JP2014234843A - Vacuum heat insulation material and heat insulation apparatus - Google Patents

Vacuum heat insulation material and heat insulation apparatus Download PDF

Info

Publication number
JP2014234843A
JP2014234843A JP2013115480A JP2013115480A JP2014234843A JP 2014234843 A JP2014234843 A JP 2014234843A JP 2013115480 A JP2013115480 A JP 2013115480A JP 2013115480 A JP2013115480 A JP 2013115480A JP 2014234843 A JP2014234843 A JP 2014234843A
Authority
JP
Japan
Prior art keywords
heat insulating
glass
vacuum heat
insulating material
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013115480A
Other languages
Japanese (ja)
Other versions
JP6190165B2 (en
Inventor
大五郎 嘉本
Daigoro Kamoto
大五郎 嘉本
荒木 邦成
Kuninari Araki
邦成 荒木
越後屋 恒
Hisashi Echigoya
恒 越後屋
康人 寺内
Yasuto Terauchi
康人 寺内
祐志 新井
Yushi Arai
祐志 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2013115480A priority Critical patent/JP6190165B2/en
Priority to KR1020140005379A priority patent/KR101579878B1/en
Priority to CN201410043643.4A priority patent/CN104214471B/en
Publication of JP2014234843A publication Critical patent/JP2014234843A/en
Application granted granted Critical
Publication of JP6190165B2 publication Critical patent/JP6190165B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum heat insulation material capable of improving a heat insulation property, and to provide a cold storage and a water heater which employ the vacuum heat insulation material.SOLUTION: In a vacuum heat insulation material, a core material being a fiber assembly composed of glass containing 1.0 wt.% or more and 5.0 wt.% or less boron oxide and 50 wt.% or more silicon oxide, and a gas adsorption agent are packaged by an external capsule material having a gas barrier property, and the inside of the external capsule material is vacuumed and sealed.

Description

本発明は、真空断熱材、この真空断熱材を用いた断熱機器に関する。   The present invention relates to a vacuum heat insulating material and a heat insulating device using the vacuum heat insulating material.

本技術分野の背景技術として、特開2008−57745号公報(特許文献1)がある。この公報には、「真空断熱材1は、ガラス繊維からなる芯材2と水分吸着材3とをガスバリア性を有する外包材4で被覆して外包材4の内部を減圧密閉してなり、ガラス繊維はアルカリケイ酸ガラスであり、ZrO、ZnO、TiOのうち、少なくともいずれか1成分を含み、かつZrO、ZnO、TiOの合計は重量%で、0.5〜13%の範囲内で含まれる組成からなる。」と記載されている(要約参照)。 As a background art in this technical field, there is JP-A-2008-57745 (Patent Document 1). In this publication, “a vacuum heat insulating material 1 is formed by covering a core material 2 made of glass fiber and a moisture adsorbing material 3 with an outer packaging material 4 having a gas barrier property, and sealing the inside of the outer packaging material 4 under reduced pressure. fibers are alkali silicate glass, ZrO 2, ZnO, of TiO 2, wherein at least any one component, and ZrO 2, ZnO, the total of the TiO 2 in weight percent, a range of from 0.5 to 13% It consists of the composition contained within ”(see summary).

特開2008−57745号公報JP 2008-57745 A

近年、地球環境保護の観点または省エネルギー化の観点から、家電製品や産業機器の断熱性向上が検討されている。この種の機器の断熱に用いられる断熱材としては、樹脂フォームや有機または無機の繊維があるが、断熱性を向上しようとした場合に、断熱材の厚さを厚くする必要がある。そして、断熱材の厚さを厚くした場合には、機器全体の容積が増大してしまう。これに対し、断熱材を厚くして、且つ機器の容積を変更しない場合には、部品等を実装できるスペースの割合が低くなってしまう等の課題が生じてしまう。   In recent years, from the viewpoint of protecting the global environment or from the viewpoint of energy saving, improvement in heat insulation of home appliances and industrial equipment has been studied. As a heat insulating material used for heat insulation of this type of equipment, there are resin foam and organic or inorganic fibers. However, in order to improve heat insulation, it is necessary to increase the thickness of the heat insulating material. And when the thickness of a heat insulating material is thickened, the volume of the whole apparatus will increase. On the other hand, when the heat insulating material is made thick and the volume of the device is not changed, there arises a problem that the ratio of the space where components and the like can be mounted becomes low.

この課題を解決するために、樹脂フォームや無機繊維などにて断熱性に優れた真空断熱材が提案されている。真空断熱材は、ガスバリア性を有する外包材を袋状にし、この外包材の内部に繊維集合体からなる芯材およびガス吸着用のゲッター剤を入れてから、この外包材の内部を減圧した後、外包材の端部を封止して作製される。真空断熱材は、従来の樹脂フォームや無機繊維等の断熱材と比較して、20倍から40倍の断熱性を有することから、断熱材の厚さを薄くしても十分な断熱を行うことが可能である。   In order to solve this problem, vacuum heat insulating materials excellent in heat insulating properties such as resin foams and inorganic fibers have been proposed. The vacuum heat insulating material is a bag-shaped outer packaging material having a gas barrier property, and after the core material made of a fiber assembly and the getter agent for gas adsorption are put into the outer packaging material, the inside of the outer packaging material is decompressed. It is produced by sealing the end of the outer packaging material. Vacuum insulation has 20 to 40 times better heat insulation than conventional resin foam and inorganic fibers, etc., so sufficient insulation is achieved even if the insulation is made thinner. Is possible.

さらに、断熱材の伝熱は、固体と気体成分との熱伝導、輻射および対流熱伝達によって引き起こされる。一方、外包材の内部を減圧して作製される真空断熱材は、気体成分の熱伝導および対流熱伝達に関しては影響が小さい。さらに、真空断熱材は、常温以下の温度領域での使用において、輻射の寄与もほとんどないため、固体成分の熱伝導を抑制することが重要である。このことから、断熱性能に優れる真空断熱材用の芯材として、例えばガラス繊維、セラミック繊維、ロックウール繊維等の平均繊維径が1.0μm〜5.0μmの無機繊維等の種々の繊維材料が用いられている。   Furthermore, heat transfer in the insulation is caused by heat conduction, radiation and convective heat transfer between the solid and the gas component. On the other hand, the vacuum heat insulating material produced by depressurizing the inside of the outer packaging material has little influence on the heat conduction and convective heat transfer of the gas component. Furthermore, since the vacuum heat insulating material hardly contributes to radiation when used in a temperature range below room temperature, it is important to suppress the heat conduction of the solid component. From this, various fiber materials such as inorganic fibers having an average fiber diameter of 1.0 μm to 5.0 μm, such as glass fiber, ceramic fiber, rock wool fiber, etc., are used as the core material for vacuum heat insulating material having excellent heat insulating performance. It is used.

そして、上記特許文献1においては、ホウ素酸化物を含むことで、ガラス素材の強度が増加し真空断熱材の断熱特性を向上させている。しかしながら、ホウ素酸化物のガラスに対する濃度が高すぎるとガラスの耐水性が低下してしまう。また、耐水性が低下すると繊維化され表面積が増加したガラスの表面に空気中の水分や炭酸ガスが化学的に吸着してしまう。さらに、吸着されたガスは、真空断熱材作製時の減圧で除去することが容易ではなく、真空断熱材の作製後、徐々に外包材内の空間に放出されていき、真空断熱材中の真空度が低下してしまう。すなわち、真空断熱材の断熱特性は、内部の真空度の影響を受けるため、内部の真空度の低下によって断熱特性が低下してしまう。   And in the said patent document 1, the intensity | strength of a glass raw material increases and the heat insulation characteristic of a vacuum heat insulating material is improved by containing a boron oxide. However, if the concentration of boron oxide in the glass is too high, the water resistance of the glass is lowered. Moreover, when water resistance falls, the water | moisture content and carbon dioxide gas in the air will adsorb | suck chemically on the surface of the glass which was fiberized and the surface area increased. Furthermore, the adsorbed gas is not easy to be removed under reduced pressure during the production of the vacuum insulation material, and after the production of the vacuum insulation material, it is gradually released into the space inside the outer packaging material, and the vacuum in the vacuum insulation material The degree will decrease. That is, since the heat insulation characteristic of a vacuum heat insulating material is influenced by the internal vacuum degree, the heat insulation characteristic is deteriorated due to a decrease in the internal vacuum degree.

そこで、本発明は、断熱特性を向上することができる真空断熱材、この真空断熱材を用いた冷蔵庫や給湯器等の断熱機器を提供する。   Therefore, the present invention provides a vacuum heat insulating material that can improve heat insulating properties, and a heat insulating device such as a refrigerator and a water heater using the vacuum heat insulating material.

上記課題を解決するため、本発明は、ホウ素酸化物を1.0重量%以上5.0重量%以下、珪素酸化物を少なくとも50重量%含むガラスからなる繊維集合体が用いられた真空断熱材である。   In order to solve the above-described problems, the present invention provides a vacuum heat insulating material using a fiber assembly made of glass containing 1.0% by weight or more and 5.0% by weight or less of boron oxide and at least 50% by weight of silicon oxide. It is.

本発明によれば、繊維集合体に用いるガラスのヤング率および耐水性を高くでき、真空断熱材に用いた際の断熱特性を向上することができる。上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。   ADVANTAGE OF THE INVENTION According to this invention, the Young's modulus and water resistance of the glass used for a fiber assembly can be made high, and the heat insulation characteristic at the time of using for a vacuum heat insulating material can be improved. Problems, configurations, and effects other than those described above will become apparent from the following description of embodiments.

本発明の各実施例における真空断熱材の概略断面図である。It is a schematic sectional drawing of the vacuum heat insulating material in each Example of this invention. 上記真空断熱材を備えた冷蔵庫の概略断面図である。It is a schematic sectional drawing of the refrigerator provided with the said vacuum heat insulating material. 上記真空断熱材を備えた給湯器の概略断面図である。It is a schematic sectional drawing of the water heater provided with the said vacuum heat insulating material. 上記実施例1ないし実施例3、および比較例1ないし比較例3の繊維集合体のガラスの特性を示す表である。It is a table | surface which shows the characteristic of the glass of the fiber assembly of the said Example 1 thru | or Example 3, and the comparative example 1 thru | or the comparative example 3. FIG. 上記実施例1ないし実施例3、および比較例1ないし比較例3のホウ素酸化物(B)の添加量とヤング率と耐水性との関係を示すグラフである。We are a graph showing the relationship between the mixing amount and the Young's modulus and water resistance of Example 1 to Example 3, and Comparative Examples 1 to boron oxide in Comparative Example 3 (B 2 O 3).

本発明に係る真空断熱材1は、図1に示すように、繊維集合体2からなる芯材と、ガス吸着用のガス吸着剤としてのゲッター剤4とをガスバリア性を有する外包材3で包み、この外包材3の内部を減圧した後、この外包材3の開口している端部3aを封止して形成されている。そして、真空断熱材1は、繊維集合体2を形成する繊維が、ホウ素酸化物(B)を1.0重量%以上5.0重量%以下含むガラス組成からなる、いわゆるグラスウールとされている。なお、ホウ素酸化物は、好ましくは2.5重量%以上4.8重量%以下、より好ましくは2.65重量%以上4.79重量%以下である。 As shown in FIG. 1, a vacuum heat insulating material 1 according to the present invention wraps a core material made of a fiber assembly 2 and a getter agent 4 as a gas adsorbent for gas adsorption with an outer packaging material 3 having gas barrier properties. After the pressure inside the outer packaging material 3 is reduced, the open end 3a of the outer packaging material 3 is sealed. The vacuum insulation material 1, the fibers forming the fiber assembly 2 is made of a glass composition comprising boron oxide (B 2 O 3) 1.0 wt% to 5.0 wt% or less, it is a so-called glass wool ing. The boron oxide is preferably 2.5% by weight or more and 4.8% by weight or less, more preferably 2.65% by weight or more and 4.79% by weight or less.

具体的に、繊維集合体2に用いられるガラスは、ホウ素酸化物を1.0重量%以上5.0重量%以下含み、ガラス状態を形成する組成からなればよいが、特に汎用性および環境面の点から、珪素酸化物(SiO)を主成分とするホウケイ酸系ガラスが好ましい。珪素酸化物は、含有量が減少することによって液相温度が上昇するため、他の成分量と比した含有量が重量%で最も大きいことが好ましく、珪素酸化物を少なくとも50重量%含むことがより好ましい。一方、珪素酸化物は、含有量が増大することによって粘性が高くなることで生産性が低下するため、70重量%以下が好ましい。次に、このガラスは、アルミ酸化物(Al)が増加することにより液相温度が上昇するとともに粘性が高くなるため、アルミ酸化物の含有量は5.0重量%以下が好ましく、より好ましくは2.0重量%以下が好ましい。一方、アルミ酸化物の含有量が低いと素材強度が低下するため、アルミ酸化物を0.1重量%以上含むことが好ましい。 Specifically, the glass used for the fiber assembly 2 may contain boron oxide in an amount of 1.0% by weight or more and 5.0% by weight or less, and may have a composition that forms a glass state. From this point, borosilicate glass mainly composed of silicon oxide (SiO 2 ) is preferable. Since the liquid phase temperature rises as the content of silicon oxide decreases, the content compared to the amount of other components is preferably the largest in weight%, and it contains at least 50% by weight of silicon oxide. More preferred. On the other hand, silicon oxide is preferred to be 70% by weight or less because productivity increases due to increase in viscosity due to increase in content. Next, this glass has a higher viscosity due to an increase in liquid phase temperature due to an increase in aluminum oxide (Al 2 O 3 ), so the content of aluminum oxide is preferably 5.0% by weight or less, More preferably, it is 2.0% by weight or less. On the other hand, when the content of the aluminum oxide is low, the strength of the material is lowered. Therefore, it is preferable to contain 0.1% by weight or more of the aluminum oxide.

さらに、このガラスは、ナトリウム酸化物(NaO)およびカリウム酸化物(KO)の添加量が増加すると素材強度が低下するため、これらの合計の添加量は15.0重量%以下が好ましい。一方、添加量が減少すると溶融温度の上昇を招くことから、これらの合計の添加量は10.0重量%以上が好ましい。また、マグネシウム酸化物(MgO)の添加量は、素材強度が向上する点から2.0重量%以上が好ましい。また、液相温度の上昇を抑制する点からマグネシウム酸化物の添加量は、5.0重量%以下が好ましい。 Furthermore, since the strength of the material of the glass decreases as the addition amount of sodium oxide (Na 2 O) and potassium oxide (K 2 O) increases, the total addition amount thereof is 15.0% by weight or less. preferable. On the other hand, if the addition amount is decreased, the melting temperature is increased, so that the total addition amount is preferably 10.0% by weight or more. Further, the amount of magnesium oxide (MgO) added is preferably 2.0% by weight or more from the viewpoint of improving the material strength. Moreover, the addition amount of magnesium oxide is preferably 5.0% by weight or less from the viewpoint of suppressing an increase in the liquidus temperature.

そして、このガラスは、素材強度を高めることができる点から、カルシウム酸化物(CaO)を2.0重量%以上含むことが好ましい。一方、10.0重量%を超えると液相温度を上昇させることから、10.0重量%以下のカルシウム酸化物を含むことが好ましい。さらに、このガラスは、その他の成分として、3.0重量%未満であればガラス全体への影響がほとんどないことから、不純物を含む天然原料または組成の異なる、いわゆる市中カレット等を用いることができる。また、このガラスの作製時においては、例えばアンチモン酸化物等の清澄剤を用いることができ、清澄剤を用いることで、泡切れを良好にして生産性を向上することができる。   And it is preferable that this glass contains 2.0 weight% or more of calcium oxide (CaO) from the point which can raise raw material intensity | strength. On the other hand, if it exceeds 10.0% by weight, the liquidus temperature is increased, so that it is preferable to contain 10.0% by weight or less of calcium oxide. Furthermore, since this glass has almost no effect on the entire glass if it is less than 3.0% by weight as other components, so-called commercial cullet, etc., containing natural raw materials containing impurities or different compositions may be used. it can. Moreover, when producing this glass, for example, a clarifier such as antimony oxide can be used. By using the clarifier, it is possible to improve the foaming and improve the productivity.

さらに、繊維集合体2に用いられるガラスの形成方法としては、例えば溶融遠心法や火炎法等が可能であるが、繊維径の均一性や未繊維化のガラス粒の混入を考慮すると、溶融遠心法が特に好ましい。また、このガラスの繊維径は、例えばマイクロネア繊度または走査型電子顕微鏡等にて測定できる。走査型電子顕微鏡による測定は、例えば、顕微鏡写真において複数箇所例えば50箇所の繊維径を測定して統計処理することで繊維径(平均繊維径)を求めることができる。工業的な生産性を考慮すると、平均繊維径で10μm以下、さらには5μm以下がより好ましい。上述の方法で繊維化されたガラスは、吸引機能つきのコンベア(図示せず)上に積層集綿されてグラスウールマットとされる。グラスウールマットは、所定の形状に切断されて断熱材とされ真空断熱材1用の芯材とされる。なお、この芯材は、各用途に用いる前に熱プレスによる成形等の工程が加えられて、形が整えられることもある。   Furthermore, as a method for forming the glass used for the fiber assembly 2, for example, a melt centrifugation method or a flame method can be used. In consideration of the uniformity of the fiber diameter and mixing of non-fibrous glass particles, The method is particularly preferred. The fiber diameter of the glass can be measured, for example, with a micronaire fineness or a scanning electron microscope. In the measurement by the scanning electron microscope, for example, the fiber diameter (average fiber diameter) can be obtained by measuring fiber diameters at a plurality of places, for example, 50 places in the micrograph and performing statistical processing. Considering industrial productivity, the average fiber diameter is preferably 10 μm or less, and more preferably 5 μm or less. The glass fiberized by the above-described method is laminated and collected on a conveyor (not shown) having a suction function to form a glass wool mat. The glass wool mat is cut into a predetermined shape to be a heat insulating material and a core material for the vacuum heat insulating material 1. In addition, before using for this use for this core material, processes, such as shaping | molding by a hot press, are added, and a shape may be prepared.

さらに、上記方法で作成された繊維集合体2を真空断熱材1の芯材として用いる場合は、ガスバリア性を有する外包材3が使用される。外包材3は、例えば表面保護層、ガスバリア層および熱溶着層(図示せず)を含み、これら表面保護層、ガスバリア層および熱溶着層が少なくとも1種類以上の積層されたフィルムとされている。具体的に、表面保護層としては、例えばポリエチレンテレフタレートフィルム、ポリアミドフィルム、またはポリプロピレンフィルム等の延伸加工品が用いられる。また、ガスバリア層としては、例えば金属蒸着フィルム、無機質蒸着フィルム、または金属箔等が用いられる。さらに、熱溶着層としては、例えば低密度ポリエチレンフィルム、高密度ポリエチレンフィルム、ポリプロピレンフィルム、ポリアクリロニトリルフィルム、無延伸ポリエチレンレテレフタレートフィルム、または直鎖状低密度ポリエチレンフィルム等が用いられる。   Furthermore, when using the fiber assembly 2 created by the above method as a core material of the vacuum heat insulating material 1, an outer packaging material 3 having gas barrier properties is used. The outer packaging material 3 includes, for example, a surface protective layer, a gas barrier layer, and a heat welding layer (not shown), and the surface protective layer, the gas barrier layer, and the heat welding layer are a film in which at least one kind is laminated. Specifically, as the surface protective layer, for example, a stretched product such as a polyethylene terephthalate film, a polyamide film, or a polypropylene film is used. Moreover, as a gas barrier layer, a metal vapor deposition film, an inorganic vapor deposition film, or metal foil etc. are used, for example. Furthermore, as a heat welding layer, a low density polyethylene film, a high density polyethylene film, a polypropylene film, a polyacrylonitrile film, an unstretched polyethylene terephthalate film, a linear low density polyethylene film, etc. are used, for example.

また、外包材3の内部を減圧してから端部3aを封止した後の残存ガスおよび水分を吸着するガス吸着用のゲッター剤4は、繊維集合体2とともに外包材3に収容されており、このゲッター剤4としては、例えばモレキュラーシーブス、シリカゲル、酸化カルシウム、合成ゼオライト、活性炭、水酸化カリウム、水酸化ナトリウム、または水酸化リチウム等を単独又は組合せて用いられる。   Further, the gas adsorbing getter agent 4 for adsorbing the residual gas and moisture after the inside of the outer packaging material 3 is decompressed and then the end portion 3 a is sealed is housed in the outer packaging material 3 together with the fiber assembly 2. As the getter agent 4, for example, molecular sieves, silica gel, calcium oxide, synthetic zeolite, activated carbon, potassium hydroxide, sodium hydroxide, lithium hydroxide, or the like is used alone or in combination.

さらに、真空断熱材1が用いられる用途としては、図2に示す冷蔵庫5と、図3に示す給湯器15等がある。ここで、図2は、真空断熱材を備えた冷蔵庫の概略断面図である。また、図3は、真空断熱材を備えた給湯器の概略断面図である。   Furthermore, as a use for which the vacuum heat insulating material 1 is used, there are a refrigerator 5 shown in FIG. 2, a hot water heater 15 shown in FIG. Here, FIG. 2 is a schematic cross-sectional view of a refrigerator provided with a vacuum heat insulating material. FIG. 3 is a schematic cross-sectional view of a water heater provided with a vacuum heat insulating material.

具体的に、冷蔵庫5は、いわゆる冷凍部を有する冷凍冷蔵庫であって、図2に示すように、外側に位置する冷蔵庫外箱9と、この冷蔵庫外箱9の内側に位置する冷蔵庫内箱7とを備えており、これら冷蔵庫内箱7と冷蔵庫外箱9との間に真空断熱材1が張り付けられている。この真空断熱材1は、冷蔵庫内箱7または冷蔵庫外箱9の少なくともいずれか一方に張り付けられた後、これら冷蔵庫内箱7と冷蔵庫外箱9とが組み合わされ、これら冷蔵庫内箱7と冷蔵庫外箱9との間に形成された隙間に断熱材、例えば発泡ウレタン6が注入されて冷蔵庫箱体11が作成されている。なお、冷蔵庫5の開閉可能な扉12についても同様に作製されている。さらに、冷蔵庫箱体11内には、この冷蔵庫箱体11内を冷却するために用いられるコンプレッサ8や、熱交換器(図示せず)等の部品が取り付けられている。   Specifically, the refrigerator 5 is a refrigerator refrigerator having a so-called refrigeration unit, and as shown in FIG. 2, a refrigerator outer box 9 positioned outside and a refrigerator inner box 7 positioned inside the refrigerator outer box 9. The vacuum heat insulating material 1 is attached between the refrigerator inner box 7 and the refrigerator outer box 9. The vacuum heat insulating material 1 is attached to at least one of the refrigerator inner box 7 and the refrigerator outer box 9, and then the refrigerator inner box 7 and the refrigerator outer box 9 are combined. A refrigerator box 11 is created by injecting a heat insulating material, for example, urethane foam 6, into the gap formed between the box 9. The door 12 that can be opened and closed of the refrigerator 5 is also produced in the same manner. Furthermore, components such as a compressor 8 and a heat exchanger (not shown) used for cooling the inside of the refrigerator box 11 are attached in the refrigerator box 11.

一方、給湯器15は、ヒートポンプ式の給湯器であって、図3に示すように、貯湯タンク16を備えており、この貯湯タンク16の周面に真空断熱材1が張り付けられ周方向に亘って覆われている。貯湯タンク16には、ヒートポンプユニット20にて暖められたお湯が給湯配管19を介して供給されて貯められている。また、貯湯タンク16に貯められたお湯は、給水管17を介して外部へ排水され所定箇所へ給水可能とされている。   On the other hand, the water heater 15 is a heat pump type water heater, and includes a hot water storage tank 16 as shown in FIG. 3. The vacuum heat insulating material 1 is attached to the peripheral surface of the hot water storage tank 16 over the circumferential direction. Covered. Hot water heated by the heat pump unit 20 is supplied to and stored in the hot water storage tank 16 via the hot water supply pipe 19. The hot water stored in the hot water storage tank 16 is drained to the outside through the water supply pipe 17 and can be supplied to a predetermined location.

以下、本発明に係る真空断熱材の実施例および比較例について図を用いて詳細に説明する。なお、これら実施例によって発明が限定されるものではない。   Hereinafter, the Example and comparative example of the vacuum heat insulating material which concern on this invention are described in detail using figures. The invention is not limited by these examples.

本実施例1に係る真空断熱材1は、図1に示すように、芯材として繊維集合体2が用いられている。繊維集合体2は、図4に示す組成のガラスを素材としている。ここで、この図4中に示す各数値の単位は、重量%である。具体的に、繊維集合体2を構成するガラスのホウ素酸化物(B)の添加量は、2.65重量%とされている。さらに、繊維集合体2は、組成が調整されたガラスを溶融炉で約1200℃の温度で溶融した後、金属製スピナーを用いた遠心法にて紡糸されている。そして、紡糸した繊維は、吸引機構を有するコンベア上に目付けが1400g/mとなるように集められている。ここで、目付けとは、単位から明らかなように、集めた繊維を1mの大きさにした際の重量を規定したものである。 As shown in FIG. 1, the vacuum heat insulating material 1 according to the first embodiment uses a fiber assembly 2 as a core material. The fiber assembly 2 is made of glass having the composition shown in FIG. Here, the unit of each numerical value shown in FIG. 4 is% by weight. Specifically, the added amount of boron oxide (B 2 O 3 ) of the glass constituting the fiber assembly 2 is 2.65% by weight. Furthermore, the fiber assembly 2 is spun by a centrifugal method using a metal spinner after melting the glass whose composition is adjusted at a temperature of about 1200 ° C. in a melting furnace. The spun fibers are collected on a conveyor having a suction mechanism so that the basis weight is 1400 g / m 2 . Here, as is apparent from the unit, the basis weight defines the weight when the collected fibers are 1 m 2 in size.

また、紡糸した繊維の太さを調べるため、マイクロネア繊度を測定したところ、平均繊維径が4.9μmであった。紡糸した繊維にて作製された繊維集合体2(グラスウール)を、幅500mm×長さ1000mmの大きさに切断してから、200℃の乾燥炉で30分間乾燥した後、目付け1400g/mとしたものを2枚積層する。そして、ゲッター剤4(ユニオン昭和株式会社製:モレキュラシーブス5A)とともに、3方を綴じて袋状にした外包材3に繊維集合体2を入れ、この外包材3の内部を一般的なロータリーポンプにて10分間、大気圧未満の所定圧力に真空引きしてから、拡散ポンプにて10分真空引きした後、この外包材3の開口している側の端部3aをヒートシールで封止して真空断熱材1とした。 Moreover, in order to investigate the thickness of the spun fiber, when the micronaire fineness was measured, the average fiber diameter was 4.9 μm. The fiber assembly 2 (glass wool) made of the spun fibers is cut into a size of 500 mm wide × 1000 mm long, dried in a drying oven at 200 ° C. for 30 minutes, and then has a basis weight of 1400 g / m 2 . Two pieces are laminated. Then, together with the getter agent 4 (manufactured by Union Showa Co., Ltd .: Molecular Sieves 5A), the fiber assembly 2 is put into an outer packaging material 3 that is bound in three directions into a bag shape. After evacuating to a predetermined pressure of less than atmospheric pressure for 10 minutes, and then evacuating for 10 minutes with a diffusion pump, the end 3a on the open side of the outer packaging material 3 is sealed with a heat seal Thus, a vacuum heat insulating material 1 was obtained.

この真空断熱材1(厚み:約12mm)の断熱特性を、熱伝導率測定装置(英弘精機株式会社製:オートΛ)にて10℃で測定したところ、断熱特性が98(指数)であった。この断熱特性は、指数で示されており、この指数が高くなるほど断熱特性が良好である。よって、本実施例1に係る真空断熱材1は、断熱特性が95を超えており、非常に断熱性に優れている。また、繊維集合体2を作製したガラスと同じ組成のガラスについてバースト法を用いてヤング率を測定したところ、77.9GPaであった。さらに、このガラスの耐水性を評価するため、ブロックを所定時間、水に浸漬しガラス成分の水への溶出量を測定したところ、水への溶出量は少量であり、耐水性が良好であった。   When the heat insulating property of this vacuum heat insulating material 1 (thickness: about 12 mm) was measured at 10 ° C. with a thermal conductivity measuring device (manufactured by EKO Co., Ltd .: Auto Λ), the heat insulating property was 98 (index). . This heat insulating property is indicated by an index, and the higher the index, the better the heat insulating property. Therefore, the vacuum heat insulating material 1 which concerns on the present Example 1 has the heat insulation characteristic exceeding 95, and is very excellent in heat insulation. Moreover, it was 77.9 GPa when the Young's modulus was measured using the burst method about the glass of the same composition as the glass from which the fiber assembly 2 was produced. Furthermore, in order to evaluate the water resistance of this glass, the amount of elution into water was measured by immersing the block in water for a predetermined time, and the amount of elution into water was small, and the water resistance was good. It was.

さらに、同様の方法で種々の大きさの真空断熱材1を作製し、この真空断熱材1を用いて冷蔵庫5を作製し消費電力を測定したところ、後述する比較例1の組成の真空断熱材を用いた場合に比べ、約5%低い結果となった。この結果、本実施例1に係る真空断熱材1を用いることにより、機器の消費電力を低く抑えることができることが分かった。   Furthermore, when the vacuum heat insulating material 1 of various magnitude | sizes was produced with the same method, the refrigerator 5 was produced using this vacuum heat insulating material 1, and the power consumption was measured, the vacuum heat insulating material of the composition of the comparative example 1 mentioned later is mentioned. The result was about 5% lower than that when using. As a result, it was found that by using the vacuum heat insulating material 1 according to Example 1, the power consumption of the device can be kept low.

本実施例2に係る真空断熱材1は、図4に示す組成のガラスを素材とした繊維集合体2が用いられている。具体的に、この繊維集合体2を構成するガラスのホウ素酸化物の添加量は、4.65重量%とされている。さらに、繊維集合体2は、上述した実施例1と同様の方法で作製され、紡糸した繊維の太さを調べるため、マイクロネア繊度を測定したところ、平均繊維径が5.0μmであった。さらに、この繊維集合体2が収容された真空断熱材1(厚み:約12mm)の断熱特性を、熱伝導率測定装置(英弘精機株式会社製:オートΛ)にて10℃で測定したところ、断熱特性が100(指数)であった。   The vacuum heat insulating material 1 according to the second embodiment uses a fiber assembly 2 made of glass having the composition shown in FIG. Specifically, the amount of boron oxide added to the glass constituting the fiber assembly 2 is 4.65% by weight. Furthermore, the fiber assembly 2 was produced by the same method as in Example 1 described above, and when the micronaire fineness was measured in order to examine the thickness of the spun fiber, the average fiber diameter was 5.0 μm. Furthermore, when the heat insulating property of the vacuum heat insulating material 1 (thickness: about 12 mm) in which the fiber assembly 2 was accommodated was measured at 10 ° C. with a thermal conductivity measuring device (manufactured by Eihiro Seiki Co., Ltd .: Auto Λ), The heat insulating property was 100 (index).

この結果、本実施例2に係る真空断熱材1は、断熱特性が95を超えており、非常に断熱性に優れている。また、繊維集合体2を作製したガラスと同じ組成のガラスについてバースト法を用いてヤング率を測定したところ、79.7GPaであった。さらに、このガラスの耐水性を評価するため、ブロックを水に浸漬しガラス成分の水への溶出量を測定したところ、水への溶出量は少量であり、耐水性は良好であった。   As a result, the vacuum heat insulating material 1 according to Example 2 has a heat insulating property exceeding 95, and is extremely excellent in heat insulating properties. Further, the Young's modulus of the glass having the same composition as that of the glass from which the fiber assembly 2 was produced was measured using a burst method, and was found to be 79.7 GPa. Furthermore, in order to evaluate the water resistance of this glass, when the block was immersed in water and the elution amount of the glass component into water was measured, the elution amount into water was small and the water resistance was good.

さらに、同様の方法で大きさ800mm×1200mm、厚さ15mmの真空断熱材1を作製し、この真空断熱材1を用いて給湯器15を作製した。ここで、この給湯器15の貯湯タンク10に貯められたお湯は、使用されない限り、この貯湯タンク10内の湯温が低下すると沸かし直しを行う必要があるため、給湯器15の成績係数(COP:Coefficient of Performance)が低下してしまう。そこで、本実施例2に係る真空断熱材1を用いた場合と、従来から用いられている一般的な発砲ウレタンを用いた場合のCOPを比較したところ、本実施例2に係る真空断熱材1を用いることにより、約10%の改善が確認され、機器の消費電力を低く抑えることができることが分かった。   Further, a vacuum heat insulating material 1 having a size of 800 mm × 1200 mm and a thickness of 15 mm was produced by the same method, and a water heater 15 was produced using the vacuum heat insulating material 1. Here, since the hot water stored in the hot water storage tank 10 of the hot water heater 15 needs to be re-boiled when the hot water temperature in the hot water storage tank 10 is lowered unless it is used, the coefficient of performance (COP) of the hot water heater 15 is required. : Coefficient of Performance) decreases. Therefore, when the COP between the case where the vacuum heat insulating material 1 according to the second embodiment is used and the case where the conventional foamed urethane is used is compared, the vacuum heat insulating material 1 according to the second embodiment is compared. It was confirmed that by using this, an improvement of about 10% was confirmed, and the power consumption of the device could be kept low.

本実施例3に係る繊維集合体1は、図4に示す組成のガラスを素材とした繊維集合体2が用いられている。具体的に、この繊維集合体2を構成するガラスのホウ素酸化物の添加量は、4.79重量%とされている。さらに、繊維集合体2は、上述した実施例1と同様の方法で作製され、紡糸した繊維の太さを調べるため、マイクロネア繊度を測定したところ、平均繊維径が4.5μmであった。さらに、この繊維集合体2が収容された真空断熱材1(厚み:約12mm)の断熱特性を、熱伝導率測定装置(英弘精機株式会社製:オートΛ)にて10℃で測定したところ、断熱特性が100(指数)であった。   The fiber assembly 1 according to the third embodiment uses a fiber assembly 2 made of glass having the composition shown in FIG. Specifically, the amount of boron oxide added to the glass constituting the fiber assembly 2 is 4.79% by weight. Furthermore, the fiber assembly 2 was produced by the same method as in Example 1 described above, and when the micronaire fineness was measured in order to examine the thickness of the spun fiber, the average fiber diameter was 4.5 μm. Furthermore, when the heat insulating property of the vacuum heat insulating material 1 (thickness: about 12 mm) in which the fiber assembly 2 was accommodated was measured at 10 ° C. with a thermal conductivity measuring device (manufactured by Eihiro Seiki Co., Ltd .: Auto Λ), The heat insulating property was 100 (index).

この結果、本実施例3に係る真空断熱材1は、断熱特性が95を超えており、非常に断熱性に優れている。また、繊維集合体2を作製したガラスと同じ組成のガラスについてバースト法を用いてヤング率を測定したところ、78.7GPaであった。さらに、このガラスの耐水性を評価するため、ブロックを水に浸漬しガラス成分の水への溶出量を測定したところ、水への溶出量は少量であり、耐水性は良好であった。   As a result, the vacuum heat insulating material 1 according to Example 3 has a heat insulating property exceeding 95, and is extremely excellent in heat insulating properties. Moreover, it was 78.7 GPa when the Young's modulus was measured using the burst method about the glass of the same composition as the glass which produced the fiber assembly 2. FIG. Furthermore, in order to evaluate the water resistance of this glass, when the block was immersed in water and the elution amount of the glass component into water was measured, the elution amount into water was small and the water resistance was good.

比較例1Comparative Example 1

本比較例1に係る繊維集合体は、図4に示す組成のガラスを素材とした繊維集合体が用いられている。具体的に、この繊維集合体を構成するガラスのホウ素酸化物の添加量は、0.16重量%とされている。さらに、繊維集合体は、上述した実施例1と同様の方法で作製され、紡糸した繊維の太さを調べるため、マイクロネア繊度を測定したところ、平均繊維径が5.1μmであった。さらに、この繊維集合体が収容された真空断熱材(厚み:約11mm)の断熱特性を、熱伝導率測定装置(英弘精機株式会社製:オートΛ)にて10℃で測定したところ、断熱特性が94(指数)であった。   The fiber assembly according to Comparative Example 1 uses a fiber assembly made of glass having the composition shown in FIG. Specifically, the amount of boron oxide added to the glass constituting the fiber assembly is 0.16% by weight. Furthermore, the fiber assembly was produced by the same method as in Example 1 described above, and when the micronaire fineness was measured in order to examine the thickness of the spun fiber, the average fiber diameter was 5.1 μm. Furthermore, when the heat insulating property of the vacuum heat insulating material (thickness: about 11 mm) containing this fiber assembly was measured at 10 ° C. with a thermal conductivity measuring device (manufactured by Eihiro Seiki Co., Ltd .: Auto Λ), the heat insulating property was measured. Was 94 (index).

この結果、本比較例1に係る真空断熱材は、断熱特性が95を下回っており、断熱性が低い。また、繊維集合体を作製したガラスと同じ組成のガラスについてバースト法を用いてヤング率を測定したところ、76.6GPaであった。さらに、このガラスの耐水性を評価するため、ブロックを水に浸漬しガラス成分の水への溶出量を測定したところ、水への溶出量は微量であり、耐水性は良好であった。この結果、ホウ素酸化物の含有量を1.0重量%以下の繊維集合体とした場合は、ガラスのヤング率が低くなり、真空断熱材を作製した際に加わる大気圧に耐えることができないため、断熱特性が低下することが分かった。   As a result, the vacuum heat insulating material according to Comparative Example 1 has a heat insulating property lower than 95, and has low heat insulating properties. Moreover, it was 76.6 GPa when the Young's modulus was measured using the burst method about the glass of the same composition as the glass which produced the fiber assembly. Furthermore, in order to evaluate the water resistance of this glass, when the block was immersed in water and the elution amount of the glass component into water was measured, the elution amount into water was very small and the water resistance was good. As a result, when the fiber aggregate has a boron oxide content of 1.0% by weight or less, the Young's modulus of the glass is low, and it cannot withstand the atmospheric pressure applied when the vacuum heat insulating material is produced. It was found that the heat insulating properties deteriorate.

比較例2Comparative Example 2

本比較例2に係る繊維集合体は、図4に示す組成のガラスを素材とした繊維集合体が用いられている。具体的に、この繊維集合体を構成するガラスのホウ素酸化物の添加量は、7.14重量%とされている。さらに、繊維集合体2は、上述した実施例1と同様の方法で作製され、紡糸した繊維の太さを調べるため、マイクロネア繊度を測定したところ、平均繊維径が5.1μmであった。さらに、この繊維集合体が収容された真空断熱材(厚み:約12mm)の断熱特性を、熱伝導率測定装置(英弘精機株式会社製:オートΛ)にて10℃で測定したところ、断熱特性が94(指数)であった。   As the fiber assembly according to Comparative Example 2, a fiber assembly made of glass having the composition shown in FIG. 4 is used. Specifically, the amount of boron oxide added to the glass constituting the fiber assembly is 7.14% by weight. Furthermore, the fiber assembly 2 was produced by the same method as in Example 1 described above, and when the micronaire fineness was measured in order to examine the thickness of the spun fiber, the average fiber diameter was 5.1 μm. Furthermore, when the heat insulating property of the vacuum heat insulating material (thickness: about 12 mm) containing the fiber assembly was measured at 10 ° C. with a thermal conductivity measuring device (manufactured by Eihiro Seiki Co., Ltd .: Auto Λ), the heat insulating property was measured. Was 94 (index).

この結果、本比較例2に係る真空断熱材は、断熱特性が95を下回っており、断熱性が低い。また、繊維集合体を作製したガラスと同じ組成のガラスについてバースト法を用いてヤング率を測定したところ、81.4GPaであった。さらに、このガラスの耐水性を評価するため、ブロックを水に浸漬しガラス成分の水への溶出量を測定したところ、水への溶出量が多く、耐水性は不良であった。この結果、ホウ素酸化物の含有量を5.0重量%以上の繊維集合体とした場合は、ガラスのヤング率が高くなるものの、耐水性の低下により、繊維表面に水分等のガスが吸着してしまうため、真空断熱材を作製した後に空間中にガスが拡散し、真空度が低下してしまい断熱特性が低下することが分かった。   As a result, the vacuum heat insulating material according to Comparative Example 2 has a heat insulating property lower than 95, and has low heat insulating properties. Moreover, when the Young's modulus was measured using the burst method for the glass having the same composition as the glass from which the fiber assembly was produced, it was 81.4 GPa. Furthermore, in order to evaluate the water resistance of this glass, when the block was immersed in water and the elution amount of the glass component into water was measured, the elution amount into water was large and the water resistance was poor. As a result, when the fiber aggregate has a boron oxide content of 5.0% by weight or more, although the Young's modulus of the glass is increased, moisture and other gases are adsorbed on the fiber surface due to a decrease in water resistance. Therefore, it was found that after the vacuum heat insulating material was produced, the gas diffused into the space, the degree of vacuum was lowered, and the heat insulating properties were lowered.

比較例3Comparative Example 3

本比較例3に係る繊維集合体は、図4に示す組成のガラスを素材とした繊維集合体が用いられている。具体的に、この繊維集合体を構成するガラスのホウ素酸化物の添加量は、4.45重量%とされ、珪素酸化物の添加量は、48.50重量%とされている。さらに、繊維集合体は、上述した実施例1と同様の方法で作製され、紡糸した繊維の太さを調べるため、マイクロネア繊度を測定したところ、平均繊維径が6.4μmであった。さらに、この繊維集合体が収容された真空断熱材(厚み:約11mm)の断熱特性を、熱伝導率測定装置(英弘精機株式会社製:オートΛ)にて10℃で測定したところ、断熱特性が92(指数)であった。   As the fiber assembly according to Comparative Example 3, a fiber assembly made of glass having the composition shown in FIG. 4 is used. Specifically, the amount of boron oxide added to the glass constituting this fiber assembly is 4.45% by weight, and the amount of silicon oxide added is 48.50% by weight. Furthermore, the fiber assembly was produced by the same method as in Example 1 described above, and when the micronaire fineness was measured to examine the thickness of the spun fiber, the average fiber diameter was 6.4 μm. Furthermore, when the heat insulating property of the vacuum heat insulating material (thickness: about 11 mm) containing this fiber assembly was measured at 10 ° C. with a thermal conductivity measuring device (manufactured by Eihiro Seiki Co., Ltd .: Auto Λ), the heat insulating property was measured. Was 92 (index).

この結果、本比較例3に係る真空断熱材は、断熱特性が95を下回っており、断熱性が低い。また、繊維集合体2を作製したガラスと同じ組成のガラスについてバースト法を用いてヤング率を測定したところ、80.3GPaであった。さらに、このガラスの耐水性を評価するため、ブロックを水に浸漬しガラス成分の水への溶出量を測定したところ、水への溶出量は少量であり、耐水性は良好であった。この結果、ホウ素酸化物の含有量を1.0重量%以上とした場合であっても、珪素酸化物の濃度を50重量%以下とした繊維集合体の場合には、ガラス溶融時の粘度が高く、細径のグラスウールとならないため、真空断熱材を作製した場合の断熱特性が低下してしまうことが分かった。   As a result, the vacuum heat insulating material according to Comparative Example 3 has a heat insulating property lower than 95, and has low heat insulating properties. Moreover, it was 80.3 GPa when the Young's modulus was measured using the burst method about the glass of the same composition as the glass which produced the fiber assembly 2. FIG. Furthermore, in order to evaluate the water resistance of this glass, when the block was immersed in water and the elution amount of the glass component into water was measured, the elution amount into water was small and the water resistance was good. As a result, even when the content of boron oxide is 1.0% by weight or more, in the case of a fiber assembly in which the concentration of silicon oxide is 50% by weight or less, the viscosity at the time of glass melting is It was found that since the glass wool is high and does not become a small-diameter glass, the heat insulating property when the vacuum heat insulating material is produced is deteriorated.

<作用効果>
図5は、上記実施例1ないし実施例3、および比較例1ないし比較例3のホウ素酸化物(B)の添加量とヤング率と耐水性(指標)との関係を示すグラフである。図5では、丸の記号が上記実施例1ないし実施例3、および比較例1ないし比較例3のヤング率及びホウ素酸化物の添加量を示し、四角の記号が上記実施例1ないし実施例3、および比較例1ないし比較例3の耐水性(指標)を示すようプロットされている。また、鎖線で引かれた直線は、丸の記号の回帰直線である。すなわち、図5に示すように、繊維集合体に用いられるガラスのヤング率は、ホウ素酸化物の含有量(濃度)の上昇に比例して増大する。また、ガラスの耐水性は、ホウ素酸化物の含有量の上昇に伴って低下する。そして、これらヤング率および耐水性とホウ酸酸化物の含有量との交点は、ホウ素酸化物の含有量が約5.0重量%となる。さらに、ガラスのヤング率が77.0GPaを超えるホウ素酸化物の含有量は、1.0重量%以上となる。
<Effect>
FIG. 5 is a graph showing the relationship between the added amount of boron oxide (B 2 O 3 ), Young's modulus, and water resistance (index) in Examples 1 to 3 and Comparative Examples 1 to 3. is there. In FIG. 5, the circle symbol indicates the Young's modulus and the amount of boron oxide added in Examples 1 to 3 and Comparative Examples 1 to 3, and the square symbol indicates Examples 1 to 3 above. , And Comparative Examples 1 to 3 are plotted to show the water resistance (index). A straight line drawn by a chain line is a regression line of a circle symbol. That is, as shown in FIG. 5, the Young's modulus of the glass used for the fiber assembly increases in proportion to the increase in the content (concentration) of boron oxide. Further, the water resistance of the glass decreases as the content of boron oxide increases. The intersection of these Young's modulus and water resistance with the content of boric acid oxide is that the boron oxide content is about 5.0% by weight. Furthermore, the content of boron oxide having a Young's modulus of glass exceeding 77.0 GPa is 1.0% by weight or more.

したがって、ホウ素酸化物の含有量を1.0重量%以上5.0重量%以下、好ましくは2.5重量%以上4.8重量%以下、より好ましくは2.65重量%以上4.79重量%以下とすることで、ガラス素材の耐水性の低下を抑制でき、繊維化することによって増加したガラスの表面に吸着する空気中の水分やガスの量を低減できる。この結果、作成後に真空断熱材1の内部の圧力上昇を抑制でき、良好な熱伝導率を示す真空断熱材を得ることができる。以上から、繊維集合体2として用いるガラス繊維の機械的強度と化学的安定性を確保でき、芯材として真空断熱材1に用いた際の断熱特性を向上することができる。   Therefore, the boron oxide content is 1.0 wt% or more and 5.0 wt% or less, preferably 2.5 wt% or more and 4.8 wt% or less, more preferably 2.65 wt% or more and 4.79 wt%. By setting it as% or less, it is possible to suppress a decrease in water resistance of the glass material, and it is possible to reduce the amount of moisture and gas in the air adsorbed on the surface of the glass that has been increased by fiberization. As a result, the pressure rise inside the vacuum heat insulating material 1 can be suppressed after the production, and a vacuum heat insulating material exhibiting good thermal conductivity can be obtained. From the above, the mechanical strength and chemical stability of the glass fiber used as the fiber assembly 2 can be ensured, and the heat insulating properties when used in the vacuum heat insulating material 1 as a core material can be improved.

さらに、ホウ素酸化物の含有量を上記数値範囲とした場合に、珪素酸化物の含有量を50重量%よりも多い主成分とした繊維集合体2とすることにより、細径のグラスウールにでき、真空断熱材1を作製した場合の断熱特性を向上できる。また、繊維集合体2として用いられるガラス繊維の平均繊維径は、10μm以下、より好ましくは5μm以下とすることにより、工業的な生産性を確保できる。   Furthermore, when the content of boron oxide is in the above numerical range, by making the fiber assembly 2 with the silicon oxide content larger than 50% by weight as the main component, it can be made into a small-diameter glass wool, The heat insulation characteristic at the time of producing the vacuum heat insulating material 1 can be improved. Moreover, industrial productivity is securable by making the average fiber diameter of the glass fiber used as the fiber assembly 2 into 10 micrometers or less, More preferably, 5 micrometers or less.

以上から、上述した実施例1ないし3に係る真空断熱材1は、繊維集合体として用いられるガラス繊維の素材強度を高め、真空断熱材1を作製した際の大気圧縮応力による芯材の変形を抑制でき、かつガラス繊維の変形量を小さくできるため、各繊維間の接触面積の増大を抑制できる。   As mentioned above, the vacuum heat insulating material 1 which concerns on Example 1 thru | or 3 mentioned above raises the raw material intensity | strength of the glass fiber used as a fiber assembly, and deform | transforms the core material by the atmospheric compressive stress at the time of producing the vacuum heat insulating material 1. Since it can suppress and the deformation amount of glass fiber can be made small, the increase in the contact area between each fiber can be suppressed.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した各実施例は、本発明を分りやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, each of the above-described embodiments has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described. Also, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and another configuration can be added to, deleted from, or replaced with a part of the configuration of one embodiment. Is possible.

さらに、本発明に係る真空断熱材1は、断熱が必要な種々の機器に加え、建築部材等の、特に壁材等への適用も可能である。   Furthermore, the vacuum heat insulating material 1 according to the present invention can be applied to a building member, particularly a wall material, in addition to various devices that require heat insulation.

1 真空断熱材
2 繊維集合体
3 外包材
4 ゲッター剤(ガス吸着剤)
5 冷蔵庫
15 給湯器
DESCRIPTION OF SYMBOLS 1 Vacuum heat insulating material 2 Fiber assembly 3 Outer packaging material 4 Getter agent (gas adsorbent)
5 Refrigerator 15 Water heater

Claims (3)

ホウ素酸化物を1.0重量%以上5.0重量%以下、珪素酸化物を少なくとも50重量%含むガラスからなる繊維集合体である芯材と、ガス吸着剤とを、ガスバリア性を有する外包材で包み、この外包材の内部が減圧されて封止された
ことを特徴とする真空断熱材。
A core material which is a fiber assembly made of glass containing 1.0% by weight or more and 5.0% by weight or less of boron oxide and at least 50% by weight of silicon oxide, and a gas adsorbent, and an outer packaging material having a gas barrier property A vacuum heat insulating material characterized in that the inside of the outer packaging material is sealed under reduced pressure.
請求項1記載の真空断熱材において、
前記繊維集合体は、平均繊維径が10μm以下である
ことを特徴とする真空断熱材。
The vacuum heat insulating material according to claim 1,
The fiber aggregate has an average fiber diameter of 10 μm or less.
請求項1又は2記載の真空断熱材を備えた
ことを特徴とする断熱機器。
A heat insulating device comprising the vacuum heat insulating material according to claim 1.
JP2013115480A 2013-05-31 2013-05-31 Vacuum insulation and insulation equipment Active JP6190165B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013115480A JP6190165B2 (en) 2013-05-31 2013-05-31 Vacuum insulation and insulation equipment
KR1020140005379A KR101579878B1 (en) 2013-05-31 2014-01-16 Vacuum insulating material and insulated equipment
CN201410043643.4A CN104214471B (en) 2013-05-31 2014-01-29 Vacuum heat insulation material and heat insulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013115480A JP6190165B2 (en) 2013-05-31 2013-05-31 Vacuum insulation and insulation equipment

Publications (2)

Publication Number Publication Date
JP2014234843A true JP2014234843A (en) 2014-12-15
JP6190165B2 JP6190165B2 (en) 2017-08-30

Family

ID=52096243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013115480A Active JP6190165B2 (en) 2013-05-31 2013-05-31 Vacuum insulation and insulation equipment

Country Status (3)

Country Link
JP (1) JP6190165B2 (en)
KR (1) KR101579878B1 (en)
CN (1) CN104214471B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016105077A1 (en) * 2014-12-26 2016-06-30 삼성전자주식회사 Adsorbent, and vacuum insulation material and refrigerator including same
JP6577848B2 (en) 2014-12-26 2019-09-18 三星電子株式会社Samsung Electronics Co.,Ltd. Gas adsorbent and vacuum heat insulating material using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004052774A (en) * 2002-05-31 2004-02-19 Matsushita Refrig Co Ltd Vacuum heat insulating material, refrigerating and cooling/heating apparatus using the same, vacuum heat insulating material core material, and its manufacturing method
JP2006002314A (en) * 2004-06-21 2006-01-05 Matsushita Electric Ind Co Ltd Glass wool board and vacuum heat-insulating material
JP2007153649A (en) * 2005-12-02 2007-06-21 Matsushita Electric Ind Co Ltd Glass composition, glass fiber, and vacuum heat insulating material
JP2008057745A (en) * 2006-09-04 2008-03-13 Matsushita Electric Ind Co Ltd Vacuum heat insulation material and glass composition
JP2008232257A (en) * 2007-03-20 2008-10-02 Nippon Sheet Glass Co Ltd Vacuum heat insulation material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW470837B (en) * 2000-04-21 2002-01-01 Matsushita Refrigeration Vacuum heat insulator
JP2004308691A (en) * 2003-04-02 2004-11-04 Nisshinbo Ind Inc Vacuum heat insulating material and manufacturing method thereof
JP2005344871A (en) * 2004-06-04 2005-12-15 Matsushita Electric Ind Co Ltd Vacuum heat insulating material and production system of vacuum heat insulating material
JP5013836B2 (en) 2005-12-08 2012-08-29 パナソニック株式会社 Vacuum insulation
JP5040433B2 (en) * 2007-05-16 2012-10-03 パナソニック株式会社 Vacuum insulation
JP5673617B2 (en) 2012-07-12 2015-02-18 パナソニック株式会社 Vacuum insulation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004052774A (en) * 2002-05-31 2004-02-19 Matsushita Refrig Co Ltd Vacuum heat insulating material, refrigerating and cooling/heating apparatus using the same, vacuum heat insulating material core material, and its manufacturing method
JP2006002314A (en) * 2004-06-21 2006-01-05 Matsushita Electric Ind Co Ltd Glass wool board and vacuum heat-insulating material
JP2007153649A (en) * 2005-12-02 2007-06-21 Matsushita Electric Ind Co Ltd Glass composition, glass fiber, and vacuum heat insulating material
JP2008057745A (en) * 2006-09-04 2008-03-13 Matsushita Electric Ind Co Ltd Vacuum heat insulation material and glass composition
JP2008232257A (en) * 2007-03-20 2008-10-02 Nippon Sheet Glass Co Ltd Vacuum heat insulation material

Also Published As

Publication number Publication date
CN104214471B (en) 2016-09-07
CN104214471A (en) 2014-12-17
KR101579878B1 (en) 2015-12-24
KR20140141420A (en) 2014-12-10
JP6190165B2 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
JP2008057745A (en) Vacuum heat insulation material and glass composition
JP5040433B2 (en) Vacuum insulation
EP3387317B1 (en) Insulating material and a method of its formation
JP2007057095A (en) Vacuum heat insulating material and heat insulating material
JP6014759B2 (en) Vacuum insulation containing annealed binderless glass fiber
JP6647717B2 (en) Vacuum insulation core material containing porous aluminosilicate and vacuum insulation material provided with the same
JP6190165B2 (en) Vacuum insulation and insulation equipment
CN205173861U (en) High vacuum insulation spare and adiabatic case
JP5013836B2 (en) Vacuum insulation
KR20130078005A (en) Core for vacuum insulation panel with excellent heat insulation property and pinhole resistance
CN102388252B (en) Vacuum insulation material and device provided with same
KR100746989B1 (en) Vacuum heat insulator comprising glass fiber not containing organic binder
US7788949B2 (en) Closed-cell foam silica
CN104132220A (en) Vacuum insulation panel for active absorbent and manufacturing method for vacuum insulation panel
KR20110133451A (en) Vacuum insulation panel and manufacturing method thereof
JP2007153649A (en) Glass composition, glass fiber, and vacuum heat insulating material
JP2007016806A (en) Vacuum heat insulating material
WO2016064138A1 (en) Core material for vacuum insulation material comprising porous aluminosilicate, and vacuum insulation material having same
JP2014234844A (en) Vacuum heat insulation material and heat insulation apparatus
JP5673617B2 (en) Vacuum insulation
WO2013153813A1 (en) Vacuum heat insulator, and refrigerator-freezer and home wall provided with same
JP2005344871A (en) Vacuum heat insulating material and production system of vacuum heat insulating material
JP2006038123A (en) Vacuum thermal insulation material and glass composition
KR20190055136A (en) Glass wool and vacuum insulation using it
JP6465754B2 (en) Gas adsorbent and vacuum heat insulating material using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170804

R150 Certificate of patent or registration of utility model

Ref document number: 6190165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350