amount of the carboxylic acid compound is preferably such that a large excess of the carboxylic acid compound is used with respect to the ITO fine particle precursor in order to rapidly advance the ligand exchange reaction. The term “large excess” as used herein refers to the use of a carboxylic acid compound having a mole number three times or more of the total mole number of indium and tin in the ITO fine particle precursor.

ITO微粒子中間体を得る際の温度は、使用する溶媒の特性によって設定することができ、より配位子交換反応を迅速に進行させるために、60℃以上、更には70℃以上が好ましい。また反応時間については、反応温度に応じて適宜設定することができ、5時間以上が好ましく、交換反応の進行具合を確認しながら決定することできる。反応の進行具合の確認方法としては、例えば反応液を遠心分離してITO微粒子を単離し、このITO微粒子の1H NMRスペクトルもしくは13C NMRスペクトルから、交換前の配位子であるアルコール類もしくはアミン類と、交換後の配位子であるカルボン酸化合物との比率を算出することにより、ITO微粒子前駆体からITO微粒子中間体への交換比率を算出することが可能である。この際の、交換後の配位子であるカルボン酸化合物の割合が、交換前の配位子であるアルコール類もしくはアミン類の8倍以上となったとことで、配位子交換反応が進行したものと判断した。   The temperature at which the ITO fine particle intermediate is obtained can be set according to the characteristics of the solvent used, and is preferably 60 ° C. or higher, and more preferably 70 ° C. or higher in order to allow the ligand exchange reaction to proceed more rapidly. The reaction time can be appropriately set according to the reaction temperature, preferably 5 hours or longer, and can be determined while confirming the progress of the exchange reaction. As a method for confirming the progress of the reaction, for example, the reaction liquid is centrifuged to isolate the ITO fine particles, and from the 1H NMR spectrum or 13C NMR spectrum of the ITO fine particles, alcohols or amines which are ligands before exchange And the ratio of the carboxylic acid compound, which is the ligand after exchange, to the exchange ratio from the ITO fine particle precursor to the ITO fine particle intermediate can be calculated. In this case, the ratio of the carboxylic acid compound that is the ligand after the exchange is 8 times or more that of the alcohol or amine that is the ligand before the exchange, and thus the ligand exchange reaction has proceeded. Judged to be.

なお、反応の際の雰囲気は無酸素条件下であることが好ましく、窒素気流中であることが特に好ましい。   In addition, it is preferable that the atmosphere at the time of reaction is oxygen-free conditions, and it is especially preferable that it is in nitrogen stream.

そして、得られたITO微粒子中間体を精製、例えば遠沈精製することにより、より不純物濃度の低い、ITO微粒子中間体を得ることができる。この際の遠沈精製とは、遠心分離装置を用いて、得られた反応液又は分散液をITO微粒子と上澄み液に分離し、上澄み液を除去後、沈降したITO微粒子沈殿物に分散溶媒を添加して再分散させ、更に必要に応じてITO微粒子中間体が沈降する沈殿溶媒を添加し、遠心分離を繰り返すことで、ITO微粒子中間体の洗浄を行う方法である。   And the ITO fine particle intermediate with a lower impurity concentration can be obtained by purifying the obtained ITO fine particle intermediate, for example, centrifuge purification. In this case, centrifugation is performed by separating the obtained reaction liquid or dispersion into ITO fine particles and a supernatant using a centrifuge, and after removing the supernatant, a dispersion solvent is added to the precipitated ITO fine particles. In this method, the ITO fine particle intermediate is washed by adding and redispersing, and if necessary, adding a precipitation solvent in which the ITO fine particle intermediate is precipitated, and repeating the centrifugation.

使用する分散溶媒については、ITO微粒子中間体が十分に分散、沈降する分散溶媒であれば、特に制限はなく、例えば、水;メタノール、エタノール、1−プロパノール、2−プロピルアルコール、ブタノール、ヘキサノール、ヘプタノール、オクタノール、デカノール、シクロヘキサノール、エキネン、及びテルピネオール等のアルコール類;酢酸エチル、酢酸ブチル、及び酢酸ベンジル等のエステル類;メトキシエタノール、及びエトキシエタノール等のエーテルアルコール類;N,N−ジメチルホルムアミド、エタノールアミン、ジエタノールアミン、トリエタノールアミン等の酸アミド、アミン類などが挙げられ、中でも分散性の高さと実用性から、水、メタノール、エタノール、2−プロパノール、N,N−ジメチルホルムアミドを使用することが好ましい。   The dispersion solvent to be used is not particularly limited as long as the ITO fine particle intermediate is sufficiently dispersed and settled. For example, water; methanol, ethanol, 1-propanol, 2-propyl alcohol, butanol, hexanol, Alcohols such as heptanol, octanol, decanol, cyclohexanol, echine, and terpineol; esters such as ethyl acetate, butyl acetate, and benzyl acetate; ether alcohols such as methoxyethanol and ethoxyethanol; N, N-dimethylformamide And acid amides such as ethanolamine, diethanolamine, and triethanolamine, and amines. Among them, water, methanol, ethanol, 2-propanol, N, N-dimethylformamide are highly dispersible and practical. It is preferable to use.

また、該沈殿溶媒としては、特に制限はなく、例えばトルエン、キシレン、メシチレン、ベンゼン、ジクロロベンゼン、ニトロベンゼンなどの芳香族炭化水素類;n−ヘプタン、n−ヘキサン、n−オクタン、シクロヘキサン、デカヒドロナフタレンなどの脂肪族炭化水素類;アセトン、メチルエチルケトン、ジエチルケトン、アセチルアセトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、N−メチルピロリドンなどのケトン類;ジエチルエーテル、テトラヒドロフラン、ジオキサン、メトキシエタノール、エトキシエタノールなどのエーテル類;ジクロロメタン、クロロホルム、1,2−ジクロロエタンなどの塩化脂肪族炭化水素類;酢酸エチル、酢酸ブチル、酢酸アミルなどの酢酸エステル類などが挙げられ、中でも沈降性の高さと実用性から、クロロホルム、ジクロロメタン、アセトン、メチルエチルケトンを使用することが好ましい。   The precipitation solvent is not particularly limited, and for example, aromatic hydrocarbons such as toluene, xylene, mesitylene, benzene, dichlorobenzene, nitrobenzene; n-heptane, n-hexane, n-octane, cyclohexane, decahydro Aliphatic hydrocarbons such as naphthalene; ketones such as acetone, methyl ethyl ketone, diethyl ketone, acetylacetone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, N-methylpyrrolidone; diethyl ether, tetrahydrofuran, dioxane, methoxyethanol, ethoxyethanol, etc. Ethers; chlorinated aliphatic hydrocarbons such as dichloromethane, chloroform, 1,2-dichloroethane; and acetates such as ethyl acetate, butyl acetate, and amyl acetate. From the height and practicality of sedimentary also, chloroform, dichloromethane, acetone, it is preferable to use methyl ethyl ketone.

また、遠心分離精製の際、ITO微粒子と上澄みの分離が可能な条件であれば、遠心分離装置の条件にも、特に制約はなく、例えば回転半径10.1cmのアングルロータを取り付けた遠心機(コクサン(株)製、(商品名)H−201F)を使用し、該分散液を10,000rpm、30分間の遠心分離することで、分離することが可能である。   In addition, there are no particular restrictions on the conditions of the centrifuge as long as the ITO fine particles and the supernatant can be separated at the time of centrifugal purification, for example, a centrifuge equipped with an angle rotor having a rotation radius of 10.1 cm ( Separation is possible by centrifuging the dispersion at 10,000 rpm for 30 minutes using (trade name) H-201F, manufactured by Kokusan Co., Ltd.

得られたITO微粒子中間体を配位子交換し、目的物である、大環状化合物配位ITO微粒子を製造することができる。より詳細には、ITO微粒子中間体と、目的物とする大環状π共役化合物とを、溶媒中にて、温度60℃以上、更に70℃以上で、時間10時間以上加熱攪拌することが好ましく、交換反応の進行具合を確認しながら決定することができる。   The obtained ITO fine particle intermediate can be subjected to ligand exchange to produce the objective macrocyclic compound coordinated ITO fine particles. More specifically, the ITO fine particle intermediate and the target macrocyclic π-conjugated compound are preferably heated and stirred in a solvent at a temperature of 60 ° C. or higher, more preferably 70 ° C. or higher for 10 hours or longer. It can be determined while confirming the progress of the exchange reaction.

反応の進行具合の確認方法としては、レーザーラマン分光法による確認する。反応液を遠心分離してITO微粒子を単離し、これを適当な分散溶媒に分散させた分散液に励起波長785nmのレーザー光を照射し、近赤外〜可視域の光の散乱を測定することで、大環状π共役化合物特有のピークを確認することができる。なお、中間体の配位子であるカルボン酸化合物は同領域に特有のピークを示さないため、ピークの有無によって、反応の進行を確認する。ピーク形状に変化が見られなくなった時点で、配位子交換反応が十分に進行したものと判断した。   As a method for confirming the progress of the reaction, confirmation is made by laser Raman spectroscopy. The reaction liquid is centrifuged to isolate ITO fine particles, and the dispersion liquid dispersed in an appropriate dispersion solvent is irradiated with laser light having an excitation wavelength of 785 nm, and light scattering in the near infrared to visible range is measured. Thus, a peak peculiar to the macrocyclic π-conjugated compound can be confirmed. In addition, since the carboxylic acid compound which is an intermediate ligand does not show a peculiar peak in the same region, the progress of the reaction is confirmed by the presence or absence of the peak. When no change was observed in the peak shape, it was judged that the ligand exchange reaction was sufficiently advanced.

速やかに配位子交換反応を進行させるために、ITO微粒子中間体に対し、大過剰の大環状π共役化合物を用いることが好ましい。ここでいう大過剰とはITO微粒子中間体中の、インジウムとスズの合計モル数に対し、50分の1倍以上のモル数の大環状π共役化合物を使用することをいう。   In order to rapidly advance the ligand exchange reaction, it is preferable to use a large excess of macrocyclic π-conjugated compound with respect to the ITO fine particle intermediate. The term “large excess” as used herein refers to the use of a macrocyclic π-conjugated compound having a mole number of 1/50 or more of the total mole number of indium and tin in the ITO fine particle intermediate.

大環状π共役化合物を配位子として有するITO微粒子を製造する配位子交換反応において使用する溶媒としては、配位子とする大環状π共役化合物を溶解するものであれば特に制限はなく、例えば、水、メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノール、ヘキサノール、ヘプタノール、オクタノール、デカノール、シクロヘキサノール、及びテルピネオール等のアルコール類、エチレングリコール、及びプロピレングリコール等のグリコール類、アセトン、メチルエチルケトン、及びジエチルケトン等のケトン類、酢酸エチル、酢酸ブチル、及び酢酸ベンジル等のエステル類、メトキシエタノール、及びエトキシエタノール等のエーテルアルコール類、ジオキサン、及びテトラヒドロフラン等のエーテル類、N,N−ジメチルホルムアミド、エタノールアミン、ジエタノールアミン、トリエタノールアミン等の酸アミド、アミン類、ベンゼン、トルエン、キシレン、トリメチルベンゼン、及びドデシルベンゼン等の芳香族炭化水素類、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、オクタデカン、ノナデカン、エイコサン、及びトリメチルペンタン等の長鎖アルカン、シクロヘキサン、シクロヘプタン、および、シクロオクタン等の環状アルカン等の常温で液体の溶媒を適宜選択して使用すればよい。   The solvent used in the ligand exchange reaction for producing ITO fine particles having a macrocyclic π-conjugated compound as a ligand is not particularly limited as long as it dissolves the macrocyclic π-conjugated compound as a ligand, For example, alcohols such as water, methanol, ethanol, propanol, isopropyl alcohol, butanol, hexanol, heptanol, octanol, decanol, cyclohexanol, and terpineol, glycols such as ethylene glycol and propylene glycol, acetone, methyl ethyl ketone, and diethyl Ketones such as ketones, esters such as ethyl acetate, butyl acetate and benzyl acetate, ether alcohols such as methoxyethanol and ethoxyethanol, ethers such as dioxane and tetrahydrofuran, N , N-dimethylformamide, acid amides such as ethanolamine, diethanolamine, triethanolamine, amines, aromatic hydrocarbons such as benzene, toluene, xylene, trimethylbenzene, and dodecylbenzene, hexane, heptane, octane, nonane, Liquid solvents at room temperature such as long-chain alkanes such as decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, octadecane, nonadecane, eicosane, and trimethylpentane, and cyclic alkanes such as cyclohexane, cycloheptane, and cyclooctane. What is necessary is just to select and use suitably.

配位子交換によって得られた、目的物である大環状化合物配位ITO微粒子は、配位子交換前のITO微粒子中間体から、配位子部分のみが交換されたものであり、微粒子自身の形状はほとんど変化しない。ITO微粒子の外観については、TEM像を観察することで確認することができ、配位子交換後の大環状化合物配位ITO微粒子の平均粒子径は、配位子交換前のITO微粒子中間体と比較して、±10%以内である。   The target macrocyclic compound coordination ITO fine particles obtained by ligand exchange are obtained by exchanging only the ligand part from the ITO fine particle intermediate before ligand exchange. The shape hardly changes. The appearance of the ITO fine particles can be confirmed by observing a TEM image. The average particle diameter of the macrocyclic compound coordinated ITO fine particles after ligand exchange is the same as that of the ITO fine particle intermediate before ligand exchange. In comparison, it is within ± 10%.

そして、得られた大環状化合物配位ITO微粒子を精製、例えば遠沈精製することにより、より不純物濃度の低い、ITO微粒子を得ることができる。この際の遠沈精製とは、遠心分離装置を用いて、得られた反応液又は分散液を微粒子と上澄み液に分離し、上澄み液を除去後、沈降したITO微粒子沈殿物に分散溶媒を添加して再分散させ、更に必要に応じてITO微粒子が沈降する沈殿溶媒を添加し、遠心分離を繰り返すことで、ITO微粒子の洗浄を行う方法である。   Then, by purifying the obtained macrocyclic compound coordinated ITO fine particles, for example, by centrifugation, ITO fine particles having a lower impurity concentration can be obtained. In this case, centrifugation is performed by separating the obtained reaction solution or dispersion into fine particles and supernatant using a centrifuge, and after removing the supernatant, adding a dispersion solvent to the precipitated ITO fine particle precipitate In this method, the ITO fine particles are washed by repeating re-dispersion and, if necessary, adding a precipitation solvent in which the ITO fine particles settle, and repeating the centrifugal separation.

使用する分散溶媒については、大環状化合物配位ITO微粒子が十分に分散、沈降する分散溶媒であれば、特に制限はなく、く、例えば、水;メタノール、エタノール、1−プロパノール、2−プロピルアルコール、ブタノール、ヘキサノール、ヘプタノール、オクタノール、デカノール、シクロヘキサノール、エキネン、及びテルピネオール等のアルコール類;酢酸エチル、酢酸ブチル、及び酢酸ベンジル等のエステル類;メトキシエタノール、及びエトキシエタノール等のエーテルアルコール類;N,N−ジメチルホルムアミド、エタノールアミン、ジエタノールアミン、トリエタノールアミン等の酸アミド、アミン類などが挙げられ、中でも分散性の高さと実用性から、水、メタノール、エタノール、2−プロパノール、N,N−ジメチルホルムアミドを使用することが好ましい。   The dispersion solvent to be used is not particularly limited as long as the macrocyclic compound coordinated ITO fine particles are sufficiently dispersed and settled. For example, water; methanol, ethanol, 1-propanol, 2-propyl alcohol , Butanol, hexanol, heptanol, octanol, decanol, cyclohexanol, echene, and terpineol; alcohols such as ethyl acetate, butyl acetate, and benzyl acetate; ether alcohols such as methoxyethanol and ethoxyethanol; N , N-dimethylformamide, acid amides such as ethanolamine, diethanolamine and triethanolamine, amines, etc. Among them, water, methanol, ethanol, 2-propanol, N, N- Jime It is preferred to use Le formamide.

また、該沈殿溶媒としては、特に制限はなく、例えばトルエン、キシレン、メシチレン、ベンゼン、ジクロロベンゼン、ニトロベンゼンなどの芳香族炭化水素類;n−ヘプタン、n−ヘキサン、n−オクタン、シクロヘキサン、デカヒドロナフタレンなどの脂肪族炭化水素類;アセトン、メチルエチルケトン、ジエチルケトン、アセチルアセトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、N−メチルピロリドンなどのケトン類;ジエチルエーテル、テトラヒドロフラン、ジオキサン、メトキシエタノール、エトキシエタノールなどのエーテル類;ジクロロメタン、クロロホルム、1,2−ジクロロエタンなどの塩化脂肪族炭化水素類;酢酸エチル、酢酸ブチル、酢酸アミルなどの酢酸エステル類などが挙げられ、中でも沈降性の高さと実用性から、クロロホルム、ジクロロメタン、アセトン、メチルエチルケトンを使用することが好ましい。   The precipitation solvent is not particularly limited, and for example, aromatic hydrocarbons such as toluene, xylene, mesitylene, benzene, dichlorobenzene, nitrobenzene; n-heptane, n-hexane, n-octane, cyclohexane, decahydro Aliphatic hydrocarbons such as naphthalene; ketones such as acetone, methyl ethyl ketone, diethyl ketone, acetylacetone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, N-methylpyrrolidone; diethyl ether, tetrahydrofuran, dioxane, methoxyethanol, ethoxyethanol, etc. Ethers; chlorinated aliphatic hydrocarbons such as dichloromethane, chloroform, 1,2-dichloroethane; and acetates such as ethyl acetate, butyl acetate, and amyl acetate. From the height and practicality of sedimentary also, chloroform, dichloromethane, acetone, it is preferable to use methyl ethyl ketone.

また、遠心分離精製の際、ITO微粒子と上澄みの分離が可能な条件であれば、遠心分離装置の条件にも、特に制約はない。例えば回転半径10.1cmのアングルロータを取り付けた遠心機(コクサン(株)製、(商品名)H−201F)を使用し、該分散液を10,000rpm、30分間の遠心分離することで、分離することが可能である。   In addition, there are no particular restrictions on the conditions of the centrifuge as long as the ITO fine particles and the supernatant can be separated during centrifugal purification. For example, by using a centrifuge (manufactured by Kokusan Co., Ltd., (trade name) H-201F) equipped with an angle rotor with a rotation radius of 10.1 cm, the dispersion is centrifuged at 10,000 rpm for 30 minutes. It is possible to separate.

そして、該大環状化合物配位子ITO微粒子に、分散溶媒を添加することで、本発明の透明導電膜用塗工液を得ることができる。   And the coating liquid for transparent conductive films of this invention can be obtained by adding a dispersion | distribution solvent to this macrocyclic compound ligand ITO microparticles | fine-particles.

本発明の透明導電膜用塗工液は、大環状化合物配位ITO微粒子を0.1〜50重量%含有する塗工液であり、特に該大環状化合物配位ITO微粒子の分散安定性に優れ、透明導電膜の製膜性にも優れるものとなることから、大環状化合物配位ITO微粒子0.1〜30重量%、さらには0.1〜20重量%を含有することが好ましい。ここで、大環状化合物配位ITO微粒子が0.1重量%未満である場合、塗工膜中の同微粒子間の距離が遠くなることから、十分な導電性を有する導電膜を得ることが困難となる。一方、大環状化合物配位ITO微粒子が50重量%を超える場合、塗工液中での同ITO微粒子が不安定となり、分散安定性に劣るものとなる。   The coating liquid for transparent conductive film of the present invention is a coating liquid containing 0.1 to 50% by weight of macrocyclic compound coordinated ITO fine particles, and is particularly excellent in dispersion stability of the macrocyclic compound coordinated ITO fine particles. Further, since the film forming property of the transparent conductive film is also excellent, it is preferable to contain 0.1 to 30% by weight of the macrocyclic compound coordinated ITO fine particles, and further 0.1 to 20% by weight. Here, when the macrocyclic compound coordinated ITO fine particles are less than 0.1% by weight, it is difficult to obtain a conductive film having sufficient conductivity because the distance between the fine particles in the coating film is increased. It becomes. On the other hand, when the amount of macrocyclic compound coordinated ITO fine particles exceeds 50% by weight, the same ITO fine particles in the coating solution become unstable, resulting in poor dispersion stability.

本発明の透明導電膜用塗工液に使用する分散溶媒としては、該大環状化合物配位ITO微粒子が分散可能なものであれば特に制限はなく、例えば、水、メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノール、ヘキサノール、ヘプタノール、オクタノール、デカノール、シクロヘキサノール、及びテルピネオール等のアルコール類、エチレングリコール、及びプロピレングリコール等のグリコール類、アセトン、メチルエチルケトン、及びジエチルケトン等のケトン類、酢酸エチル、酢酸ブチル、及び酢酸ベンジル等のエステル類、メトキシエタノール、及びエトキシエタノール等のエーテルアルコール類、ジオキサン、及びテトラヒドロフラン等のエーテル類、N,N−ジメチルホルムアミド、エタノールアミン、ジエタノールアミン、トリエタノールアミン等の酸アミド、アミン類、ベンゼン、トルエン、キシレン、トリメチルベンゼン、及びドデシルベンゼン等の芳香族炭化水素類、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、オクタデカン、ノナデカン、エイコサン、及びトリメチルペンタン等の長鎖アルカン、シクロヘキサン、シクロヘプタン、および、シクロオクタン等の環状アルカン等の常温で液体の溶媒を適宜選択して使用すればよい。   The dispersion solvent used in the coating liquid for transparent conductive film of the present invention is not particularly limited as long as the macrocyclic compound coordination ITO fine particles can be dispersed. For example, water, methanol, ethanol, propanol, isopropyl Alcohols such as alcohol, butanol, hexanol, heptanol, octanol, decanol, cyclohexanol and terpineol, glycols such as ethylene glycol and propylene glycol, ketones such as acetone, methyl ethyl ketone and diethyl ketone, ethyl acetate and butyl acetate And esters such as benzyl acetate, ether alcohols such as methoxyethanol and ethoxyethanol, ethers such as dioxane and tetrahydrofuran, N, N-dimethylformamide, ethanolamine, Acid amides such as ethanolamine and triethanolamine, amines, aromatic hydrocarbons such as benzene, toluene, xylene, trimethylbenzene, and dodecylbenzene, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, Solvents that are liquid at room temperature such as long-chain alkanes such as tetradecane, pentadecane, hexadecane, octadecane, nonadecane, eicosane, and trimethylpentane, and cyclic alkanes such as cyclohexane, cycloheptane, and cyclooctane may be appropriately selected and used. .

本発明の透明導電膜用塗工液は、大環状π共役化合物を配位子として有するITO微粒子が優れた分散性を発現するため、透明性が高く、該分散液の溶液ヘイズは10%以下が好ましく、さらに好ましくは8%以下、特に好ましくは6%以下である。この際の溶液ヘイズは、日本電色工業社製ヘイズメーター(商品名NDH−5000)により、厚み10mmの液体用セルを用いて、JIS K 7136を準拠し測定する。   The coating liquid for transparent conductive film of the present invention is highly transparent because ITO fine particles having a macrocyclic π-conjugated compound as a ligand exhibit excellent dispersibility, and the solution haze of the dispersion is 10% or less. Is preferable, more preferably 8% or less, and particularly preferably 6% or less. The solution haze at this time is measured by a Nippon Denshoku Industries Co., Ltd. haze meter (trade name NDH-5000) using a liquid cell having a thickness of 10 mm in accordance with JIS K7136.

なお、本発明の透明導電膜用塗工液は、高分子分散剤(バインダー樹脂);その他分散助剤、増粘剤、界面活性剤、消泡剤、紫外線吸収剤、乳化剤等のドープ成分として、任意の元素の単体・化合物等を、該塗工液の透明性及び得られる透明導電膜の特性を著しく阻害しない範囲で、適量を含有していてもよい。   In addition, the coating liquid for transparent conductive films of the present invention is a polymer dispersant (binder resin); other dope components such as dispersion aids, thickeners, surfactants, antifoaming agents, ultraviolet absorbers, and emulsifiers. Any element or compound of any element may be contained in an appropriate amount within a range that does not significantly impair the transparency of the coating liquid and the properties of the transparent conductive film obtained.

上記ドープ成分の中でも、ITO微粒子同士を結合して、透明導電膜の導電性と強度を高めると共に、基材と透明導電膜の密着性を高めるものが、特に効果的である。このような効果を有するドープ成分としては、有機及び/又は無機成分を用いることが好ましく、上記役割を満たすように、透明導電膜用塗工液を適用する分散媒や基材、塗膜形成条件等を考慮して、適宜選定することができる。   Among the above-mentioned dope components, those that bond ITO fine particles to increase the conductivity and strength of the transparent conductive film and increase the adhesion between the substrate and the transparent conductive film are particularly effective. As the dope component having such an effect, it is preferable to use an organic and / or inorganic component, and to satisfy the above role, a dispersion medium or a substrate to which the coating liquid for transparent conductive film is applied, coating film formation conditions It can be selected as appropriate in consideration of the above.

有機成分としては、高分子分散剤(バインダー樹脂)を用いることが好ましく、高分子分散剤(バインダー樹脂)としては、例えば熱可塑性樹脂、熱硬化性樹脂、常温硬化性樹脂、紫外線硬化性樹脂、電子線硬化性樹脂等から適宜選択することができる。   As the organic component, it is preferable to use a polymer dispersant (binder resin), and examples of the polymer dispersant (binder resin) include thermoplastic resins, thermosetting resins, room temperature curable resins, ultraviolet curable resins, It can select suitably from electron beam curable resin etc.

熱可塑性樹脂は、その種類、構造によって種々のガラス転移点(Tg)をもつため、基材の耐熱性に合わせて適宜選択することが好ましい。熱可塑性樹脂としては、一般に知られた熱可塑性樹脂を用いることができ、硬化のための加熱処理温度から室温まで冷却する過程で、バインダー樹脂の体積収縮をそのまま導電性酸化物微粒子同士の接合力に転化できるため、透明導電膜の導電性を向上させる効果を有することから、高いガラス転移点(Tg)を有するものが好ましく、例えばメタクリル樹脂等のアクリル樹脂、ポリエステル樹脂等が挙げられる。   Since the thermoplastic resin has various glass transition points (Tg) depending on the type and structure thereof, it is preferable to appropriately select the thermoplastic resin according to the heat resistance of the substrate. As the thermoplastic resin, a generally known thermoplastic resin can be used, and in the process of cooling from the heat treatment temperature for curing to room temperature, the volume shrinkage of the binder resin is directly applied to the bonding force between the conductive oxide fine particles. Since it has the effect which improves the electroconductivity of a transparent conductive film, what has a high glass transition point (Tg) is preferable, for example, acrylic resins, such as a methacryl resin, a polyester resin, etc. are mentioned.

熱硬化性樹脂としては、例えばエポキシ樹脂、フッ素樹脂等が挙げられ、常温硬化性樹脂としては、例えば2液性のエポキシ樹脂や各種ウレタン樹脂等が挙げられ、紫外線硬化性樹脂としては、例えば各種オリゴマー、モノマー、光開始剤を含有する樹脂等が挙げられ、電子線硬化性樹脂としては、例えば各種オリゴマー、モノマーを含有する樹脂等を挙げることができる。   Examples of the thermosetting resin include an epoxy resin and a fluorine resin. Examples of the room temperature curable resin include a two-component epoxy resin and various urethane resins. Examples of the ultraviolet curable resin include various types. Examples of the resin include oligomers, monomers, and photoinitiators. Examples of the electron beam curable resin include resins containing various oligomers and monomers.

透明導電膜に耐溶剤性を付与する目的に置いては、熱硬化性樹脂、常温硬化性樹脂、紫外線硬化性樹脂、または電子線硬化性樹脂等の架橋可能な樹脂が好ましい。   For the purpose of imparting solvent resistance to the transparent conductive film, a crosslinkable resin such as a thermosetting resin, a room temperature curable resin, an ultraviolet curable resin, or an electron beam curable resin is preferable.

無機成分としては、例えばシリカゾル、アルミナゾル、ジルコニアゾル、チタニアゾル等を主成分とする添加剤を挙げることができる。例えば、上記シリカゾルとしては、テトラアルキルシリケートに水や酸触媒を加えて加水分解し、脱水縮重合を進ませた重合物、あるいはテトラアルキルシリケートを既に4〜5量体まで重合を進ませた市販のアルキルシリケート溶液を、更に加水分解と脱水縮重合を進行させた重合物等を利用することができる。   Examples of the inorganic component include an additive mainly composed of silica sol, alumina sol, zirconia sol, titania sol and the like. For example, as the silica sol, tetraalkyl silicate is hydrolyzed by adding water or an acid catalyst, dehydration condensation polymerization is progressed, or tetraalkyl silicate has already been polymerized into a tetramer to a pentamer. A polymer obtained by further hydrolyzing and dehydrating polycondensation of the alkyl silicate solution can be used.

なお、ドープ成分として、有機−無機のハイブリッドバインダーを用いることもできる。例えば、前述のシリカゾルを一部有機官能基で修飾したバインダーや、シリコンカップリング剤等の各種カップリング剤を主成分とするバインダーが挙げられる。上記無機バインダーや有機−無機のハイブリッドバインダーは、優れた耐溶剤性を有しており、基材との密着力や、透明導電膜の柔軟性等を考慮し、適宜選定する必要がある。   An organic-inorganic hybrid binder can also be used as the dope component. For example, a binder obtained by partially modifying the above-described silica sol with an organic functional group and a binder mainly composed of various coupling agents such as a silicon coupling agent can be given. The inorganic binder and the organic-inorganic hybrid binder have excellent solvent resistance, and need to be appropriately selected in consideration of adhesion to the substrate, flexibility of the transparent conductive film, and the like.

本発明の透明導電膜用塗工液中の、ITO微粒子の配位子である大環状π共役化合物は、π電子が共役することで大きな平面を有する化合物となる。このπ共役により、平面同士がπ−π相互作用によって積層しやすいだけでなく、ITO微粒子に平面配位することで、π共役軌道がITO微粒子の金属軌道と混成し、新たな軌道を形成することができる。すなわち、ITO微粒子の表面に平面配位することで、大環状π共役化合物のπ軌道とITO微粒子の金属軌道との間に軌道の相互作用が発生し、ITO微粒子、特に配位子層に特異的な電気特性を付与することが可能となる。この効果により、本ITO微粒子を用いることにより、配位子である大環状π共役化合物にも導電性が生じるため、配位子を加熱除去することなく、高い導電性を発現する透明導電膜を形成することが可能となる。すなわち、本発明のITO微粒子を用いることにより、透明導電膜とする際に、製膜後に200℃以上の高温で熱処理して、配位子を除去する工程は不要である。   The macrocyclic π-conjugated compound, which is a ligand of the ITO fine particles, in the coating liquid for transparent conductive film of the present invention becomes a compound having a large plane when π electrons are conjugated. By this π conjugation, not only the planes are easily stacked by π-π interaction, but also by coordinating with ITO fine particles, the π conjugate orbitals hybridize with the metal orbits of the ITO fine particles to form new orbits. be able to. In other words, orbital interaction occurs between the pi orbit of the macrocyclic π conjugated compound and the metal orbit of the ITO fine particle by planar coordination on the surface of the ITO fine particle, and is specific to the ITO fine particle, particularly the ligand layer. It becomes possible to give an electrical characteristic. By using this ITO fine particle due to this effect, conductivity also occurs in the macrocyclic π-conjugated compound that is a ligand. Therefore, a transparent conductive film that exhibits high conductivity without heating and removing the ligand can be obtained. It becomes possible to form. That is, when the ITO fine particles of the present invention are used to form a transparent conductive film, it is not necessary to perform a heat treatment at a high temperature of 200 ° C. or higher after film formation to remove the ligand.

本発明の透明導電膜用塗工液は、基材上に塗工し、200℃以下で乾燥することにより、透明性、導電性に優れる透明導電膜を製造することができる。その際の塗工方法としては、例えばスピンコート法、ドロップコート法、ロールコート法、スプレー法、バーコート法、ディップ法、メニスカスコート法、ドクターブレード法、スクリーン印刷法、Tダイ法、リップコーター法、ロールコート法等の公知の方法がいずれも使用可能である。   The coating liquid for transparent conductive film of the present invention can be coated on a substrate and dried at 200 ° C. or lower to produce a transparent conductive film excellent in transparency and conductivity. As the coating method at that time, for example, spin coating method, drop coating method, roll coating method, spray method, bar coating method, dipping method, meniscus coating method, doctor blade method, screen printing method, T-die method, lip coater Any known method such as a method or a roll coating method can be used.

使用する基材についても特に制限はなく、例えば、ガラス系などの無機基材、ポリエチレンテレフタレート、ポリイミド、ポリカーボネート、ポリエチレンナフタレート、ポリエーテルサルホンなどのポリマーフイルム基材等を使用することができる。これらの基材は、透明導電膜との密着性を優れたものとするために表面処理剤を用いて表面処理を行ってもよく、該表面処理剤としては、例えばシランカップリング剤、有機金属等があげられる。該シランカップリング剤としては、例えばビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、トリス(2−メトキシエトキシ)ビニルシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−(メタクリロキシプロピル)トリメトキシシラン、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン等があげられ、有機金属としては、例えば有機チタン、有機アルミニウム、有機ジルコニウム等があげられる。   There is no restriction | limiting in particular also about the base material to be used, For example, polymer film base materials, such as inorganic base materials, such as glass type, a polyethylene terephthalate, a polyimide, a polycarbonate, a polyethylene naphthalate, a polyether sulfone, etc. can be used. These base materials may be subjected to a surface treatment using a surface treatment agent in order to have excellent adhesion to the transparent conductive film. Examples of the surface treatment agent include a silane coupling agent and an organic metal. Etc. Examples of the silane coupling agent include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, tris (2-methoxyethoxy) vinylsilane, γ-glycidoxypropyltrimethoxysilane, γ- (methacryloxypropyl) tri Examples include methoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, and the like. Examples thereof include organic titanium, organic aluminum, and organic zirconium.

塗工後の乾燥温度は、200℃以下が好ましく、塗工液中の微粒子が凝集し、透明導電膜の透明性が低下することを防ぐために、さらに40〜180℃が好ましく、特に60〜160℃が好ましい。なお、乾燥雰囲気は空気中、窒素雰囲気中、減圧下など、特に制限されない。   The drying temperature after coating is preferably 200 ° C. or lower, and further preferably 40 to 180 ° C., particularly 60 to 160, in order to prevent fine particles in the coating liquid from agglomerating and lowering the transparency of the transparent conductive film. ° C is preferred. The drying atmosphere is not particularly limited, such as in air, nitrogen atmosphere, or reduced pressure.

本発明の透明導電膜の厚みとしては、本発明の目的を損なわないかぎりにおいて任意であり、その中でも特に透明性と導電性のバランスに優れる透明導電膜となることから0.001〜5μmであることが好ましく、さらに0.01〜2μmであることが好ましく、特に0.05〜1μmであることが好ましい。   The thickness of the transparent conductive film of the present invention is arbitrary as long as the object of the present invention is not impaired. Among them, the thickness is 0.001 to 5 μm because it becomes a transparent conductive film particularly excellent in balance between transparency and conductivity. It is preferably 0.01 to 2 μm, more preferably 0.05 to 1 μm.

本発明の大環状π共役化合物を配位子として有するITO微粒子を含む導電膜用塗工液を用いることにより、該大環状π共役化合物がITO微粒子に対して平面方向で配位することで、大環状π共役化合物のπ軌道とITO微粒子の金属軌道との間に相互作用が発生するため、大環状π共役化合物に導電性が生じ、高い導電性が発現する透明導電膜を得ることが可能となる。得られた透明導電膜のシート抵抗としては、10,000Ω/□以下が好ましく、さらに5,000Ω/□以下であることが好ましく、特に1,000Ω/□以下であることが好ましい。   By using the coating liquid for a conductive film containing ITO fine particles having the macrocyclic π-conjugated compound of the present invention as a ligand, the macrocyclic π-conjugated compound is coordinated in a plane direction with respect to the ITO fine particles, Since interaction occurs between the π orbit of the macrocyclic π conjugated compound and the metal orbit of the ITO fine particles, the macrocyclic π conjugated compound becomes conductive, and a transparent conductive film that exhibits high conductivity can be obtained. It becomes. The sheet resistance of the obtained transparent conductive film is preferably 10,000 Ω / □ or less, more preferably 5,000 Ω / □ or less, and particularly preferably 1,000 Ω / □ or less.

本発明の透明導電膜は、基材に対して十分に高い密着性を有するものである。基材への密着性は、例えばJIS K 5600のクロスカット法によって評価可能であり、100個の碁盤目中、剥離個数は10個以下が好ましく、特に好ましくは5個以下である。また透明導電膜として十分な透明性を有することからJIS K 7361−1に準拠し測定した光線透過率が80%以上が好ましく、特に85%以上であることが好ましい。また、JIS K 7136に準拠し測定したヘイズが5%以下が好ましく、特に3%以下であることが好ましい。   The transparent conductive film of the present invention has sufficiently high adhesion to the substrate. The adhesion to the substrate can be evaluated by, for example, the cross cut method of JIS K 5600, and among 100 grids, the number of peels is preferably 10 or less, and particularly preferably 5 or less. Moreover, since it has sufficient transparency as a transparent conductive film, the light transmittance measured according to JIS K 7361-1 is preferably 80% or more, and particularly preferably 85% or more. Further, the haze measured in accordance with JIS K 7136 is preferably 5% or less, particularly preferably 3% or less.

本発明の透明導電膜用塗工液は、特定のITO微粒子を含有するものであり、該ITO微粒子の配位子に平面方向で配位可能な大環状π共役化合物を使用することで、該ITO微粒子に特異な電気特性を付与し、塗工後に高温で加熱して有機物を除去することなく、優れた透明性と導電性を発現する透明導電膜が得られるものである。すなわち、プラスチックフイルム等種々の基材への応用が可能となることから、産業に大きく貢献するものと考えられる。   The coating liquid for transparent conductive film of the present invention contains specific ITO fine particles, and by using a macrocyclic π-conjugated compound capable of coordinating in the plane direction with the ligand of the ITO fine particles, It is possible to obtain a transparent conductive film which imparts specific electrical characteristics to the ITO fine particles and exhibits excellent transparency and conductivity without heating and removing organic matter at a high temperature after coating. That is, since it can be applied to various base materials such as plastic film, it is considered to contribute greatly to the industry.

平面方向での配位に係る説明図。図中(A)は大環状π共役化合物が、ITO微粒子表面に対し平面方向で配位したもの。図中(B)及び(C)はそうでないものを表す。Explanatory drawing which concerns on the coordination in a plane direction. In the figure, (A) shows a macrocyclic π-conjugated compound coordinated in a planar direction with respect to the ITO fine particle surface. In the figure, (B) and (C) represent those not.

以下に本発明を実施例により、詳細に説明するが、本発明はこれら実施例により何ら制限されるものではない。   EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.

<ITO微粒子の精製>
得られたITO微粒子分散液は、遠心機(コクサン(株)製、(商品名)H−201F)を使用し、遠心分離を繰り返すことにより精製を行った。
<Purification of ITO fine particles>
The obtained ITO fine particle dispersion was purified by repeating centrifugation using a centrifuge (manufactured by Kokusan Co., Ltd., (trade name) H-201F).

<ITO微粒子の平均粒子径の算出>
ITO微粒子を分散媒に分散させた、濃度0.01%以下の分散液を用意し、これをコロジオン膜展張したカーボンコーティング銅メッシュに落として分散溶媒を揮発させ、このサンプルを透過型顕微鏡で観察した。また得られた像から、ITO微粒子の粒子径を読み取り、300個以上のITO微粒子について平均した値を平均粒子径とした。
<Calculation of average particle diameter of ITO fine particles>
Prepare a dispersion with a concentration of 0.01% or less in which ITO fine particles are dispersed in a dispersion medium, drop it on a carbon-coated copper mesh with a collodion film spread, volatilize the dispersion solvent, and observe this sample with a transmission microscope did. Further, the particle diameter of the ITO fine particles was read from the obtained image, and the average value of 300 or more ITO fine particles was defined as the average particle diameter.

<ITO微粒子前駆体からITO微粒子中間体への配位子交換反応進行確認>
反応液を3mL抜出し、遠心分離を実施してITO微粒子を単離した。沈降性が悪い場合は、反応液と等量のジクロロメタン等のハロゲン系溶媒を添加し、遠心分離を実施した。得られたITO微粒子を重水に分散させ、核磁気共鳴装置(日本電子社製、(商品名)JMN−EC400)を用い、1H NMRもしくは13C NMRを測定した。得られたスペクトルより、交換前の配位子と、交換後の配位子との比率を算出し、比率が8倍以上をもって反応が進行したものと判断した。
<Progression confirmation of ligand exchange reaction from ITO fine particle precursor to ITO fine particle intermediate>
3 mL of the reaction solution was extracted and centrifuged to isolate ITO fine particles. When the sedimentation was poor, an equal amount of a halogen-based solvent such as dichloromethane was added to the reaction solution, and centrifugation was performed. The obtained ITO fine particles were dispersed in heavy water, and 1H NMR or 13C NMR was measured using a nuclear magnetic resonance apparatus (manufactured by JEOL Ltd., (trade name) JMN-EC400). From the obtained spectrum, the ratio of the ligand before exchange and the ligand after exchange was calculated, and it was judged that the reaction proceeded with a ratio of 8 times or more.

<ITO微粒子中間体から大環状化合物配位ITO微粒子への配位子交換反応進行確認>
反応液を1mL抜出し、遠心分離を実施してITO微粒子を単離した。沈降性が悪い場合は、反応液と等量のジクロロメタン等のハロゲン系溶媒を添加し、遠心分離を実施した。得られたITO微粒子を水、アルコール等の適当な溶媒に分散させ、得られた分散液のレーザーラマンスペクトルを測定した。大環状π共役化合物特有のピークが発現すること、及びピーク形状に変化が生じなったことで、配位子交換反応の進行を確認した。
<Progression confirmation of ligand exchange reaction from ITO fine particle intermediate to macrocyclic compound coordinated ITO fine particle>
1 mL of the reaction solution was extracted and centrifuged to isolate ITO fine particles. When the sedimentation was poor, an equal amount of a halogen-based solvent such as dichloromethane was added to the reaction solution, and centrifugation was performed. The obtained ITO fine particles were dispersed in an appropriate solvent such as water or alcohol, and the laser Raman spectrum of the obtained dispersion was measured. The progress of the ligand exchange reaction was confirmed by the appearance of a peak peculiar to the macrocyclic π-conjugated compound and the change in the peak shape.

<大環状π共役化合物の平面配位確認>
溶媒に、大環状化合物配位ITO微粒子を0.001重量%分散させた分散液を光路長10mmの溶液セルにとり、分光光度計((株)日立ハイテクノロジー製、(商品名)U−4100)を用いて、波長領域300〜800nmにおける吸収スペクトルを測定した。得られた吸収スペクトルのSoret帯のブロード化、及びQ帯の減少により、大環状π共役化合物の共役π軌道とITO微粒子の金属軌道が混成、すなわち大環状π共役化合物が微粒子に平面配位したことを確認した。
<Confirmation of planar coordination of macrocyclic π-conjugated compound>
A dispersion in which 0.001% by weight of macrocyclic compound coordinated ITO fine particles are dispersed in a solvent is placed in a solution cell having an optical path length of 10 mm, and a spectrophotometer (trade name: U-4100, manufactured by Hitachi High-Technology Corporation). Was used to measure the absorption spectrum in the wavelength region of 300 to 800 nm. By broadening the Soret band of the obtained absorption spectrum and decreasing the Q band, the conjugated π orbit of the macrocyclic π conjugated compound and the metal orbit of the ITO fine particle are mixed, that is, the macrocyclic π conjugated compound is planarly coordinated to the fine particle. It was confirmed.

<透明導電膜用塗工液の溶液ヘイズ>
得られた透明導電膜用塗工液を、厚さ10mmの溶液セルにとり、ヘイズメーター(日本電色工業(株)製、(商品名)NDH−5000)を用い、JIS K 7136に準拠して溶液ヘイズの測定を行った。
<Solution haze of coating liquid for transparent conductive film>
The obtained coating liquid for transparent conductive film is taken in a 10 mm thick solution cell, and a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., (trade name) NDH-5000) is used according to JIS K 7136. The solution haze was measured.

<透明導電膜の導電性の測定>
抵抗率計((商品名)Loresta−AP、三菱油化(株)製)を用い、4探針法にてシート抵抗の測定を行った。
<Measurement of conductivity of transparent conductive film>
Using a resistivity meter ((trade name) Loresta-AP, manufactured by Mitsubishi Yuka Co., Ltd.), sheet resistance was measured by a four-probe method.

<透明導電膜の光線透過率及びヘイズの測定>
ヘイズメーター((商品名)NDH−5000、日本電色工業(株)製)を用い、JIS K 7361−1に準拠して透明導電膜の光線透過率を、JIS K 7136に準拠してヘイズの測定を行った。
<Measurement of light transmittance and haze of transparent conductive film>
Using a haze meter ((trade name) NDH-5000, manufactured by Nippon Denshoku Industries Co., Ltd.), the light transmittance of the transparent conductive film according to JIS K 7361-1, and the haze value according to JIS K 7136. Measurements were made.

<透明導電膜の基材への密着性の評価>
塗料一般試験方法JIS K 5600に準拠してクロスカット試験を実施し、100個の碁盤目のうち剥離個数が10個以下のものを、密着性良好と判断した。
<Evaluation of adhesion of transparent conductive film to substrate>
A cross-cut test was carried out in accordance with the paint general test method JIS K 5600, and those having a peel number of 10 or less out of 100 grids were judged to have good adhesion.

<ITO微粒子前駆体の製造例1(例示化合物3−3の配位したITO微粒子)>
100mlフラスコ中に酢酸インジウム(III)292mg、2−エチルヘキサン酸スズ(II)64μl、ステアリルアミン2.7g、2−エチルヘキサン酸390μl、n−ジオクチルエーテル10mlを仕込み、真空中70℃で1時間加熱し、その後常圧に戻して窒素雰囲気中150℃で2時間加熱し、次いで窒素雰囲気中270℃で2時間加熱還流し、ステアリルアミンの配位したITO微粒子の粗分散液を得た。該粗分散液を、沈殿溶媒にエタノール、分散溶媒にヘキサンを用いて5回遠心分離精製を繰り返し、ステアリルアミンの配位したITO微粒子を得た。得られたITO微粒子の一部をヘキサンに分散させた希薄分散液を作成し、TEM観察したところ、ステアリルルアミンの配位したITO微粒子の平均粒子径は11.8nmであった。
<Production Example 1 of ITO Fine Particle Precursor (ITO Fine Particles Coordinated with Exemplary Compound 3-3)>
Into a 100 ml flask is charged 292 mg of indium (III) acetate, 64 μl of tin (II) 2-ethylhexanoate, 2.7 g of stearylamine, 390 μl of 2-ethylhexanoic acid, and 10 ml of n-dioctyl ether, and in vacuum at 70 ° C. for 1 hour. Then, the pressure was returned to normal pressure and heated at 150 ° C. in a nitrogen atmosphere for 2 hours, and then heated and refluxed in a nitrogen atmosphere at 270 ° C. for 2 hours to obtain a coarse dispersion of ITO fine particles coordinated with stearylamine. The crude dispersion was repeatedly purified by centrifugal separation 5 times using ethanol as a precipitation solvent and hexane as a dispersion solvent to obtain ITO fine particles coordinated with stearylamine. When a dilute dispersion in which a part of the obtained ITO fine particles were dispersed in hexane was prepared and observed by TEM, the average particle size of the ITO fine particles coordinated with stearyllamine was 11.8 nm.

次いで、得られたステアリルアミンの配位したITO微粒子(仕込みIn+Sn=1.2mmol)と、クエン酸1.0g、N,N−ジメチルホルムアミド40mlを100mlフラスコ中に仕込み、窒素雰囲気中100℃8時間加熱攪拌して、クエン酸を配位子として有するITO微粒子の粗分散液を得た。該粗分散液を、N,N−ジメチルホルムアミドを用いて3回遠心分離精製を繰り返し、クエン酸を配位子として有するITO微粒子の沈殿物を得た。得られたITO微粒子を重水に分散させて1H NMRを測定したところ、交換前の配位子であったステアリルアミンに比べ、交換後の配位子であるクエン酸が9.5倍含有されており、ステアリルアミンからクエン酸へ、配位子交換が進行していることが確認された。   Next, the obtained fine particles of ITO coordinated with stearylamine (charged In + Sn = 1.2 mmol), 1.0 g of citric acid and 40 ml of N, N-dimethylformamide were charged into a 100 ml flask, and 100 ° C. for 8 hours in a nitrogen atmosphere. By heating and stirring, a coarse dispersion of ITO fine particles having citric acid as a ligand was obtained. The crude dispersion was repeatedly purified by centrifugation using N, N-dimethylformamide three times to obtain a precipitate of ITO fine particles having citric acid as a ligand. The obtained ITO fine particles were dispersed in heavy water and 1H NMR was measured. As a result, 9.5 times as much citric acid as a ligand after exchange was contained compared to stearylamine as a ligand before exchange. It was confirmed that ligand exchange was proceeding from stearylamine to citric acid.

次いで、得られたクエン酸を配位子として有するITO微粒子と、例示化合物3−3の大環状π共役化合物67mg、N,N−ジメチルホルムアミド40mlを100mlフラスコ中に仕込み、窒素雰囲気中100℃70時間加熱攪拌して、例示化合物3−3の大環状π共役化合物を配位子として有するITO微粒子の粗分散液を得た。該粗分散液を、沈殿溶媒にジクロロメタン、分散溶媒にN,N−ジメチルホルムアミドを用いて3回遠心分離精製を繰り返し、例示化合物3−3配位ITO微粒子の沈殿物を得た。   Next, the obtained ITO fine particles having citric acid as a ligand, 67 mg of the macrocyclic π-conjugated compound of Exemplified Compound 3-3, and 40 ml of N, N-dimethylformamide were charged into a 100 ml flask, and 100 ° C. in a nitrogen atmosphere at 70 ° C. By stirring with heating for a time, a coarse dispersion of ITO fine particles having the macrocyclic π-conjugated compound of Exemplary Compound 3-3 as a ligand was obtained. The crude dispersion was repeatedly purified by centrifugal separation three times using dichloromethane as a precipitation solvent and N, N-dimethylformamide as a dispersion solvent to obtain a precipitate of exemplary compound 3-3 coordinated ITO fine particles.

次いで、得られたITO微粒子沈殿物を水に分散させ、TEM観察したところ、例示化合物3−3配位ITO微粒子の平均粒子径は11.7nmであり、反応前駆体であるステアリルアミン配位ITO微粒子の11.8nmからほとんど変化しておらず、配位子のみが交換されたものと考えられる。   Subsequently, when the obtained ITO fine particle precipitate was dispersed in water and observed by TEM, the average particle size of the exemplified compound 3-3 coordinated ITO fine particles was 11.7 nm, and stearylamine coordinated ITO as a reaction precursor. There is almost no change from 11.8 nm of the fine particles, and it is considered that only the ligand was exchanged.

また同分散液を用いてレーザーラマンスペクトルを測定したところ、例示化合物3−3と同等のピークが観察され、本ITO微粒子が例示化合物3−3を配位配位子として有するものであることが確認された。さらに同分散液の300〜800nmにおける吸収スペクトルを測定したところ、例示化合物3−3のスペクトルにおいて、400〜450nmに見られたSoret帯がブロード化し、かつ500〜600nmに見られたQ帯がほぼ確認されなくなったことから、該ITO微粒子が、大環状π共役化合物である例示化合物3−3が、ITO微粒子表面に平面配位したものであることが確認された。   Further, when a laser Raman spectrum was measured using the same dispersion, a peak equivalent to that of Exemplified Compound 3-3 was observed, and the ITO fine particles had Exemplified Compound 3-3 as a coordination ligand. confirmed. Further, when the absorption spectrum of the dispersion at 300 to 800 nm was measured, in the spectrum of Exemplified Compound 3-3, the Soret band seen at 400 to 450 nm was broadened, and the Q band seen at 500 to 600 nm was almost the same. Since it was not confirmed, it was confirmed that Exemplified Compound 3-3 in which the ITO fine particles are macrocyclic π-conjugated compounds were coordinated on the surface of the ITO fine particles.

<ITO微粒子前駆体の製造例2(例示化合物1−14の配位したITO微粒子)>
製造例1と同様の手法で、中間体であるクエン酸を配位子として有するITO微粒子の沈殿物を得た。
<Production Example 2 of ITO Fine Particle Precursor (ITO Fine Particle Coordinated with Exemplary Compound 1-14)>
In the same manner as in Production Example 1, a precipitate of ITO fine particles having citric acid as an intermediate as a ligand was obtained.

得られたクエン酸を配位子として有するITO微粒子と、例示化合物1−14の大環状π共役化合物43mg、N,N−ジメチルホルムアミド40mlを100mlフラスコ中に仕込み、窒素雰囲気中100℃50時間加熱攪拌して、例示化合物1−14の大環状π共役化合物を配位子として有するITO微粒子の粗分散液を得た。該粗分散液を、沈殿溶媒にジクロロメタン、分散溶媒にN,N−ジメチルホルムアミドを用いて3回遠心分離精製を繰り返し、例示化合物1−14配位ITO微粒子の沈殿物を得た。   The obtained ITO fine particles having citric acid as a ligand, 43 mg of the macrocyclic π-conjugated compound of Exemplified Compound 1-14, and 40 ml of N, N-dimethylformamide are charged into a 100 ml flask and heated at 100 ° C. for 50 hours in a nitrogen atmosphere. By stirring, a coarse dispersion of ITO fine particles having the macrocyclic π-conjugated compound of Exemplary Compound 1-14 as a ligand was obtained. The crude dispersion was repeatedly purified by centrifugal separation three times using dichloromethane as a precipitation solvent and N, N-dimethylformamide as a dispersion solvent to obtain a precipitate of exemplary compound 1-14 coordinated ITO fine particles.

次いで、得られたITO微粒子沈殿物を水に分散させ、TEM観察したところ、例示化合物1−14配位ITO微粒子の平均粒子径は11.7nmであり、反応前駆体であるステアリルアミン配位ITO微粒子の11.8nmからほとんど変化しておらず、配位子のみが交換されたものと考えられる。   Subsequently, when the obtained ITO fine particle precipitate was dispersed in water and observed by TEM, the average particle size of the exemplified compound 1-14 coordinated ITO fine particles was 11.7 nm, and stearylamine coordinated ITO as a reaction precursor. There is almost no change from 11.8 nm of the fine particles, and it is considered that only the ligand was exchanged.

また同分散液を用いてレーザーラマンスペクトルを測定したところ、例示化合物1−14と同等のピークが観察され、本ITO微粒子が例示化合物1−14を配位子として有するものであることが確認された。さらに同分散液の300〜800nmにおける吸収スペクトルを測定したところ、例示化合物1−14のスペクトルにおいて、400〜500nmに見られたSoret帯がブロード化し、かつ500〜600nmに見られたQ帯がほぼ確認されなくなったことから、該ITO微粒子が、大環状π共役化合物である例示化合物1−14が、ITO微粒子表面に平面配位したものであることが確認された。   Further, when a laser Raman spectrum was measured using the same dispersion, a peak equivalent to that of Exemplified Compound 1-14 was observed, and it was confirmed that the present ITO fine particles had Exemplified Compound 1-14 as a ligand. It was. Further, when the absorption spectrum of the dispersion at 300 to 800 nm was measured, in the spectrum of Exemplified Compound 1-14, the Soret band seen at 400 to 500 nm was broadened, and the Q band seen at 500 to 600 nm was almost the same. Since it was not confirmed, it was confirmed that Exemplified Compound 1-14, in which the ITO fine particles are macrocyclic π-conjugated compounds, was planarly coordinated on the surface of the ITO fine particles.

<ITO微粒子前駆体の製造例3(例示化合物2−3の配位したITO微粒子)>
製造例1と同様の手法で、中間体であるクエン酸を配位子として有するITO微粒子の沈殿物を得た。
<Production Example 3 of ITO Fine Particle Precursor (ITO Fine Particles Coordinated with Exemplary Compound 2-3)>
In the same manner as in Production Example 1, a precipitate of ITO fine particles having citric acid as an intermediate as a ligand was obtained.

得られたクエン酸を配位子として有するITO微粒子と、例示化合物2−3の大環状π共役化合物65mg、イソプロパノール40mlを100mlフラスコ中に仕込み、窒素雰囲気中80℃100時間加熱攪拌して、例示化合物2−3の大環状π共役化合物を配位子として有するITO微粒子の粗分散液を得た。該粗分散液を、沈殿溶媒にジクロロメタン、分散溶媒にイソプロパノールを用いて3回遠心分離精製を繰り返し、例示化合物2−3配位ITO微粒子の沈殿物を得た。   The obtained ITO fine particles having citric acid as a ligand, macrocyclic π-conjugated compound 65 mg of Exemplified Compound 2-3, and 40 ml of isopropanol were charged into a 100 ml flask, heated and stirred in a nitrogen atmosphere at 80 ° C. for 100 hours, and exemplified. A coarse dispersion of ITO fine particles having a macrocyclic π-conjugated compound of Compound 2-3 as a ligand was obtained. The crude dispersion was repeatedly purified by centrifugal separation three times using dichloromethane as a precipitation solvent and isopropanol as a dispersion solvent to obtain a precipitate of exemplified compound 2-3 coordinated ITO fine particles.

次いで、得られたITO微粒子沈殿物をN,N−ジメチルホルムアミドに分散させ、TEM観察したところ、例示化合物2−3配位ITO微粒子の平均粒子径は11.8nmであり、反応前駆体であるステアリルアミン配位ITO微粒子の11.8nmからほとんど変化しておらず、配位子のみが交換されたものと考えられる。   Subsequently, when the obtained ITO fine particle precipitate was dispersed in N, N-dimethylformamide and observed by TEM, the average particle diameter of the exemplified compound 2-3 coordinated ITO fine particles was 11.8 nm, which is a reaction precursor. Little change from 11.8 nm of stearylamine-coordinated ITO fine particles is considered, and it is considered that only the ligand was exchanged.

また同分散液を用いてレーザーラマンスペクトルを測定したところ、例示化合物2−3と同等のピークが観察され、本ITO微粒子が例示化合物2−3を配位配位子として有するものであることが確認された。さらに同分散液の300〜800nmにおける吸収スペクトルを測定したところ、例示化合物2−3のスペクトルにおいて、400〜450nmに見られたSoret帯がブロード化し、かつ500〜600nmに見られたQ帯がほぼ確認されなくなったことから、該ITO微粒子が、大環状π共役化合物である例示化合物2−3が、ITO微粒子表面に平面配位したものであることが確認された。   Further, when a laser Raman spectrum was measured using the same dispersion, a peak equivalent to that of Exemplified Compound 2-3 was observed, and the ITO fine particles had Exemplified Compound 2-3 as a coordination ligand. confirmed. Further, when the absorption spectrum of the dispersion at 300 to 800 nm was measured, in the spectrum of Exemplified Compound 2-3, the Soret band observed at 400 to 450 nm was broadened, and the Q band observed at 500 to 600 nm was almost the same. Since it was not confirmed, it was confirmed that the ITO fine particles were obtained by planarly coordinating the exemplified compound 2-3, which is a macrocyclic π-conjugated compound, on the surface of the ITO fine particles.

<ITO微粒子前駆体の製造例4(例示化合物4−4の配位したITO微粒子)>
100mlフラスコ中に2−エチルヘキサン酸インジウム(III)588mg、酢酸スズ(II)38mg、ヘキサデシルアミン4.5ml、n−オクタン酸390μl、n−ジオクチルエーテル10mlを仕込み、真空中70℃で3時間加熱し、その後常圧に戻して窒素雰囲気中270℃で3時間加熱還流し、ヘキサデシルアミンの配位したITO微粒子の粗分散液を得た。該粗分散液を、沈殿溶媒にメタノール、分散溶媒にクロロホルムを用いて5回遠心分離精製を繰り返し、ヘキサデシルアミンの配位したITO微粒子を得た。得られたITO微粒子の一部をクロロホルムに分散させた希薄分散液を作成し、TEM観察したところ、ヘキサデシルアミンの配位したITO微粒子の平均粒子径は9.8nmであった。
<Production Example 4 of ITO Fine Particle Precursor (ITO Fine Particles Coordinated with Exemplary Compound 4-4)>
Into a 100 ml flask was charged 588 mg of indium (III) 2-ethylhexanoate, 38 mg of tin (II) acetate, 4.5 ml of hexadecylamine, 390 μl of n-octanoic acid, 10 ml of n-dioctyl ether, and 3 hours at 70 ° C. in vacuum. After heating, the pressure was returned to normal pressure, and the mixture was heated and refluxed at 270 ° C. for 3 hours in a nitrogen atmosphere to obtain a coarse dispersion of ITO fine particles coordinated with hexadecylamine. The crude dispersion was repeatedly centrifuged and purified five times using methanol as the precipitation solvent and chloroform as the dispersion solvent, to obtain ITO fine particles coordinated with hexadecylamine. When a diluted dispersion liquid in which a part of the obtained ITO fine particles were dispersed in chloroform was prepared and observed by TEM, the average particle size of the ITO fine particles coordinated with hexadecylamine was 9.8 nm.

次いで、得られたヘキサデシルアミンの配位したITO微粒子(仕込みIn+Sn=1.2mmol)と、マロン酸0.7g、イソプロパノール30mlを100mlフラスコ中に仕込み、窒素雰囲気中80℃10時間加熱攪拌して、マロン酸を配位子として有するITO微粒子の粗分散液を得た。該粗分散液を、沈殿溶媒にジクロロメタン、分散溶媒にイソプロパノールを用いて3回遠心分離精製を繰り返し、マロン酸を配位子として有するITO微粒子の沈殿物を得た。得られたITO微粒子を重水に分散させて1H NMRを測定したところ、交換前の配位子であったヘキサデシルアミンに比べ、交換後の配位子であるマロン酸が8.8倍含有されており、ヘキサデシルアミンからマロン酸へ、配位子交換が進行していることが確認された。   Next, ITO fine particles coordinated with hexadecylamine (prepared In + Sn = 1.2 mmol), 0.7 g of malonic acid, and 30 ml of isopropanol were charged into a 100 ml flask, and heated and stirred in a nitrogen atmosphere at 80 ° C. for 10 hours. A coarse dispersion of ITO fine particles having malonic acid as a ligand was obtained. The crude dispersion was repeatedly purified by centrifugal separation three times using dichloromethane as a precipitation solvent and isopropanol as a dispersion solvent to obtain a precipitate of ITO fine particles having malonic acid as a ligand. The obtained ITO fine particles were dispersed in heavy water and 1H NMR was measured. As a result, 8.8 times as much malonic acid as a ligand after exchange was contained as compared with hexadecylamine as a ligand before exchange. It was confirmed that ligand exchange was proceeding from hexadecylamine to malonic acid.

次いで、得られたマロン酸を配位子として有するITO微粒子と、例示化合物4−4の大環状π共役化合物69mg、エタノール30mlを100mlフラスコ中に仕込み、窒素雰囲気中75℃80時間加熱攪拌して、例示化合物4−4の大環状π共役化合物を配位子として有するITO微粒子の粗分散液を得た。該粗分散液を、沈殿溶媒にジクロロメタン、分散溶媒にエタノールを用いて3回遠心分離精製を繰り返し、例示化合物4−4配位ITO微粒子の沈殿物を得た。   Next, ITO fine particles having malonic acid as a ligand, 69 mg of macrocyclic π-conjugated compound of Exemplified Compound 4-4, and 30 ml of ethanol were charged into a 100 ml flask, and heated and stirred in a nitrogen atmosphere at 75 ° C. for 80 hours. A coarse dispersion of ITO fine particles having the macrocyclic π-conjugated compound of Exemplified Compound 4-4 as a ligand was obtained. The crude dispersion was repeatedly purified by centrifugal separation three times using dichloromethane as a precipitation solvent and ethanol as a dispersion solvent to obtain a precipitate of exemplary compound 4-4 coordinated ITO fine particles.

次いで、得られたITO微粒子沈殿物をエタノールに分散させ、TEM観察したところ、例示化合物4−4配位ITO微粒子の平均粒子径は9.9nmであり、反応前駆体であるヘキサデシルアミン配位ITO微粒子の9.8nmからほとんど変化しておらず、配位子のみが交換されたものと考えられる。   Subsequently, when the obtained ITO fine particle precipitate was dispersed in ethanol and observed by TEM, the average particle diameter of the exemplified compound 4-4 coordinated ITO fine particles was 9.9 nm, and the reaction precursor, hexadecylamine coordination Little change from 9.8 nm of ITO fine particles is considered, and it is considered that only the ligand was exchanged.

また同分散液を用いてレーザーラマンスペクトルを測定したところ、例示化合物4−4と同等のピークが観察され、本ITO微粒子が例示化合物4−4を配位子として有するものであることが確認された。さらに同分散液の300〜800nmにおける吸収スペクトルを測定したところ、例示化合物4−4のスペクトルにおいて、300〜400nmに見られたSoret帯がブロード化し、かつ600〜700nmに見られたQ帯がほぼ確認されなくなったことから、該ITO微粒子が、大環状π共役化合物である例示化合物4−4が、ITO微粒子表面に平面配位したものであることが確認された。   Further, when a laser Raman spectrum was measured using the same dispersion, a peak equivalent to that of Exemplified Compound 4-4 was observed, and it was confirmed that the ITO fine particles had Exemplified Compound 4-4 as a ligand. It was. Further, when the absorption spectrum of the dispersion at 300 to 800 nm was measured, in the spectrum of Exemplified Compound 4-4, the Soret band seen at 300 to 400 nm was broadened, and the Q band seen at 600 to 700 nm was almost the same. Since it was not confirmed, it was confirmed that Exemplified Compound 4-4 in which the ITO fine particles are macrocyclic π-conjugated compounds is obtained by planar coordination on the surface of the ITO fine particles.

<ITO微粒子前駆体の製造例5(例示化合物2−5の配位したITO微粒子)>
製造例4と同様の手法で、中間体であるマロン酸を配位子として有するITO微粒子の沈殿物を得た。
<Production Example 5 of ITO Fine Particle Precursor (ITO Fine Particles Coordinated with Exemplary Compound 2-5)>
In the same manner as in Production Example 4, a precipitate of ITO fine particles having malonic acid as an intermediate as a ligand was obtained.

得られたマロン酸を配位子として有するITO微粒子と、例示化合物2−5の大環状π共役化合物52mg、エタノール30mlを100mlフラスコ中に仕込み、窒素雰囲気中75℃80時間加熱攪拌して、例示化合物2−5の大環状π共役化合物を配位子として有するITO微粒子の粗分散液を得た。該粗分散液を、沈殿溶媒にジクロロメタン、分散溶媒にエタノールを用いて3回遠心分離精製を繰り返し、例示化合物2−5配位ITO微粒子の沈殿物を得た。   The obtained ITO fine particles having malonic acid as a ligand, 52 mg of the macrocyclic π-conjugated compound of Exemplified Compound 2-5, and 30 ml of ethanol were charged into a 100 ml flask, and heated and stirred in a nitrogen atmosphere at 75 ° C. for 80 hours. A coarse dispersion of ITO fine particles having a macrocyclic π-conjugated compound of Compound 2-5 as a ligand was obtained. The crude dispersion was repeatedly purified by centrifugal separation three times using dichloromethane as a precipitation solvent and ethanol as a dispersion solvent to obtain a precipitate of exemplary compound 2-5 coordinated ITO fine particles.

次いで、得られたITO微粒子沈殿物を水に分散させ、TEM観察したところ、例示化合物2−5配位ITO微粒子の平均粒子径9.8nmであり、反応前駆体であるヘキサデシルアミン配位ITO微粒子の9.8nmからほとんど変化しておらず、配位子のみが交換されたものと考えられる。   Next, when the obtained ITO fine particle precipitate was dispersed in water and observed with a TEM, the average particle diameter of the exemplified compound 2-5 coordinated ITO fine particles was 9.8 nm, and the reaction precursor was hexadecylamine coordinated ITO. There is almost no change from 9.8 nm of the fine particles, and it is considered that only the ligand was exchanged.

また同分散液を用いてレーザーラマンスペクトルを測定したところ、例示化合物2−5と同等のピークが観察され、本ITO微粒子が例示化合物2−5を配位子として有するものであることが確認された。さらに同分散液の300〜800nmにおける吸収スペクトルを測定したところ、例示化合物2−5のスペクトルにおいて、400〜500nmに見られたSoret帯がブロード化し、かつ500〜600nmに見られたQ帯がほぼ確認されなくなったことから、該ITO微粒子が、大環状π共役化合物である例示化合物2−5が、ITO微粒子表面に平面配位したものであることが確認された。   Moreover, when the laser Raman spectrum was measured using the same dispersion, a peak equivalent to that of Exemplified Compound 2-5 was observed, and it was confirmed that the ITO fine particles had Exemplified Compound 2-5 as a ligand. It was. Further, when the absorption spectrum of the dispersion at 300 to 800 nm was measured, in the spectrum of Exemplified Compound 2-5, the Soret band seen at 400 to 500 nm was broadened, and the Q band seen at 500 to 600 nm was almost the same. Since it was not confirmed, it was confirmed that Exemplified Compound 2-5, in which the ITO fine particles are macrocyclic π-conjugated compounds, was planarly coordinated on the surface of the ITO fine particles.

<ITO微粒子前駆体の製造例6(例示化合物3−5の配位したITO微粒子)>
製造例4と同様の手法で、中間体であるマロン酸を配位子として有するITO微粒子の沈殿物を得た。
<Production Example 6 of ITO Fine Particle Precursor (ITO Fine Particles Coordinated with Exemplary Compound 3-5)>
In the same manner as in Production Example 4, a precipitate of ITO fine particles having malonic acid as an intermediate as a ligand was obtained.

得られたマロン酸を配位子として有するITO微粒子と、例示化合物3−5の大環状π共役化合物95mg、メタノール30mlを100mlフラスコ中に仕込み、窒素雰囲気中60℃150時間加熱攪拌して、例示化合物3−5の大環状π共役化合物を配位子として有するITO微粒子の粗分散液を得た。該粗分散液を、沈殿溶媒にジクロロメタン、分散溶媒にメタノールを用いて3回遠心分離精製を繰り返し、例示化合物3−5配位ITO微粒子の沈殿物を得た。   The obtained ITO fine particles having malonic acid as a ligand, 95 mg of macrocyclic π-conjugated compound of Exemplified Compound 3-5, and 30 ml of methanol were charged into a 100 ml flask, heated and stirred in a nitrogen atmosphere at 60 ° C. for 150 hours, and exemplified. A coarse dispersion of ITO fine particles having a macrocyclic π-conjugated compound of Compound 3-5 as a ligand was obtained. The crude dispersion was repeatedly purified by centrifugal separation three times using dichloromethane as a precipitation solvent and methanol as a dispersion solvent to obtain a precipitate of exemplary compound 3-5 coordinated ITO fine particles.

次いで、得られたITO微粒子沈殿物をメタノールに分散させ、TEM観察したところ、例示化合物3−5配位ITO微粒子の平均粒子径9.9nmであり、反応前駆体であるヘキサデシルアミン配位ITO微粒子の9.8nmからほとんど変化しておらず、配位子のみが交換されたものと考えられる。   Next, when the obtained ITO fine particle precipitate was dispersed in methanol and observed by TEM, the average particle diameter of the exemplified compound 3-5 coordinated ITO fine particles was 9.9 nm, and the reaction precursor, hexadecylamine coordinated ITO. There is almost no change from 9.8 nm of the fine particles, and it is considered that only the ligand was exchanged.

また同分散液を用いてレーザーラマンスペクトルを測定したところ、例示化合物3−5と同等のピークが観察され、本ITO微粒子が例示化合物3−5を配位子として有するものであることが確認された。さらに同分散液の300〜800nmにおける吸収スペクトルを測定したところ、例示化合物3−5のスペクトルにおいて、400〜450nmに見られたSoret帯がブロード化し、かつ500〜600nmに見られたQ帯がほぼ確認されなくなったことから、該ITO微粒子が、大環状π共役化合物である例示化合物3−5が、ITO微粒子表面に平面配位したものであることが確認された。   Further, when the laser Raman spectrum was measured using the same dispersion, a peak equivalent to that of Exemplified Compound 3-5 was observed, and it was confirmed that the ITO fine particles had Exemplified Compound 3-5 as a ligand. It was. Further, when the absorption spectrum of the dispersion at 300 to 800 nm was measured, in the spectrum of Exemplified Compound 3-5, the Soret band observed at 400 to 450 nm was broadened, and the Q band observed at 500 to 600 nm was almost the same. Since it was not confirmed, it was confirmed that Exemplified Compound 3-5, in which the ITO fine particles are macrocyclic π-conjugated compounds, was planarly coordinated on the surface of the ITO fine particles.

<ITO微粒子前駆体の製造例7(例示化合物3−3の配位したITO微粒子)>
100mlフラスコ中に2−エチルヘキサン酸インジウム(III)1176mg、2−エチルヘキサン酸スズ(II)69μl、1−オクタデカノール5.4g、n−オクタン酸700μl、1−オクタデセン20mlを仕込み、真空中80℃で1時間加熱し、その後常圧に戻して窒素雰囲気中150℃で1時間加熱し、次いで窒素雰囲気中250℃で4時間加熱還流し、ヘキサデシルアミンの配位したITO微粒子の粗分散液を得た。該粗分散液を、沈殿溶媒にエキネン、分散溶媒にヘキサンを用いて5回遠心分離精製を繰り返し、1−オクタデカノールの配位したITO微粒子を得た。得られたITO微粒子の一部をヘキサンに分散させた希薄分散液を作成し、TEM観察したところ、1−オクタデカノールの配位したITO微粒子の平均粒子径は8.0nmであった。
<Production Example 7 of ITO Fine Particle Precursor (ITO Fine Particles Coordinated with Exemplary Compound 3-3)>
Into a 100 ml flask was charged 1176 mg of indium (ethyl) 2-ethylhexanoate, 69 μl of tin (II) 2-ethylhexanoate, 5.4 g of 1-octadecanol, 700 μl of n-octanoic acid, 20 ml of 1-octadecene, and in a vacuum. Heat at 80 ° C. for 1 hour, then return to normal pressure, heat at 150 ° C. for 1 hour in a nitrogen atmosphere, then heat to reflux for 4 hours at 250 ° C. in a nitrogen atmosphere, and coarse dispersion of ITO fine particles coordinated with hexadecylamine A liquid was obtained. The crude dispersion was repeatedly centrifuged and purified 5 times using echinene as a precipitation solvent and hexane as a dispersion solvent, to obtain ITO fine particles coordinated with 1-octadecanol. When a diluted dispersion liquid in which a part of the obtained ITO fine particles were dispersed in hexane was prepared and observed by TEM, the average particle size of the ITO fine particles coordinated with 1-octadecanol was 8.0 nm.

次いで、得られた1−オクタデカノールの配位したITO微粒子(仕込みIn+Sn=2.4mmol)と、シュウ酸0.9g、エタノール80mlを200mlフラスコ中に仕込み、窒素雰囲気中75℃10時間加熱攪拌して、シュウ酸を配位子として有するITO微粒子の粗分散液を得た。該粗分散液を、沈殿溶媒にジクロロメタン、分散溶媒にイソプロパノールを用いて3回遠心分離精製を繰り返し、シュウ酸を配位子として有するITO微粒子の沈殿物を得た。得られたITO微粒子を重水に分散させて13C NMRを測定したところ、交換前の配位子であった1−オクタデカノールに比べ、交換後の配位子であるシュウ酸が8.4倍含有されており、1−オクタデカノールからシュウ酸へ、配位子交換が進行していることが確認された。   Next, ITO fine particles coordinated with 1-octadecanol (prepared In + Sn = 2.4 mmol), 0.9 g of oxalic acid, and 80 ml of ethanol were placed in a 200 ml flask, and heated and stirred at 75 ° C. for 10 hours in a nitrogen atmosphere. Thus, a coarse dispersion of ITO fine particles having oxalic acid as a ligand was obtained. The crude dispersion was repeatedly purified by centrifugal separation three times using dichloromethane as a precipitation solvent and isopropanol as a dispersion solvent to obtain a precipitate of ITO fine particles having oxalic acid as a ligand. When the obtained ITO fine particles were dispersed in heavy water and 13C NMR was measured, oxalic acid as a ligand after exchange was 8.4 times as much as 1-octadecanol as a ligand before exchange. It was confirmed that the ligand exchange proceeded from 1-octadecanol to oxalic acid.

次いで、得られたシュウ酸を配位子として有するITO微粒子と、例示化合物3−3の大環状π共役化合物101mg、N,N−ジメチルホルムアミド80mlを200mlフラスコ中に仕込み、窒素雰囲気中100℃120時間加熱攪拌して、例示化合物3−3の大環状π共役化合物を配位子として有するITO微粒子の粗分散液を得た。該粗分散液を、N,N−ジメチルホルムアミドを用いて3回遠心分離精製を繰り返し、例示化合物3−3配位ITO微粒子の沈殿物を得た。   Next, ITO fine particles having oxalic acid as a ligand, 101 mg of the macrocyclic π-conjugated compound of Exemplified Compound 3-3, and 80 ml of N, N-dimethylformamide were charged into a 200 ml flask, and the temperature was 100 ° C. 120 ° C. in a nitrogen atmosphere. By stirring with heating for a time, a coarse dispersion of ITO fine particles having the macrocyclic π-conjugated compound of Exemplary Compound 3-3 as a ligand was obtained. The crude dispersion was repeatedly centrifuged and purified three times using N, N-dimethylformamide to obtain a precipitate of exemplary compound 3-3 coordinated ITO fine particles.

次いで、得られたITO微粒子沈殿物をN,N−ジメチルホルムアミドに分散させ、TEM観察したところ、例示化合物3−3配位ITO微粒子の平均粒子径は7.9nmであり、反応前駆体である1−オクタデカノール配位ITO微粒子の8.0nmからほとんど変化しておらず、配位子のみが交換されたものと考えられる。   Subsequently, when the obtained ITO fine particle precipitate was dispersed in N, N-dimethylformamide and observed by TEM, the average particle diameter of the exemplified compound 3-3 coordinated ITO fine particles was 7.9 nm, which is a reaction precursor. The 1-octadecanol-coordinated ITO fine particles were hardly changed from 8.0 nm, and it is considered that only the ligand was exchanged.

また同分散液を用いてレーザーラマンスペクトルを測定したところ、例示化合物3−3と同等のピークが観察され、本ITO微粒子が例示化合物3−3を配位子として有するものであることが確認された。さらに同分散液の300〜800nmにおける吸収スペクトルを測定したところ、例示化合物3−3のスペクトルにおいて、400〜450nmに見られたSoret帯がブロード化し、かつ500〜600nmに見られたQ帯がほぼ確認されなくなったことから、該ITO微粒子が、大環状π共役化合物である例示化合物3−3が、ITO微粒子表面に平面配位したものであることが確認された。   Further, when a laser Raman spectrum was measured using the same dispersion, a peak equivalent to that of Exemplified Compound 3-3 was observed, and it was confirmed that the ITO fine particles had Exemplified Compound 3-3 as a ligand. It was. Further, when the absorption spectrum of the dispersion at 300 to 800 nm was measured, in the spectrum of Exemplified Compound 3-3, the Soret band seen at 400 to 450 nm was broadened, and the Q band seen at 500 to 600 nm was almost the same. Since it was not confirmed, it was confirmed that Exemplified Compound 3-3 in which the ITO fine particles are macrocyclic π-conjugated compounds were coordinated on the surface of the ITO fine particles.

<ITO微粒子前駆体の製造例8(例示化合物4−4の配位したITO微粒子)>
製造例7と同様の手法で、中間体であるシュウ酸を配位子として有するITO微粒子の沈殿物を得た。
<Production Example 8 of ITO Fine Particle Precursor (ITO Fine Particles Coordinated with Exemplary Compound 4-4)>
In the same manner as in Production Example 7, a precipitate of ITO fine particles having oxalic acid as an intermediate as a ligand was obtained.

得られたシュウ酸を配位子として有するITO微粒子と、例示化合物4−4の大環状π共役化合物86mg、メタノール80mlを200mlフラスコ中に仕込み、窒素雰囲気中60℃150時間加熱攪拌して、例示化合物4−4の大環状π共役化合物を配位子として有するITO微粒子の粗分散液を得た。該粗分散液を、沈殿溶媒にジクロロメタン、分散溶媒にメタノールを用いて3回遠心分離精製を繰り返し、例示化合物4−4配位ITO微粒子の沈殿物を得た。   The obtained ITO fine particles having oxalic acid as a ligand, 86 mg of the macrocyclic π-conjugated compound of Exemplified Compound 4-4, and 80 ml of methanol were charged into a 200 ml flask and heated and stirred in a nitrogen atmosphere at 60 ° C. for 150 hours. A coarse dispersion of ITO fine particles having a macrocyclic π-conjugated compound of Compound 4-4 as a ligand was obtained. The crude dispersion was repeatedly purified by centrifugal separation three times using dichloromethane as a precipitation solvent and methanol as a dispersion solvent to obtain a precipitate of exemplary compound 4-4 coordinated ITO fine particles.

次いで、得られたITO微粒子沈殿物をメタノールに分散させ、TEM観察したところ、例示化合物4−4配位ITO微粒子の平均粒子径8.1nmであり、反応前駆体である1−オクタデカノール配位ITO微粒子の8.0nmからほとんど変化しておらず、配位子のみが交換されたものと考えられる。   Next, when the obtained ITO fine particle precipitate was dispersed in methanol and observed with a TEM, the average particle diameter of the exemplified compound 4-4 coordinated ITO fine particles was 8.1 nm, and the reaction precursor 1-octadecanol was distributed. It is considered that only the ligand was exchanged with little change from 8.0 nm of the coordinate ITO fine particles.

また同分散液を用いてレーザーラマンスペクトルを測定したところ、例示化合物4−4と同等のピークが観察され、本ITO微粒子が例示化合物4−4を配位子として有するものであることが確認された。さらに同分散液の300〜800nmにおける吸収スペクトルを測定したところ、例示化合物4−4のスペクトルにおいて、300〜400nmに見られたSoret帯がブロード化し、かつ600〜700nmに見られたQ帯がほぼ確認されなくなったことから、該ITO微粒子が、大環状π共役化合物である例示化合物4−4が、ITO微粒子表面に平面配位したものであることが確認された。   Further, when a laser Raman spectrum was measured using the same dispersion, a peak equivalent to that of Exemplified Compound 4-4 was observed, and it was confirmed that the ITO fine particles had Exemplified Compound 4-4 as a ligand. It was. Further, when the absorption spectrum of the dispersion at 300 to 800 nm was measured, in the spectrum of Exemplified Compound 4-4, the Soret band seen at 300 to 400 nm was broadened, and the Q band seen at 600 to 700 nm was almost the same. Since it was not confirmed, it was confirmed that Exemplified Compound 4-4 in which the ITO fine particles are macrocyclic π-conjugated compounds is obtained by planar coordination on the surface of the ITO fine particles.

<ITO微粒子前駆体の製造例9(例示化合物2−12の配位したITO微粒子)>
製造例7と同様の手法で、中間体であるシュウ酸を配位子として有するITO微粒子の沈殿物を得た。
<Production Example 9 of ITO Fine Particle Precursor (ITO Fine Particles Coordinated with Exemplary Compound 2-12)>
In the same manner as in Production Example 7, a precipitate of ITO fine particles having oxalic acid as an intermediate as a ligand was obtained.

得られたシュウ酸を配位子として有するITO微粒子と、例示化合物2−12の大環状π共役化合物115mg、エタノール80mlを200mlフラスコ中に仕込み、窒素雰囲気中70℃120時間加熱攪拌して、例示化合物2−12の大環状π共役化合物を配位子として有するITO微粒子の粗分散液を得た。該粗分散液を、沈殿溶媒にジクロロメタン、分散溶媒にエタノールを用いて3回遠心分離精製を繰り返し、例示化合物2−12配位ITO微粒子の沈殿物を得た。   The obtained ITO fine particles having oxalic acid as a ligand, 115 mg of the macrocyclic π-conjugated compound of Exemplified Compound 2-12, and 80 ml of ethanol were charged into a 200 ml flask, heated and stirred in a nitrogen atmosphere at 70 ° C. for 120 hours, and exemplified. A coarse dispersion of ITO fine particles having a macrocyclic π-conjugated compound of Compound 2-12 as a ligand was obtained. The crude dispersion was repeatedly purified by centrifugal separation three times using dichloromethane as a precipitation solvent and ethanol as a dispersion solvent to obtain a precipitate of exemplary compound 2-12 coordinated ITO fine particles.

次いで、得られたITO微粒子沈殿物をエタノールに分散させ、TEM観察したところ、例示化合物2−12配位ITO微粒子の平均粒子径8.2nmであり、反応前駆体である1−オクタデカノール配位ITO微粒子の8.0nmからほとんど変化しておらず、配位子のみが交換されたものと考えられる。   Next, when the obtained ITO fine particle precipitate was dispersed in ethanol and observed by TEM, the average particle diameter of the exemplified compound 2-12 coordinated ITO fine particles was 8.2 nm, and the reaction precursor 1-octadecanol was distributed. It is considered that only the ligand was exchanged with little change from 8.0 nm of the coordinate ITO fine particles.

また同分散液を用いてレーザーラマンスペクトルを測定したところ、例示化合物2−12と同等のピークが観察され、本ITO微粒子が例示化合物2−12を配位子として有するものであることが確認された。さらに同分散液の300〜800nmにおける吸収スペクトルを測定したところ、例示化合物2−12のスペクトルにおいて、400〜500nmに見られたSoret帯がブロード化し、かつ500〜600nmに見られたQ帯がほぼ確認されなくなったことから、該ITO微粒子が、大環状π共役化合物である例示化合物2−12が、ITO微粒子表面に平面配位したものであることが確認された。   Further, when a laser Raman spectrum was measured using the same dispersion, a peak equivalent to that of Exemplified Compound 2-12 was observed, and it was confirmed that the present ITO fine particles had Exemplified Compound 2-12 as a ligand. It was. Further, when the absorption spectrum of the dispersion at 300 to 800 nm was measured, in the spectrum of Exemplified Compound 2-12, the Soret band observed at 400 to 500 nm was broadened, and the Q band observed at 500 to 600 nm was almost the same. Since it was not confirmed, it was confirmed that Exemplified Compound 2-12, in which the ITO fine particles are macrocyclic π-conjugated compounds, was planarly coordinated on the surface of the ITO fine particles.

<ITO微粒子前駆体の製造例10(例示化合物3−3の配位したITO微粒子)>
100mlフラスコ中に酢酸インジウム(III)315mg、酢酸スズ(II)35mg、オレイルアルコール2.5ml、1−オクタデセン9mlを仕込み、真空中70℃で1時間加熱し、その後常圧に戻して窒素雰囲気中170℃で2時間加熱し、次いで窒素雰囲気中270℃で1.5時間加熱還流し、オレイルアルコールの配位したITO微粒子の粗分散液を得た。該粗分散液を、沈殿溶媒にメタノール、分散溶媒にクロロホルムを用いて5回遠心分離精製を繰り返し、オレイルアルコールの配位したITO微粒子を得た。 得られたITO微粒子の一部をクロロホルムに分散させた希薄分散液を作成し、TEM観察したところ、オレイルアルコールの配位したITO微粒子の平均粒子径は6.5nmであった。
<Production Example 10 of ITO Fine Particle Precursor (ITO Fine Particles Coordinated with Exemplary Compound 3-3)>
A 100 ml flask was charged with 315 mg of indium (III) acetate, 35 mg of tin (II) acetate, 2.5 ml of oleyl alcohol, and 9 ml of 1-octadecene, heated in vacuum at 70 ° C. for 1 hour, and then returned to normal pressure in a nitrogen atmosphere. The mixture was heated at 170 ° C. for 2 hours and then heated to reflux in a nitrogen atmosphere at 270 ° C. for 1.5 hours to obtain a coarse dispersion of ITO fine particles coordinated with oleyl alcohol. The crude dispersion was repeatedly centrifuged and purified 5 times using methanol as the precipitation solvent and chloroform as the dispersion solvent, to obtain ITO fine particles coordinated with oleyl alcohol. When a diluted dispersion in which a part of the obtained ITO fine particles were dispersed in chloroform was prepared and observed by TEM, the average particle size of the ITO fine particles coordinated with oleyl alcohol was 6.5 nm.

次いで、得られたオレイルアルコールの配位したITO微粒子(仕込みIn+Sn=1.2mmol)と、クエン酸1.2g、N,N−ジメチルホルムアミド30mlを100mlフラスコ中に仕込み、窒素雰囲気中100℃8時間加熱攪拌して、クエン酸を配位子として有するITO微粒子の粗分散液を得た。該粗分散液を、沈殿溶媒にジクロロメタン、分散溶媒にN,N−ジメチルホルムアミドを用いて3回遠心分離精製を繰り返し、クエン酸を配位子として有するITO微粒子の沈殿物を得た。得られたITO微粒子を重水に分散させて1H NMRを測定したところ、交換前の配位子であったオレイルアルコールに比べ、交換後の配位子であるクエン酸が9.2倍含有されており、オレイルアルコールからクエン酸へ、配位子交換が進行していることが確認された。   Next, ITO fine particles coordinated with oleyl alcohol (prepared In + Sn = 1.2 mmol), 1.2 g of citric acid, and 30 ml of N, N-dimethylformamide were charged into a 100 ml flask, and 100 ° C. for 8 hours in a nitrogen atmosphere. By heating and stirring, a coarse dispersion of ITO fine particles having citric acid as a ligand was obtained. The crude dispersion was repeatedly purified by centrifugal separation three times using dichloromethane as a precipitation solvent and N, N-dimethylformamide as a dispersion solvent to obtain a precipitate of ITO fine particles having citric acid as a ligand. The obtained ITO fine particles were dispersed in heavy water and 1H NMR was measured. As a result, 9.2 times as much citric acid as a ligand after exchange was contained compared to oleyl alcohol which was a ligand before exchange. It was confirmed that ligand exchange was proceeding from oleyl alcohol to citric acid.

次いで、得られたクエン酸を配位子として有するITO微粒子と、例示化合物3−9の大環状π共役化合物111mg、イソプロパノール30mlを100mlフラスコ中に仕込み、窒素雰囲気中80℃100時間加熱攪拌して、例示化合物3−9の大環状π共役化合物を配位子として有するITO微粒子の粗分散液を得た。該粗分散液を、沈殿溶媒にジクロロメタン、分散溶媒にN,N−ジメチルホルムアミドを用いて3回遠心分離精製を繰り返し、例示化合物3−9配位ITO微粒子の沈殿物を得た。   Next, ITO fine particles having citric acid as a ligand, 111 mg of macrocyclic π-conjugated compound of Exemplified Compound 3-9, and 30 ml of isopropanol were charged into a 100 ml flask, and heated and stirred at 80 ° C. for 100 hours in a nitrogen atmosphere. A coarse dispersion of ITO fine particles having the macrocyclic π-conjugated compound of Exemplary Compound 3-9 as a ligand was obtained. The crude dispersion was repeatedly purified by centrifugal separation three times using dichloromethane as a precipitation solvent and N, N-dimethylformamide as a dispersion solvent to obtain a precipitate of exemplary compound 3-9 coordinated ITO fine particles.

次いで、得られたITO微粒子沈殿物を水に分散させ、TEM観察したところ、例示化合物3−9配位ITO微粒子の平均粒子径は6.7nmであり、反応前駆体であるオレイルアルコール配位ITO微粒子の6.5nmからほとんど変化しておらず、配位子のみが交換されたものと考えられる。   Next, when the obtained ITO fine particle precipitate was dispersed in water and observed by TEM, the average particle size of the exemplified compound 3-9 coordinated ITO fine particles was 6.7 nm, and the reaction precursor oleyl alcohol coordinated ITO There is almost no change from 6.5 nm of the fine particles, and it is considered that only the ligand was exchanged.

また同分散液を用いてレーザーラマンスペクトルを測定したところ、例示化合物3−9と同等のピークが観察され、本ITO微粒子が例示化合物3−9を配位子として有するものであることが確認された。さらに同分散液の300〜800nmにおける吸収スペクトルを測定したところ、例示化合物3−9のスペクトルにおいて、400〜450nmに見られたSoret帯がブロード化し、かつ500〜600nmに見られたQ帯がほぼ確認されなくなったことから、該ITO微粒子が、大環状π共役化合物である例示化合物3−9が、ITO微粒子表面に平面配位したものであることが確認された。   Further, when a laser Raman spectrum was measured using the same dispersion, a peak equivalent to that of Exemplified Compound 3-9 was observed, and it was confirmed that the ITO fine particles had Exemplified Compound 3-9 as a ligand. It was. Further, when the absorption spectrum of the dispersion at 300 to 800 nm was measured, in the spectrum of Exemplified Compound 3-9, the Soret band seen at 400 to 450 nm was broadened, and the Q band seen at 500 to 600 nm was almost the same. Since it was not confirmed, it was confirmed that Exemplified Compound 3-9, in which the ITO fine particles are macrocyclic π-conjugated compounds, was planarly coordinated on the surface of the ITO fine particles.

<ITO微粒子前駆体の製造例11(例示化合物1−14の配位したITO微粒子)> 製造例10と同様の手法で、中間体であるクエン酸を配位子として有するITO微粒子の沈殿物を得た。   <Preparation Example 11 of ITO Fine Particle Precursor (ITO Fine Particle Coordinated with Exemplified Compound 1-14)> In the same manner as in Production Example 10, a precipitate of ITO fine particles having citric acid as an intermediate as a ligand was prepared. Obtained.

得られたクエン酸を配位子として有するITO微粒子と、例示化合物1−14の大環状π共役化合物65mg、イソプロパノール30mlを100mlフラスコ中に仕込み、窒素雰囲気中80℃110時間加熱攪拌して、例示化合物1−14の大環状π共役化合物を配位子として有するITO微粒子の粗分散液を得た。該粗分散液を、沈殿溶媒にジクロロメタン、分散溶媒にイソプロパノールを用いて3回遠心分離精製を繰り返し、例示化合物1−14配位ITO微粒子の沈殿物を得た。   The obtained ITO fine particles having citric acid as a ligand, 65 mg of the macrocyclic π-conjugated compound of Exemplified Compound 1-14, and 30 ml of isopropanol were charged into a 100 ml flask, and heated and stirred in a nitrogen atmosphere at 80 ° C. for 110 hours. A coarse dispersion of ITO fine particles having a macrocyclic π-conjugated compound of Compound 1-14 as a ligand was obtained. The crude dispersion was repeatedly purified by centrifugal separation three times using dichloromethane as a precipitation solvent and isopropanol as a dispersion solvent to obtain a precipitate of exemplary compound 1-14 coordinated ITO fine particles.

次いで、得られたITO微粒子沈殿物をイソプロパノールに分散させ、TEM観察したところ、例示化合物1−14配位ITO微粒子の平均粒子径6.6nmであり、反応前駆体であるオレイルアルコール配位ITO微粒子の6.5nmからほとんど変化しておらず、配位子のみが交換されたものと考えられる。   Next, when the obtained ITO fine particle precipitate was dispersed in isopropanol and observed with TEM, the average particle diameter of the exemplified compound 1-14 coordinated ITO fine particles was 6.6 nm, and the reaction precursor oleyl alcohol coordinated ITO fine particles It is considered that only the ligand was exchanged.

また同分散液を用いてレーザーラマンスペクトルを測定したところ、例示化合物1−14と同等のピークが観察され、本ITO微粒子が例示化合物1−14を配位子として有するものであることが確認された。さらに同分散液の300〜800nmにおける吸収スペクトルを測定したところ、例示化合物1−14のスペクトルにおいて、400〜500nmに見られたSoret帯がブロード化し、かつ500〜600nmに見られたQ帯がほぼ確認されなくなったことから、該ITO微粒子が、大環状π共役化合物である例示化合物1−14が、ITO微粒子表面に平面配位したものであることが確認された。   Further, when a laser Raman spectrum was measured using the same dispersion, a peak equivalent to that of Exemplified Compound 1-14 was observed, and it was confirmed that the present ITO fine particles had Exemplified Compound 1-14 as a ligand. It was. Further, when the absorption spectrum of the dispersion at 300 to 800 nm was measured, in the spectrum of Exemplified Compound 1-14, the Soret band seen at 400 to 500 nm was broadened, and the Q band seen at 500 to 600 nm was almost the same. Since it was not confirmed, it was confirmed that Exemplified Compound 1-14, in which the ITO fine particles are macrocyclic π-conjugated compounds, was planarly coordinated on the surface of the ITO fine particles.

<ITO微粒子前駆体の製造例12(例示化合物3−3の配位したITO微粒子)>
製造例10と同様の手法で、中間体であるクエン酸を配位子として有するITO微粒子の沈殿物を得た。
<Production Example 12 of ITO Fine Particle Precursor (ITO Fine Particles Coordinated with Exemplary Compound 3-3)>
In the same manner as in Production Example 10, a precipitate of ITO fine particles having citric acid as an intermediate as a ligand was obtained.

得られたクエン酸を配位子として有するITO微粒子と、例示化合物3−3の大環状π共役化合物101mg、N,N−ジメチルホルムアミド30mlを100mlフラスコ中に仕込み、窒素雰囲気中120℃80時間加熱攪拌して、例示化合物3−3の大環状π共役化合物を配位子として有するITO微粒子の粗分散液を得た。該粗分散液を、沈殿溶媒にジクロロメタン、分散溶媒にN,N−ジメチルホルムアミドを用いて3回遠心分離精製を繰り返し、例示化合物3−3配位ITO微粒子の沈殿物を得た。   The obtained ITO fine particles having citric acid as a ligand, macrocyclic π-conjugated compound 101 mg of Exemplified Compound 3-3, and 30 ml of N, N-dimethylformamide are charged into a 100 ml flask and heated at 120 ° C. for 80 hours in a nitrogen atmosphere. By stirring, a coarse dispersion of ITO fine particles having the macrocyclic π-conjugated compound of Exemplary Compound 3-3 as a ligand was obtained. The crude dispersion was repeatedly purified by centrifugal separation three times using dichloromethane as a precipitation solvent and N, N-dimethylformamide as a dispersion solvent to obtain a precipitate of exemplary compound 3-3 coordinated ITO fine particles.

次いで、得られたITO微粒子沈殿物をN,N−ジメチルホルムアミドに分散させ、TEM観察したところ、例示化合物3−3配位ITO微粒子の平均粒子径6.5nmであり、反応前駆体であるオレイルアルコール配位ITO微粒子の6.5nmからほとんど変化しておらず、配位子のみが交換されたものと考えられる。   Next, when the obtained ITO fine particle precipitate was dispersed in N, N-dimethylformamide and observed by TEM, the average particle diameter of the exemplified compound 3-3 coordinated ITO fine particles was 6.5 nm, and oleyl which is a reaction precursor Almost no change from 6.5 nm of the alcohol coordinated ITO fine particles, and it is considered that only the ligand was exchanged.

また同分散液を用いてレーザーラマンスペクトルを測定したところ、例示化合物3−3と同等のピークが観察され、本ITO微粒子が例示化合物3−3を配位子として有するものであることが確認された。さらに同分散液の300〜800nmにおける吸収スペクトルを測定したところ、例示化合物3−3のスペクトルにおいて、400〜450nmに見られたSoret帯がブロード化し、かつ500〜600nmに見られたQ帯がほぼ確認されなくなったことから、該ITO微粒子が、大環状π共役化合物である例示化合物3−3が、ITO微粒子表面に平面配位したものであることが確認された。   Further, when a laser Raman spectrum was measured using the same dispersion, a peak equivalent to that of Exemplified Compound 3-3 was observed, and it was confirmed that the ITO fine particles had Exemplified Compound 3-3 as a ligand. It was. Further, when the absorption spectrum of the dispersion at 300 to 800 nm was measured, in the spectrum of Exemplified Compound 3-3, the Soret band seen at 400 to 450 nm was broadened, and the Q band seen at 500 to 600 nm was almost the same. Since it was not confirmed, it was confirmed that Exemplified Compound 3-3 in which the ITO fine particles are macrocyclic π-conjugated compounds were coordinated on the surface of the ITO fine particles.

実施例1
製造例1で得られた、例示化合物3−3を配位子に有するITO微粒子に水を添加し、例示化合物3−3の配位したITO微粒子1.5重量%を含む、透明導電膜用塗工液を得た。この透明導電膜用塗工液の溶液ヘイズを測定したところ、1.2%であり、透明導電膜用塗工液として十分に高い透明性を有していることが確認された。
Example 1
Water is added to the ITO fine particles having the exemplified compound 3-3 as a ligand obtained in Production Example 1, and the transparent conductive film contains 1.5% by weight of the ITO fine particles coordinated with the exemplified compound 3-3. A coating solution was obtained. When the solution haze of this coating liquid for transparent conductive films was measured, it was 1.2%, and it was confirmed that the coating liquid for transparent conductive films has sufficiently high transparency.

次いで該塗工液を、基材である厚さ50μmのポリカーボネートフイルム(帝人化成(株)製、商品名「ピュアエースWR」)に塗工し、窒素雰囲気中90℃で5時間乾燥して、塗工厚350nmの透明導電膜を得た。この透明導電膜は、塗膜の基材への密着性も高く、光線透過率90.4%、ヘイズ1.2%、シート抵抗460Ω/□であり、透明導電膜として十分に高い光学特性と導電特性を有していることを確認した。   Next, the coating solution was applied to a 50 μm-thick polycarbonate film (trade name “Pure Ace WR”, manufactured by Teijin Chemicals Ltd.) as a base material, and dried at 90 ° C. for 5 hours in a nitrogen atmosphere. A transparent conductive film having a coating thickness of 350 nm was obtained. This transparent conductive film has high adhesion to the substrate of the coating film, has a light transmittance of 90.4%, a haze of 1.2%, a sheet resistance of 460 Ω / □, and has sufficiently high optical characteristics as a transparent conductive film. It was confirmed that it had conductive properties.

実施例2
製造例2で得られた、例示化合物1−14を配位子に有するITO微粒子にN,N−ジメチルホルムアミドを添加し、例示化合物1−14の配位したITO微粒子0.5重量%を含む、透明導電膜用塗工液を得た。この透明導電膜用塗工液の溶液ヘイズを測定したところ、3.5%であり、透明導電膜用塗工液として十分に高い透明性を有していることが確認された。
Example 2
N, N-dimethylformamide is added to the ITO fine particles obtained in Production Example 2 having Exemplified Compound 1-14 as a ligand, and 0.5 wt% of ITO fine particles coordinated with Exemplified Compound 1-14 are included. A coating liquid for transparent conductive film was obtained. When the solution haze of this coating liquid for transparent conductive films was measured, it was 3.5%, and it was confirmed that the coating liquid for transparent conductive films has sufficiently high transparency.

次いで該塗工液を、基材である厚さ150μmのガラス板に塗工し、減圧下160℃で5時間乾燥して、塗工厚300nmの透明導電膜を得た。この透明導電膜は、塗膜の基材への密着性も高く、光線透過率86.5%、ヘイズ3.4%、シート抵抗890Ω/□であり、透明導電膜として十分に高い光学特性と導電特性を有していることを確認した。   Next, the coating solution was applied to a glass plate having a thickness of 150 μm as a base material and dried under reduced pressure at 160 ° C. for 5 hours to obtain a transparent conductive film having a coating thickness of 300 nm. This transparent conductive film has high adhesion to the base material of the coating film, has a light transmittance of 86.5%, a haze of 3.4%, a sheet resistance of 890 Ω / □, and has sufficiently high optical characteristics as a transparent conductive film. It was confirmed that it had conductive properties.

実施例3
製造例3で得られた、例示化合物2−3を配位子に有するITO微粒子にN,N−ジメチルホルムアミドを添加し、例示化合物2−3の配位したITO微粒子0.5重量%を含む、透明導電膜用塗工液を得た。この透明導電膜用塗工液の溶液ヘイズを測定したところ、3.0%であり、透明導電膜用塗工液として十分に高い透明性を有していることが確認された。
Example 3
N, N-dimethylformamide is added to the ITO fine particles obtained in Production Example 3 having Exemplified Compound 2-3 as a ligand, and 0.5 wt% of ITO fine particles coordinated with Exemplified Compound 2-3 are included. A coating liquid for transparent conductive film was obtained. When the solution haze of this coating liquid for transparent conductive films was measured, it was 3.0%, and it was confirmed that the coating liquid for transparent conductive films has sufficiently high transparency.

次いで該塗工液を、基材である厚さ125μmのPENフイルム(帝人デュポンフィルム(株)製、商品名「テオネックスQ65FA」)に塗工し、減圧下160℃で5時間乾燥して、塗工厚300nmの透明導電膜を得た。この透明導電膜は、塗膜の基材への密着性も高く、光線透過率88.1%、ヘイズ2.8%、シート抵抗770Ω/□であり、透明導電膜として十分に高い光学特性と導電特性を有していることを確認した。   Next, the coating solution was applied to a 125 μm thick PEN film (manufactured by Teijin DuPont Films, trade name “Teonex Q65FA”), which was dried at 160 ° C. for 5 hours under reduced pressure. A transparent conductive film having a work thickness of 300 nm was obtained. This transparent conductive film has high adhesion to the base material of the coating film, has a light transmittance of 88.1%, a haze of 2.8%, a sheet resistance of 770 Ω / □, and has sufficiently high optical properties as a transparent conductive film. It was confirmed that it had conductive properties.

実施例4
製造例4で得られた、例示化合物4‐4を配位子に有するITO微粒子に水を添加し、例示化合物4−4の配位したITO微粒子2.5重量%を含む、透明導電膜用塗工液を得た。この透明導電膜用塗工液の溶液ヘイズを測定したところ、1.9%であり、透明導電膜用塗工液として十分に高い透明性を有していることが確認された。
Example 4
Water is added to the ITO fine particles having Exemplified Compound 4-4 as a ligand obtained in Production Example 4 and contains 2.5% by weight of ITO fine particles coordinated with Exemplified Compound 4-4. A coating solution was obtained. When the solution haze of this coating liquid for transparent conductive films was measured, it was 1.9%, and it was confirmed that it had sufficiently high transparency as a coating liquid for transparent conductive films.

次いで該塗工液を、基材である厚さ150μmのガラス板に塗工し、窒素雰囲気中90℃で3時間乾燥して、塗工厚350nmの透明導電膜を得た。この透明導電膜は、塗膜の基材への密着性も高く、光線透過率89.2%、ヘイズ1.6%、シート抵抗1,500Ω/□であり、透明導電膜として十分に高い光学特性と導電特性を有していることを確認した。   Next, the coating solution was applied to a glass plate having a thickness of 150 μm as a base material and dried at 90 ° C. for 3 hours in a nitrogen atmosphere to obtain a transparent conductive film having a coating thickness of 350 nm. This transparent conductive film has high adhesion to the base material of the coating film, has a light transmittance of 89.2%, a haze of 1.6%, a sheet resistance of 1,500 Ω / □, and is sufficiently optical as a transparent conductive film. It was confirmed that it has characteristics and conductive characteristics.

実施例5
製造例5で得られた、例示化合物2−5を配位子に有するITO微粒子にメタノールを添加し、例示化合物2−5の配位したITO微粒子1.5重量%を含む、透明導電膜用塗工液を得た。この透明導電膜用塗工液の溶液ヘイズを測定したところ、3.6%であり、透明導電膜用塗工液として十分に高い透明性を有していることが確認された。
Example 5
Methanol is added to the ITO fine particles having the exemplified compound 2-5 as a ligand obtained in Production Example 5, and the transparent conductive film contains 1.5% by weight of the ITO fine particles coordinated with the exemplified compound 2-5. A coating solution was obtained. When the solution haze of this coating liquid for transparent conductive films was measured, it was 3.6%, and it was confirmed that the coating liquid for transparent conductive films has sufficiently high transparency.

次いで該塗工液を、基材である厚さ150μmのガラス板に塗工し、窒素雰囲気中60℃で2時間乾燥して、塗工厚250nmの透明導電膜を得た。この透明導電膜は、塗膜の基材への密着性も高く、光線透過率85.8%、ヘイズ2.2%、シート抵抗2,800Ω/□であり、透明導電膜として十分に高い光学特性と導電特性を有していることを確認した。   Next, the coating solution was applied to a glass plate having a thickness of 150 μm as a base material and dried at 60 ° C. for 2 hours in a nitrogen atmosphere to obtain a transparent conductive film having a coating thickness of 250 nm. This transparent conductive film has high adhesion to the base material of the coating film, has a light transmittance of 85.8%, a haze of 2.2%, a sheet resistance of 2,800 Ω / □, and is sufficiently high as a transparent conductive film. It was confirmed that it has characteristics and conductive characteristics.

実施例6
製造例6で得られた、例示化合物3−5を配位子に有するITO微粒子にメタノールを添加し、例示化合物2−5の配位したITO微粒子1.5重量%を含む、透明導電膜用塗工液を得た。この透明導電膜用塗工液の溶液ヘイズを測定したところ、3.8%であり、透明導電膜用塗工液として十分に高い透明性を有していることが確認された。
Example 6
Methanol is added to the ITO fine particles having Exemplified Compound 3-5 as a ligand obtained in Production Example 6, and the transparent conductive film contains 1.5% by weight of ITO fine particles coordinated with Exemplified Compound 2-5 A coating solution was obtained. When the solution haze of this coating liquid for transparent conductive films was measured, it was 3.8%, and it was confirmed that the coating liquid for transparent conductive films has sufficiently high transparency.

次いで該塗工液を、基材である厚さ50μmのポリカーボネートフイルム(帝人化成(株)製、商品名「ピュアエースWR」)に塗工し、窒素雰囲気中60℃で2時間乾燥して、塗工厚250nmの透明導電膜を得た。この透明導電膜は、塗膜の基材への密着性も高く、光線透過率85.9%、ヘイズ3.1%、シート抵抗3,200Ω/□であり、透明導電膜として十分に高い光学特性と導電特性を有していることを確認した。   Next, the coating solution was applied to a 50 μm-thick polycarbonate film (trade name “Pure Ace WR”, manufactured by Teijin Chemicals Ltd.) as a base material, and dried at 60 ° C. for 2 hours in a nitrogen atmosphere. A transparent conductive film having a coating thickness of 250 nm was obtained. This transparent conductive film has high adhesion to the base material of the coating film, has a light transmittance of 85.9%, a haze of 3.1%, a sheet resistance of 3,200 Ω / □, and is sufficiently optical as a transparent conductive film. It was confirmed that it has characteristics and conductive characteristics.

実施例7
製造例7で得られた、例示化合物3−3を配位子に有するITO微粒子にN,N−ジメチルホルムアミドを添加し、例示化合物3−3の配位したITO微粒子2.0重量%を含む分散液を得た。該分散液に、ITO微粒子重量の10重量%のウレタン変性ポリエステル樹脂(東洋紡(株)社製、製品名「バイロンUR−8200」)、ITO微粒子重量の0.3重量部のブロック型ヘキサメチレンジイソシアネート(旭化成(株)社製、製品名「デュラネートMF−K60B」)を添加混合し、透明導電膜用塗工液(ITO微粒子2.0重量%)を得た。
Example 7
N, N-dimethylformamide was added to the ITO fine particles having the exemplified compound 3-3 as a ligand obtained in Production Example 7, and 2.0 wt% of the ITO fine particles coordinated with the exemplified compound 3-3 were included. A dispersion was obtained. In the dispersion, urethane-modified polyester resin (product name “Byron UR-8200”, manufactured by Toyobo Co., Ltd.) having a weight of 10% by weight of ITO fine particles, block type hexamethylene diisocyanate having a weight of ITO fine particles of 0.3 parts by weight. (Product name “Duranate MF-K60B” manufactured by Asahi Kasei Co., Ltd.) was added and mixed to obtain a coating liquid for transparent conductive film (ITO fine particles 2.0% by weight).

この透明導電膜用塗工液の溶液ヘイズを測定したところ、1.9%であり、透明導電膜用塗工液として十分に高い透明性を有していることが確認された。   When the solution haze of this coating liquid for transparent conductive films was measured, it was 1.9%, and it was confirmed that it had sufficiently high transparency as a coating liquid for transparent conductive films.

次いで該塗工液を、基材である厚さ50μmのポリカーボネートフイルム(帝人化成(株)製、商品名「ピュアエースWR」)に塗工し、窒素雰囲気中150℃で10時間乾燥して、塗工厚350nmの透明導電膜を得た。この透明導電膜は、塗膜の基材への密着性も高く、光線透過率89.7%、ヘイズ2.1%、シート抵抗1,900Ω/□であり、透明導電膜として十分に高い光学特性と導電特性を有していることを確認した。   Next, the coating solution was applied to a 50 μm-thick polycarbonate film (trade name “Pure Ace WR”, manufactured by Teijin Chemicals Ltd.) as a base material, and dried at 150 ° C. for 10 hours in a nitrogen atmosphere. A transparent conductive film having a coating thickness of 350 nm was obtained. This transparent conductive film has high adhesion to the base material of the coating film, has a light transmittance of 89.7%, a haze of 2.1%, a sheet resistance of 1,900 Ω / □, and is sufficiently optical as a transparent conductive film. It was confirmed that it has characteristics and conductive characteristics.

実施例8
製造例8で得られた、例示化合物4−4を配位子に有するITO微粒子にN,N−ジメチルホルムアミドを添加し、例示化合物4−4の配位したITO微粒子2.0重量%を含む、分散液を得た。該分散液に、ITO微粒子重量の5重量%のポリエーテルサルホン樹脂(ソルベイアドバンスドポリマーズ(株)社製、製品名「RADEL A 300A)を添加混合し、透明導電膜用塗工液(ITO微粒子2.0重量%)を得た。
Example 8
N, N-dimethylformamide is added to the ITO fine particles having the exemplified compound 4-4 as a ligand obtained in Production Example 8, and 2.0 wt% of the ITO fine particles coordinated with the exemplified compound 4-4 are included. A dispersion was obtained. A polyether sulfone resin (manufactured by Solvay Advanced Polymers Co., Ltd., product name “RADEL A 300A”) having a weight of 5% by weight of ITO fine particles is added to and mixed with the dispersion, and a coating liquid for transparent conductive film (ITO fine particles) 2.0% by weight).

この透明導電膜用塗工液の溶液ヘイズを測定したところ、2.8%であり、透明導電膜用塗工液として十分に高い透明性を有していることが確認された。   When the solution haze of this coating liquid for transparent conductive films was measured, it was 2.8%, and it was confirmed that the coating liquid for transparent conductive films has sufficiently high transparency.

次いで該塗工液を、基材である厚さ125μmのPENフイルム(帝人デュポンフィルム(株)製、商品名「テオネックスQ65FA」)に塗工し、減圧下150℃で3時間乾燥して、塗工厚250nmの透明導電膜を得た。この透明導電膜は、塗膜の基材への密着性も高く、光線透過率88.3%、ヘイズ2.6%、シート抵抗3,300Ω/□であり、透明導電膜として十分に高い光学特性と導電特性を有していることを確認した。   Next, the coating solution was applied to a 125 μm thick PEN film (manufactured by Teijin DuPont Films, trade name “Teonex Q65FA”), which was dried at 150 ° C. for 3 hours under reduced pressure. A transparent conductive film having a work thickness of 250 nm was obtained. This transparent conductive film has high adhesion to the base material of the coating film, has a light transmittance of 88.3%, a haze of 2.6%, a sheet resistance of 3,300 Ω / □, and is sufficiently optical as a transparent conductive film. It was confirmed that it has characteristics and conductive characteristics.

実施例9
製造例9で得られた、例示化合物2−12を配位子に有するITO微粒子に水を添加し、例示化合物2−12の配位したITO微粒子3.0重量%を含む分散液を得た。該分散液に、ITO微粒子重量の10重量%のアクリル樹脂(東亜合成(株)社製、商品名「ジュリマー AC−10S」)を添加混合し、透明導電膜用塗工液(ITO微粒子3.0重量%)を得た。
Example 9
Water was added to the ITO fine particles having the exemplified compound 2-12 as a ligand obtained in Production Example 9 to obtain a dispersion containing 3.0 wt% of the ITO fine particles coordinated with the exemplified compound 2-12. . An acrylic resin having a weight of 10% by weight of ITO fine particles (manufactured by Toagosei Co., Ltd., trade name “Jurimer AC-10S”) was added to and mixed with the dispersion, and a coating liquid for transparent conductive film (ITO fine particles 3. 0% by weight) was obtained.

この透明導電膜用塗工液の溶液ヘイズを測定したところ、1.5%であり、透明導電膜用塗工液として十分に高い透明性を有していることが確認された。   When the solution haze of this coating liquid for transparent conductive films was measured, it was 1.5%, and it was confirmed that the coating liquid for transparent conductive films has sufficiently high transparency.

次いで該塗工液を、基材である厚さ188μmのPETフイルム(東レ(株)社製、商品名「ルミラー T−60」)に塗工し、減圧下80℃で3時間乾燥して、塗工厚250nmの透明導電膜を得た。この透明導電膜は、塗膜の基材への密着性も高く、光線透過率90.1%、ヘイズ1.8%、シート抵抗2,100Ω/□であり、透明導電膜として十分に高い光学特性と導電特性を有していることを確認した。   Next, the coating solution was applied to a base material PET film having a thickness of 188 μm (trade name “Lumirror T-60” manufactured by Toray Industries, Inc.), and dried at 80 ° C. under reduced pressure for 3 hours. A transparent conductive film having a coating thickness of 250 nm was obtained. This transparent conductive film has high adhesion to the base material of the coating film, has a light transmittance of 90.1%, a haze of 1.8%, a sheet resistance of 2,100 Ω / □, and is sufficiently high as a transparent conductive film. It was confirmed that it has characteristics and conductive characteristics.

実施例10
製造例10で得られた、例示化合物3−9を配位子に有するITO微粒子に水を添加し、例示化合物3−9の配位したITO微粒子3.0重量%を含む分散液を得た。該分散液に、ITO微粒子重量の10重量%のフェノールエチレンオキサイド変性アクリレート樹脂(東亜合成(株)社製、商品名「アロニックス M−101」)、ITO微粒子重量の0.3重量%の2−メチル −1−[4―(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オン(チバ・スペシャルティ・ケミカルズ(株)社製、商品名「IRGACURE907」を添加混合し、透明導電膜用塗工液(ITO微粒子3.0重量%)を得た。
Example 10
Water was added to the ITO fine particles having the exemplified compound 3-9 as a ligand obtained in Production Example 10, to obtain a dispersion containing 3.0 wt% of the ITO fine particles coordinated with the exemplified compound 3-9. . To this dispersion, 10% by weight of the ITO fine particle weight phenol ethylene oxide modified acrylate resin (trade name “Aronix M-101” manufactured by Toa Gosei Co., Ltd.), 0.3% by weight of ITO fine particle weight of 2- Methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one (manufactured by Ciba Specialty Chemicals Co., Ltd., trade name “IRGACURE907”) was added and mixed, and coating for transparent conductive film A liquid (ITO fine particles 3.0 wt%) was obtained.

この透明導電膜用塗工液の溶液ヘイズを測定したところ、2.2%であり、透明導電膜用塗工液として十分に高い透明性を有していることが確認された。   When the solution haze of this coating liquid for transparent conductive films was measured, it was 2.2%, and it was confirmed that the coating liquid for transparent conductive films had sufficiently high transparency.

次いで該塗工液を、基材である厚さ188μmのPETフイルム(東レ(株)社製、商品名「ルミラー T−60」)に塗工し、減圧下80℃で3時間乾燥した後、高圧水銀灯(80W/cm、オゾンレス)で1000mJ/cmの照射を行って硬化させ、塗工厚250nmの透明導電膜を得た。この透明導電膜は、塗膜の基材への密着性も高く、光線透過率86.8%、ヘイズ4.0%、シート抵抗4,800Ω/□であり、透明導電膜として十分に高い光学特性と導電特性を有していることを確認した。 Next, the coating solution was applied to a base material of 188 μm thick PET film (trade name “Lumirror T-60” manufactured by Toray Industries, Inc.) and dried at 80 ° C. under reduced pressure for 3 hours. The film was cured by irradiation with 1000 mJ / cm 2 with a high-pressure mercury lamp (80 W / cm, ozone-less) to obtain a transparent conductive film having a coating thickness of 250 nm. This transparent conductive film has high adhesion to the base material of the coating film, has a light transmittance of 86.8%, a haze of 4.0%, a sheet resistance of 4,800 Ω / □, and is sufficiently high as a transparent conductive film. It was confirmed that it has characteristics and conductive characteristics.

実施例11
製造例11で得られた、例示化合物1−14を配位子に有するITO微粒子にエタノールを添加し、例示化合物1−14の配位したITO微粒子1.0重量%を含む分散液を得た。該分散液に、ITO微粒子重量の5重量%のフェノキシ樹脂(InChem社製、「PKHW−34」)、ITO微粒子重量の0.15重量%のブロック型ヘキサメチレンジイソシアネート(旭化成(株)社製、製品名「デュラネートMF−K60B」)を添加混合し、透明導電膜用塗工液(ITO微粒子1.0重量%)を得た。
Example 11
Ethanol was added to the ITO fine particles having the exemplified compound 1-14 as a ligand obtained in Production Example 11 to obtain a dispersion containing 1.0 wt% of the ITO fine particles coordinated with the exemplified compound 1-14. . In this dispersion, 5% by weight of ITO fine particle weight phenoxy resin (manufactured by InChem, “PKHW-34”), 0.15% by weight of ITO fine particle weight block type hexamethylene diisocyanate (manufactured by Asahi Kasei Corporation) The product name “Duranate MF-K60B”) was added and mixed to obtain a coating liquid for transparent conductive film (ITO fine particles 1.0 wt%).

この透明導電膜用塗工液の溶液ヘイズを測定したところ、4.8%であり、透明導電膜用塗工液として十分に高い透明性を有していることが確認された。   When the solution haze of this coating liquid for transparent conductive films was measured, it was 4.8%, and it was confirmed that the coating liquid for transparent conductive films has sufficiently high transparency.

次いで該塗工液を、基材である厚さ150μmのガラス板に塗工し、窒素雰囲気下80℃で1時間乾燥させた後、さらに窒素雰囲気下120℃で1時間乾燥させて、塗工厚150nmの透明導電膜を得た。この透明導電膜は、塗膜の基材への密着性も高く、光線透過率85.0%、ヘイズ4.9%、シート抵抗5,500Ω/□であり、透明導電膜として十分に高い光学特性と導電特性を有していることを確認した。   Next, the coating solution is applied to a glass plate having a thickness of 150 μm as a base material, dried at 80 ° C. for 1 hour in a nitrogen atmosphere, and further dried at 120 ° C. for 1 hour in a nitrogen atmosphere. A transparent conductive film having a thickness of 150 nm was obtained. This transparent conductive film has high adhesion to the substrate of the coating film, has a light transmittance of 85.0%, a haze of 4.9%, a sheet resistance of 5,500 Ω / □, and is sufficiently optical as a transparent conductive film. It was confirmed that it has characteristics and conductive characteristics.

実施例12
製造例12で得られた、例示化合物3−3を配位子に有するITO微粒子に水を添加し、例示化合物3−3の配位したITO微粒子2.5重量%を含む分散液を得た。該分散液に、ITO微粒子重量の5重量%のフェノキシ樹脂(In Chem社製、「PKHW−34」)、ITO微粒子重量の1重量%のアクリル樹脂(東亜合成(株)社製、商品名「ジュリマー AC−10S」)、ITO微粒子重量の0.15重量%のブロック型ヘキサメチレンジイソシアネート(旭化成(株)社製、製品名「デュラネートMF−K60B」)を添加混合し、透明導電膜用塗工液(ITO微粒子2.5重量%)を得た。
Example 12
Water was added to the ITO fine particles having the exemplified compound 3-3 as a ligand obtained in Production Example 12 to obtain a dispersion containing 2.5% by weight of the ITO fine particles coordinated with the exemplified compound 3-3. . In the dispersion, 5% by weight of the ITO fine particle weight phenoxy resin (manufactured by In Chem, “PKHW-34”), 1% by weight of the ITO fine particle weight acrylic resin (manufactured by Toagosei Co., Ltd., trade name “ Julimer AC-10S "), 0.15% by weight of ITO fine particle block type hexamethylene diisocyanate (manufactured by Asahi Kasei Co., Ltd., product name" Duranate MF-K60B ") was added and mixed, and coating for transparent conductive film A liquid (2.5% by weight of ITO fine particles) was obtained.

この透明導電膜用塗工液の溶液ヘイズを測定したところ、1.0%であり、透明導電膜用塗工液として十分に高い透明性を有していることが確認された。   When the solution haze of this coating liquid for transparent conductive films was measured, it was 1.0%, and it was confirmed that it had sufficiently high transparency as a coating liquid for transparent conductive films.

次いで該塗工液を、基材である厚さ150μmのガラス板に塗工し、窒素雰囲気下90℃で1時間乾燥させた後、さらに窒素雰囲気下120℃で1時間乾燥させて、塗工厚300nmの透明導電膜を得た。この透明導電膜は、塗膜の基材への密着性も高く、光線透過率90.9%、ヘイズ0.9%、シート抵抗2,300Ω/□であり、透明導電膜として十分に高い光学特性と導電特性を有していることを確認した。   Next, the coating solution is applied to a glass plate having a thickness of 150 μm as a base material, dried at 90 ° C. for 1 hour in a nitrogen atmosphere, and further dried at 120 ° C. for 1 hour in a nitrogen atmosphere. A 300 nm thick transparent conductive film was obtained. This transparent conductive film has high adhesion to the base material of the coating film, has a light transmittance of 90.9%, a haze of 0.9%, a sheet resistance of 2,300 Ω / □, and is sufficiently optical as a transparent conductive film. It was confirmed that it has characteristics and conductive characteristics.

比較例1
100mlフラスコ中に酢酸インジウム(III)248mg、2−エチルヘキサン酸スズ(II)109μl、オクタノール1.6ml、n−ジオクチルエーテル10mlを仕込み、真空中70℃で1時間加熱強攪拌し、その後常圧に戻して窒素雰囲気中150℃で2時間加熱強攪拌し、次いで窒素雰囲気中270℃で1時間加熱還流し、オクタノールの配位したITO微粒子の粗分散液を得た。該粗分散液を、沈殿溶媒にエタノール、分散溶媒にヘキサンを用いて3回遠心分離精製を繰り返し、オクタノールの配位したITO微粒子を得た。得られたITO微粒子の一部をヘキサンに分散させた希薄分散液を作成し、TEM観察したところ、ステアリルルアミンの配位したITO微粒子の平均粒子径は3nm未満の2.7nmであった。
Comparative Example 1
Into a 100 ml flask was charged 248 mg of indium (III) acetate, 109 μl of tin (II) 2-ethylhexanoate, 1.6 ml of octanol, and 10 ml of n-dioctyl ether. The mixture was heated and stirred for 2 hours at 150 ° C. in a nitrogen atmosphere, and then heated and refluxed at 270 ° C. for 1 hour in a nitrogen atmosphere to obtain a coarse dispersion of ITO fine particles coordinated with octanol. The crude dispersion was repeatedly purified by centrifugal separation three times using ethanol as the precipitation solvent and hexane as the dispersion solvent to obtain ITO fine particles coordinated with octanol. When a diluted dispersion in which a part of the obtained ITO fine particles was dispersed in hexane was prepared and observed by TEM, the average particle size of the ITO fine particles coordinated with stearyllamine was 2.7 nm, which is less than 3 nm.

次いで、得られたオクタノールの配位したITO微粒子(In+Sn=1.2mmol)と、クエン酸1.0g、N,N−ジメチルホルムアミド40mlを100mlフラスコ中に仕込み、窒素雰囲気中100℃8時間加熱攪拌して、クエン酸を配位子として有するITO微粒子の粗分散液を得た。該粗分散液を、N,N−ジメチルホルムアミドを用いて3回遠心分離精製を繰り返し、クエン酸を配位子として有するITO微粒子の沈殿物を得た。得られたITO微粒子を重水に分散させて1H NMRを測定したところ、交換前の配位子であったオクタノールに比べ、交換後の配位子であるクエン酸が9.5倍含有されており、オクタノールからクエン酸へ、配位子交換が進行していることが確認された。   Next, ITO fine particles (In + Sn = 1.2 mmol) coordinated with octanol and 1.0 g of citric acid and 40 ml of N, N-dimethylformamide were charged into a 100 ml flask, and heated and stirred at 100 ° C. for 8 hours in a nitrogen atmosphere. Thus, a coarse dispersion of ITO fine particles having citric acid as a ligand was obtained. The crude dispersion was repeatedly purified by centrifugation using N, N-dimethylformamide three times to obtain a precipitate of ITO fine particles having citric acid as a ligand. The obtained ITO fine particles were dispersed in heavy water and 1H NMR was measured. As a result, 9.5 times as much citric acid as a ligand after exchange was contained as compared with octanol as a ligand before exchange. It was confirmed that the ligand exchange proceeded from octanol to citric acid.

次いで、得られたクエン酸を配位子として有するITO微粒子と、例示化合物3−3の大環状π共役化合物67mg、N,N−ジメチルホルムアミド40mlを100mlフラスコ中に仕込み、窒素雰囲気中100℃70時間加熱攪拌して、例示化合物3−3の大環状π共役化合物を配位子として有するITO微粒子の粗分散液を得た。該粗分散液を、沈殿溶媒にジクロロメタン、分散溶媒にN,N−ジメチルホルムアミドを用いて3回遠心分離精製を繰り返し、例示化合物3−3配位ITO微粒子の沈殿物を得た。   Next, the obtained ITO fine particles having citric acid as a ligand, 67 mg of the macrocyclic π-conjugated compound of Exemplified Compound 3-3, and 40 ml of N, N-dimethylformamide were charged into a 100 ml flask, and 100 ° C. in a nitrogen atmosphere at 70 ° C. By stirring with heating for a time, a coarse dispersion of ITO fine particles having the macrocyclic π-conjugated compound of Exemplary Compound 3-3 as a ligand was obtained. The crude dispersion was repeatedly purified by centrifugal separation three times using dichloromethane as a precipitation solvent and N, N-dimethylformamide as a dispersion solvent to obtain a precipitate of exemplary compound 3-3 coordinated ITO fine particles.

次いで、得られたITO微粒子沈殿物を水に分散させ、TEM観察したところ、例示化合物3−3配位ITO微粒子の平均粒子径は2.8nmであり、反応前駆体であるオクタノール配位ITO微粒子の2.7nmからほとんど変化しておらず、配位子のみが交換されたものと考えられる。   Next, when the obtained ITO fine particle precipitate was dispersed in water and observed by TEM, the average particle diameter of the exemplified compound 3-3 coordinated ITO fine particles was 2.8 nm, and the octanol coordinated ITO fine particles as a reaction precursor It is considered that only the ligand was exchanged.

また同分散液を用いてレーザーラマンスペクトルを測定したところ、例示化合物3−3と同等のピークが観察され、本微粒子が例示化合物3−3を配位子として有するものであることが確認された。さらに同分散液の300〜800nmにおける吸収スペクトルを測定したところ、例示化合物3−3のスペクトルにおいて、400〜450nmに見られたSoret帯がブロード化し、かつ500〜600nmに見られたQ帯がほぼ確認されなくなったことから、該ITO微粒子が、大環状π共役化合物である例示化合物3−3が、ITO微粒子表面に平面配位したものであることが確認された。   Further, when the laser Raman spectrum was measured using the same dispersion, a peak equivalent to that of Exemplified Compound 3-3 was observed, and it was confirmed that the fine particles had Exemplified Compound 3-3 as a ligand. . Further, when the absorption spectrum of the dispersion at 300 to 800 nm was measured, in the spectrum of Exemplified Compound 3-3, the Soret band seen at 400 to 450 nm was broadened, and the Q band seen at 500 to 600 nm was almost the same. Since it was not confirmed, it was confirmed that Exemplified Compound 3-3 in which the ITO fine particles are macrocyclic π-conjugated compounds were coordinated on the surface of the ITO fine particles.

得られた、例示化合物3−3を配位子に有するITO微粒子に水を添加し、例示化合物3−3の配位したITO微粒子1.5重量%を含む、分散液を得た。この分散液の溶液ヘイズを測定したところ、4.2%であり、透明導電膜用塗工液として十分に高い透明性を有していることが確認された。   Water was added to the obtained ITO fine particles having Exemplified Compound 3-3 as a ligand, to obtain a dispersion containing 1.5% by weight of ITO fine particles coordinated with Exemplified Compound 3-3. When the solution haze of this dispersion was measured, it was 4.2%, and it was confirmed that the dispersion had sufficiently high transparency as a coating liquid for transparent conductive film.

次いで該分散液を、基材である厚さ50μmのポリカーボネートフイルム(帝人化成(株)製、商品名「ピュアエースWR」)に塗工し、窒素雰囲気中90℃で5時間乾燥して、塗工厚約350nmの塗工膜を得た。この塗工膜の塗膜の基材への密着性は高く、光線透過率85.4%、ヘイズ4.2%と高い光学特性を有していたものの、シート抵抗は7.8×10Ω/□であり、透明導電膜として十分に高い導電性を有していないことが確認された。すなわち本微粒子は、平均粒子径が3nm未満と非常に小さかったため、微粒子に占める配位子の割合が高く、十分な導電性を発現できなかったものと考えられる。 Next, the dispersion was applied to a base material polycarbonate film having a thickness of 50 μm (trade name “Pure Ace WR” manufactured by Teijin Chemicals Ltd.) and dried at 90 ° C. for 5 hours in a nitrogen atmosphere. A coating film having a thickness of about 350 nm was obtained. Although the adhesiveness of the coating film to the base material was high and had high optical properties such as light transmittance of 85.4% and haze of 4.2%, the sheet resistance was 7.8 × 10 7. Ω / □, and it was confirmed that the transparent conductive film did not have sufficiently high conductivity. That is, it is considered that the fine particles had a very small average particle size of less than 3 nm, and therefore the ratio of the ligand in the fine particles was high, and sufficient conductivity could not be expressed.

比較例2
配位子である大環状π共役化合物を、一般式3−16
Comparative Example 2
The macrocyclic π-conjugated compound as a ligand is represented by the general formula 3-16.

Figure 2015003941
Figure 2015003941

に変更した以外は、製造例1と同様の手法で、例示化合物3−16の大環状π共役化合物を配位子として有するITO微粒子の沈殿物を得た。 A precipitate of ITO fine particles having the macrocyclic π-conjugated compound of Exemplified Compound 3-16 as a ligand was obtained in the same manner as in Production Example 1 except that

次いで、得られたITO微粒子沈殿物を水に分散させ、TEM観察したところ、例示化合物3−16配位ITO微粒子の平均粒子径は11.9nmであり、反応前駆体であるステアリルアミン配位ITO微粒子の11.8nmからほとんど変化しておらず、配位子のみが交換されたものと考えられる。   Next, when the obtained ITO fine particle precipitate was dispersed in water and observed by TEM, the average particle diameter of the exemplified compound 3-16 coordinated ITO fine particle was 11.9 nm, and stearylamine coordinated ITO as a reaction precursor There is almost no change from 11.8 nm of the fine particles, and it is considered that only the ligand was exchanged.

また同分散液を用いてレーザーラマンスペクトルを測定したところ、例示化合物3−16と同等のピークが観察され、本微粒子が例示化合物3−16を配位子として有するものであることが確認された。   Further, when the laser Raman spectrum was measured using the same dispersion, a peak equivalent to that of Exemplified Compound 3-16 was observed, and it was confirmed that the fine particles had Exemplified Compound 3-16 as a ligand. .

さらに同分散液の300〜800nmにおける吸収スペクトルを測定したところ、例示化合物3−16のスペクトルにおいて、400〜500nmに見られたSoret帯と500〜600nmに見られたQ帯はほとんど変化しておらず、本微粒子は、大環状π共役化合物である例示化合物3−16が平面配位しておらず、リンカー部のアミノ基で配位した構造であることが確認された。すなわち、図1中の(C)のような構造であると考えられる。   Further, when the absorption spectrum of the dispersion at 300 to 800 nm was measured, in the spectrum of Exemplified Compound 3-16, the Soret band observed at 400 to 500 nm and the Q band observed at 500 to 600 nm were hardly changed. The present fine particles were confirmed to have a structure in which the exemplified compound 3-16, which is a macrocyclic π-conjugated compound, was not coordinated in a plane but was coordinated by an amino group in the linker moiety. That is, it is considered that the structure is as shown in FIG.

得られた、例示化合物3−16を配位子に有するITO微粒子に水を添加し、例示化合物3−16の配位したITO微粒子1.5重量%を含む、分散液を得た。この分散液の溶液ヘイズを測定したところ、4.2%であり、高い透明性を有していることが確認された。   Water was added to the obtained ITO fine particles having the exemplified compound 3-16 as a ligand to obtain a dispersion liquid containing 1.5% by weight of ITO fine particles coordinated with the exemplified compound 3-16. When the solution haze of this dispersion liquid was measured, it was 4.2% and it was confirmed that it had high transparency.

次いで該分散液を、基材である厚さ50μmのポリカーボネートフイルム(帝人化成(株)製、商品名「ピュアエースWR」)に塗工し、窒素雰囲気中90℃で5時間乾燥して、塗工厚350nmの塗工膜を得た。この塗工膜は、塗膜の基材への密着性は高く、光線透過率85.1%、ヘイズ4.5%と高い光学特性を有していたものの、シート抵抗は10Ω/□以上であり、透明導電膜として十分に高い導電特性を有していないことが確認された。すなわち、大環状π共役化合物である例示化合物3−16が、ITO微粒子に対して平面方向で配位しなかったため、大環状π共役化合物とITOとの間に軌道の相互作用が生じず、配位子である大環状π共役化合物が導電性を発現できなかった、さらにITO微粒子間の距離が離れすぎてしまったために、導電性を発現することができなかったものと考えられる。 Next, the dispersion was applied to a base material polycarbonate film having a thickness of 50 μm (trade name “Pure Ace WR” manufactured by Teijin Chemicals Ltd.) and dried at 90 ° C. for 5 hours in a nitrogen atmosphere. A coating film having a thickness of 350 nm was obtained. Although this coating film had high adhesion to the base material of the coating film and high optical properties such as light transmittance of 85.1% and haze of 4.5%, the sheet resistance was 10 8 Ω / □. As described above, it was confirmed that the transparent conductive film does not have sufficiently high conductive properties. That is, since Exemplified Compound 3-16, which is a macrocyclic π-conjugated compound, did not coordinate in the planar direction with respect to the ITO fine particles, no orbital interaction occurred between the macrocyclic π-conjugated compound and ITO. It is considered that the macrocyclic π-conjugated compound as a ligand could not exhibit conductivity, and further, the distance between the ITO fine particles was too far away, so that the conductivity could not be expressed.

比較例3
製造例4で得られた、例示化合物4‐4を配位子に有するITO微粒子に水を添加し、例示化合物4−4の配位したITO微粒子55.0重量%を含む、透明導電膜用塗工液を得た。この塗工液の溶液ヘイズを測定したところ、21.9%であり、透明導電膜用塗工液として十分に高い透明性を有していないことが確認された。すなわち本分散液は、大環状π共役化合物を配位子に有するITO微粒子の含量が高いために、微粒子同士の凝集が発生し、透明導電膜用塗工液として十分な透明性を有するものではなかった。
Comparative Example 3
Water is added to the ITO fine particles having Exemplified Compound 4-4 as a ligand obtained in Production Example 4, and contains 55.0% by weight of ITO fine particles coordinated with Exemplified Compound 4-4. A coating solution was obtained. When the solution haze of this coating liquid was measured, it was 21.9%, and it was confirmed that it did not have sufficiently high transparency as a coating liquid for transparent conductive films. That is, since this dispersion has a high content of ITO fine particles having a macrocyclic π-conjugated compound as a ligand, aggregation of the fine particles occurs, and the dispersion has sufficient transparency as a coating liquid for a transparent conductive film. There wasn't.

Figure 2015003941
Figure 2015003941

本発明の透明導電膜用塗工液は、特定のITO微粒子が分散媒に含有されたものであり、該ITO微粒子の配位子に平面方向で配位可能な大環状π共役化合物を使用することで、該ITO微粒子に特異な電気特性を付与し、塗工後に高温で加熱して有機物を除去することなく、優れた透明性と導電性を発現する透明導電膜が得られるものである。すなわち、プラスチックフイルム等種々の基材への応用が可能となることから、産業に大きく貢献するものと考えられる。   The coating liquid for transparent conductive film of the present invention contains specific ITO fine particles contained in a dispersion medium, and uses a macrocyclic π-conjugated compound capable of coordinating in a plane direction with a ligand of the ITO fine particles. Thus, the ITO fine particles are imparted with specific electrical characteristics, and a transparent conductive film exhibiting excellent transparency and conductivity can be obtained without removing organic substances by heating at a high temperature after coating. That is, since it can be applied to various base materials such as plastic film, it is considered to contribute greatly to the industry.

Claims (6)

配位子である大環状π共役化合物が、粒子表面に対して平面方向で配位しており、透過型電子顕微鏡により測定される平均粒子径が3〜60nmの範囲であるITO微粒子を、0.1〜50重量%含有することを特徴とする、透明導電膜用塗工液。 A macrocyclic π-conjugated compound as a ligand is coordinated in the plane direction with respect to the particle surface, and ITO fine particles having an average particle diameter measured by a transmission electron microscope in the range of 3 to 60 nm The coating liquid for transparent conductive films characterized by containing 0.1 to 50weight%. 大環状π共役化合物が、一般式(1)〜(4)
Figure 2015003941
(式中、R〜R48はそれぞれ独立に、水素原子、ハロゲン原子、アミノ基、カルボキシル基、チオール基、ヒドロキシル基、炭素数1〜10の直鎖、分岐または環状アルキル基;末端にアミノ基、カルボキシル基、チオール基、ヒドロキシル基より選ばれるいずれかの官能基を有する炭素数1〜10の直鎖、分岐または環状のアルキル基;炭素鎖中に、酸素原子、硫黄原子、カルボニル基、エステル基、アミド基、イミノ基を含有する炭素数1〜10の直鎖または分岐または環状のアルキル基を表す。)
で表されることを特徴とする、請求項1に記載の透明導電膜用塗工液。
Macrocyclic π-conjugated compounds are represented by the general formulas (1) to (4).
Figure 2015003941
Wherein R 1 to R 48 are each independently a hydrogen atom, a halogen atom, an amino group, a carboxyl group, a thiol group, a hydroxyl group, a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms; A linear, branched or cyclic alkyl group having 1 to 10 carbon atoms having any functional group selected from a group, a carboxyl group, a thiol group and a hydroxyl group; an oxygen atom, a sulfur atom, a carbonyl group in the carbon chain; A C1-C10 linear, branched or cyclic alkyl group containing an ester group, an amide group or an imino group is represented.)
It is represented by these, The coating liquid for transparent conductive films of Claim 1 characterized by the above-mentioned.
溶液ヘイズが10%以下であることを特徴とする、請求項1または2に記載の透明導電膜用塗工液。 Solution haze is 10% or less, The coating liquid for transparent conductive films of Claim 1 or 2 characterized by the above-mentioned. 請求項1〜3のいずれかに記載の透明導電膜用塗工液を基材状に塗工し、200℃以下で乾燥することにより得られることを特徴とする、透明導電膜。 A transparent conductive film obtained by applying the coating liquid for transparent conductive film according to claim 1 to a substrate and drying at 200 ° C. or lower. シート抵抗が10,000Ω/□以下であることを特徴とする請求項4に記載の透明導電膜。 The transparent conductive film according to claim 4, wherein the sheet resistance is 10,000 Ω / □ or less. JIS K 7361−1に準拠し測定した光線透過率が80%以上、かつJIS K 7136に準拠し測定したヘイズが5%以下であることを特徴とする請求項4または5に記載の透明導電膜。 6. The transparent conductive film according to claim 4, wherein the light transmittance measured in accordance with JIS K 7361-1 is 80% or more and the haze measured in accordance with JIS K 7136 is 5% or less. .
JP2013128193A 2013-06-19 2013-06-19 Coating liquid for transparent conductive film and transparent conductive film using the same Active JP6136623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013128193A JP6136623B2 (en) 2013-06-19 2013-06-19 Coating liquid for transparent conductive film and transparent conductive film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013128193A JP6136623B2 (en) 2013-06-19 2013-06-19 Coating liquid for transparent conductive film and transparent conductive film using the same

Publications (2)

Publication Number Publication Date
JP2015003941A true JP2015003941A (en) 2015-01-08
JP6136623B2 JP6136623B2 (en) 2017-05-31

Family

ID=52300107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013128193A Active JP6136623B2 (en) 2013-06-19 2013-06-19 Coating liquid for transparent conductive film and transparent conductive film using the same

Country Status (1)

Country Link
JP (1) JP6136623B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172151A1 (en) * 2018-03-08 2019-09-12 富士フイルム株式会社 Method for producing indium tin oxide particles and method for producing curable composition
JP2019167252A (en) * 2018-03-22 2019-10-03 三菱マテリアル株式会社 Metal oxide fine particle and method of producing the same, liquid dispersion for forming infrared shielding film and method of producing the same, method of forming infrared shielding film, and base material provided with infrared shielding film
CN112521410A (en) * 2020-12-29 2021-03-19 河南大学 InCe6 porphyrin assembly, preparation method and application thereof
US11365129B2 (en) 2017-02-06 2022-06-21 Mitsubishi Materials Corporation Method for producing metal oxide particles, method for producing dispersion of metal oxide particles, and method for producing infrared shielding film
US11535523B2 (en) 2018-02-14 2022-12-27 Mitsubishi Materials Corporation Method for producing metal oxide dispersion liquid and method for producing infrared-radiation-shielding film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143792A (en) * 1994-11-17 1996-06-04 Mitsubishi Materials Corp Composition for forming conductive film and formation of conductive film
JP2007137917A (en) * 2005-11-14 2007-06-07 Mitsubishi Materials Corp Cold-setting or thermosetting water-based clear electroconductive coating material, its production method, and coating film
JP2009084122A (en) * 2007-10-01 2009-04-23 Dowa Holdings Co Ltd Ito powder and its manufacturing method, coating material for transparent electroconductive material, and transparent electroconductive film
WO2011114713A1 (en) * 2010-03-15 2011-09-22 国立大学法人筑波大学 Nanoink composition
JP2012069560A (en) * 2010-09-21 2012-04-05 Konica Minolta Holdings Inc Organic electronics element, electrode, manufacturing method of electrode, and manufacturing method of organic electronics element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143792A (en) * 1994-11-17 1996-06-04 Mitsubishi Materials Corp Composition for forming conductive film and formation of conductive film
JP2007137917A (en) * 2005-11-14 2007-06-07 Mitsubishi Materials Corp Cold-setting or thermosetting water-based clear electroconductive coating material, its production method, and coating film
JP2009084122A (en) * 2007-10-01 2009-04-23 Dowa Holdings Co Ltd Ito powder and its manufacturing method, coating material for transparent electroconductive material, and transparent electroconductive film
WO2011114713A1 (en) * 2010-03-15 2011-09-22 国立大学法人筑波大学 Nanoink composition
JP2012069560A (en) * 2010-09-21 2012-04-05 Konica Minolta Holdings Inc Organic electronics element, electrode, manufacturing method of electrode, and manufacturing method of organic electronics element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11365129B2 (en) 2017-02-06 2022-06-21 Mitsubishi Materials Corporation Method for producing metal oxide particles, method for producing dispersion of metal oxide particles, and method for producing infrared shielding film
US11535523B2 (en) 2018-02-14 2022-12-27 Mitsubishi Materials Corporation Method for producing metal oxide dispersion liquid and method for producing infrared-radiation-shielding film
WO2019172151A1 (en) * 2018-03-08 2019-09-12 富士フイルム株式会社 Method for producing indium tin oxide particles and method for producing curable composition
JP2019167252A (en) * 2018-03-22 2019-10-03 三菱マテリアル株式会社 Metal oxide fine particle and method of producing the same, liquid dispersion for forming infrared shielding film and method of producing the same, method of forming infrared shielding film, and base material provided with infrared shielding film
JP7020223B2 (en) 2018-03-22 2022-02-16 三菱マテリアル株式会社 Metal oxide fine particles and their manufacturing method, dispersion liquid for forming an infrared shielding film and its manufacturing method, a method for forming an infrared shielding film, and a base material with an infrared shielding film.
US11796725B2 (en) 2018-03-22 2023-10-24 Mitsubishi Materials Corporation Metal oxide microparticles, method for producing same, dispersion for forming infrared-shielding film, method for producing same, method for forming infrared-shielding film, and base material having infrared-shielding film
CN112521410A (en) * 2020-12-29 2021-03-19 河南大学 InCe6 porphyrin assembly, preparation method and application thereof

Also Published As

Publication number Publication date
JP6136623B2 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
JP6136623B2 (en) Coating liquid for transparent conductive film and transparent conductive film using the same
EP2305402B1 (en) Method for producing silver-containing powder and conductive paste using the same
US9153354B2 (en) Compositions comprising conductive particles with surface-modified nanoparticles covalently attached thereto, and methods of making
TWI583707B (en) Metal particle dispersion, article,sintered film and method for producing the sintered film using the dispersion
US9803098B2 (en) Conductive ink
JP6136622B2 (en) Aqueous coating liquid for transparent conductive film and transparent conductive film using the same
US20160128187A1 (en) Flexible and transparent electrode and manufacturing method thereof
TW201244933A (en) Conductive laminate and touch panel
US20090011226A1 (en) Conductive Polymer Multilayer Body
CN102649882B (en) Increase the manufacture method of reflective transparent film composition, light-emitting component and light-emitting component
JP2007077479A (en) Composite particle powder, dispersion liquid or paste thereof and production method therefor
TW201502166A (en) Solution of aromatic polyamide for producing display element, optical element, or illumination element
Lee et al. Highly flexible transparent electrodes using a silver nanowires-embedded colorless polyimide film via chemical modification
JP5857619B2 (en) Transparent conductive film and method for producing the same
US20140211373A1 (en) Organic-inorganic composite and method for manufacturing the same
JP5861415B2 (en) Metal oxide fine particle dispersion and transparent conductive film using the same
JP6007669B2 (en) Metal oxide fine particle dispersion and transparent conductive film using the same
JP6414085B2 (en) Method for producing metal nanoparticles
KR101321414B1 (en) Resin composition for hard coating hanving antiblocking and antistatic property and hard coating film using the same
JP2012160290A (en) Method for producing conductive complex
CN103052481A (en) Process for producing metal nanoparticle composite
JP5005362B2 (en) Silver particle dispersion and method for producing the same
JP6077946B2 (en) ITO nanoparticles and manufacturing method thereof
WO2017134769A1 (en) Metal film-forming composition and metal film-forming method
JP5991067B2 (en) Coating liquid for solvent-resistant transparent conductive film and solvent-resistant transparent conductive film comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170417

R151 Written notification of patent or utility model registration

Ref document number: 6136623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151