JP2014519712A - Solar cell substrate, manufacturing method thereof, and solar cell using the same - Google Patents

Solar cell substrate, manufacturing method thereof, and solar cell using the same Download PDF

Info

Publication number
JP2014519712A
JP2014519712A JP2014514811A JP2014514811A JP2014519712A JP 2014519712 A JP2014519712 A JP 2014519712A JP 2014514811 A JP2014514811 A JP 2014514811A JP 2014514811 A JP2014514811 A JP 2014514811A JP 2014519712 A JP2014519712 A JP 2014519712A
Authority
JP
Japan
Prior art keywords
solar cell
metal
substrate
layer
diffusion prevention
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014514811A
Other languages
Japanese (ja)
Other versions
JP5789716B2 (en
Inventor
キュン−ボ キム、
ユン−ジュン パク、
ジェ−フン ベク、
ジョン−サン キム、
ヨン−グン キム、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Co Ltd
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110056131A external-priority patent/KR101228772B1/en
Priority claimed from KR1020110056132A external-priority patent/KR101228735B1/en
Priority claimed from KR1020110056130A external-priority patent/KR101304710B1/en
Priority claimed from KR1020110057115A external-priority patent/KR101253907B1/en
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2014519712A publication Critical patent/JP2014519712A/en
Application granted granted Critical
Publication of JP5789716B2 publication Critical patent/JP5789716B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本発明の一実施形態による太陽電池基板は、下部基板と;前記下部基板の上部に形成される下部電極と;前記下部基板と下部電極との間に一つ又は二つ以上の金属層からなる金属拡散防止膜とを含み、前記金属拡散防止膜が二つ以上の金属層からなる場合に、相互に接する金属層は異種の金属からなることができる。また、本発明の他の実施形態による太陽電池は、下部基板と、前記下部基板の上部に形成される下部電極と、前記下部基板と下部電極との間に一つ又は二つ以上の金属層からなる金属拡散防止膜とを含み、前記金属拡散防止膜が二つ以上の金属層からなる場合に、相互に接する金属層は異種の金属からなる、太陽電池基板と;前記太陽電池基板上に形成されたp型光吸収層と;前記光吸収層上に形成されたn型バッファ層と;前記バッファ層上に形成された透明窓と;前記透明窓上に形成された上部電極とを含むことができる。  A solar cell substrate according to an embodiment of the present invention includes a lower substrate; a lower electrode formed on the lower substrate; and one or more metal layers between the lower substrate and the lower electrode. When the metal diffusion prevention film includes two or more metal layers, the metal layers in contact with each other can be made of different metals. Also, the solar cell according to another embodiment of the present invention includes a lower substrate, a lower electrode formed on the lower substrate, and one or more metal layers between the lower substrate and the lower electrode. A metal diffusion prevention film comprising: a solar cell substrate, wherein the metal diffusion prevention film comprises two or more metal layers, and the metal layers in contact with each other are made of different metals; and on the solar cell substrate A p-type light absorption layer formed; an n-type buffer layer formed on the light absorption layer; a transparent window formed on the buffer layer; and an upper electrode formed on the transparent window. be able to.

Description

本発明は、CI(G)S太陽電池基板とその製造方法及び太陽電池に関する。   The present invention relates to a CI (G) S solar cell substrate, a manufacturing method thereof, and a solar cell.

地球の温暖化、燃料資源の枯渇、環境汚染等の影響で、化石燃料を用いてエネルギーを採取する伝統的なエネルギー採取方法は次第に限界に達してきている。特に、石油燃料の場合、予想される石油の埋蔵量は専門家によって異なるが、近いうちに枯渇することが見込まれている。   Due to the global warming, depletion of fuel resources, environmental pollution, etc., traditional energy harvesting methods that harvest energy using fossil fuels are gradually reaching their limits. In particular, in the case of petroleum fuels, the expected reserves of oil vary from expert to expert, but are expected to be depleted soon.

また、京都議定書に代表されるエネルギー気候協約では、化石燃料の燃焼により生成される二酸化炭素の排出を減少させることが強制的に求められている。したがって、その効力が現在の締約国のみならず後々には世界各国にまで及んで化石燃料の年間使用量に制約をかけることは明白である。   In addition, energy and climate agreements represented by the Kyoto Protocol require that carbon dioxide emissions generated by fossil fuel combustion be reduced. Therefore, it is clear that its effectiveness extends not only to the current Contracting Party but also to other countries around the world and restricts the annual consumption of fossil fuels.

化石燃料の代替として用いられる最も代表的なエネルギー源としては、原子力発電が挙げられる。原子力発電は、原料となるウランやプルトニウムから採取可能な単位重量当たりのエネルギー量が大きく、二酸化炭素等の温室ガスが発生しないため、上記石油等の化石燃料の代替となる有力な無限の代替エネルギー源として脚光を浴びてきている。   The most representative energy source used as a substitute for fossil fuels is nuclear power generation. Nuclear power has a large amount of energy per unit weight that can be collected from uranium and plutonium as raw materials, and does not generate greenhouse gases such as carbon dioxide. It has been in the limelight as a source.

しかしながら、旧ソ連のチェルノブイリ原子力発電所や東日本大震災による日本の福島原子力発電所等の爆発事故をきっかけに、無限の清浄エネルギー源と認識されていた原子力への安全性が再検討されており、その結果、原子力ではなく他の代替エネルギーを導入することがかつてないほどに必要とされている。   However, the safety of nuclear power, which was recognized as an infinite clean energy source, has been re-examined following the explosion of the Soviet Chernobyl nuclear power plant and the Fukushima nuclear power plant in Japan caused by the Great East Japan Earthquake. As a result, there is an unprecedented need to introduce alternative energy instead of nuclear power.

その他の代替エネルギーとして多く用いられているエネルギー源としては水力発電が挙げられるが、上記水力発電は、地形的な因子と気候的な因子によって多くの影響を受けるため、その使用が制限され得る。また、その他の代替エネルギー源も、発電量が少ないか又は使用地域が大きく制限される等の理由で、化石燃料の代替手段として用いられるのが困難である。   As another alternative energy source, hydroelectric power generation is cited as an energy source. However, the use of hydroelectric power generation is influenced by topographical factors and climatic factors, and thus its use can be limited. Also, other alternative energy sources are difficult to use as alternatives to fossil fuels, for example, because they generate less power or are heavily restricted in the areas where they are used.

これに対し、太陽電池は、適当な日射量が保障されるだけでどこでも用いることができる上、発電容量と設備規模がほぼ直線的に比例するため、家庭用のような小容量需要に用いられる場合は、建物の屋上等に小面積で電池板を設置することにより発電が可能となるという長所を有する。よって、世界中でその使用が増加しており、これに関連した研究も増加している。   On the other hand, solar cells can be used anywhere as long as the appropriate amount of solar radiation is guaranteed, and the power generation capacity and equipment scale are almost linearly proportional, so they are used for small-capacity demands for home use. The case has an advantage that power can be generated by installing a battery plate with a small area on the roof of a building. Therefore, its use is increasing all over the world, and research related to this is also increasing.

太陽電池は、半導体の原理を用いたものであり、p‐n接合された半導体に一定水準以上のエネルギーを備えた光を照射する場合、上記半導体の価電子が自由に移動することができる価電子として励起されて電子と正孔の対(EHP:electron hole pair)が生成される。生成された電子と正孔は、互いに反対側に位置する電極に移動して起電力を発生させる。   A solar cell uses the principle of a semiconductor. When a semiconductor having a pn junction is irradiated with light having a certain level of energy, the valence electrons of the semiconductor can move freely. When excited as electrons, pairs of electrons and holes (EHP) are generated. The generated electrons and holes move to electrodes located on opposite sides to generate an electromotive force.

上記太陽電池の最初の形態のシリコン系太陽電池は、シリコン基板に不純物(B)をドープしてp型半導体を形成させた後、その上に他の不純物(P)をドープして層の一部をn型半導体化することによりp‐n接合がなされるようにしたものであり、通常、第1世代太陽電池と呼ばれる。   The silicon-based solar cell in the first form of the solar cell described above is formed by doping a silicon substrate with an impurity (B) to form a p-type semiconductor and then doping another impurity (P) thereon. The part is made to be an n-type semiconductor so that a pn junction is formed, and is usually called a first generation solar cell.

上記シリコン系太陽電池は、比較的高いエネルギー変換効率とセル変換効率(実験室における最高のエネルギー変換効率に対する量産時の変換効率の比)を有するため、商用化の可能性が最も高い。しかしながら、上記シリコン系太陽電池モジュールを製造するためには、まず、素材からインゴットを製造し、上記インゴットをウエハ化した後にセルを製造してモジュール化するといった多少複雑な工程段階を経なければならず、バルク材質の材料を用いることから材料消費が増加して製造費用が高くなるという問題がある。   The silicon-based solar cell has a relatively high energy conversion efficiency and cell conversion efficiency (ratio of conversion efficiency at the time of mass production to the highest energy conversion efficiency in a laboratory), and thus has the highest possibility of commercialization. However, in order to manufacture the silicon-based solar cell module, first, an ingot is manufactured from a raw material, and after the ingot is made into a wafer, a cell is manufactured and modularized, and thus, a somewhat complicated process step is required. However, since a bulk material is used, there is a problem that material consumption increases and manufacturing costs increase.

このようなシリコン系太陽電池の短所を解決するために、第2世代太陽電池と呼ばれる、いわゆる、薄膜型太陽電池が提案されている。薄膜型太陽電池は、上述した過程で製造されるのではなく、基板上に必要な薄膜層を順次積層する形で製造されるため、その過程が単純で厚さが薄くて材料費が低いという長所を有する。   In order to solve the disadvantages of such silicon-based solar cells, so-called thin-film solar cells called second-generation solar cells have been proposed. Thin-film solar cells are not manufactured in the above-described process, but are manufactured by sequentially laminating necessary thin-film layers on a substrate, so that the process is simple, thin and low in material cost. Has advantages.

しかしながら、上記シリコン系太陽電池と比べてエネルギー変換効率が高くないため、商用化には未だ多くの困難があった。しかしながら、高エネルギー変換効率を有する薄膜型太陽電池が一部開発されて商用化が推進されている。   However, since the energy conversion efficiency is not high as compared with the silicon solar cell, there are still many difficulties in commercialization. However, some thin-film solar cells having high energy conversion efficiency have been developed and commercialized.

その中の一つとして、CI(G)S系太陽電池が挙げられる。上記太陽電池は、銅(Cu)、インジウム(In)、ゲルマニウム(Ge)(ゲルマニウムが含まれない場合はCISと称する)、セレニウム(Se)を含むCI(G)S化合物半導体を基本とするものである。   One of them is a CI (G) S solar cell. The solar cell is based on a CI (G) S compound semiconductor containing copper (Cu), indium (In), germanium (Ge) (referred to as CIS when germanium is not included), and selenium (Se). It is.

上記半導体は、3つ又は4つの元素を含んでいるため、元素の含量を調節することによりバンドギャップの幅を制御してエネルギー変換効率を上昇させることができるという長所を有する。なお、セレニウム(Se)を硫黄(S)に替えたりセレニウム(Se)を硫黄(S)と共に用いたりする場合もある。本発明では、上記の場合をすべてCI(G)S太陽電池とみなす。   Since the semiconductor contains three or four elements, the energy conversion efficiency can be increased by controlling the band gap width by adjusting the element content. In some cases, selenium (Se) is replaced with sulfur (S) or selenium (Se) is used together with sulfur (S). In the present invention, all the above cases are regarded as CI (G) S solar cells.

CIGS(ゲルマニウムが含まれた場合)太陽電池は、最下層に下部基板があり、上記下部基板上に電極として用いられる下部電極が形成される。通常、上記下部基板と下部電極を含んで太陽電池基板と称する。上記下部電極上には、p型半導体としての光吸収層(CIGS)、n型半導体としてのバッファ層(例えば、CdS)、透明窓、上部電極が順次形成される。   A CIGS (when germanium is included) solar cell has a lower substrate in the lowermost layer, and a lower electrode used as an electrode is formed on the lower substrate. In general, the lower substrate and the lower electrode are referred to as a solar cell substrate. On the lower electrode, a light absorption layer (CIGS) as a p-type semiconductor, a buffer layer (for example, CdS) as an n-type semiconductor, a transparent window, and an upper electrode are sequentially formed.

一方、上記下部基板には、通常、ガラスが用いられてきた。上記ガラス内にはNaが含まれており、上記NaはCIGS層に拡散されて太陽電池の開放電圧と忠実度を高める役割をするものと知られている。しかしながら、上記適量のNaは、太陽電池の効率を向上させることはできるが、過度に拡散される場合には却って太陽電池の効率を低下させるという問題を有する。   On the other hand, glass has generally been used for the lower substrate. It is known that Na is contained in the glass, and the Na is diffused in the CIGS layer and plays a role of increasing the open-circuit voltage and fidelity of the solar cell. However, although the appropriate amount of Na can improve the efficiency of the solar cell, it has a problem of reducing the efficiency of the solar cell when excessively diffused.

最近、高価で大量生産され、定型化された形態でのみ用いることができるガラス基板の代わりに、柔軟性基板を用いようとする試みが多数あった。柔軟性基板は、ガラス基板と比べ、低価であり、ロールツーロール(Roll to Roll)方式による太陽電池の製造を可能にし、多様な形で加工されることができるため、建物一体型モジュール(BIPV)、航空宇宙用等の多様な用途に用いられることができる。上記柔軟性基板としては、ステンレス鋼、アルミニウムホイル、ポリイミドフィルム等の金属板やプラスチック系の基板が多く用いられる。しかしながら、上記柔軟性基板の場合、Feをはじめとした多数の不純物が含まれており、この不純物が下部電極やCIGS層に拡散されて太陽電池の効率を低下させる問題をもたらす。   Recently, there have been many attempts to use flexible substrates instead of glass substrates that are expensive, mass-produced, and can only be used in a standardized form. The flexible substrate is less expensive than the glass substrate, enables the production of solar cells by the roll-to-roll method, and can be processed in various forms. BIPV), aerospace use and the like. As the flexible substrate, a metal plate such as stainless steel, aluminum foil, polyimide film, or a plastic substrate is often used. However, in the case of the flexible substrate, a large number of impurities including Fe are contained, and this impurity is diffused into the lower electrode and the CIGS layer, thereby causing a problem of reducing the efficiency of the solar cell.

従来は、ガラス基板を用いる場合にはNaの過度な拡散を抑制し、柔軟性基板における不純物の拡散を抑制するために、単一層の拡散防止膜を形成する技術が適用されていた。   Conventionally, when a glass substrate is used, a technique of forming a single-layer diffusion prevention film has been applied to suppress excessive diffusion of Na and suppress diffusion of impurities in a flexible substrate.

しかしながら、太陽電池の薄膜化、軽量化等が求められるにつれ、上記拡散防止膜の厚さが非常に薄くなるため、上記単一層の拡散防止膜を用いる場合は効果的な拡散防止効果が確保できないという問題が新たに生じた。   However, as the thickness and weight of solar cells are required, the thickness of the anti-diffusion film becomes very thin. Therefore, when the single-layer anti-diffusion film is used, an effective anti-diffusion effect cannot be ensured. A new problem has arisen.

また、太陽電池の性能を改善する役割をするNaの添加を必要とすることがあるが、上記拡散防止膜を用いる場合はNaの拡散が抑制されるため、これを補完できる技術が求められている。   Moreover, although addition of Na which plays the role which improves the performance of a solar cell may be required, when the said diffusion prevention film is used, since the spreading | diffusion of Na is suppressed, the technique which can supplement this is calculated | required. Yes.

本発明は、太陽電池の下部基板からの不純物等の拡散を抑制することにより太陽電池の効率を向上させた太陽電池基板、その製造方法及び太陽電池を提供する。   The present invention provides a solar cell substrate in which the efficiency of the solar cell is improved by suppressing diffusion of impurities and the like from the lower substrate of the solar cell, a manufacturing method thereof, and a solar cell.

本発明の一実施形態による太陽電池基板は、下部基板と、上記下部基板の上部に形成される下部電極と、上記下部基板と下部電極との間に一つ又は二つ以上の金属層からなる金属拡散防止膜とを含み、上記金属拡散防止膜が二つ以上の金属層からなる場合に、相互に接する金属層は異種の金属からなることができる。   A solar cell substrate according to an embodiment of the present invention includes a lower substrate, a lower electrode formed on the lower substrate, and one or more metal layers between the lower substrate and the lower electrode. When the metal diffusion prevention film includes two or more metal layers, the metal layers in contact with each other can be made of different metals.

本発明の他の実施形態による太陽電池は、下部基板と、上記下部基板の上部に形成される下部電極と、上記下部基板と下部電極との間に一つ又は二つ以上の金属層からなる金属拡散防止膜とを含み、上記金属拡散防止膜が二つ以上の金属層からなる場合に、相互に接する金属層は異種の金属からなる、太陽電池基板と;上記太陽電池基板上に形成されたp型光吸収層と;上記光吸収層上に形成されたn型バッファ層と;上記バッファ層上に形成された透明窓と;上記透明窓上に形成された上部電極とを含むことができる。   A solar cell according to another embodiment of the present invention includes a lower substrate, a lower electrode formed on the lower substrate, and one or more metal layers between the lower substrate and the lower electrode. A metal diffusion prevention film, and when the metal diffusion prevention film is composed of two or more metal layers, the metal layer in contact with each other is formed of a different kind of metal; a solar cell substrate; and formed on the solar cell substrate A p-type light absorption layer; an n-type buffer layer formed on the light absorption layer; a transparent window formed on the buffer layer; and an upper electrode formed on the transparent window. it can.

本発明のさらに他の実施形態による太陽電池基板の製造方法は、電気メッキのための電解液にNa含有金属粒子を分散させる段階と、上記Na含有金属粒子が分散された電解液を用いて下部基板に電気メッキを行ってNa含有金属層を形成することにより、拡散防止膜を製造する段階とを含むことができる。   A method for manufacturing a solar cell substrate according to still another embodiment of the present invention includes a step of dispersing Na-containing metal particles in an electrolyte for electroplating, and a lower portion using the electrolyte in which the Na-containing metal particles are dispersed. Forming a Na-containing metal layer by performing electroplating on the substrate.

本発明によれば、下部基板に含まれたNa、Fe等の不純物が拡散されることを効果的に抑制することができる。特に、二層以上の多層からなる拡散防止膜は、多層間の界面によって、同じ厚さの単一層の拡散防止膜よりも優れた拡散防止効果をもたらす。また、二層以上の多層構造による界面効果をもたらすのに加えて、金属層と非晶質の酸化物層とが交互に積層された混合構造によってより優れた拡散防止効果ももたらす。   According to the present invention, it is possible to effectively suppress the diffusion of impurities such as Na and Fe contained in the lower substrate. Particularly, a diffusion prevention film composed of two or more layers brings about a diffusion prevention effect superior to a single-layer diffusion prevention film having the same thickness due to the interface between the multilayers. Further, in addition to providing an interface effect by a multilayer structure of two or more layers, a mixed structure in which metal layers and amorphous oxide layers are alternately stacked also provides a more excellent diffusion preventing effect.

また、本発明によれば、拡散防止膜に含まれているNaが下部電極を経て太陽電池半導体層に添加されることにより太陽電池の性能を向上させる効果をもたらす。   Further, according to the present invention, Na contained in the diffusion preventing film is added to the solar cell semiconductor layer through the lower electrode, thereby bringing about an effect of improving the performance of the solar cell.

さらに、本発明によれば、太陽電池の性能を向上させることができるNaを拡散防止膜の形成と同時に容易に含ませることができ、別途のNaドープ処理や更なる処理を要することなく太陽電池の性能を向上させることができるという効果をもたらす。   Further, according to the present invention, Na capable of improving the performance of the solar cell can be easily included simultaneously with the formation of the diffusion prevention film, and the solar cell is not required to have a separate Na doping treatment or further treatment. This brings about the effect that the performance can be improved.

本発明の太陽電池基板の一例を示す断面図である。It is sectional drawing which shows an example of the solar cell board | substrate of this invention. 本発明の太陽電池基板の一例を示す断面図である。It is sectional drawing which shows an example of the solar cell board | substrate of this invention. 本発明の太陽電池基板の一例を示す断面図である。It is sectional drawing which shows an example of the solar cell board | substrate of this invention. 本発明の太陽電池基板の一例を示す断面図である。It is sectional drawing which shows an example of the solar cell board | substrate of this invention. 本発明の太陽電池基板の一例を示す断面図である。It is sectional drawing which shows an example of the solar cell board | substrate of this invention. 本発明の太陽電池基板の一例を示す断面図である。It is sectional drawing which shows an example of the solar cell board | substrate of this invention. 本発明の太陽電池の一例の一部を示す断面図である。It is sectional drawing which shows a part of example of the solar cell of this invention. 本発明の太陽電池の一例の一部を示す断面図である。It is sectional drawing which shows a part of example of the solar cell of this invention. 本発明の太陽電池の一例の一部を示す断面図である。It is sectional drawing which shows a part of example of the solar cell of this invention. 実施例1のうち比較例1の成分分析グラフである。2 is a component analysis graph of Comparative Example 1 in Example 1. 実施例1のうち発明例1の成分分析グラフである。2 is a component analysis graph of Invention Example 1 in Example 1. 実施例2のうち比較例2の成分分析グラフである。4 is a component analysis graph of Comparative Example 2 in Example 2. 実施例2のうち発明例2の成分分析グラフである。4 is a component analysis graph of Invention Example 2 in Example 2.

以下では、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の太陽電池基板は、下部基板と、上記下部基板の上部に形成される下部電極と、一つ又は二つ以上の金属層からなる金属拡散防止膜とを含み、上記金属拡散防止膜が二つ以上の金属層からなる場合に、相互に接する金属層は異種の金属からなることができる。本発明において、上記太陽電池基板は、下部基板と区別されるものであり、下部基板のみならず拡散防止膜と下部電極も含むことができる。   The solar cell substrate of the present invention includes a lower substrate, a lower electrode formed on the lower substrate, and a metal diffusion prevention film made of one or more metal layers, the metal diffusion prevention film being In the case of two or more metal layers, the metal layers in contact with each other can be made of different metals. In the present invention, the solar cell substrate is distinguished from the lower substrate, and may include not only the lower substrate but also a diffusion prevention film and a lower electrode.

上記拡散防止膜は、太陽電池の下部基板と下部電極との間に形成され、二つ以上の金属層からなることが好ましく、三つの金属層からなることがより好ましい。   The diffusion preventing film is formed between the lower substrate and the lower electrode of the solar cell, and is preferably composed of two or more metal layers, and more preferably is composed of three metal layers.

本発明の太陽電池基板において、拡散防止膜を二つ以上の金属層で形成する理由は、Na、Fe等の不純物が拡散されることを防止し、特に、上記二つ以上の金属層の界面によって上記不純物の拡散抑制効果を極大化するためである。   In the solar cell substrate of the present invention, the reason for forming the diffusion prevention film with two or more metal layers is to prevent impurities such as Na and Fe from diffusing, and in particular, the interface between the two or more metal layers. This is to maximize the effect of suppressing the diffusion of the impurities.

即ち、上記のように二つ以上の金属層からなる多層金属拡散防止膜は、異種物質の間に形成される界面がNa、Fe等の不純物の拡散を抑制する障壁として作用する。即ち、同じ金属層内で拡散する上記不純物は、別の金属層に触れると、既存の金属層との拡散挙動の差によって拡散が抑制される。このような界面効果又は障壁効果によって、多層構造の拡散防止膜は、不純物の拡散を抑制する効果を極大化することができる。   That is, as described above, in the multilayer metal diffusion prevention film composed of two or more metal layers, an interface formed between different kinds of substances acts as a barrier that suppresses diffusion of impurities such as Na and Fe. That is, when the impurity diffused in the same metal layer touches another metal layer, the diffusion is suppressed due to the difference in diffusion behavior with the existing metal layer. By such an interface effect or a barrier effect, the diffusion preventing film having a multilayer structure can maximize the effect of suppressing the diffusion of impurities.

また、上記金属層の界面による拡散防止効果により、単一層と同じ厚さに拡散防止膜を形成しても、単一層と比べて格段に優れた拡散防止効果を確保することができる。例えば、150nmの単一層の拡散防止膜と、50nmずつ三つの層からなる多層の拡散防止膜とを比較すると、多層の拡散防止膜は、単一層の拡散防止膜よりも二つ以上の界面をさらに有するため、同じ厚さでもより優れた拡散防止効果をもたらす。   Further, due to the diffusion preventing effect due to the interface of the metal layer, even if the diffusion preventing film is formed to the same thickness as the single layer, it is possible to ensure a much superior diffusion preventing effect compared to the single layer. For example, when comparing a single-layer diffusion prevention film of 150 nm with a multilayer diffusion prevention film composed of three layers of 50 nm each, the multilayer diffusion prevention film has two or more interfaces than a single-layer diffusion prevention film. Furthermore, since it has, even if it is the same thickness, the better diffusion prevention effect is brought about.

上記二つ以上の金属層は、相互に接する金属層が相違する物質からなることが好ましく、相違する金属材料からなることがより好ましい。上記金属層には、Cr、Ni、Ti、Mo等の金属を適用することができる。   The two or more metal layers are preferably made of materials having different metal layers in contact with each other, and more preferably made of different metal materials. A metal such as Cr, Ni, Ti, or Mo can be applied to the metal layer.

上記拡散防止膜は、全厚さが100〜500nmであることが好ましい。拡散防止膜としての役割を確保するためには、厚さが100nm以上であることが好ましい。厚さが500nmを超える場合は厚さと比べて拡散防止効果が高くないため、500nmを超えないことが好ましい。   The diffusion preventing film preferably has a total thickness of 100 to 500 nm. In order to ensure the role as a diffusion preventing film, the thickness is preferably 100 nm or more. When the thickness exceeds 500 nm, the diffusion preventing effect is not high as compared with the thickness, and therefore it is preferable not to exceed 500 nm.

一方、上記多層金属拡散防止膜をなす各金属層の厚さは、特に限定されないが、異種金属を用いて拡散を防止する上記界面効果を確保するためには、最小10nmであることが好ましい。   On the other hand, the thickness of each metal layer forming the multilayer metal diffusion prevention film is not particularly limited, but is preferably at least 10 nm in order to ensure the interface effect of preventing diffusion using a dissimilar metal.

上記拡散防止膜をなす金属層を形成する方法としては、特に限定されず、スパッタリング法、蒸着法、金属電気メッキ法等の多様な方法を用いることができる。   The method for forming the metal layer that forms the diffusion barrier film is not particularly limited, and various methods such as a sputtering method, a vapor deposition method, and a metal electroplating method can be used.

以下では、図1及び2を参照して本発明の一実施形態による太陽電池基板について詳細に説明する。図1及び2は本発明の一例を示すものにすぎず、本発明はこれに必ずしも限定されるものではない。   Hereinafter, a solar cell substrate according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2. 1 and 2 show only one example of the present invention, and the present invention is not necessarily limited to this.

図1は、下部基板10と下部電極30との間に計三つの金属層21、22、23で形成された多層金属拡散防止膜20が含まれた太陽電池基板の断面図である。図1には、拡散防止膜を形成する各金属層21、22、23が相違する物質で形成されていることが示されている。例えば、第1の金属層21がCrで形成されれば、第2の金属層22はNi、第3の金属層23はTiで形成される等、多層金属拡散防止膜が相違する金属材料から形成されることが示されている。   FIG. 1 is a cross-sectional view of a solar cell substrate including a multilayer metal diffusion prevention film 20 formed of a total of three metal layers 21, 22, and 23 between a lower substrate 10 and a lower electrode 30. FIG. 1 shows that the metal layers 21, 22, and 23 forming the diffusion prevention film are formed of different materials. For example, if the first metal layer 21 is made of Cr, the second metal layer 22 is made of Ni, and the third metal layer 23 is made of Ti. It is shown that it is formed.

図2は、図1と同様に、下部基板10と下部電極30との間に計三つの金属層で形成された多層金属拡散防止膜20が含まれた太陽電池基板の断面図である。但し、第1の金属層21と第2の金属層22は相違する物質からなるが、第1の金属層21と第3の金属層21’は同じ物質からなる点が図1と異なる。例えば、第1の金属層21がNi、第2の金属層22がTiで形成されれば、第3の金属層21’は第1の金属層の物質と同じNiで形成される、サンドイッチ型の多層金属拡散防止膜が形成されている太陽電池基板が示されている。   FIG. 2 is a cross-sectional view of a solar cell substrate including a multilayer metal diffusion prevention film 20 formed of a total of three metal layers between the lower substrate 10 and the lower electrode 30, as in FIG. However, although the first metal layer 21 and the second metal layer 22 are made of different materials, the first metal layer 21 and the third metal layer 21 ′ are different from FIG. 1 in that they are made of the same material. For example, if the first metal layer 21 is formed of Ni and the second metal layer 22 is formed of Ti, the third metal layer 21 ′ is formed of the same Ni as the material of the first metal layer. A solar cell substrate on which a multilayer metal diffusion prevention film is formed is shown.

また、上記拡散防止膜が二つ以上の金属層からなる場合、上記拡散防止膜は、一つ以上の酸化物層をさらに含むことができる。即ち、上記多層拡散防止膜は、金属層と非晶質の酸化物層とが共に形成されている構造を有することが好ましい。上記拡散防止膜は、上記金属層と酸化物層とが混合されて積層されることにより、下部基板のNa、Fe等の不純物が拡散されることを抑制する。したがって、層間に形成された界面によって拡散が抑制される界面効果のみならず、金属ではなく非晶質の酸化物層が含まれることによりNa、Fe等の金属の拡散がさらに抑制される効果もある。   In addition, when the diffusion barrier film includes two or more metal layers, the diffusion barrier film may further include one or more oxide layers. That is, the multilayer diffusion prevention film preferably has a structure in which both a metal layer and an amorphous oxide layer are formed. The diffusion preventing film suppresses diffusion of impurities such as Na and Fe in the lower substrate by mixing and stacking the metal layer and the oxide layer. Therefore, not only the interface effect in which the diffusion is suppressed by the interface formed between the layers, but also the effect of further suppressing the diffusion of the metal such as Na and Fe by including an amorphous oxide layer instead of the metal. is there.

即ち、本発明の太陽電池基板に含まれた多層拡散防止膜は、金属層と酸化物層とが共に形成されることにより、異種物質の間に形成された界面がNa、Fe等の不純物の拡散を抑制する障壁としての役割をし、界面による拡散防止効果をもたらす。また、結晶性の金属の微細組織と非晶質の酸化物の微細組織との差異によって、上記不純物が金属から非晶質の酸化物へ移動することが困難になるため、拡散防止効果をより高くすることができる。   That is, in the multilayer diffusion prevention film included in the solar cell substrate of the present invention, the metal layer and the oxide layer are formed together, so that the interface formed between the different kinds of substances has impurities such as Na and Fe. It acts as a barrier to suppress diffusion and brings about a diffusion prevention effect by the interface. In addition, the difference between the microstructure of the crystalline metal and the microstructure of the amorphous oxide makes it difficult for the impurities to move from the metal to the amorphous oxide. Can be high.

このような金属層と酸化物層が含まれた拡散防止膜は、単一層と同じ厚さに形成されても、単一層と比べて格段に優れた拡散防止効果を奏することができる。例えば、50nmずつの金属層/酸化物層/金属層からなる拡散防止膜は、150nmの単一層の拡散防止膜と比べて二つ以上の界面をさらに有する上に非晶質の酸化物層を含むため、同じ厚さでもより優れた拡散防止効果を奏することができる。   Even if such a diffusion prevention film including the metal layer and the oxide layer is formed to have the same thickness as the single layer, the diffusion prevention effect can be significantly improved as compared with the single layer. For example, a diffusion prevention film composed of a metal layer / oxide layer / metal layer of 50 nm each has two or more interfaces as compared with a single diffusion prevention film of 150 nm and an amorphous oxide layer. Therefore, even with the same thickness, a more excellent diffusion preventing effect can be achieved.

上記多層拡散防止膜は、二つ以上の金属層と一つ以上の酸化物層とが交互に積層されることが好ましい。例えば、二つの金属層と一つの酸化物層からなる場合、金属層/金属層/酸化物層の順で積層されるよりも金属層/酸化物層/金属層の順で積層される方が拡散防止効果をより極大化することができる。   In the multilayer diffusion prevention film, it is preferable that two or more metal layers and one or more oxide layers are alternately stacked. For example, in the case of two metal layers and one oxide layer, the metal layer / the oxide layer / the metal layer are stacked in this order rather than the metal layer / the metal layer / the oxide layer. The anti-diffusion effect can be maximized.

これは、金属と金属はすべて結晶性で連続性があるが、金属と酸化物はそれぞれ結晶性と非晶質であり、連続性がないためである。   This is because the metal and the metal are all crystalline and continuous, but the metal and the oxide are crystalline and amorphous, respectively, and there is no continuity.

上記金属層には、Cr、Ni、Ti、Mo等の金属を用いることができ、上記酸化物としては、シリコン酸化物(SiO)、シリコン窒化物(SiN)、アルミナ(Al)等を用いることができる。 A metal such as Cr, Ni, Ti, or Mo can be used for the metal layer. Examples of the oxide include silicon oxide (SiO x ), silicon nitride (SiN x ), and alumina (Al 2 O 3). ) Etc. can be used.

一方、上記各金属層と酸化物層の厚さは、特に限定されないが、拡散防止効果を確保するために少なくとも10nmであることが好ましい。   On the other hand, the thicknesses of the metal layers and the oxide layers are not particularly limited, but are preferably at least 10 nm in order to ensure a diffusion preventing effect.

上記拡散防止膜をなす金属層を形成する方法としては、特に限定されず、スパッタリング法、蒸着法、金属電気メッキ法等の多様な方法を用いることができる。また、酸化物層を形成する方法としては、特に限定されず、ゾル‐ゲル法、テープキャスティング法等の多様な方法を用いることができる。   The method for forming the metal layer that forms the diffusion barrier film is not particularly limited, and various methods such as a sputtering method, a vapor deposition method, and a metal electroplating method can be used. The method for forming the oxide layer is not particularly limited, and various methods such as a sol-gel method and a tape casting method can be used.

以下では、図3及び4を参照して本発明の一実施形態による太陽電池基板について詳細に説明する。図3及び4は本発明の一例を示すものにすぎず、本発明はこれに必ずしも限定されるものではない。   Hereinafter, a solar cell substrate according to an embodiment of the present invention will be described in detail with reference to FIGS. 3 and 4. 3 and 4 show only one example of the present invention, and the present invention is not necessarily limited to this.

図3は、下部基板10と下部電極30との間に形成され、計三つの金属層21、22、23と二つの酸化物層40からなる拡散防止膜20を含む太陽電池基板の断面図である。図3には、各拡散防止金属層21、22、23が相違する物質で形成されており、上記三つの金属層と二つの酸化物層とが交互に積層されている形態が示されている。例えば、第1の金属層21がCrで形成されれば、第2の金属層22はNi、第3の金属層23はTiで形成され、上記第1の金属層21と第2の金属層22との間及び第2の金属層22と第3の金属層23との間にSiOで形成された酸化物層40が形成されている太陽電池基板が示されている。 FIG. 3 is a cross-sectional view of a solar cell substrate formed between the lower substrate 10 and the lower electrode 30 and including a diffusion prevention film 20 composed of a total of three metal layers 21, 22, 23 and two oxide layers 40. is there. FIG. 3 shows a form in which the diffusion preventing metal layers 21, 22, and 23 are made of different materials, and the three metal layers and the two oxide layers are alternately stacked. . For example, if the first metal layer 21 is made of Cr, the second metal layer 22 is made of Ni, and the third metal layer 23 is made of Ti, and the first metal layer 21 and the second metal layer are formed. A solar cell substrate is shown in which an oxide layer 40 formed of SiO 2 is formed between the second metal layer 22 and the second metal layer 22 and the third metal layer 23.

図4は、図3と同様の形態を有するが、第1の金属層21と第3の金属層21’が同じ物質からなる点が異なる。   FIG. 4 has the same form as FIG. 3 except that the first metal layer 21 and the third metal layer 21 'are made of the same material.

また、上記太陽電池基板の二つ以上の金属層のうち一つ以上の金属層はNaを含むことが好ましい。また、一つの金属層からなる拡散防止膜の場合は、Naを含むことがより好ましい。上記Naを含む金属層は、下部電極に隣接する金属層であることが好ましい。   Moreover, it is preferable that one or more metal layers among the two or more metal layers of the solar cell substrate include Na. Further, in the case of a diffusion preventing film made of one metal layer, it is more preferable that Na is contained. The metal layer containing Na is preferably a metal layer adjacent to the lower electrode.

上記金属層に含まれたNaは、下部電極及び太陽電池半導体に拡散されて太陽電池の開放電圧と忠実度を高めることにより太陽電池の性能を改善する役割を行う。   Na contained in the metal layer is diffused in the lower electrode and the solar cell semiconductor to improve the performance of the solar cell by increasing the open-circuit voltage and fidelity of the solar cell.

上記Naは、金属層にCu‐スパッタリング法によりドープされるか、又はNaを含む金属を用いてNaの含まれた金属層を形成する方法により形成されることができるが、これに限定されるものではない。   The Na may be formed by a method of doping a metal layer by Cu-sputtering or forming a metal layer containing Na using a metal containing Na, but is not limited thereto. It is not a thing.

Naをドープさせる好ましい例としては、ソーダ石灰ガラスをターゲットにスパッタリングする方法によりドープするか又はNaF前駆体を蒸発させて蒸着させる方法がある。   As a preferable example of doping Na, there is a method of doping by sputtering a soda lime glass on a target or a method of evaporating and depositing a NaF precursor.

上記いずれか一つの金属層に含まれるNaの含量は0.0005〜0.1重量%であることが好ましい。上記Naの含量が5ppm未満の場合は、その含量が少なすぎてNaの拡散によるCIGS太陽電池への影響がほぼないため、Na添加による太陽電池の開放電圧向上効果を期待するのが困難であり、0.1重量%を超える場合は、Na添加による太陽電池の性能向上効果を期待するのが困難である。したがって、経済性を考慮すると、Naの含量は0.1重量%未満であることが好ましい。   The content of Na contained in any one of the metal layers is preferably 0.0005 to 0.1% by weight. When the content of Na is less than 5 ppm, the content is too small and there is almost no influence on the CIGS solar cell due to the diffusion of Na, so it is difficult to expect the effect of improving the open circuit voltage of the solar cell by adding Na. In the case of exceeding 0.1% by weight, it is difficult to expect the effect of improving the performance of the solar cell by adding Na. Therefore, in consideration of economy, the Na content is preferably less than 0.1% by weight.

以下では、図5及び6を参照して本発明の一実施形態による太陽電池基板について詳細に説明する。図5及び6は本発明の一例を示すものにすぎず、本発明はこれに必ずしも限定されるものではない。   Hereinafter, a solar cell substrate according to an embodiment of the present invention will be described in detail with reference to FIGS. 5 and 6. 5 and 6 show only an example of the present invention, and the present invention is not necessarily limited to this.

図5は、下部基板10と下部電極30との間に計三つの金属層21、22、23で形成された多層金属拡散防止膜20が含まれた太陽電池基板の断面図であり、上記金属層のうち下部電極30に接する金属層23にNa(A)が含まれている。図5には、各拡散防止金属層21、22、23が相違する物質で形成されていることが示されている。例えば、第1の金属層21がCrで形成されれば、第2の金属層22はNi、第3の金属層23はTiで形成される等、多層金属拡散防止膜が相違する金属材料からなることが示されている。   FIG. 5 is a cross-sectional view of a solar cell substrate including a multilayer metal diffusion prevention film 20 formed of a total of three metal layers 21, 22, and 23 between the lower substrate 10 and the lower electrode 30. Of the layers, the metal layer 23 in contact with the lower electrode 30 contains Na (A). FIG. 5 shows that the diffusion preventing metal layers 21, 22, and 23 are made of different materials. For example, if the first metal layer 21 is made of Cr, the second metal layer 22 is made of Ni, and the third metal layer 23 is made of Ti. It has been shown to be.

図6は、図5と同様に、下部基板10と下部電極30との間に計三つの金属層で形成された多層金属拡散防止膜20が含まれた太陽電池基板の断面図である。但し、第1の金属層21と第2の金属層22は相違する物質からなるが、第1の金属層21と第3の金属層21’は同じ物質からなり、第3の金属層21’にはナトリウム(A)が含まれている点が図5と異なる。例えば、第1の金属層21がNi、第2の金属層22がTiで形成されれば、第3の金属層21’は第1の金属層の物質と同じNiで形成される、サンドイッチ型の多層金属拡散防止膜が形成されている太陽電池基板が示されている。   FIG. 6 is a cross-sectional view of a solar cell substrate including a multilayer metal diffusion prevention film 20 formed of a total of three metal layers between the lower substrate 10 and the lower electrode 30, as in FIG. However, although the first metal layer 21 and the second metal layer 22 are made of different materials, the first metal layer 21 and the third metal layer 21 ′ are made of the same material, and the third metal layer 21 ′. 5 differs from FIG. 5 in that sodium (A) is contained. For example, if the first metal layer 21 is formed of Ni and the second metal layer 22 is formed of Ti, the third metal layer 21 ′ is formed of the same Ni as the material of the first metal layer. A solar cell substrate on which a multilayer metal diffusion prevention film is formed is shown.

上記下部基板は、その材質がガラスでも良く、柔軟性基板でも良い。上記柔軟性基板の例には、金属材料(ステンレス鋼、アルミニウムホイル、Fe‐Ni系金属板、Fe‐Cu系金属板等)やポリイミドのようなプラスチック系材料等が含まれ得る。   The lower substrate may be made of glass or a flexible substrate. Examples of the flexible substrate may include metal materials (stainless steel, aluminum foil, Fe—Ni metal plates, Fe—Cu metal plates, etc.), plastic materials such as polyimide, and the like.

以下では、本発明の他の実施形態による太陽電池について詳細に説明する。   Hereinafter, a solar cell according to another embodiment of the present invention will be described in detail.

本発明の太陽電池は、上記金属拡散防止膜を含む太陽電池基板を含む。即ち、本発明は、下部基板と、上記下部基板の上部に形成される下部電極と、上記下部基板と下部電極との間に一つ又は二つ以上の金属層からなる金属拡散防止膜とを含み、上記金属拡散防止膜が二つ以上の金属層からなる場合に、相互に接する金属層は異種の金属からなる太陽電池基板と;上記太陽電池基板上に形成されたp型光吸収層と;上記光吸収層上に形成されたn型バッファ層と;上記バッファ層上に形成された透明窓と;上記透明窓上に形成された上部電極とを含む。   The solar cell of this invention contains the solar cell substrate containing the said metal diffusion prevention film. That is, the present invention includes a lower substrate, a lower electrode formed on the lower substrate, and a metal diffusion prevention film composed of one or more metal layers between the lower substrate and the lower electrode. And when the metal diffusion prevention film is composed of two or more metal layers, the metal layer in contact with each other is a solar cell substrate made of a dissimilar metal; and a p-type light absorption layer formed on the solar cell substrate; An n-type buffer layer formed on the light absorption layer; a transparent window formed on the buffer layer; and an upper electrode formed on the transparent window.

具現しようとする太陽電池の種類によって、上記光吸収層、バッファ層等の材質が変わっても良い。一例として、CIGS太陽電池の場合、光吸収層はCIGS、n型半導体としてのバッファ層はCdS、透明窓はZnOからなる。   Depending on the type of solar cell to be implemented, the materials of the light absorption layer, the buffer layer, and the like may be changed. As an example, in the case of a CIGS solar cell, the light absorption layer is made of CIGS, the buffer layer as an n-type semiconductor is made of CdS, and the transparent window is made of ZnO.

一方、上記下部基板は、材質がガラスでも良く、柔軟性基板でも良い。上記柔軟性基板の例には、金属材料(ステンレス鋼、アルミニウムホイル、Fe‐Ni系金属板、Fe‐Cu系金属板等)やポリイミド等のプラスチック系材料等が含まれ得る。   On the other hand, the lower substrate may be made of glass or a flexible substrate. Examples of the flexible substrate may include metal materials (stainless steel, aluminum foil, Fe—Ni metal plates, Fe—Cu metal plates, etc.), plastic materials such as polyimide, and the like.

上記多層金属拡散防止膜をなす金属層の材質としては、Cr、Ni、Ti等を用いることができる。   As a material of the metal layer forming the multilayer metal diffusion prevention film, Cr, Ni, Ti or the like can be used.

図7には、本発明の一具現例による太陽電池の一例の一部が示されている。図7は本発明の一例を示すものにすぎず、本発明はこれに必ずしも限定されるものではない。図7には、下部基板10上に多層金属拡散防止膜20が形成され、上記多層金属拡散防止膜20上に下部電極30が形成され、上記下部電極30上に光吸収層50が形成されている太陽電池の一部が示されている。   FIG. 7 shows a part of an example of a solar cell according to an embodiment of the present invention. FIG. 7 shows only an example of the present invention, and the present invention is not necessarily limited to this. In FIG. 7, a multilayer metal diffusion prevention film 20 is formed on the lower substrate 10, a lower electrode 30 is formed on the multilayer metal diffusion prevention film 20, and a light absorption layer 50 is formed on the lower electrode 30. Some of the solar cells are shown.

上記拡散防止膜は、酸化物層をさらに含むことができ、最も好ましくは二つ以上の金属層と酸化物層とが交互に積層された形態を有する。この際、上記酸化物層は、SiO、SiN及びAlのいずれか一つからなることが好ましい。上記酸化物層に関する内容は、上述した太陽電池基板に関する内容と同一である。 The diffusion barrier layer may further include an oxide layer, and most preferably has a form in which two or more metal layers and oxide layers are alternately stacked. At this time, the oxide layer is preferably made of any one of SiO x , SiN x, and Al 2 O 3 . The contents regarding the oxide layer are the same as the contents regarding the solar cell substrate described above.

図8には、本発明の太陽電池の一例の一部が示されている。図8は本発明の一例を示すものにすぎず、本発明はこれに必ずしも限定されるものではない。図8には、下部基板10上に酸化物層40を有する多層構造の拡散防止膜20が形成され、上記拡散防止膜20上に下部電極30と光吸収層50が形成されている太陽電池の一例が示されている。   FIG. 8 shows a part of an example of the solar cell of the present invention. FIG. 8 shows only an example of the present invention, and the present invention is not necessarily limited to this. FIG. 8 shows a solar cell in which a diffusion preventing film 20 having a multilayer structure having an oxide layer 40 is formed on a lower substrate 10, and a lower electrode 30 and a light absorption layer 50 are formed on the diffusion preventing film 20. An example is shown.

上記拡散防止膜は、上述したように、一つ又は二つ以上の金属層にNaを含むことが好ましい。上記各金属層に関する内容は、上述した太陽電池基板に関する内容と同一である。   As described above, the diffusion prevention film preferably contains Na in one or more metal layers. The content regarding each said metal layer is the same as the content regarding the solar cell substrate mentioned above.

図9には、本発明の太陽電池の一例の一部が示されている。図9は本発明の一例を示すものにすぎず、本発明はこれに必ずしも限定されるものではない。図9には、下部基板10上にNa(A)を含む金属拡散防止膜20が形成され、上記拡散防止膜20上に下部電極30が形成され、上記下部電極30上に光吸収層50が形成されている太陽電池の一部が示されている。   FIG. 9 shows a part of an example of the solar cell of the present invention. FIG. 9 shows only an example of the present invention, and the present invention is not necessarily limited to this. In FIG. 9, a metal diffusion prevention film 20 containing Na (A) is formed on the lower substrate 10, a lower electrode 30 is formed on the diffusion prevention film 20, and a light absorption layer 50 is formed on the lower electrode 30. A portion of the solar cell being formed is shown.

以下では、本発明のさらに他の実施形態による太陽電池基板の製造方法について説明する。後述する太陽電池基板の製造方法は、太陽電池の下部基板と下部電極との間に拡散防止膜を形成すると共にNaのドープを行う方法に関するものである。なお、これは、一具現例にすぎず、上述した太陽電池基板の製造方法を限定するものではない。   Hereinafter, a method for manufacturing a solar cell substrate according to still another embodiment of the present invention will be described. A method for manufacturing a solar cell substrate, which will be described later, relates to a method of forming a diffusion prevention film between a lower substrate and a lower electrode of a solar cell and doping Na. In addition, this is only an example and does not limit the manufacturing method of the solar cell substrate mentioned above.

本発明では、太陽電池の下部基板に金属を電気メッキして拡散防止膜を製造する方法を用いる。   In the present invention, a method of manufacturing a diffusion barrier film by electroplating metal on the lower substrate of the solar cell is used.

上記電気メッキのための電解液にNa含有金属粒子を分散させ、上記Na含有金属粒子が分散された電解液を用いて上記下部基板に電気メッキを行ってNaが含まれた金属層である拡散防止膜を製造する。   Diffusion that is a metal layer in which Na-containing metal particles are dispersed in the electrolytic solution for electroplating, and the lower substrate is electroplated using the electrolytic solution in which the Na-containing metal particles are dispersed. Produce a protective film.

本発明は、太陽電池の下部基板に電気メッキを行って金属層を形成して拡散防止膜を製造する方法において、上記電気メッキのための電解液にNa含有金属粒子を分散させる。上記Na含有金属粒子が分散された電解液を用いて電気メッキを行う場合、電解液に分散されたNaが上記下部基板に上記金属層を形成する金属と共に付着されてメッキされるため、一回のメッキ工程で簡単にNaが含まれた拡散防止膜を製造することができるという長所がある。   In the method of manufacturing a diffusion barrier film by electroplating a lower substrate of a solar cell to form a metal layer, the present invention disperses Na-containing metal particles in the electrolytic solution for electroplating. When electroplating is performed using an electrolytic solution in which the Na-containing metal particles are dispersed, Na dispersed in the electrolytic solution is attached to the lower substrate together with the metal forming the metal layer and is plated. In this plating process, it is possible to easily manufacture a diffusion prevention film containing Na.

上記分散させたNa含有金属粒子は、その種類に特別な制限はなく、Naが上記電気メッキ浴に不溶性の粒子状に分散されることができればいずれのものでも良い。好ましい例としては、酸化ナトリウム(NaO)ナノ粒子がある。上記Na含有金属粒子の形状は円形であれば良く、サイズは粒径が10〜100nmであれば良く、10〜50nmであることが好ましい。 There are no particular restrictions on the type of the Na-containing metal particles dispersed, and any type may be used as long as Na can be dispersed in the form of particles insoluble in the electroplating bath. A preferred example is sodium oxide (NaO 2 ) nanoparticles. The shape of the Na-containing metal particles may be circular, and the size may be 10 to 100 nm, and preferably 10 to 50 nm.

一方、酸化ナトリウムを用いる場合は、その粒子の濃度が0.1〜100g/lであっても分散メッキは可能であるが、1〜50g/lであることが好ましく、5〜50g/lであることがより好ましい。   On the other hand, when sodium oxide is used, dispersion plating is possible even if the concentration of the particles is 0.1 to 100 g / l, but it is preferably 1 to 50 g / l, preferably 5 to 50 g / l. More preferably.

上記分散メッキの際には、固体粒子である酸化ナトリウムが沈降することを防止するために分散剤を用いることができる。   In the dispersion plating, a dispersant can be used to prevent sodium oxide that is solid particles from settling.

上記電気メッキする金属としては、Cr、Ni、Ti等が用いられる。   As the metal to be electroplated, Cr, Ni, Ti or the like is used.

上記Na含有金属粒子の分散された電解液を用いて電気メッキ法により上記太陽電池の下部基板に金属層の拡散防止膜を形成する。この際、形成された金属層には、Naが含まれている。   A diffusion preventing film for the metal layer is formed on the lower substrate of the solar cell by electroplating using the electrolytic solution in which the Na-containing metal particles are dispersed. At this time, the formed metal layer contains Na.

上記電気メッキ法としては、通常の電気メッキ法を用いることができるが、特に限定されるものではない。   As the electroplating method, a normal electroplating method can be used, but it is not particularly limited.

本発明に適用可能な電気メッキ法の具体的な例を説明すると、下記の通りである。まず、純水を50〜60℃に加熱し、ここに、上記メッキされる金属であるCr、Ni、Ti等の金属塩(主に硫酸塩)を金属イオン濃度が1〜100g/lとなるように溶解させた後、酸化ナトリウム粒子を添加する。この際、希硫酸溶液(約5%硫酸)を用いて溶液のpHを1〜6に調節してメッキ浴を用意し、陽極として不溶性陽極のチタニウム板に酸化イリジウム(IrO)をコーティングしたものを用いて、メッキを目的とする陰極に電流密度0.1〜100A/dmの電流を印加してメッキする。メッキ時間は、コーティング層の厚さによって異なる。 A specific example of the electroplating method applicable to the present invention will be described as follows. First, pure water is heated to 50 to 60 ° C., and a metal salt (mainly sulfate) such as Cr, Ni, or Ti, which is the metal to be plated, has a metal ion concentration of 1 to 100 g / l. After dissolution, sodium oxide particles are added. At this time, a plating bath was prepared by adjusting the pH of the solution to 1 to 6 using a dilute sulfuric acid solution (about 5% sulfuric acid), and an insoluble anode titanium plate was coated as an anode with iridium oxide (IrO 2 ). Is used to apply a current density of 0.1 to 100 A / dm 2 to a cathode intended for plating. The plating time varies depending on the thickness of the coating layer.

なお、上述した方法は、上記太陽電池基板の一実施例を具現できる方法に該当し、具現しようとする太陽電池基板の形態によって適切に変更可能である。   In addition, the method mentioned above corresponds to the method which can implement one Example of the said solar cell board | substrate, and can be suitably changed with the form of the solar cell board | substrate which is going to implement | achieve.

以下では、実施例を挙げて本発明をより詳細に説明する。但し、下記の実施例は、本発明をより詳細に説明するための例示に過ぎず、本発明の権利範囲を限定するものではない。本発明の権利範囲は、特許請求の範囲に記載の事項、及び特許請求の範囲に記載の事項から合理的に推測される事項によって決められる。   Below, an Example is given and this invention is demonstrated in detail. However, the following examples are merely examples for explaining the present invention in more detail, and do not limit the scope of rights of the present invention. The scope of rights of the present invention is determined by matters described in the claims and matters reasonably inferred from the matters described in the claims.

(実施例1)
多層金属拡散防止膜を有する太陽電池基板の拡散防止効果を確認するために、ステンレス鋼(STS 430)を下部基板として、上記ステンレス鋼下部基板上にCrを100nm蒸着して拡散防止膜を形成した(比較例1)。また、上記と同じ条件下のステンレス鋼下部基板上にMoを10nm蒸着し、その上にCrを100nm蒸着して、Mo/Crの二層金属拡散防止膜を形成した(発明例1)。
Example 1
In order to confirm the diffusion prevention effect of the solar cell substrate having the multilayer metal diffusion prevention film, a diffusion prevention film was formed by depositing 100 nm of Cr on the stainless steel lower substrate using stainless steel (STS 430) as the lower substrate. (Comparative Example 1). Further, Mo was deposited to 10 nm on a stainless steel lower substrate under the same conditions as described above, and Cr was deposited to 100 nm thereon to form a Mo / Cr double-layer metal diffusion prevention film (Invention Example 1).

上記蒸着は、スパッタリング法を用いて7mTorrの圧力とAr 10sccmの流量下で1200Wの電力を印加して行われた。   The vapor deposition was performed by applying a power of 1200 W using a sputtering method under a pressure of 7 mTorr and a flow rate of Ar 10 sccm.

上記のように製造された比較例1と発明例1を燃料電池の作動条件と類似する600℃で20分間熱処理して、上記ステンレス鋼下部基板上のFeがどれほど拡散されているかを観察し、上記比較例1と発明例1の拡散防止効果を観察し、その結果をそれぞれ図10及び図11に示した。   The comparative example 1 and the inventive example 1 manufactured as described above were heat-treated at 600 ° C. for 20 minutes similar to the operating conditions of the fuel cell, and observed how much Fe on the stainless steel lower substrate was diffused. The anti-diffusion effect of Comparative Example 1 and Invention Example 1 was observed, and the results are shown in FIGS. 10 and 11, respectively.

図10は、上記比較例1の拡散防止膜の表面から深さ方向への原子の濃度を観察したグラフである。図10からは、表面におけるFe濃度が約3×10cps、60nmの深さにおけるFe濃度が約1.5×10cpsであるのに対し、上記発明例1を観察した図11からは、表面におけるFe濃度が約6×10cps、60nmの深さにおけるFe濃度が約3×10cpsであり、上記比較例1と比べて約50%以上の拡散防止改善効果があることが確認できた。 FIG. 10 is a graph in which the concentration of atoms in the depth direction from the surface of the diffusion barrier film of Comparative Example 1 is observed. From FIG. 10, the Fe concentration at the surface is about 3 × 10 2 cps and the Fe concentration at a depth of 60 nm is about 1.5 × 10 4 cps, whereas FIG. The Fe concentration at the surface is about 6 × 10 1 cps and the Fe concentration at a depth of 60 nm is about 3 × 10 3 cps, which has an effect of improving diffusion prevention by about 50% or more compared to Comparative Example 1 above. It could be confirmed.

以上のことから、二つ以上の金属層を形成して製造された多層金属拡散防止膜を含む本発明の太陽電池基板は、従来の単一層金属からなる拡散防止膜を含む太陽電池基板と比べ、優れた拡散防止効果を有することが確認できる。   From the above, the solar cell substrate of the present invention including a multilayer metal diffusion prevention film manufactured by forming two or more metal layers is compared with a solar cell substrate including a diffusion prevention film made of a conventional single layer metal. It can be confirmed that it has an excellent anti-diffusion effect.

(実施例2)
多層構造の拡散防止効果を確認するために、ステンレス鋼(STS 430)を基板として、上記ステンレス鋼基板上にSiOを1000nm蒸着して拡散防止膜を形成した(比較例2)。また、上記と同じ条件下のステンレス鋼基板上にMoを60nm蒸着し、その上にSiOを1000nm蒸着して、SiO/Moの二重層からなる拡散防止膜を形成した(発明例2)。
(Example 2)
In order to confirm the diffusion preventing effect of the multilayer structure, a diffusion preventing film was formed by depositing 1000 nm of SiO 2 on the stainless steel substrate using stainless steel (STS 430) as a substrate (Comparative Example 2). Moreover, 60 nm of Mo was vapor-deposited on a stainless steel substrate under the same conditions as above, and 1000 nm of SiO 2 was vapor-deposited thereon to form a diffusion prevention film consisting of a double layer of SiO 2 / Mo (Invention Example 2). .

上記SiOの蒸着は、PECVD方法を用いて800mTorrの圧力とNO 700sccm、SiH 45sccm、Ar 700sccmの流量下で200Wの電力を印加して行われ、上記Moの蒸着は、7mTorrの圧力とAr 10sccmの流量下で1200Wの電力を印加して行われた。 The deposition of SiO 2 is performed by applying a power of 200 W under a pressure of 800 mTorr and a flow rate of N 2 O 700 sccm, SiH 4 45 sccm, Ar 700 sccm using a PECVD method, and the Mo deposition is performed at a pressure of 7 mTorr. And Ar under a flow rate of 10 sccm and applying a power of 1200 W.

上記のように製造された比較例2と発明例2を燃料電池の作動条件と類似する600℃で20分間熱処理して、上記ステンレス鋼基板上のFeがどれほど拡散されているかを観察し、上記比較例と発明例の拡散防止効果を観察し、その結果をそれぞれ図12及び図13に示した。   The comparative example 2 and the inventive example 2 manufactured as described above were heat-treated at 600 ° C. for 20 minutes similar to the operating conditions of the fuel cell, and observed how much Fe on the stainless steel substrate was diffused. The diffusion preventing effect of the comparative example and the invention example was observed, and the results are shown in FIGS. 12 and 13, respectively.

図12は、上記比較例2の拡散防止膜の表面から深さ方向への原子の濃度を観察したグラフである。図12からは、表面におけるFe濃度が約1×10cpsであるのに対し、上記発明例2を観察した図13からは、表面におけるFe濃度が約7×10cpsであり、上記比較例と比べて約30%以上の拡散防止改善効果があることが確認できた。 FIG. 12 is a graph in which the concentration of atoms in the depth direction from the surface of the diffusion barrier film of Comparative Example 2 is observed. From FIG. 12, the Fe concentration on the surface is about 1 × 10 3 cps, whereas from FIG. 13 in which the above-described Invention Example 2 is observed, the Fe concentration on the surface is about 7 × 10 2 cps. It was confirmed that there was an effect of improving diffusion prevention by about 30% or more compared to the example.

以上のことから、金属層と酸化物層とが共に形成された本発明の拡散防止膜は、単一の酸化物層で形成された拡散防止膜と比べ、優れた拡散防止効果を有することが確認できる。   From the above, the diffusion barrier film of the present invention in which both the metal layer and the oxide layer are formed has an excellent diffusion barrier effect compared with the diffusion barrier film formed of a single oxide layer. I can confirm.

(実施例3)
酸化物層が含まれた多層構造の拡散防止効果を確認するために、酸化物層の形成の有無による太陽電池の光変換効率を測定した。通常のガラス(ソーダ石灰ガラス)基板を用いた(比較例3)。また、ステンレス鋼(STS 430)を基板として、上記ステンレス鋼基板上にSiOを1000nm蒸着して拡散防止膜を形成した(比較例4)。また、上記と同じ条件下のステンレス鋼基板上にMoを20nm蒸着し、その上にSiOを500nm蒸着して、SiO/Moの二重層からなる拡散防止膜を形成した(発明例3)。また、上記と同じ条件下のステンレス鋼基板上にMoを100nm蒸着し、その上にSiOを200nm蒸着した後、再度Moを100nm蒸着し、その上にSiOを200nm蒸着して、SiO/Mo/SiO/Moの四重層からなる拡散防止膜を形成した(発明例4)。
(Example 3)
In order to confirm the diffusion preventing effect of the multilayer structure including the oxide layer, the light conversion efficiency of the solar cell depending on whether or not the oxide layer was formed was measured. A normal glass (soda lime glass) substrate was used (Comparative Example 3). Further, using stainless steel (STS 430) as a substrate, a diffusion preventing film was formed by depositing SiO 2 at a thickness of 1000 nm on the stainless steel substrate (Comparative Example 4). Further, Mo was evaporated to 20 nm on a stainless steel substrate under the same conditions as described above, and SiO 2 was evaporated to 500 nm thereon to form a diffusion prevention film composed of a SiO 2 / Mo double layer (Invention Example 3). . Further, Mo is deposited to 100 nm on a stainless steel substrate under the same conditions as described above, and SiO 2 is deposited to 200 nm thereon, then Mo is deposited to 100 nm again, and SiO 2 is deposited to 200 nm thereon, SiO 2 An anti-diffusion film comprising a quadruple layer of / Mo / SiO 2 / Mo was formed (Invention Example 4).

上記SiOの蒸着は、PECVD方法を用いて800mTorrの圧力とNO 700sccm、SiH 45sccm、Ar 700sccmの流量下で200Wの電力を印加して行われ、上記Moの蒸着は、7mTorrの圧力とAr 10sccmの流量下で1200Wの電力を印加して行われた。 The deposition of SiO 2 is performed by applying a power of 200 W under a pressure of 800 mTorr and a flow rate of N 2 O 700 sccm, SiH 4 45 sccm, Ar 700 sccm using a PECVD method, and the Mo deposition is performed at a pressure of 7 mTorr. And Ar under a flow rate of 10 sccm and applying a power of 1200 W.

上記比較例3及び4と発明例3及び4に対し、電極層、活性層、及び透明電極層等からなる太陽電池を製造するための実験を行い、CIGS太陽電池の光変換効率とa‐Si太陽電池の光変換効率を測定し、下記表1に示した。   For Comparative Examples 3 and 4 and Invention Examples 3 and 4, an experiment for producing a solar cell composed of an electrode layer, an active layer, a transparent electrode layer, and the like was conducted, and the light conversion efficiency and a-Si of the CIGS solar cell The light conversion efficiency of the solar cell was measured and shown in Table 1 below.

Figure 2014519712
Figure 2014519712

上記表1を参照すると、比較例3は、ガラス基板上に太陽電池を具現したものであり、光変換効率がCIGSの場合は15.47%、a‐Siの場合は7.22%であった。比較例4は、SiOを1000nm蒸着したものであり、光変換効率がCIGSの場合は12.75%、a‐Siの場合は5.8%であった。発明例5及び6は、多層構造の拡散防止膜を含むものである。通常のバッチ形態の蒸着工程の際に多層構造を適用するためには数回の蒸着を行わなければならないが、発明例5及び6の場合は、STS等の金属基板を適用したロールツーロール連続工程で連続的に蒸着が行われるため、多層構造の具現が容易である。また、通常の蒸着速度が1m/min以下とかなり遅く、所望の厚さを蒸着するためには多数の蒸着ソースが必要とされるため、一つの物質を蒸着するために多数のソースを設置するよりは、多数の物質を蒸着するために多数のソースを設置して多層構造で具現する方が、上記例からも分かるように全厚さの減少効果等の多様な長所を有する。また、その光変換効率も、CIGSの場合は13.39%及び14.25%、a‐Siの場合は6.22%及び7.04%であった。 Referring to Table 1 above, Comparative Example 3 is a solar cell implemented on a glass substrate, and the light conversion efficiency is 15.47% for CIGS and 7.22% for a-Si. It was. In Comparative Example 4, SiO 2 was deposited by 1000 nm, and the light conversion efficiency was 12.75% in the case of CIGS and 5.8% in the case of a-Si. Invention Examples 5 and 6 include a diffusion preventive film having a multilayer structure. In order to apply a multi-layer structure in a normal batch-type vapor deposition process, vapor deposition must be performed several times. In the case of Invention Examples 5 and 6, roll-to-roll continuous using a metal substrate such as STS is used. Since vapor deposition is continuously performed in the process, it is easy to implement a multilayer structure. In addition, since the normal deposition rate is considerably slow at 1 m / min or less and a large number of deposition sources are required to deposit a desired thickness, a large number of sources are installed to deposit one substance. Rather, in order to deposit a large number of substances, a large number of sources are installed to implement a multi-layer structure, which has various advantages such as an effect of reducing the total thickness as can be seen from the above example. The light conversion efficiencies were 13.39% and 14.25% for CIGS and 6.22% and 7.04% for a-Si.

10 下部基板
20 拡散防止膜
21、21’、22、23 拡散防止金属層
30 下部電極
40 酸化物層
50 光吸収層
A Na(ナトリウム)
DESCRIPTION OF SYMBOLS 10 Lower board | substrate 20 Diffusion prevention film 21, 21 ', 22, 23 Diffusion prevention metal layer 30 Lower electrode 40 Oxide layer 50 Light absorption layer A Na (sodium)

Claims (20)

下部基板と、
前記下部基板の上部に形成される下部電極と、
前記下部基板と下部電極との間に一つ又は二つ以上の金属層からなる金属拡散防止膜
とを含み、
前記金属拡散防止膜が二つ以上の金属層からなる場合に、相互に接する金属層は異種の金属からなる、
太陽電池基板。
A lower substrate,
A lower electrode formed on the lower substrate;
A metal diffusion prevention film comprising one or more metal layers between the lower substrate and the lower electrode;
When the metal diffusion prevention film is composed of two or more metal layers, the metal layers in contact with each other are composed of different metals.
Solar cell substrate.
前記拡散防止膜のうち一つ又は二つ以上の金属層はNaを含む、請求項1に記載の太陽電池基板。   The solar cell substrate according to claim 1, wherein one or two or more metal layers of the diffusion prevention film include Na. 前記Naは下部電極に接する金属層に含まれている、請求項2に記載の太陽電池基板。   The solar cell substrate according to claim 2, wherein the Na is contained in a metal layer in contact with the lower electrode. 前記Naの含量は0.0005〜0.1重量%である、請求項2に記載の太陽電池基板。   The solar cell substrate according to claim 2, wherein the content of Na is 0.0005 to 0.1 wt%. 前記少なくとも二つ以上の金属層を含む拡散防止膜は、少なくとも二つ以上の金属層の間に酸化物層をさらに含む、請求項1に記載の太陽電池基板。   The solar cell substrate according to claim 1, wherein the diffusion prevention film including at least two or more metal layers further includes an oxide layer between at least two or more metal layers. 前記酸化物層はSiO、SiN及びAlのいずれか一つから形成される、請求項5に記載の太陽電池基板。 The solar cell substrate according to claim 5, wherein the oxide layer is formed of any one of SiO X , SiN X, and Al 2 O 3 . 前記二つ以上の金属層は互いに異なる金属材料からなる、請求項1に記載の太陽電池基板。   The solar cell substrate according to claim 1, wherein the two or more metal layers are made of different metal materials. 前記金属はCr、Ti、Ni及びMoのいずれか一つである、請求項1に記載の太陽電池基板。   The solar cell substrate according to claim 1, wherein the metal is any one of Cr, Ti, Ni, and Mo. 前記拡散防止膜は厚さが100〜500nmであり、前記金属拡散防止膜が二つ以上の金属層からなる場合に各金属層の厚さが10nm以上である、請求項1に記載の太陽電池基板。   The solar cell according to claim 1, wherein the diffusion prevention film has a thickness of 100 to 500 nm, and when the metal diffusion prevention film is composed of two or more metal layers, the thickness of each metal layer is 10 nm or more. substrate. 前記下部基板はガラス、ステンレス鋼、アルミニウムホイル、Fe‐Ni系金属、Fe‐Cu系金属、およびポリイミドからなる群から選択される一種からなる、請求項1に記載の太陽電池基板。   2. The solar cell substrate according to claim 1, wherein the lower substrate is made of one selected from the group consisting of glass, stainless steel, aluminum foil, Fe—Ni-based metal, Fe—Cu-based metal, and polyimide. 下部基板と、前記下部基板の上部に形成される下部電極と、前記下部基板と下部電極との間に一つ又は二つ以上の金属層からなる金属拡散防止膜とを含み、前記金属拡散防止膜が二つ以上の金属層からなる場合に、相互に接する金属層は異種の金属からなる太陽電池基板と、
前記太陽電池基板上に形成されたp型光吸収層と、
前記光吸収層上に形成されたn型バッファ層と、
前記バッファ層上に形成された透明窓と、
前記透明窓上に形成された上部電極
とを含む、太陽電池。
And a metal diffusion prevention film comprising a lower substrate, a lower electrode formed on the lower substrate, and a metal diffusion prevention film made of one or more metal layers between the lower substrate and the lower electrode. When the film is composed of two or more metal layers, the metal layer in contact with each other is a solar cell substrate composed of different metals,
A p-type light absorption layer formed on the solar cell substrate;
An n-type buffer layer formed on the light absorption layer;
A transparent window formed on the buffer layer;
A solar cell including an upper electrode formed on the transparent window.
前記拡散防止膜のうち一つ又は二つ以上の金属層はNaを含む、請求項11に記載の太陽電池。   The solar cell according to claim 11, wherein one or two or more metal layers of the diffusion barrier film contain Na. 前記二つ以上の金属層を含む拡散防止膜は、二つ以上の金属層の間に酸化物層をさらに含む、請求項12に記載の太陽電池。   The solar cell according to claim 12, wherein the diffusion prevention film including the two or more metal layers further includes an oxide layer between the two or more metal layers. 前記酸化物層はSiO、SiN及びAlのいずれか一つから形成される、請求項13に記載の太陽電池。 The solar cell according to claim 13, wherein the oxide layer is formed of any one of SiO X , SiN X, and Al 2 O 3 . 前記光吸収層はCIGSを含み、n型半導体としてのバッファ層はCdSを含み、透明窓はZnOを含む、請求項11に記載の太陽電池。   The solar cell according to claim 11, wherein the light absorption layer includes CIGS, the buffer layer as an n-type semiconductor includes CdS, and the transparent window includes ZnO. 電気メッキのための電解液にNa含有金属粒子を分散させる段階と、
前記Na含有金属粒子が分散された電解液を用いて下部基板に電気メッキを行ってNa含有金属層を形成することにより、拡散防止膜を製造する段階
とを含む、太陽電池基板の製造方法。
Dispersing Na-containing metal particles in an electrolyte for electroplating;
Forming a diffusion prevention film by electroplating the lower substrate using the electrolytic solution in which the Na-containing metal particles are dispersed to form a Na-containing metal layer.
前記Na含有金属粒子は酸化ナトリウム(NaO)である、請求項16に記載の太陽電池基板の製造方法。 The Na-containing metal particles is sodium oxide (NaO 2), a method for manufacturing a solar cell substrate according to claim 16. 前記酸化ナトリウム(NaO)の粒径は10〜100nmである、請求項17に記載の太陽電池基板の製造方法。 The method for manufacturing a solar cell substrate according to claim 17, wherein a particle diameter of the sodium oxide (NaO 2 ) is 10 to 100 nm. 前記分散された酸化ナトリウムの粒子濃度は0.1〜100g/lである、請求項17に記載の太陽電池基板の製造方法。   The method for producing a solar cell substrate according to claim 17, wherein the particle concentration of the dispersed sodium oxide is 0.1 to 100 g / l. 前記電気メッキは、メッキされる金属の金属塩を金属イオン濃度が1〜100g/lとなるように溶解させ、Na含有金属粒子が分散されたメッキ浴を50〜60℃に加熱し、電流密度0.1〜100A/dmの電流をメッキ浴に印加して行われる、請求項16に記載の太陽電池基板の製造方法。 In the electroplating, a metal salt of a metal to be plated is dissolved so that the metal ion concentration is 1 to 100 g / l, and a plating bath in which Na-containing metal particles are dispersed is heated to 50 to 60 ° C. The manufacturing method of the solar cell substrate of Claim 16 performed by applying the electric current of 0.1-100 A / dm < 2 > to a plating bath.
JP2014514811A 2011-06-10 2012-06-08 Solar cell substrate, manufacturing method thereof, and solar cell using the same Expired - Fee Related JP5789716B2 (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
KR1020110056131A KR101228772B1 (en) 2011-06-10 2011-06-10 Solar cell substrate having na contained multi-layer metal barrier layer and solar cell using the same
KR1020110056132A KR101228735B1 (en) 2011-06-10 2011-06-10 Solar cell substrate having multi-layer barrier layer and solar cell using the same
KR10-2011-0056130 2011-06-10
KR1020110056130A KR101304710B1 (en) 2011-06-10 2011-06-10 Solar cell substrate having multi-layer metal barrier layer and solar cell using the same
KR10-2011-0056132 2011-06-10
KR10-2011-0056131 2011-06-10
KR1020110057115A KR101253907B1 (en) 2011-06-13 2011-06-13 Solar cell substrate having barrier layer containing sodium and method for manufacturing the same
KR10-2011-0057115 2011-06-13
PCT/KR2012/004572 WO2012169845A2 (en) 2011-06-10 2012-06-08 Solar cell substrate, method for manufacturing same, and solar cell using same

Publications (2)

Publication Number Publication Date
JP2014519712A true JP2014519712A (en) 2014-08-14
JP5789716B2 JP5789716B2 (en) 2015-10-07

Family

ID=47296637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014514811A Expired - Fee Related JP5789716B2 (en) 2011-06-10 2012-06-08 Solar cell substrate, manufacturing method thereof, and solar cell using the same

Country Status (5)

Country Link
US (1) US20140124028A1 (en)
EP (1) EP2720276A4 (en)
JP (1) JP5789716B2 (en)
CN (1) CN103733350A (en)
WO (1) WO2012169845A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170087049A (en) * 2016-01-19 2017-07-27 삼성전자주식회사 Optoelectronic device and image sensor and electronic device including the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102288238B1 (en) * 2013-09-03 2021-08-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device
CN105226118B (en) * 2014-06-05 2017-04-12 中物院成都科学技术发展中心 Flexible solar cell and preparation method therefor
KR101653282B1 (en) * 2015-01-23 2016-09-01 한국과학기술연구원 Polyimide substrate structure and thin film solar cell using the same
CN105449010B (en) * 2015-11-18 2018-07-31 北京四方创能光电科技有限公司 Stainless steel lining bottom flexible CIGS thin-film solar cell barrier layer preparation method
KR101895025B1 (en) * 2016-11-14 2018-09-04 한국생산기술연구원 Solar cell module and manufacturing method thereof
PL233211B1 (en) * 2017-01-25 2019-09-30 Saule Spolka Z Ograniczona Odpowiedzialnoscia Optoelectronic film and method for producing optoelectronic film
CN108598157B (en) * 2017-12-28 2020-11-13 惠州市华星光电技术有限公司 Low-reflection composite electrode and TFT array substrate
US10490574B2 (en) 2017-12-28 2019-11-26 Huizhou China Star Optoelectronics Technology Co., Ltd. Low-reflection composite electrode and TFT array substrate
CN110752265A (en) * 2018-07-24 2020-02-04 北京铂阳顶荣光伏科技有限公司 Thin film solar cell and preparation method thereof
CN110034206B (en) * 2019-04-26 2020-07-10 潮州市亿加光电科技有限公司 CIGS solar cell with alkali metal composite layer and preparation method thereof
US20210175325A1 (en) * 2019-12-09 2021-06-10 Entegris, Inc. Diffusion barriers made from multiple barrier materials, and related articles and methods
EP4064378B1 (en) 2021-03-23 2024-03-06 Saule S.A. A light-transmissive multilayer structure for optoelectronic devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212337A (en) * 2009-03-09 2010-09-24 Fujifilm Corp Photoelectric conversion device, and solar cell
WO2010120631A2 (en) * 2009-04-13 2010-10-21 Miasole Method and apparatus for controllable sodium delivery for thin film photovoltaic materials
JP2011518942A (en) * 2007-10-17 2011-06-30 ルション、ヤン Improved solution deposition assembly
JP2012151385A (en) * 2011-01-21 2012-08-09 Nisshin Steel Co Ltd Electrode substrate for cis solar battery, and battery

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6322712B1 (en) * 1999-09-01 2001-11-27 Micron Technology, Inc. Buffer layer in flat panel display
SE525704C2 (en) * 2003-08-12 2005-04-05 Sandvik Ab Coated steel product of metal strip material comprising an electrically insulating layer doped with one or more alkali metals
US20050056863A1 (en) * 2003-09-17 2005-03-17 Matsushita Electric Industrial Co., Ltd. Semiconductor film, method for manufacturing the semiconductor film, solar cell using the semiconductor film and method for manufacturing the solar cell
TW200633240A (en) * 2004-11-10 2006-09-16 Daystar Technologies Inc Method and apparatus for forming a thin-film solar cell using a continuous process
JP2006165386A (en) * 2004-12-09 2006-06-22 Showa Shell Sekiyu Kk Cis system thin film solar cell and method for manufacturing the same
US7713773B2 (en) * 2005-11-02 2010-05-11 Solopower, Inc. Contact layers for thin film solar cells employing group IBIIIAVIA compound absorbers
CN100373635C (en) * 2005-12-22 2008-03-05 南开大学 Thin-film solar battery barrier with flexible substrate and production thereof
KR100743923B1 (en) * 2006-02-08 2007-07-30 한국에너지기술연구원 A back contact of cis-based compound thin film solar cells
CN101438417B (en) * 2006-03-14 2011-04-06 科鲁斯技术有限公司 Chalcopyrite semiconductor based photovoltaic solar cell comprising a metal substrate, coated metal substrate for a photovoltaic solar cell and manufacturing method thereof
US7846750B2 (en) * 2007-06-12 2010-12-07 Guardian Industries Corp. Textured rear electrode structure for use in photovoltaic device such as CIGS/CIS solar cell
AT10578U1 (en) * 2007-12-18 2009-06-15 Plansee Metall Gmbh DUNGOUS SOLAR CELL WITH MOLYBDAN-CONTAINING ELECTRODE LAYER
JP4384237B2 (en) * 2008-05-19 2009-12-16 昭和シェル石油株式会社 CIS type thin film solar cell manufacturing method
KR20090123645A (en) * 2008-05-28 2009-12-02 (주)텔리오솔라코리아 High-efficiency cigs solar cells and manufacturing method thereof
KR20100029414A (en) * 2008-09-08 2010-03-17 엘지이노텍 주식회사 Solar cell and method of fabricating the same
JP4629153B1 (en) * 2009-03-30 2011-02-09 富士フイルム株式会社 Solar cell and method for manufacturing solar cell
CN101931011A (en) * 2009-06-26 2010-12-29 安泰科技股份有限公司 Thin film solar cell as well as base band and preparation method thereof
KR101036165B1 (en) * 2009-10-08 2011-05-23 재단법인대구경북과학기술원 Method for fabricating chalcogenide solar cell
KR101091375B1 (en) * 2010-09-16 2011-12-07 엘지이노텍 주식회사 Solar cell and method for manufacturing the same
KR101173401B1 (en) * 2011-01-24 2012-08-10 엘지이노텍 주식회사 Solar cell and manufacturing method of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518942A (en) * 2007-10-17 2011-06-30 ルション、ヤン Improved solution deposition assembly
JP2010212337A (en) * 2009-03-09 2010-09-24 Fujifilm Corp Photoelectric conversion device, and solar cell
WO2010120631A2 (en) * 2009-04-13 2010-10-21 Miasole Method and apparatus for controllable sodium delivery for thin film photovoltaic materials
JP2012523709A (en) * 2009-04-13 2012-10-04 ミアソーレ Method and apparatus for delivering controllable sodium to thin film photovoltaic materials
JP2012151385A (en) * 2011-01-21 2012-08-09 Nisshin Steel Co Ltd Electrode substrate for cis solar battery, and battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170087049A (en) * 2016-01-19 2017-07-27 삼성전자주식회사 Optoelectronic device and image sensor and electronic device including the same
KR102649563B1 (en) 2016-01-19 2024-03-20 삼성전자주식회사 Optoelectronic device and image sensor and electronic device including the same

Also Published As

Publication number Publication date
CN103733350A (en) 2014-04-16
EP2720276A2 (en) 2014-04-16
US20140124028A1 (en) 2014-05-08
EP2720276A4 (en) 2014-12-24
JP5789716B2 (en) 2015-10-07
WO2012169845A2 (en) 2012-12-13
WO2012169845A3 (en) 2013-03-07

Similar Documents

Publication Publication Date Title
JP5789716B2 (en) Solar cell substrate, manufacturing method thereof, and solar cell using the same
Wang et al. A critical review on the progress of kesterite solar cells: Current strategies and insights
CN101615638B (en) CdTe thin-film solar cell with Te cushion layer
Xie et al. A progress review on challenges and strategies of flexible Cu2ZnSn (S, Se) 4 solar cells
Zhou et al. Further boosting solar cell performance via bandgap-graded Ag doping in Cu2ZnSn (S, Se) 4 solar cells compared to uniform Ag doping
Sun et al. Effect of TiN diffusion barrier layer on residual stress and carrier transport in flexible CZTSSe solar cells
KR101228685B1 (en) Substrate for ci(g)s solar cell and ci(g)s solar cell using the same
KR101091375B1 (en) Solar cell and method for manufacturing the same
JP2013540358A (en) Photovoltaic power generation apparatus and manufacturing method thereof
JP5908073B2 (en) Solar cell substrate and solar cell using the same
KR101241708B1 (en) Solar cell apparatus and method of fabricating the same
JP2014503128A (en) Solar cell and manufacturing method thereof
Lee et al. Structural regulation of electrochemically deposited copper layers for fabrication of thin film solar cells with a CuInS2 photoabsorber
KR101228735B1 (en) Solar cell substrate having multi-layer barrier layer and solar cell using the same
US20090315148A1 (en) Electroplating method for depositing continuous thin layers of indium or gallium rich materials
JP5918765B2 (en) Solar power plant
CN103477443B (en) Solar cell and method of fabricating the same
TWI405347B (en) Cigs solar cell
JP2014503129A (en) Solar cell and manufacturing method thereof
TW201228000A (en) Device structure for high efficiency CdTe thin-film solar cell
KR101253907B1 (en) Solar cell substrate having barrier layer containing sodium and method for manufacturing the same
KR20120136931A (en) Fe-ni alloy substrate for ci(g)s solar cell and method for manufacturing the same
KR101228772B1 (en) Solar cell substrate having na contained multi-layer metal barrier layer and solar cell using the same
KR101228666B1 (en) Substrate with multi-layer bottom electrode for ci(g)s solar cell and ci(g)s solar cell using the same
KR20130070697A (en) Solar cell having layer for multi diffusion barrier

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150803

R150 Certificate of patent or registration of utility model

Ref document number: 5789716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees