JP2014229714A - Heat radiation structure and manufacturing method of the same - Google Patents

Heat radiation structure and manufacturing method of the same Download PDF

Info

Publication number
JP2014229714A
JP2014229714A JP2013107466A JP2013107466A JP2014229714A JP 2014229714 A JP2014229714 A JP 2014229714A JP 2013107466 A JP2013107466 A JP 2013107466A JP 2013107466 A JP2013107466 A JP 2013107466A JP 2014229714 A JP2014229714 A JP 2014229714A
Authority
JP
Japan
Prior art keywords
heat
metal member
resin
mold
heat dissipation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013107466A
Other languages
Japanese (ja)
Other versions
JP6242590B2 (en
Inventor
昭夫 宮本
Akio Miyamoto
昭夫 宮本
満淳 市川
Manjun Ichikawa
満淳 市川
豊 松富
Yutaka Matsutomi
豊 松富
藤井 昌浩
Masahiro Fujii
昌浩 藤井
岡本 昭男
Akio Okamoto
昭男 岡本
利和 岩本
Toshikazu Iwamoto
利和 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Machinery Corp Ltd
Ube Corp
Original Assignee
Ube Machinery Corp Ltd
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Machinery Corp Ltd, Ube Industries Ltd filed Critical Ube Machinery Corp Ltd
Priority to JP2013107466A priority Critical patent/JP6242590B2/en
Publication of JP2014229714A publication Critical patent/JP2014229714A/en
Application granted granted Critical
Publication of JP6242590B2 publication Critical patent/JP6242590B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a heat radiation structure capable of obtaining sufficient heat radiation effect, and to provide a manufacturing method of the heat radiation structure.SOLUTION: A heat radiation structure 1 includes: a metal member 10 having heat conductivity; and a resin heat radiation member 20 having heat conductivity. A metal member 10 includes a heat receiving part 18 which receives heat from a heat source 2. The resin heat radiation member 20 is integrally molded with the metal member 10 by injection molding and is provided thermally contacting with the heat receiving part 18. The metal member 10 includes: a first surface 12; a second surface 14; and through holes 16. The resin heat radiation member 20 includes: an engagement part 26 provided at the first surface 12 side; multiple protruding parts 24 provided at the second surface 14 side protruding therefrom; and connection parts 28 which connect the engagement part 26 with the multiple protruding parts 24 through the through holes 16.

Description

本発明は、金属部材と樹脂製放熱部材とを組み合わせた放熱構造体及びその製造方法に関する。   The present invention relates to a heat dissipation structure in which a metal member and a resin heat dissipation member are combined, and a method for manufacturing the same.

従来、発熱する機械や電気部品等の熱源に取り付けられ、熱源の温度を下げるための部品として、放熱体(ヒートシンク)が用いられている。これら放熱体は、一般に、熱が伝導しやすい銅やアルミニウム等の金属により形成されている。しかしながら、銅やアルミニウム等の金属により形成された放熱体は、高熱伝導率ではあるものの、重量が重く、また、製造コストが高いという問題がある。   Conventionally, a radiator (heat sink) is used as a component that is attached to a heat source such as a machine or an electrical component that generates heat and lowers the temperature of the heat source. These heat radiators are generally formed of a metal such as copper or aluminum that easily conducts heat. However, although a heat radiator formed of a metal such as copper or aluminum has high thermal conductivity, there is a problem that the weight is heavy and the manufacturing cost is high.

このような問題を解決するため、近年、高い伝導率を有する金属部材と、熱伝導性樹脂からなる放熱部材とを組み合わせたハイブリッド構造を有する放熱体が提案されている(特許文献1)。このようなハイブリッド構造を有する放熱体によれば、熱伝導性樹脂からなる放熱部材を用いることにより、全体に占める金属部材の比率を減少させることができるため、従来の金属製放熱体よりも重量を軽くすることが可能である。   In order to solve such a problem, in recent years, a heat radiator having a hybrid structure in which a metal member having high conductivity and a heat radiating member made of a heat conductive resin are combined has been proposed (Patent Document 1). According to the heat radiating body having such a hybrid structure, the ratio of the metal member to the whole can be reduced by using the heat radiating member made of the heat conductive resin, so that it is heavier than the conventional metal heat radiating body. Can be lightened.

特開平11−17369号公報Japanese Patent Laid-Open No. 11-17369

しかしながら、特許文献1の放熱体は、熱源に接触する金属板に、接着剤等によりピン状の樹脂製放熱部材を接着させるものであることから、金属板と樹脂製放熱部材との接着圧力が十分ではないという問題がある。また、特許文献1の放熱体は、金属板と樹脂製放熱部材との接着圧力が十分でないことから、金属板と樹脂製放熱部材との接合箇所の熱抵抗が大きく、熱が滞留しやすいため、十分な放熱効果を得られないおそれがあるという問題がある。   However, since the heat radiator of Patent Document 1 is such that a pin-shaped resin heat radiating member is bonded to a metal plate in contact with a heat source with an adhesive or the like, the bonding pressure between the metal plate and the resin heat radiating member is low. There is a problem that it is not enough. Moreover, since the heat radiation body of patent document 1 has insufficient adhesive pressure of a metal plate and resin-made heat radiating members, since the thermal resistance of the joining location of a metal plate and resin-made heat radiating members is large, heat | fever stays easily. There is a problem that a sufficient heat dissipation effect may not be obtained.

本発明は、十分な放熱効果を得ることが可能な放熱構造体及びその製造方法を提供することを目的とする。   An object of this invention is to provide the thermal radiation structure which can acquire sufficient thermal radiation effect, and its manufacturing method.

以上の課題を解決するために、本発明に係る放熱構造体は、熱伝導性を有する金属部材と、熱伝導性を有する樹脂製放熱部材とを備える放熱構造体であって、前記金属部材は、熱源からの熱を受熱可能な受熱部を有し、前記樹脂製放熱部材は、前記金属部材に射出成形により一体成形されており、前記受熱部と熱的に接触して設けられていることを特徴とする。   In order to solve the above problems, a heat dissipation structure according to the present invention is a heat dissipation structure including a metal member having thermal conductivity and a resin heat dissipation member having thermal conductivity. A heat receiving portion capable of receiving heat from a heat source, and the resin heat radiating member is integrally formed with the metal member by injection molding, and is provided in thermal contact with the heat receiving portion. It is characterized by.

本発明に係る放熱構造体において、前記金属部材は、前記受熱部が設けられた第1の面と、前記第1の面と異なる方向を向く第2の面と、前記第1の面から前記第2の面に亘って貫通する複数の貫通孔とを有することが好ましい。前記樹脂製放熱部材は、前記第1の面側に設けられた係止部と、前記第2の面側に突出して設けられた複数の突出部と、前記貫通孔を介して前記係止部と各突出部とを連結する連結部とを有するとしても良く、前記第1の面側に設けられた前記係止部には、複数の突出部が突出して設けられるとしても良い。また、前記樹脂製放熱部材は、前記第1の面側に設けられた第1係止部と、前記第2の面側に設けられた第2係止部と、前記貫通孔を介して前記第1係止部と前記第2係止部とを連結する連結部とを有し、前記第1係止部及び前記第2係止部の少なくとも一方に、複数の突出部が突出して設けられるとしても良い。   In the heat dissipation structure according to the present invention, the metal member includes a first surface provided with the heat receiving portion, a second surface facing in a direction different from the first surface, and the first surface from the first surface. It is preferable to have a plurality of through holes penetrating over the second surface. The resin heat radiation member includes a locking portion provided on the first surface side, a plurality of protruding portions provided protruding on the second surface side, and the locking portion via the through hole. And a connecting portion that connects each protruding portion, and the locking portion provided on the first surface side may be provided with a plurality of protruding portions. Further, the resin heat radiation member includes a first locking portion provided on the first surface side, a second locking portion provided on the second surface side, and the through hole. A connecting portion that connects the first locking portion and the second locking portion, and at least one of the first locking portion and the second locking portion is provided with a plurality of protruding portions protruding from the first locking portion; It is also good.

また、本発明に係る放熱構造体において、前記樹脂製放熱部材は、熱伝導率に異方性を付与する熱伝導率調整材を含有しており、前記受熱部から熱的に離れる方向への配向度が0.25を超えることが好ましい。   Moreover, in the heat dissipation structure according to the present invention, the resin heat dissipation member contains a thermal conductivity adjusting material that imparts anisotropy to the thermal conductivity, and is in a direction that is thermally separated from the heat receiving portion. It is preferable that the degree of orientation exceeds 0.25.

本発明に係る放熱構造体の製造方法は、熱伝導性を有する金属部材と、熱伝導性を有する樹脂製放熱部材とを備える放熱構造体を射出成形により成形する放熱構造体の製造方法であって、前記金属部材を金型内に配置させる配置工程と、前記金属部材における熱源からの熱を受熱可能な受熱部となる領域を被覆した状態において、前記金型内に樹脂材料を充填させ、前記金属部材に前記樹脂製放熱部材を一体成形させる成形工程とを備えることを特徴とする。   A method for manufacturing a heat dissipation structure according to the present invention is a method for manufacturing a heat dissipation structure in which a heat dissipation structure including a metal member having thermal conductivity and a resin heat dissipation member having thermal conductivity is formed by injection molding. In the state where the metal member is disposed in the mold, and in the state where the metal member is covered with a region that becomes a heat receiving portion capable of receiving heat from a heat source, the mold is filled with a resin material, And a molding step of integrally molding the resin heat dissipation member on the metal member.

本発明に係る放熱構造体の製造方法において、前記配置工程は、前記受熱部が設けられる第1の面と、前記第1の面と異なる方向を向く第2の面と、前記第1の面から前記第2の面に亘って貫通する複数の貫通孔とを有する金属部材を金型内に配置させる工程であることが好ましい。前記成形工程は、前記金属部材の前記第1の面の前記受熱部となる領域を被覆した状態において前記金型内に樹脂材料を充填させ、前記金属部材に、前記第1の面側に設けられた係止部と、前記第2の面側に突出して設けられた複数の突出部と、前記貫通孔を介して前記係止部と各突出部とを連結する連結部とを有する樹脂製放熱部材を一体成形させる工程であるとしても良い。また、前記成形工程は、前記金属部材の前記第1の面の前記受熱部となる領域を被覆した状態において前記金型内に樹脂材料を充填させ、前記金属部材に、前記第1の面側に設けられた係止部と、前記係止部上に設けられた複数の第1突出部と、前記第2の面側に突出して設けられた複数の第2突出部と、前記貫通孔を介して前記係止部と各第2突出部とを連結する連結部とを有する樹脂製放熱部材を一体成形させる工程であるとしても良い。さらに、前記成形工程は、前記金属部材の前記第1の面の前記受熱部となる領域を被覆した状態において前記金型内に樹脂材料を充填させ、前記金属部材に、前記第1の面側に設けられた第1係止部と、前記第2の面側に設けられた第2係止部と、前記貫通孔を介して前記第1係止部と前記第2係止部とを連結する連結部と、前記第1係止部及び前記第2係止部の少なくとも一方に設けられた突出部とを有する樹脂製放熱部材を一体成形させる工程であるとしても良い。   In the method for manufacturing a heat dissipation structure according to the present invention, the arranging step includes a first surface on which the heat receiving portion is provided, a second surface facing in a direction different from the first surface, and the first surface. It is preferable that it is the process of arrange | positioning the metal member which has several through-hole penetrated over the said 2nd surface in a metal mold | die. In the molding step, a resin material is filled in the mold in a state where the region to be the heat receiving portion of the first surface of the metal member is covered, and the metal member is provided on the first surface side. And a plurality of protrusions provided to protrude toward the second surface side, and a connecting portion that connects the engagement part and each protrusion through the through hole. It may be a step of integrally forming the heat dissipating member. In the molding step, the metal material is filled with a resin material in a state where the region to be the heat receiving portion of the first surface of the metal member is covered, and the metal member is filled with the first surface side. A plurality of first protrusions provided on the engagement part, a plurality of second protrusions provided protruding on the second surface side, and the through hole. It is good also as a process of integrally forming the resin-made heat radiating member which has the connecting part which connects the above-mentioned locking part and each 2nd projection part via. Further, in the molding step, the metal material is filled with a resin material in a state where the region to be the heat receiving portion of the first surface of the metal member is covered, and the metal member is filled with the first surface side. The first locking portion provided on the second surface, the second locking portion provided on the second surface side, and the first locking portion and the second locking portion are connected via the through hole. It is good also as the process of integrally forming the resin-made heat radiating member which has the connection part to perform, and the projection part provided in at least one of the 1st locking part and the 2nd locking part.

また、本発明に係る放熱構造体の製造方法において、前記樹脂材料は、熱伝導率に異方性を付与する熱伝導率調整材を含有しており、前記成形工程は、前記金型内に前記樹脂材料を充填させる際に、前記金型内のキャビティ容積を所定の方向に変動させ、前記キャビティ容積の変動方向への前記熱伝導率調整材の配向度を0.25より大きくさせる変動工程を更に備えることが好ましい。   Moreover, in the manufacturing method of the heat dissipation structure according to the present invention, the resin material contains a thermal conductivity adjusting material that imparts anisotropy to thermal conductivity, and the molding step is performed in the mold. When filling the resin material, the changing step of changing the cavity volume in the mold in a predetermined direction and making the degree of orientation of the thermal conductivity adjusting material in the changing direction of the cavity volume larger than 0.25. Is preferably further provided.

本発明によれば、十分な放熱効果を得ることが可能な放熱構造体及びその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the thermal radiation structure which can acquire sufficient thermal radiation effect, and its manufacturing method can be provided.

第1実施形態に係る放熱構造体の受熱面側の概略構成を示す斜視図である。It is a perspective view which shows schematic structure by the side of the heat receiving surface of the thermal radiation structure which concerns on 1st Embodiment. 第1実施形態に係る放熱構造体の放熱面側の概略構成を示す斜視図である。It is a perspective view which shows schematic structure by the side of the thermal radiation of the thermal radiation structure which concerns on 1st Embodiment. 図1のA−A´線に沿った概略断面図である。It is a schematic sectional drawing in alignment with the AA 'line of FIG. 図1のB−B´線に沿った概略断面図である。It is a schematic sectional drawing in alignment with the BB 'line of FIG. 第1実施形態に係る放熱構造体に用いられる金属部材の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the metal member used for the thermal radiation structure which concerns on 1st Embodiment. 第1実施形態に係る放熱構造体の製造工程の例を示す工程図である。図6(a)は、金型の型開き状態を示す模式図である。図6(b)は、金型内に金属部材を配置させた状態を示す模式図である。図6(c)は、金型内に樹脂材料を射出充填させた状態を示す模式図である。図6(d)は、成形された放熱構造体を取り出す状態を示す模式図である。It is process drawing which shows the example of the manufacturing process of the thermal radiation structure which concerns on 1st Embodiment. Fig.6 (a) is a schematic diagram which shows the mold open state of a metal mold | die. FIG.6 (b) is a schematic diagram which shows the state which has arrange | positioned the metal member in a metal mold | die. FIG. 6C is a schematic view showing a state in which a resin material is injected and filled into a mold. FIG.6 (d) is a schematic diagram which shows the state which takes out the shape | molded heat dissipation structure. 樹脂製放熱体を2種類の樹脂材料で製造する工程の例を示す工程図である。図7(a)は、金型内に金属部材を配置させた状態を示す模式図である。図7(b)は、可動側金型の金型面を変更させた状態を示す模式図である。図7(c)は、金型内に第2の樹脂材料を射出充填させた状態を示す模式図である。図7(d)は、成形された放熱構造体を取り出す状態を示す模式図である。It is process drawing which shows the example of the process of manufacturing a resin-made heat radiator with two types of resin materials. Fig.7 (a) is a schematic diagram which shows the state which has arrange | positioned the metal member in a metal mold | die. FIG.7 (b) is a schematic diagram which shows the state which changed the metal mold | die surface of the movable side metal mold | die. FIG.7 (c) is a schematic diagram which shows the state which injected and filled the 2nd resin material in the metal mold | die. FIG. 7D is a schematic diagram showing a state in which the molded heat dissipation structure is taken out. 樹脂製放熱体を3種類の樹脂材料で成形した場合の放熱構造体の例を示す概略断面図である。It is a schematic sectional drawing which shows the example of the thermal radiation structure at the time of shape | molding the resin-made thermal radiation body with three types of resin materials. 第2実施形態に係る放熱構造体における樹脂製放熱部材の熱伝導率調整材の配向状態を示す模式図である。It is a schematic diagram which shows the orientation state of the heat conductivity adjusting material of the resin-made heat radiating members in the heat radiating structure which concerns on 2nd Embodiment. 第2実施形態に係る放熱構造体の製造工程の例を示す工程図である。図10(a)は、金型の型開き状態を示す模式図である。図10(b)は、金型内に金属部材を配置させた状態を示す模式図である。図10(c)は、金型内に樹脂材料を射出充填させた状態を示す模式図である。図10(d)は、樹脂材料の射出充填中に金型を少量だけ型開きさせた状態を示す模式図である。図10(e)は、成形された放熱構造体を取り出す状態を示す模式図である。It is process drawing which shows the example of the manufacturing process of the thermal radiation structure which concerns on 2nd Embodiment. Fig.10 (a) is a schematic diagram which shows the mold open state of a metal mold | die. FIG.10 (b) is a schematic diagram which shows the state which has arrange | positioned the metal member in a metal mold | die. FIG.10 (c) is a schematic diagram which shows the state which injected and filled the resin material in the metal mold | die. FIG. 10D is a schematic view showing a state where the mold is opened by a small amount during injection filling of the resin material. FIG. 10E is a schematic diagram showing a state where the molded heat dissipation structure is taken out. 成形工程における金型内の樹脂の流動経路及び熱伝導率調整材の向きを図示した模式図である。図11(a)は、金型内に樹脂材料を射出充填させた状態を示す模式図である。図11(b)は、樹脂材料の射出充填中に金型を少量だけ型開きさせた状態を示す模式図である。It is the schematic diagram which illustrated the flow path of the resin in the metal mold | die in a shaping | molding process, and the direction of a heat conductivity adjusting material. Fig.11 (a) is a schematic diagram which shows the state which injected and filled the resin material in the metal mold | die. FIG. 11B is a schematic diagram showing a state where the mold is opened by a small amount during injection filling of the resin material. 通常の射出成形により樹脂製放熱体を成形した場合における熱伝導率調整材の状態を示す模式図である。It is a schematic diagram which shows the state of the heat conductivity adjusting material at the time of shape | molding the resin-made heat radiator by normal injection molding. 熱伝導率に異方性を付与する熱伝導率調整材の配向度と該配向度に対する熱伝導率を示すグラフである。It is a graph which shows the thermal conductivity with respect to the orientation degree of the thermal conductivity adjusting material which provides anisotropy to thermal conductivity, and this orientation degree.

次に、本発明に係る放熱構造体の第1実施形態について、図1〜図6を参照しながら詳細に説明する。図1〜図4は、第1実施形態に係る放熱構造体1の概略構成を示す斜視図又は断面図である。図5は、第1実施形態において使用される金属部材10の概略構成を示す斜視図である。図6は、第1実施形態に係る放熱構造体1の製造工程の一例を示す工程図である。   Next, a first embodiment of a heat dissipation structure according to the present invention will be described in detail with reference to FIGS. FIGS. 1-4 is a perspective view or sectional drawing which shows schematic structure of the thermal radiation structure 1 which concerns on 1st Embodiment. FIG. 5 is a perspective view showing a schematic configuration of the metal member 10 used in the first embodiment. FIG. 6 is a process diagram illustrating an example of a manufacturing process of the heat dissipation structure 1 according to the first embodiment.

第1実施形態に係る放熱構造体1は、例えば自動車用ハイパワーLED等の熱源2の冷却のために用いられる放熱体(ヒートシンク)である。第1実施形態に係る放熱構造体1は、例えば図1〜図4に示すように、熱伝導率が相対的に高い金属部材10と、熱伝導率が相対的に低い樹脂製放熱部材20とを組み合わせたハイブリッド構造を有している。   The heat dissipating structure 1 according to the first embodiment is a heat dissipating body (heat sink) used for cooling a heat source 2 such as a high power LED for automobiles. The heat dissipation structure 1 according to the first embodiment includes, for example, as shown in FIGS. 1 to 4, a metal member 10 having a relatively high thermal conductivity, and a resin heat dissipation member 20 having a relatively low thermal conductivity. Has a hybrid structure.

第1実施形態に係る放熱構造体1は、図1及び図2に示すように、熱源2が設置される受熱面(表面)4と、受熱面4と異なる方向を向く放熱面(裏面)6を有している。受熱面4は、図1、図3及び図4に示すように、樹脂製放熱部材20の板状部(係止部)26の略中央部が矩形状に開口することにより、金属部材10の一部が露出され、この露出された金属部材10の部分が、熱源2を設置する受熱部18として機能するよう構成されている。また、受熱面4の受熱部18を除く領域には、樹脂製放熱部材20の第1放熱フィン部22(第1突出部)が一方向に並列して複数設けられている。放熱面6には、樹脂製放熱部材20の第2放熱フィン部(第2突出部)24が一方向に並列して複数設けられている。以上のような構成を有する放熱構造体1は、金属部材10の受熱部18が熱源2と熱的に接触することにより、熱源2から発生した熱を金属部材10の全体に伝達させ、金属部材10と熱的に接触した樹脂製放熱部材20を介して、大気中に放熱させるように機能する。以下、このような第1実施形態に係る放熱構造体1を構成する金属部材10及び樹脂製放熱部材20の具体的な構成について、詳細に説明する。   As shown in FIGS. 1 and 2, the heat dissipating structure 1 according to the first embodiment includes a heat receiving surface (front surface) 4 on which the heat source 2 is installed, and a heat dissipating surface (back surface) 6 facing in a different direction from the heat receiving surface 4. have. As shown in FIGS. 1, 3, and 4, the heat receiving surface 4 is formed by opening a substantially central portion of the plate-like portion (locking portion) 26 of the resin heat radiating member 20 in a rectangular shape. A part of the metal member 10 is exposed, and the exposed portion of the metal member 10 is configured to function as the heat receiving portion 18 where the heat source 2 is installed. Further, a plurality of first heat radiating fin portions 22 (first projecting portions) of the resin heat radiating member 20 are provided in parallel in one direction in a region excluding the heat receiving portion 18 of the heat receiving surface 4. The heat radiating surface 6 is provided with a plurality of second heat radiating fin portions (second projecting portions) 24 of the resin heat radiating member 20 in parallel in one direction. In the heat dissipation structure 1 having the above-described configuration, the heat receiving portion 18 of the metal member 10 is in thermal contact with the heat source 2 to transmit heat generated from the heat source 2 to the entire metal member 10. It functions to dissipate heat into the atmosphere through the resin heat dissipating member 20 that is in thermal contact with the air. Hereinafter, specific configurations of the metal member 10 and the resin heat radiating member 20 constituting the heat radiating structure 1 according to the first embodiment will be described in detail.

金属部材10は、例えば銅やアルミニウム等の金属材料から形成されており、図5に示すように、表面(第1の面)12及び裏面(第1の面と異なる方向を向く第2の面)14を有する矩形板状に形成されている。また、金属部材10は、表面12から裏面14に亘って貫通する複数の貫通孔16を有している。これら複数の貫通孔16は、円形状の孔であり、金属部材10の縦方向及び横方向にそれぞれ千鳥配置となるように形成されている。このような金属部材10としては、例えば金属板にパンチ加工を施すことにより製造される金属製多孔板(パンチングメタル)を用いることができる。金属部材10の表面12及び裏面14には、樹脂製放熱部材20との接触面積を増大させるために、微小な凹凸を設けることが好ましい。   The metal member 10 is formed of a metal material such as copper or aluminum, for example, and as shown in FIG. 5, a front surface (first surface) 12 and a back surface (second surface facing a different direction from the first surface). ) 14 is formed in a rectangular plate shape. Further, the metal member 10 has a plurality of through holes 16 penetrating from the front surface 12 to the back surface 14. The plurality of through holes 16 are circular holes, and are formed in a staggered arrangement in the vertical direction and the horizontal direction of the metal member 10. As such a metal member 10, for example, a metal perforated plate (punched metal) produced by punching a metal plate can be used. In order to increase the contact area with the resin heat radiation member 20, it is preferable to provide minute irregularities on the front surface 12 and the back surface 14 of the metal member 10.

樹脂製放熱部材20は、図1〜図4に示すように、金属部材10の表面12上に積層された板状部26と、板状部26上に一方向に並列して立設された複数の第1放熱フィン部22と、金属部材10の裏面14上に第1放熱フィン部22と同方向に並列して立設された複数の第2放熱フィン部24と、板状部26と第2放熱フィン部24とを金属部材10の貫通孔16を介して連結する連結部28とを備えている。これら板状部26、第1放熱フィン部22、第2放熱フィン部24及び連結部28は、熱伝導性を有する樹脂材料により一体成形されている。   As shown in FIGS. 1 to 4, the resin heat radiation member 20 is erected in parallel in one direction on the plate-like portion 26 laminated on the surface 12 of the metal member 10 and the plate-like portion 26. A plurality of first radiating fin portions 22, a plurality of second radiating fin portions 24 erected in parallel with the first radiating fin portion 22 on the back surface 14 of the metal member 10, and a plate-like portion 26 A connecting portion 28 that connects the second radiating fin portion 24 via the through hole 16 of the metal member 10 is provided. The plate-like portion 26, the first radiating fin portion 22, the second radiating fin portion 24, and the connecting portion 28 are integrally formed of a resin material having thermal conductivity.

板状部26は、図3及び図4に示すように、金属部材10の表面12及び側面を覆うように設けられており、その略中央部に略矩形状の開口30が形成されている。この板状部26は、第2放熱フィン部24を金属部材10の裏面14上に離脱不能に密着させるための係止部として機能する。板状部26の四隅には、放熱構造体1を設置対象に設置させるための取り付け孔32が形成されている(図1及び図2参照)。各第1放熱フィン部22は、金属部材10の縦方向又は横方向に沿って延びる矩形平板形状を有しており、板状部26上に垂直に立設されている。また、各第1放熱フィン部22は、板状部26から離れる方向に向かって先細状となる断面台形形状を有している。各第2放熱フィン部24は、金属部材10の縦方向又は横方向に沿って延びる矩形平板形状を有しており、金属部材10の裏面14上に垂直に立設されている。各第2放熱フィン部24は、第1放熱フィン部22の高さよりも高い高さを有しており、第1放熱フィン部22よりも放熱効率が高くなるように構成されている。また、各第2放熱フィン部24は、金属部材10から離れる方向に向かって先細状となる断面台形形状を有している。連結部28は、図4に示すように、各第2放熱フィン部24の長手方向の少なくとも両端部、本実施形態においては各第2放熱フィン部24の長手方向に沿って複数設けられている。一の連結部28と隣接する連結部28との間隔は、狭ピッチであることが好ましい。   As shown in FIGS. 3 and 4, the plate-like portion 26 is provided so as to cover the surface 12 and the side surface of the metal member 10, and a substantially rectangular opening 30 is formed at a substantially central portion thereof. The plate-like portion 26 functions as a locking portion for bringing the second radiating fin portion 24 into intimate contact with the back surface 14 of the metal member 10. At the four corners of the plate-like portion 26, attachment holes 32 for installing the heat dissipation structure 1 on the installation target are formed (see FIGS. 1 and 2). Each first heat radiating fin portion 22 has a rectangular flat plate shape extending along the vertical direction or the horizontal direction of the metal member 10, and is erected vertically on the plate-like portion 26. In addition, each first radiating fin portion 22 has a trapezoidal cross-sectional shape that tapers in a direction away from the plate-like portion 26. Each second radiating fin portion 24 has a rectangular flat plate shape extending along the vertical direction or the horizontal direction of the metal member 10, and is erected vertically on the back surface 14 of the metal member 10. Each second radiating fin portion 24 has a height higher than that of the first radiating fin portion 22, and is configured to have a higher radiating efficiency than the first radiating fin portion 22. Each of the second heat radiating fin portions 24 has a trapezoidal cross section that tapers in a direction away from the metal member 10. As shown in FIG. 4, a plurality of connecting portions 28 are provided along at least both ends in the longitudinal direction of each second radiating fin portion 24, and in the present embodiment, along the longitudinal direction of each second radiating fin portion 24. . It is preferable that the space | interval of the one connection part 28 and the adjacent connection part 28 is a narrow pitch.

樹脂製放熱部材20を形成する樹脂材料の樹脂としては、射出成形が可能な熱可塑性樹脂であれば、良く、例えば、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、超高分子量ポリエチレン(UHMWPE)、ポリプロピレン(PP)、エチレン/プロピレン共重合体(EPR)、エチレン/ブテン共重合体(EBR)、エチレン/酢酸ビニル共重合体(EVA)、エチレン/アクリル酸共重合体(EAA)、エチレン/メタクリル酸共重合体(EMAA)、エチレン/アクリル酸メチル共重合体(EMA)、エチレン/メタクリル酸メチル共重合体(EMMA)、エチレン/アクリル酸エチル共重合体(EEA)等のポリオレフィン系樹脂及び、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、メサコン酸、シトラコン酸、グルタコン酸、シス−4−シクロヘキセン−1,2−ジカルボン酸、エンドビシクロ−[2.2.1]−5−ヘプテン−2,3−ジカルボン酸等のカルボキシル基及びその金属塩(Na、Zn、K、Ca、Mg)、無水マレイン酸、無水イタコン酸、無水シトラコン酸、エンドビシクロ−[2.2.1]−5−ヘプテン−2,3−ジカルボン酸無水物等の酸無水物基、アクリル酸グリシジル、メタクリル酸グリシジル、エタクリル酸グリシジル、イタコン酸グリシジル、シトラコン酸グリシジル等のエポキシ基等の官能基が含有された化合物により変性された、上記ポリオレフィン系樹脂、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンイソフタレート(PEI)、PET/PEI共重合体、ポリアリレート(PAR)、ポリブチレンナフタレート(PBN)、ポリエチレンナフタレート(PEN)、液晶ポリエステル(LCP)、ポリ乳酸(PLA)、ポリグリコール酸(PGA)等のポリエステル系樹脂、ポリアセタール(POM)、ポリフェニレンオキシド(PPO)等のポリエーテル系樹脂、ポリスルホン(PSF)、ポリエーテルスルホン(PES)等のポリスルホン系樹脂、ポリフェニレンサルファイド樹脂(PPS)、ポリチオエーテルスルホン樹脂(PTES)等のポリチオエーテル系樹脂、ポリエーテルエーテルケトン(PEEK)、ポリアリルエーテルケトン(PAEK)等のポリケトン系樹脂、ポリアクリロニトリル(PAN)、ポリメタクリロニトリル、アクリロニトリル/スチレン共重合体(AS)、メタクリロニトリル/スチレン共重合体、アクリロニトリル/ブタジエン/スチレン共重合体(ABS)、メタクリロニトリル/スチレン/ブタジエン共重合体(MBS)等のポリニトリル系樹脂、ポリメタクリル酸メチル(PMMA)、ポリメタクリル酸エチル(PEMA)等のポリメタクリレート系樹脂、ポリ酢酸ビニル(PVAc)等のポリビニルエステル系樹脂、ポリ塩化ビニリデン(PVDC)、ポリ塩化ビニル(PVC)、塩化ビニル/塩化ビニリデン共重合体、塩化ビニリデン/メチルアクリレート共重合体等のポリビニル系樹脂、酢酸セルロース、酪酸セルロース等のセルロース系樹脂、ポリカーボネート(PC)等のポリカーボネート系樹脂、熱可塑性ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド等のポリイミド系樹脂、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、エチレン/テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン/クロロトリフルオロエチレン共重合体(ECTFE)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(TFE/HFP,FEP)、テトラフルオロエチレン/ヘキサフルオロプロピレン/フッ化ビニリデン共重合体(TFE/HFP/VDF,THV)、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体(PFA)等のフッ素系樹脂、ポリウレタンエラストマー等の熱可塑性ポリウレタン系樹脂、ポリアミド系樹脂等が挙げられる。これらは1種又は2種以上を用いることができる。これらの中でも、成形性等の取り扱いの容易さや高い耐熱性、機械強度からポリアミド樹脂が好ましい。   The resin of the resin material forming the resin heat radiating member 20 may be any thermoplastic resin that can be injection molded. For example, high-density polyethylene (HDPE), medium-density polyethylene (MDPE), and low-density polyethylene (LDPE). ), Linear low density polyethylene (LLDPE), ultra high molecular weight polyethylene (UHMWPE), polypropylene (PP), ethylene / propylene copolymer (EPR), ethylene / butene copolymer (EBR), ethylene / vinyl acetate co Polymer (EVA), ethylene / acrylic acid copolymer (EAA), ethylene / methacrylic acid copolymer (EMAA), ethylene / methyl acrylate copolymer (EMA), ethylene / methyl methacrylate copolymer (EMMA) ), Polyolefin trees such as ethylene / ethyl acrylate copolymer (EEA) And acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, mesaconic acid, citraconic acid, glutaconic acid, cis-4-cyclohexene-1,2-dicarboxylic acid, endobicyclo- [2.2. 1] -5-heptene-2,3-dicarboxylic acid and other carboxyl groups and metal salts thereof (Na, Zn, K, Ca, Mg), maleic anhydride, itaconic anhydride, citraconic anhydride, endobicyclo- [2 2.1] Acid anhydride groups such as 5-heptene-2,3-dicarboxylic acid anhydride, epoxy groups such as glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, glycidyl itaconate, glycidyl citraconic acid, etc. The above-mentioned polyolefin resin modified with a compound containing a functional group, polybutylene terephthalate (P T), polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polyethylene isophthalate (PEI), PET / PEI copolymer, polyarylate (PAR), polybutylene naphthalate (PBN), polyethylene naphthalate (PEN) ), Polyester resins such as liquid crystalline polyester (LCP), polylactic acid (PLA), polyglycolic acid (PGA), polyether resins such as polyacetal (POM) and polyphenylene oxide (PPO), polysulfone (PSF), polyether Polysulfone resins such as sulfone (PES), polythioether resins such as polyphenylene sulfide resin (PPS) and polythioether sulfone resin (PTES), polyether ether ketone (PEEK), polyallyl ether -Polyketone resins such as terketone (PAEK), polyacrylonitrile (PAN), polymethacrylonitrile, acrylonitrile / styrene copolymer (AS), methacrylonitrile / styrene copolymer, acrylonitrile / butadiene / styrene copolymer (ABS) ), Polynitrile resins such as methacrylonitrile / styrene / butadiene copolymer (MBS), polymethacrylate resins such as polymethyl methacrylate (PMMA) and polyethyl methacrylate (PEMA), polyvinyl acetate (PVAc), etc. Polyvinyl ester resins, polyvinylidene chloride (PVDC), polyvinyl chloride (PVC), polyvinyl chloride / vinylidene chloride copolymers, polyvinylidene chloride / methyl acrylate copolymers, etc., cellulose acetate, cellulose butyrate Cellulose resins such as polycarbonate (PC), polycarbonate resins such as polycarbonate (PC), polyimide resins such as thermoplastic polyimide (PI), polyamideimide (PAI), and polyetherimide, polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF) ), Ethylene / tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), tetrafluoroethylene / hexafluoropropylene copolymer (TFE / HFP) , FEP), tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride copolymer (TFE / HFP / VDF, THV), tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer (PFA) Fluorine-based resins, thermoplastic polyurethane resins and polyurethane elastomers and the like, polyamide resins. These can use 1 type (s) or 2 or more types. Among these, polyamide resin is preferable from the viewpoint of ease of handling such as moldability, high heat resistance, and mechanical strength.

ポリアミド系樹脂としては、例えば、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド26、ポリアミド46、ポリアミド66、ポリアミド69、ポリアミド610、ポリアミド611、ポリアミド612、ポリアミド6T、ポリアミド6I、ポリアミド6T、ポリアミド96、ポリアミド99、ポリアミド910、ポリアミド912、ポリアミド62、ポリアミド82、ポリアミド92、ポリアミド102、ポリアミド122、ポリアミド9T、ポリアミドTMHT、ポリアミド9T、ポリアミド9N、ポリアミド106、ポリアミド109、ポリアミド1010、ポリアミド1012、ポリアミド10T、ポリアミド10T、ポリアミド10N、ポリアミド126、ポリアミド129、ポリアミド1210、ポリアミド1212、ポリアミド12T、ポリアミド12T、ポリアミド12N、ポリアミドMXD6、ポリアミドMXD8、ポリアミドMXD9、ポリアミドMXD10、ポリアミドMXD12、ポリアミドMXDT、ポリアミドMXDI、ポリアミドMXDN、ポリアミドPACM12、ポリアミドPACMT、ポリアミドPACMI、ポリアミドジメチルPACM12、ポリアミドIPD6、ポリアミドIPDTやこれらのポリアミド共重合体が挙げられる。この中でも放熱構造体の機械的特性および耐薬品性などの材料機能と価格のバランスの観点から、ポリアミド6、ポリアミド12、ポリアミド66、ポリアミド92、ポリアミド6/66共重合体(ポリアミド6とポリアミド66の共重合体、以下、共重合体は同様に記載)、ポリアミド6/12共重合体、ポリアミド6/66/12共重合体及びポリアミド62/92共重合体よりなる群から選択される少なくとも1種のポリアミド系樹脂が好ましく、ポリアミド6、ポリアミド66、ポリアミド6/66共重合体及びポリアミド6/12共重合体よりなる群から選択される少なくとも1種のポリアミド系樹脂がより好ましく、放熱構造体の成形性、機械物性、耐久性の観点から、ポリアミド6および/またはポリアミド66がより好ましい。これらは1種又は2種以上を用いることができる。   Examples of polyamide resins include polyamide 6, polyamide 11, polyamide 12, polyamide 26, polyamide 46, polyamide 66, polyamide 69, polyamide 610, polyamide 611, polyamide 612, polyamide 6T, polyamide 6I, polyamide 6T, polyamide 96, Polyamide 99, Polyamide 910, Polyamide 912, Polyamide 62, Polyamide 82, Polyamide 92, Polyamide 102, Polyamide 122, Polyamide 9T, Polyamide TMHT, Polyamide 9T, Polyamide 9N, Polyamide 106, Polyamide 109, Polyamide 1010, Polyamide 1012, Polyamide 10T , Polyamide 10T, polyamide 10N, polyamide 126, polyamide 129, polyamide 1210, polyamide 121 2, Polyamide 12T, Polyamide 12T, Polyamide 12N, Polyamide MXD6, Polyamide MXD8, Polyamide MXD9, Polyamide MXD10, Polyamide MXD12, Polyamide MXDT, Polyamide MXDI, Polyamide MXDN, Polyamide PACM12, Polyamide PACMT, Polyamide PACMI, Polyamide dimethyl PACM12, Polyamide IPD6 And polyamide IPDT and polyamide copolymers thereof. Among these, polyamide 6, polyamide 12, polyamide 66, polyamide 92, polyamide 6/66 copolymer (polyamide 6 and polyamide 66 are used from the viewpoint of balance between material functions such as mechanical characteristics and chemical resistance of the heat dissipation structure and price. Copolymer, hereinafter referred to as copolymer), at least one selected from the group consisting of polyamide 6/12 copolymer, polyamide 6/66/12 copolymer and polyamide 62/92 copolymer A kind of polyamide resin is preferable, and at least one kind of polyamide resin selected from the group consisting of polyamide 6, polyamide 66, polyamide 6/66 copolymer and polyamide 6/12 copolymer is more preferable. From the viewpoint of moldability, mechanical properties, and durability, polyamide 6 and / or polyamide 66 are more preferred. . These can use 1 type (s) or 2 or more types.

尚、ポリアミド樹脂の末端基の種類及びその濃度や分子量分布に特別の制約は無く、分子量調節や成形加工時の溶融安定化のため、分子量調節剤として、酢酸、ステアリン酸等のモノカルボン酸、メタキシリレンジアミン、イソホロンジアミン等のジアミン、モノアミン、ジカルボン酸のうちの1種あるいは2種以上を適宜組合せて添加することができる。   In addition, there is no special restriction on the type and concentration and molecular weight distribution of the end group of the polyamide resin, and for molecular weight adjustment and melt stabilization at the time of molding, as a molecular weight regulator, monocarboxylic acids such as acetic acid and stearic acid, One or more of diamines such as metaxylylenediamine and isophoronediamine, monoamines, and dicarboxylic acids can be added in appropriate combination.

また、樹脂製放熱部材20を形成する樹脂材料は、熱伝導率調整材を含み、その熱伝導率調整材として、例えば、ガラス繊維、ガラスビーズ、シリカゲル、石英等酸化ケイ素類や、酸化アルミニウム、酸化アルミニウム、酸化マグネシウム、酸化ベリリウム、酸化チタン、酸化ジルコニウム、酸化亜鉛、酸化セリウム等の金属酸化物や、窒化ホウ素、窒化アルミニウム、窒化ケイ素等の窒素化合物や、ウォラストナイト、タルク、カオリン、ゾノトライト、マイカ、ゼオライト等の鉱物類や、炭化ケイ素、ダイヤモンド、グラファイト、炭素繊維、鱗片状黒鉛、フラーレン、カーボンナノチューブ等炭素化合物や、チタン酸バリウム、チタン酸カリウム、硫酸カルシウム、珪酸カルシウム等が挙げられる。これらは1種又は2種以上を用いることができる。また、これらの熱伝導率調整材は、配向制御したときの熱伝導率の観点から、所定のアスペクト比を有する長尺形状のものが好ましい。また、必要に応じて、酸化防止剤、帯電防止剤、難燃剤、難燃助剤、熱安定剤、繊維状補強材等を添加してもよい。繊維状補強材としては、上記ガラス繊維や炭素繊維の他、アラミド繊維、アルミナ繊維、炭化珪素繊維、アスベスト繊維、石膏繊維、金属繊維等が挙げられる。   In addition, the resin material forming the resin heat dissipation member 20 includes a thermal conductivity adjusting material. Examples of the thermal conductivity adjusting material include silicon oxides such as glass fiber, glass beads, silica gel, and quartz, aluminum oxide, Metal oxides such as aluminum oxide, magnesium oxide, beryllium oxide, titanium oxide, zirconium oxide, zinc oxide, cerium oxide, nitrogen compounds such as boron nitride, aluminum nitride, silicon nitride, wollastonite, talc, kaolin, zonotrite And minerals such as mica and zeolite, carbon compounds such as silicon carbide, diamond, graphite, carbon fiber, flaky graphite, fullerene and carbon nanotubes, barium titanate, potassium titanate, calcium sulfate, calcium silicate, etc. . These can use 1 type (s) or 2 or more types. In addition, these thermal conductivity adjusting materials are preferably elongated in shape having a predetermined aspect ratio from the viewpoint of thermal conductivity when orientation control is performed. Moreover, you may add antioxidant, an antistatic agent, a flame retardant, a flame retardant adjuvant, a heat stabilizer, a fibrous reinforcement, etc. as needed. Examples of the fibrous reinforcing material include aramid fibers, alumina fibers, silicon carbide fibers, asbestos fibers, gypsum fibers, metal fibers and the like in addition to the glass fibers and carbon fibers.

次に、第1実施形態に係る放熱構造体1を製造する方法の一例について、図6を用いて説明する。本実施形態において例示する方法は、概略的には、金属部材10を金型40内に配置させ、金属部材10における熱源2からの熱を受熱可能な受熱部18となる領域を被覆した状態において、金型40内に熱伝導性を有する樹脂材料を充填させ、金属部材10に樹脂製放熱部材20を一体成形(インサート成形又はアウトサート成形)させる方法である。以下、本実施形態に係る製造方法に使用可能な金型40と、放熱構造体1を製造するための具体的な方法について、詳細に説明する。   Next, an example of a method for manufacturing the heat dissipation structure 1 according to the first embodiment will be described with reference to FIG. The method illustrated in the present embodiment is generally in a state where the metal member 10 is disposed in the mold 40 and the region that becomes the heat receiving portion 18 capable of receiving heat from the heat source 2 in the metal member 10 is covered. In this method, the mold 40 is filled with a resin material having thermal conductivity, and the resin heat radiation member 20 is integrally formed (insert molding or outsert molding) on the metal member 10. Hereinafter, the metal mold 40 that can be used in the manufacturing method according to this embodiment and a specific method for manufacturing the heat dissipation structure 1 will be described in detail.

本実施形態に係る製造方法に使用可能な金型40は、図6に示すように、射出成形装置の固定盤(図示せず)に取り付けられた固定金型42と、射出成形装置の可動盤(図示せず)に取り付けられた可動金型44とから構成されている。これら固定金型42及び可動金型44は、型締めされることにより、金属部材10に樹脂製放熱部材20を一体成形させるための金型キャビティ46が形成されるように構成されている。固定金型42は、射出ユニット(図示せず)から射出された溶融樹脂が金型キャビティ46内に向けて流動する樹脂流路(図示せず)と、この樹脂流路の金型キャビティ46内に連通されるゲート部分に設けられた樹脂流路開閉機構(図示せず)とを有している。樹脂流路は、内部の溶融樹脂を溶融状態で流動・保持させるための保温・加熱手段を備えたホットランナとすることができる。可動金型44は、型開閉機構(図示せず)により固定金型42に対して接近若しくは離間する方向に移動可能に構成されている。可動金型44は、金属部材10の受熱部18となる領域を被覆するための被覆用金型ブロック48が内蔵されている。また、固定金型42及び可動金型44は、それぞれ、金型キャビティ46内において金属部材10を狭持するための保持用金型ブロック(図示せず)が内蔵されている。これら被覆用金型ブロック48及び保持用金型ブロックは、例えば油圧、空圧及びスプリング等の適宜の手段により、金属部材10に対して進退可能に構成されている。なお、図6に示す金型40は、本実施形態に係る製造方法に使用可能な金型の一例であり、これに限定されず、金属部材10に樹脂製放熱部材20を一体成形(インサート成形又はアウトサート成形)させることが可能なものであれば、いかなるものを用いても良い。   As shown in FIG. 6, the mold 40 that can be used in the manufacturing method according to the present embodiment includes a fixed mold 42 attached to a fixed plate (not shown) of the injection molding apparatus, and a movable plate of the injection molding apparatus. It is comprised from the movable metal mold | die 44 attached to (not shown). The fixed mold 42 and the movable mold 44 are configured so that a mold cavity 46 for integrally molding the resin heat radiation member 20 to the metal member 10 is formed by clamping. The fixed mold 42 includes a resin flow path (not shown) through which molten resin injected from an injection unit (not shown) flows into the mold cavity 46, and the mold cavity 46 in the resin flow path. And a resin flow path opening / closing mechanism (not shown) provided at the gate portion communicating with the. The resin flow path can be a hot runner provided with heat retaining / heating means for allowing the molten resin inside to flow and hold in a molten state. The movable mold 44 is configured to be movable in a direction approaching or separating from the fixed mold 42 by a mold opening / closing mechanism (not shown). The movable mold 44 incorporates a coating mold block 48 for covering a region that becomes the heat receiving portion 18 of the metal member 10. Each of the fixed mold 42 and the movable mold 44 includes a holding mold block (not shown) for holding the metal member 10 in the mold cavity 46. The covering mold block 48 and the holding mold block are configured to be movable back and forth with respect to the metal member 10 by appropriate means such as hydraulic pressure, pneumatic pressure, and a spring. The mold 40 shown in FIG. 6 is an example of a mold that can be used in the manufacturing method according to the present embodiment. The mold 40 is not limited to this, and the resin heat radiating member 20 is integrally formed with the metal member 10 (insert molding). Alternatively, any material may be used as long as it can be subjected to outsert molding.

このような金型40を用いて放熱構造体1を製造するためには、まず、図6(a)に示す型開き状態において、固定金型42と可動金型44との間に金属部材10を挿入し、適宜のタイミングで、金属部材10を固定金型42及び可動金型44の保持用金型ブロックにより狭持させる。次に、図6(b)に示すように、固定金型42と可動金型44とを型閉じ及び型締めさせると共に、被覆用金型ブロック48を金属部材10の受熱部18となる領域に当接させる。これにより、金属部材10が、受熱部18となる領域が被覆された状態において、金型キャビティ46内に配置される(配置工程)。次に、この状態において、図6(c)に示すように、第1放熱フィン部22及び第2放熱フィン部24の長手方向(固定金型42及び可動金型44の内面に形成された溝が延びる方向)に沿って、金型キャビティ46内に溶融状態の熱伝導性樹脂材料を射出充填する(射出充填工程)。金型キャビティ46内に射出された熱伝導性樹脂材料は、金属部材10の表面12及び側面と可動金型44の内面により形成される空間46aを流動すると共に、金属部材10の貫通孔16を介して金属部材10の裏面14と固定金型42の内面により形成される空間46bを流動し、金型キャビティ46内に充填される。その後所定の期間、金型キャビティ46内に充填された熱伝導性樹脂材料を冷却固化させることにより、金属部材10と、樹脂製放熱部材20とからなる放熱構造体1が成形される。そして最後に、図6(d)に示すように、可動金型44を固定金型42から離間させることにより金型40を型開きさせ、図示しない製品取出手段により放熱構造体1を金型40外へ搬出させる。以上の成形サイクルを繰り返し実行することにより、放熱構造体1を連続して成形することができる。   In order to manufacture the heat dissipation structure 1 using such a mold 40, first, the metal member 10 is interposed between the fixed mold 42 and the movable mold 44 in the mold open state shown in FIG. Is inserted, and the metal member 10 is held between the fixed mold 42 and the holding mold block of the movable mold 44 at an appropriate timing. Next, as shown in FIG. 6 (b), the fixed mold 42 and the movable mold 44 are closed and clamped, and the covering mold block 48 is placed in the region to be the heat receiving portion 18 of the metal member 10. Make contact. Thereby, the metal member 10 is arrange | positioned in the metal mold | die cavity 46 in the state in which the area | region used as the heat receiving part 18 was coat | covered (arrangement | positioning process). Next, in this state, as shown in FIG. 6C, the longitudinal direction of the first radiating fin portion 22 and the second radiating fin portion 24 (grooves formed on the inner surfaces of the fixed die 42 and the movable die 44). In the mold cavity 46, the molten heat conductive resin material is injection-filled along the direction (in the extending direction) (injection filling step). The thermally conductive resin material injected into the mold cavity 46 flows through the space 46 a formed by the surface 12 and the side surface of the metal member 10 and the inner surface of the movable mold 44, and passes through the through hole 16 of the metal member 10. Through the space 46 b formed by the back surface 14 of the metal member 10 and the inner surface of the fixed mold 42, and fills the mold cavity 46. Thereafter, the heat conductive resin material filled in the mold cavity 46 is cooled and solidified for a predetermined period, whereby the heat dissipation structure 1 including the metal member 10 and the resin heat dissipation member 20 is formed. Finally, as shown in FIG. 6D, the mold 40 is opened by separating the movable mold 44 from the fixed mold 42, and the heat radiating structure 1 is moved to the mold 40 by a product take-out means (not shown). Take it out. By repeatedly executing the above molding cycle, the heat dissipation structure 1 can be continuously molded.

第1実施形態に係る放熱構造体1によれば、金属部材と樹脂製放熱部材とを組み合わせたハイブリッド構造を有する放熱構造体であっても、十分な放熱効果を得ることが可能である。すなわち、第1実施形態に係る放熱構造体1は、金属部材10が、熱源2からの熱を受熱可能な受熱部18を有し、樹脂製放熱部材20が、金属部材10の受熱部18と熱的に接触して設けられている。これにより、熱伝導率が相対的に低い樹脂製放熱部材20に先行して、熱伝導率が相対的に高い金属部材10が熱源2からの熱を受熱し、金属部材10の全体に熱を分散させた状態にて樹脂製放熱部材20に伝達させることができるため、熱伝導率が相対的に低い樹脂製放熱部材20を用いても効率的に放熱させることが可能となる。また、第1実施形態に係る放熱構造体1は、樹脂製放熱部材20が金属部材10に射出成形により一体成形(インサート成形又はアウトサート成形)されている。これにより、金属部材10と樹脂製放熱部材20との界面を密着させることができ、十分な接触圧力を確保することができるため、熱抵抗を大幅に減少させることができ、熱の滞留を抑えることが可能となる。   According to the heat dissipation structure 1 according to the first embodiment, a sufficient heat dissipation effect can be obtained even with a heat dissipation structure having a hybrid structure in which a metal member and a resin heat dissipation member are combined. That is, in the heat dissipation structure 1 according to the first embodiment, the metal member 10 has the heat receiving portion 18 that can receive the heat from the heat source 2, and the resin heat dissipation member 20 is connected to the heat receiving portion 18 of the metal member 10. It is provided in thermal contact. Thereby, prior to the resin heat radiation member 20 having a relatively low thermal conductivity, the metal member 10 having a relatively high thermal conductivity receives heat from the heat source 2 and heats the entire metal member 10. Since it can be transmitted to the resin heat radiating member 20 in a dispersed state, it is possible to efficiently dissipate heat even if the resin heat radiating member 20 having a relatively low thermal conductivity is used. In the heat dissipation structure 1 according to the first embodiment, the resin heat dissipation member 20 is integrally formed (insert molding or outsert molding) on the metal member 10 by injection molding. As a result, the interface between the metal member 10 and the resin heat radiating member 20 can be brought into close contact, and sufficient contact pressure can be ensured, so that the thermal resistance can be greatly reduced, and heat retention is suppressed. It becomes possible.

また、第1実施形態に係る放熱構造体1は、金属部材10が、受熱部18が設けられた第1の面(表面)12と、第1の面12と異なる方向を向く第2の面(裏面)14と、第1の面12から第2の面14に亘って貫通する複数の貫通孔16とを有し、また、樹脂製放熱部材20が、第1の面側に設けられた板状部(係止部)26と、第2の面側に突出して設けられた複数の第2放熱フィン部(突出部)24と、貫通孔16を介して係止部26と各突出部24とを連結する連結部28とを有している。特に、第1実施形態に係る放熱構造体1は、樹脂製放熱部材20の連結部28が、放熱フィン(第1放熱フィン部22及び第2放熱フィン部24)の長手方向の少なくとも両端部、好ましくは放熱フィンの長手方向に沿って狭ピッチで複数設けられている。これにより、連結部28を介して接続された係止部26と突出部24とを連結部28の軸方向(貫通孔16の貫通方向)に発生する冷却固化収縮力によって金属部材10を強固に狭持させることができるため、金属部材10と樹脂製放熱部材20との界面をより一層密着させることができ、放熱効率をより一層向上させることができる。   Further, in the heat dissipation structure 1 according to the first embodiment, the metal member 10 has a first surface (surface) 12 provided with the heat receiving portion 18 and a second surface facing a different direction from the first surface 12. (Rear surface) 14 and a plurality of through holes 16 penetrating from the first surface 12 to the second surface 14, and the resin heat dissipating member 20 is provided on the first surface side. A plate-like portion (locking portion) 26, a plurality of second radiating fin portions (protruding portions) 24 provided protruding from the second surface side, and the locking portion 26 and each protruding portion via the through-hole 16. 24 and a connecting portion 28 that connects the two. In particular, in the heat dissipation structure 1 according to the first embodiment, the connecting portion 28 of the resin heat dissipation member 20 has at least both end portions in the longitudinal direction of the heat dissipation fins (the first heat dissipation fin portion 22 and the second heat dissipation fin portion 24), Preferably, a plurality are provided at a narrow pitch along the longitudinal direction of the radiating fin. As a result, the metal member 10 is solidified by the cooling and solidification contraction force generated in the axial direction of the connecting portion 28 (through direction of the through hole 16) between the engaging portion 26 and the protruding portion 24 connected via the connecting portion 28. Since it can be pinched, the interface between the metal member 10 and the resin heat radiating member 20 can be further adhered, and the heat radiation efficiency can be further improved.

第1実施形態に係る放熱構造体1において、樹脂製放熱部材20は、1種類の樹脂材料から形成されるものとして説明したが、これに限定されず、2種以上の樹脂材料から成形しても良い。   In the heat dissipation structure 1 according to the first embodiment, the resin heat dissipating member 20 has been described as being formed from one type of resin material, but is not limited thereto, and is molded from two or more types of resin materials. Also good.

まず、樹脂製放熱体を2種類の樹脂材料から成形する態様について、図7を用いて説明する。図7は、樹脂製放熱体を2種類の樹脂材料で製造する工程の例を示す工程図である。樹脂製放熱体を2種類の樹脂材料から成形する場合には、前述の可動金型44に代えて、図7に示すような回転金型50を使用した金型40´を用いることができる。なお、固定金型42は、前述の固定金型42と同様のものを用いることが可能である。回転金型50は、型開閉機構(図示せず)により固定金型42に対して接近若しくは離間する方向に移動可能に構成されている。また、回転金型50は、回転機構(図示せず)により回転軸(図示せず)を中心として回転可能に構成されている。回転金型50は、固定金型42との間に第1金型キャビティ52を形成可能な第1金型面50aと、固定金型42との間に第2金型キャビティ54を形成可能な第2金型面50bとを有している。第1金型面50aには、金属部材10の一部の貫通孔16を閉塞可能な突起56が適宜設けられている。第1金型キャビティ52は、放熱構造体1´の放熱面側を成形するためのキャビティ空間であり、第2金型キャビティ54は、放熱構造体1´の受熱面側を成形するためのキャビティ空間である。回転金型50には、前述の可動金型44と同様に、金属部材10の受熱部18となる領域を被覆するための被覆用金型ブロック48と、金属部材10を狭持するための保持用金型ブロック(図示せず)とが内蔵されている。なお、図7に示す金型40´は、積層成形に使用可能な金型の一例であり、これに限定されず、金属部材10に2種以上の樹脂材料からなる樹脂製放熱部材20´を一体成形(インサート成形又はアウトサート成形)させることが可能なものであれば、いかなるものを用いても良い。   First, the aspect which shape | molds a resin-made heat radiator from two types of resin materials is demonstrated using FIG. FIG. 7 is a process diagram showing an example of a process of manufacturing a resin heat radiator with two types of resin materials. In the case where the resin radiator is molded from two types of resin materials, a mold 40 ′ using a rotating mold 50 as shown in FIG. 7 can be used instead of the movable mold 44 described above. The fixed mold 42 can be the same as the fixed mold 42 described above. The rotary mold 50 is configured to be movable in a direction approaching or separating from the fixed mold 42 by a mold opening / closing mechanism (not shown). Further, the rotating mold 50 is configured to be rotatable about a rotating shaft (not shown) by a rotating mechanism (not shown). The rotary mold 50 can form a second mold cavity 54 between the first mold surface 50 a capable of forming the first mold cavity 52 between the rotating mold 50 and the fixed mold 42. And a second mold surface 50b. On the first mold surface 50a, a protrusion 56 capable of closing a part of the through hole 16 of the metal member 10 is appropriately provided. The first mold cavity 52 is a cavity space for molding the heat dissipation surface side of the heat dissipation structure 1 ′, and the second mold cavity 54 is a cavity for molding the heat receiving surface side of the heat dissipation structure 1 ′. It is space. In the rotary mold 50, similarly to the movable mold 44 described above, a coating mold block 48 for covering the region to be the heat receiving portion 18 of the metal member 10 and a holding for holding the metal member 10 are held. A mold block (not shown) is built in. The mold 40 ′ shown in FIG. 7 is an example of a mold that can be used for laminate molding. The mold 40 ′ is not limited to this, and a resin heat radiating member 20 ′ made of two or more kinds of resin materials is provided on the metal member 10. Any material that can be integrally molded (insert molding or outsert molding) may be used.

このような固定金型42及び回転金型50を用いて樹脂製放熱体を2種類の樹脂材料から成形する方法について、図7を用いて説明する。まず、図7(a)に示すように、固定金型42と回転金型50の第1金型面50aとの間において金属部材10を保持用金型ブロックにより狭持させ、固定金型42と回転金型50とを型閉じ及び型締めさせる。これにより、金属部材10の一部の貫通孔16が突起56によって塞がれた状態において、金属部材10が第1金型キャビティ52内に配置される(配置工程)。次に、この状態において、図7(b)に示すように、第2放熱フィン部24´の長手方向(固定金型42の内面に形成された溝が延びる方向)に沿って、第1金型キャビティ52内に溶融状態の第1の樹脂材料を射出充填する(第1射出充填工程)。その後所定の期間、第1金型キャビティ52内に充填された第1の樹脂材料を冷却固化させることにより、金属部材10の裏面14上に積層された板状部25´と、板状部25´上に立設された複数の第2放熱フィン部24´と、突起56によって塞がれていない貫通孔16内に充填された連結部28a´とからなる放熱面側の構造体58が成形される。そして、放熱面側の構造体58が成形された後、回転金型50を固定金型42から離間させると共に、回転金型50を回転させ、第2金型面50bを固定金型42と対向させる。次に、図7(c)に示すように、固定金型42と回転金型50とを型閉じ及び型締めさせると共に、被覆用金型ブロック48を金属部材10の受熱部18となる領域に当接させる。次に、この状態において、第1放熱フィン部22´の長手方向(回転金型50の内面に形成された溝が延びる方向)に沿って、第2金型キャビティ54内に溶融状態の第2の樹脂材料を射出充填する(第2射出充填工程)。その後所定の期間、第2金型キャビティ54内に充填された第2の樹脂材料を冷却固化させることにより、金属部材10の表面12上に積層された板状部26´と、板状部26´上に立設された複数の第1放熱フィン部22´と、第1射出充填工程において突起56によって塞がれていた貫通孔16内に充填された連結部28b´とからなる受熱面側の構造体60が成形される。ここで、放熱面側の構造体58と受熱面側の構造体60は、いずれも樹脂材料から成形されているため、相互に接着して一体的に成形される。これにより、金属部材10と、放熱面側の構造体58及び受熱面側の構造体60からなる樹脂製放熱部材20´とが一体となり、放熱構造体1´が成形される。そして最後に、図7(d)に示すように、回転金型50を固定金型42から離間させることにより金型40´を型開きさせ、図示しない製品取出手段により放熱構造体1´を金型40´外へ搬出させる。以上の成形サイクルを繰り返し実行することにより、2種類の樹脂材料を積層させた放熱構造体1´を連続して成形することができる。   A method of molding a resin heat radiator from two types of resin materials using such a fixed mold 42 and a rotating mold 50 will be described with reference to FIG. First, as shown in FIG. 7A, the metal member 10 is held between the fixed mold 42 and the first mold surface 50 a of the rotating mold 50 by the holding mold block, and the fixed mold 42. And the rotary mold 50 are closed and clamped. Thereby, the metal member 10 is arranged in the first mold cavity 52 in a state where a part of the through holes 16 of the metal member 10 is blocked by the protrusions 56 (arrangement step). Next, in this state, as shown in FIG. 7B, along the longitudinal direction of the second radiating fin portion 24 '(the direction in which the groove formed on the inner surface of the fixed mold 42 extends), the first metal The mold cavity 52 is filled with a molten first resin material (first injection filling step). Thereafter, by cooling and solidifying the first resin material filled in the first mold cavity 52 for a predetermined period, a plate-like portion 25 ′ laminated on the back surface 14 of the metal member 10, and the plate-like portion 25. The structure 58 on the heat radiating surface side is formed by a plurality of second heat radiating fin portions 24 ′ standing on the ′ and the connecting portions 28 a ′ filled in the through holes 16 not covered by the protrusions 56. Is done. Then, after the structure 58 on the heat radiating surface side is formed, the rotating mold 50 is separated from the fixed mold 42 and the rotating mold 50 is rotated so that the second mold surface 50 b faces the fixed mold 42. Let Next, as shown in FIG. 7 (c), the stationary mold 42 and the rotating mold 50 are closed and clamped, and the covering mold block 48 is placed in the region to be the heat receiving portion 18 of the metal member 10. Make contact. Next, in this state, a second molten state is formed in the second mold cavity 54 along the longitudinal direction of the first radiating fin portion 22 ′ (the direction in which the groove formed on the inner surface of the rotating mold 50 extends). The resin material is injected and filled (second injection filling step). Thereafter, by cooling and solidifying the second resin material filled in the second mold cavity 54 for a predetermined period, the plate-like portion 26 ′ laminated on the surface 12 of the metal member 10, and the plate-like portion 26. 'A plurality of first heat radiating fin portions 22' erected on the heat receiving surface side including the connecting portion 28b 'filled in the through hole 16 closed by the projection 56 in the first injection filling step The structure 60 is formed. Here, since the structure 58 on the heat radiating surface side and the structure 60 on the heat receiving surface side are both formed from a resin material, they are bonded together and formed integrally. As a result, the metal member 10 and the resin heat radiating member 20 ′ including the heat radiating surface side structure 58 and the heat receiving surface side structure 60 are integrated to form the heat radiating structure 1 ′. Finally, as shown in FIG. 7 (d), the mold 40 'is opened by separating the rotating mold 50 from the fixed mold 42, and the heat dissipation structure 1' is formed by the product take-out means (not shown). It is carried out of the mold 40 '. By repeatedly executing the above molding cycle, the heat dissipation structure 1 ′ in which two types of resin materials are laminated can be continuously molded.

放熱面側の構造体58は、優れた熱伝導性を有する必要があることから、放熱面側の構造体58を成形するための第1の樹脂材料は、第1実施形態に係る放熱構造体1の樹脂製放熱部材20と同様に、熱伝導性を有する樹脂材料を用いることが好ましい。一方、受熱面側の構造体60は、優れた熱伝導性能が要求されない場合があり、この場合には、例えば第1の樹脂材料よりも剛性に優れた樹脂材料や、絶縁性を有する樹脂材料等から成形することが可能である。   Since the structure 58 on the heat radiating surface side needs to have excellent thermal conductivity, the first resin material for forming the structure 58 on the heat radiating surface side is the heat radiating structure according to the first embodiment. It is preferable to use a resin material having thermal conductivity, similarly to the resin heat radiation member 20 of FIG. On the other hand, the heat receiving surface side structure 60 may not be required to have excellent heat conduction performance. In this case, for example, a resin material having higher rigidity than the first resin material, or a resin material having insulation properties. It is possible to mold from the above.

また、例えば図8に示すように、金属部材10の表面12側に成形される受熱面側の構造体62と、金属部材10の裏面14側に成形される放熱面側の構造体64と、金属部材10の貫通孔16内に充填される連結部66とを異なる樹脂材料から成形することも可能である。   For example, as shown in FIG. 8, the heat receiving surface side structure 62 formed on the front surface 12 side of the metal member 10, and the heat dissipation surface side structure 64 formed on the back surface 14 side of the metal member 10, It is also possible to form the connecting portion 66 filled in the through hole 16 of the metal member 10 from a different resin material.

次に、本発明に係る放熱構造体の第2実施形態について、図9〜図11を参照しながら詳細に説明する。図9は、第2実施形態に係る放熱構造体100における樹脂製放熱部材120の熱伝導率調整材121の配向状態を示す模式図である。図10は、第2実施形態に係る放熱構造体100の製造工程の一例を示す工程図である。図11は、成形工程における金型40内の樹脂の流動経路及び熱伝導率調整材121の向きを図示した模式図である。なお、第2実施形態に係る放熱構造体100の基本的な構成は、第1実施形態に係る放熱構造体1と概ね同様であるため、説明を省略する。   Next, 2nd Embodiment of the thermal radiation structure which concerns on this invention is described in detail, referring FIGS. 9-11. FIG. 9 is a schematic diagram illustrating an orientation state of the thermal conductivity adjusting member 121 of the resin heat dissipation member 120 in the heat dissipation structure 100 according to the second embodiment. FIG. 10 is a process diagram illustrating an example of a manufacturing process of the heat dissipation structure 100 according to the second embodiment. FIG. 11 is a schematic diagram illustrating the flow path of the resin in the mold 40 and the direction of the thermal conductivity adjusting material 121 in the molding process. Note that the basic configuration of the heat dissipation structure 100 according to the second embodiment is substantially the same as that of the heat dissipation structure 1 according to the first embodiment, and a description thereof will be omitted.

第2実施形態に係る放熱構造体100の樹脂製放熱部材120は、熱伝導率に異方性を付与する熱伝導率調整材である熱伝導率調整材121を1種以上含有している。熱伝導率調整材121は、図9に示すように、例えば線状若しくは棒状等の所定のアスペクト比を有する長尺形状を有している。   The resin heat radiation member 120 of the heat dissipation structure 100 according to the second embodiment contains one or more kinds of heat conductivity adjusting materials 121 that are heat conductivity adjusting materials that impart anisotropy to the heat conductivity. As shown in FIG. 9, the thermal conductivity adjusting material 121 has a long shape having a predetermined aspect ratio such as a linear shape or a rod shape.

樹脂製放熱部材120は、金属板部材10の受熱部18から熱的に離れる方向に樹脂製放熱部材120に含有される熱伝導率調整材121の配向度が0.25を超える。ここで、受熱部18から熱的に離れる方向とは、受熱部18により受けた熱源2からの熱が放熱フィン(第1放熱フィン部122及び第2放熱フィン部124)を介して大気中に放散されるまでの熱の流れの最短経路の方向をいう。第2実施形態では、放熱フィン(第1放熱フィン部122及び第2放熱フィン部124)が金属部材10に対して垂直に立設されているため、受熱部18から熱的に離れる方向は、放熱フィンの高さ方向(突出方向)である。また、本実施形態において、配向度とは、所望方向に対して垂直に配向しているものを0、所望方向に配向しているものを1とし、熱伝導率に異方性を付与する熱伝導率調整材(所定のアスペクト比を有する長尺形状の熱伝導率調整材)が、樹脂材料(母材)内で、所望方向に配向している割合を示したものである。このように、熱伝導性に優れた長尺形状の熱伝導率調整材121の大部分が配向されていることにより、樹脂製放熱部材120には、熱伝導率に異方性が付与されている。   In the resin heat dissipating member 120, the degree of orientation of the thermal conductivity adjusting material 121 contained in the resin heat dissipating member 120 in the direction of thermally separating from the heat receiving portion 18 of the metal plate member 10 exceeds 0.25. Here, the direction of thermally separating from the heat receiving unit 18 means that the heat from the heat source 2 received by the heat receiving unit 18 enters the atmosphere via the radiation fins (the first radiation fin unit 122 and the second radiation fin unit 124). The direction of the shortest path of heat flow until it is dissipated. In the second embodiment, since the radiating fins (the first radiating fin portion 122 and the second radiating fin portion 124) are erected perpendicular to the metal member 10, the direction of thermally separating from the heat receiving portion 18 is It is the height direction (protrusion direction) of a radiation fin. Further, in this embodiment, the degree of orientation is defined as 0 that is oriented perpendicular to the desired direction, 1 that is oriented in the desired direction, and heat that imparts anisotropy to the thermal conductivity. The conductivity adjusting material (long-shaped thermal conductivity adjusting material having a predetermined aspect ratio) shows the ratio of orientation in a desired direction in the resin material (base material). As described above, since most of the elongated thermal conductivity adjusting material 121 excellent in thermal conductivity is oriented, the resin heat radiating member 120 is provided with anisotropy in thermal conductivity. Yes.

次に、第2実施形態に係る放熱構造体100を製造する方法の一例について、図10及び図11を用いて説明する。なお、金型は、第1実施形態に係る放熱構造体1を製造する際に用いた金型40と同様のものを用いることができるため、同一符号を用いることにより説明を省略する。また、図11(a)及び図11(b)は、第1放熱フィン部122及び第2放熱フィン部124の長手方向(固定金型42及び可動金型44の内面に形成された溝が延びる方向)に沿った断面図である。図11(a)及び図11(b)に示す矢印は、樹脂材料の流動方向を示している。   Next, an example of a method for manufacturing the heat dissipation structure 100 according to the second embodiment will be described with reference to FIGS. 10 and 11. In addition, since the thing similar to the metal mold | die 40 used when manufacturing the thermal radiation structure 1 which concerns on 1st Embodiment can be used for a metal mold | die, description is abbreviate | omitted by using the same code | symbol. 11 (a) and 11 (b), the longitudinal direction of the first radiating fin portion 122 and the second radiating fin portion 124 (grooves formed on the inner surfaces of the fixed mold 42 and the movable mold 44 extend). It is sectional drawing along a direction. The arrows shown in FIGS. 11A and 11B indicate the flow direction of the resin material.

具体的には、まず、第1実施形態に係る放熱構造体1を製造する方法と同様に、図10(a)〜図10(c)に示すように、固定金型42と可動金型44との間に金属部材10を配置させ、金属部材10における熱源2からの熱を受熱可能な受熱部18となる領域を被覆した状態において、金型40内に熱伝導性樹脂材料を射出充填させる。この際、金型40内に射出充填された樹脂材料は、図11(a)に示すように、金属部材10の表面12及び側面と可動金型44の内面により形成される空間46aを流動すると共に、金属部材10の貫通孔16を介して金属部材10の裏面14と固定金型42の内面により形成される空間46bを流動し、金型キャビティ46内に充填される。樹脂材料に含有される熱伝導率調整材121は、樹脂材料の流動抵抗により、基本的に樹脂材料の流動方向に沿った方向に向いて、すなわち、熱伝導率調整材121の長手方向が樹脂材料の流動方向と概ね平行な状態において、樹脂材料と共に金型キャビティ46内に充填される。したがって、金型40内に樹脂材料を射出充填させた状態では、樹脂材料に含有される熱伝導率調整材121の大部分が、放熱フィン(第1放熱フィン部122及び第2放熱フィン部124)の高さ方向と直交する方向に向いている。   Specifically, first, similarly to the method of manufacturing the heat dissipation structure 1 according to the first embodiment, as shown in FIGS. 10A to 10C, the fixed mold 42 and the movable mold 44. The metal member 10 is disposed between the metal member 10 and the metal member 10 is injected and filled with a thermally conductive resin material in the mold 40 in a state where the metal member 10 covers a region to be the heat receiving portion 18 capable of receiving heat from the heat source 2. . At this time, the resin material injected and filled into the mold 40 flows in a space 46 a formed by the surface 12 and the side surface of the metal member 10 and the inner surface of the movable mold 44 as shown in FIG. At the same time, it flows through the space 46 b formed by the back surface 14 of the metal member 10 and the inner surface of the fixed mold 42 through the through hole 16 of the metal member 10, and is filled in the mold cavity 46. The thermal conductivity adjusting material 121 contained in the resin material is basically oriented in the direction along the flow direction of the resin material due to the flow resistance of the resin material, that is, the longitudinal direction of the thermal conductivity adjusting material 121 is the resin. The mold cavity 46 is filled together with the resin material in a state substantially parallel to the flow direction of the material. Therefore, in the state in which the resin material is injected and filled into the mold 40, most of the thermal conductivity adjusting material 121 contained in the resin material is the radiating fin (the first radiating fin portion 122 and the second radiating fin portion 124). ) In the direction perpendicular to the height direction.

次に、金型40内に樹脂材料を充填させる際、すなわち、金型40内に樹脂材料を射出している途中若しくは金型40内に射出された樹脂材料が冷却固化する前に、図10(d)に示すように、可動金型44を放熱フィン(第1放熱フィン部122及び第2放熱フィン部124)の高さ方向に少量だけ型開きさせ、金型40内のキャビティ容積を変動させる(変動工程)。これにより、金型40内に射出充填された樹脂材料は、図11(b)に示すように、金型40内のキャビティ容積が変動した方向、すなわち、放熱フィン(第1放熱フィン部122及び第2放熱フィン部124)の高さ方向に流動する。また、樹脂材料が放熱フィン(第1放熱フィン部122及び第2放熱フィン部124)の高さ方向に流動することにより、樹脂材料の流動方向に沿った方向、すなわち、放熱フィン(第1放熱フィン部122及び第2放熱フィン部124)の高さ方向への樹脂材料に含有される熱伝導率調整材121の配向度は0.25を超える。   Next, when the mold 40 is filled with the resin material, that is, while the resin material is being injected into the mold 40 or before the resin material injected into the mold 40 is cooled and solidified, FIG. As shown in FIG. 4D, the movable mold 44 is opened by a small amount in the height direction of the radiation fins (the first radiation fin part 122 and the second radiation fin part 124), and the cavity volume in the mold 40 is changed. (Variation process). As a result, the resin material injected and filled in the mold 40 has a direction in which the cavity volume in the mold 40 fluctuates, as shown in FIG. 11B, that is, the radiation fins (the first radiation fin portion 122 and It flows in the height direction of the second radiating fin portion 124). In addition, the resin material flows in the height direction of the radiation fins (the first radiation fin portion 122 and the second radiation fin portion 124), so that the direction along the flow direction of the resin material, that is, the radiation fin (the first radiation fin). The degree of orientation of the thermal conductivity adjusting material 121 contained in the resin material in the height direction of the fin portion 122 and the second radiating fin portion 124) exceeds 0.25.

そして、熱伝導率調整材121の向きを放熱フィン(第1放熱フィン部122及び第2放熱フィン部124)の高さ方向に整列させた状態において、金型キャビティ46内に充填された熱伝導性樹脂材料を冷却固化させることにより、熱伝導率調整材121の配向制御がなされた第2実施形態に係る放熱構造体100が成形される。そして最後に、図10(e)に示すように、可動金型44を固定金型42から離間させることにより金型40を型開きさせ、図示しない製品取出手段により放熱構造体100を金型40外へ搬出させる。以上の成形サイクルを繰り返し実行することにより、放熱構造体100を連続して成形することができる。   Then, in the state where the direction of the thermal conductivity adjusting material 121 is aligned with the height direction of the radiation fins (the first radiation fin portion 122 and the second radiation fin portion 124), the heat conduction filled in the mold cavity 46 is performed. By cooling and solidifying the conductive resin material, the heat dissipation structure 100 according to the second embodiment in which the orientation of the thermal conductivity adjusting material 121 is controlled is formed. Finally, as shown in FIG. 10 (e), the mold 40 is opened by separating the movable mold 44 from the fixed mold 42, and the heat dissipation structure 100 is moved to the mold 40 by a product take-out means (not shown). Take it out. By repeatedly executing the above molding cycle, the heat dissipation structure 100 can be continuously molded.

第2実施形態に係る放熱構造体100によれば、第1実施形態に係る放熱構造体1と同様に、熱伝導率が相対的に低い樹脂製放熱部材120に先行して、熱伝導率が相対的に高い金属部材10が熱源2からの熱を受熱し、金属部材10の全体に熱を分散させた状態にて樹脂製放熱部材120に伝達させることができるため、熱伝導率が相対的に低い樹脂製放熱部材120を用いても効率的に放熱させることが可能となる。また、第2実施形態に係る放熱構造体100は、第1実施形態に係る放熱構造体1と同様に、樹脂製放熱部材20が金属部材10に射出成形により一体成形(インサート成形又はアウトサート成形)されており、これにより、金属部材10と樹脂製放熱部材20との界面を密着させることができるため、熱抵抗を大幅に減少させることができ、熱の滞留を抑えることが可能となる。   According to the heat dissipation structure 100 according to the second embodiment, similarly to the heat dissipation structure 1 according to the first embodiment, the thermal conductivity is preceded by the resin heat dissipation member 120 having a relatively low thermal conductivity. Since the relatively high metal member 10 receives heat from the heat source 2 and can be transferred to the resin heat radiating member 120 in a state in which the heat is dispersed throughout the metal member 10, the heat conductivity is relatively high. Even if a low resin heat radiating member 120 is used, heat can be efficiently radiated. Further, in the heat dissipation structure 100 according to the second embodiment, similarly to the heat dissipation structure 1 according to the first embodiment, the resin heat dissipation member 20 is integrally formed with the metal member 10 by injection molding (insert molding or outsert molding). As a result, the interface between the metal member 10 and the resin heat radiating member 20 can be brought into close contact with each other, so that the thermal resistance can be greatly reduced, and the retention of heat can be suppressed.

また、第2実施形態に係る放熱構造体100は、樹脂製放熱部材120が、熱伝導率に異方性を付与する熱伝導率調整材121を含有しており、金属部材10の受熱部18から熱的に離れる方向への配向度が0.25を超える。これにより、樹脂製放熱部材120の第1放熱フィン部122及び第2放熱フィン部124における熱伝導の主方向(主熱伝導方向)が、図9に示すように、金属部材10の受熱部18から熱的に離れる方向(本実施形態では第1放熱フィン部122及び第2放熱フィン部124の高さ方向)と一致するため、熱の滞留をより一層抑え、金属部材と樹脂製放熱部材とを組み合わせたハイブリッド構造を有する放熱構造体であっても、十分な放熱効果を得ることが可能となる。これに対し、前述した変動工程を経ずに成形した放熱構造体、すなわち、図10(c)及び図11(a)の状態で冷却固化させた放熱構造体は、図12に示すように、熱伝導率調整材121の向きが放熱フィンの高さ方向と直交している。このため、樹脂製放熱部材の放熱フィンにおける主熱伝導方向が、放熱フィンの高さ方向と直交する方向となり、熱の滞留を引き起こす可能性があるという問題がある。第2実施形態に係る放熱構造体100は、前述した変動工程によって熱伝導率調整材121の配向制御を実行することにより、このような問題を解決したものである。   In the heat dissipation structure 100 according to the second embodiment, the resin heat dissipation member 120 includes a thermal conductivity adjusting material 121 that imparts anisotropy to the thermal conductivity, and the heat receiving portion 18 of the metal member 10. The degree of orientation in the direction away from the heat exceeds 0.25. As a result, the main direction of heat conduction (main heat conduction direction) in the first radiating fin portion 122 and the second radiating fin portion 124 of the resin radiating member 120 is the heat receiving portion 18 of the metal member 10 as shown in FIG. In the direction (the height direction of the first heat dissipating fin portion 122 and the second heat dissipating fin portion 124 in this embodiment) away from the heat, further restraining the heat retention, the metal member and the resin heat dissipating member, Even if the heat dissipation structure has a hybrid structure combining the above, a sufficient heat dissipation effect can be obtained. On the other hand, the heat dissipation structure formed without going through the above-described changing process, that is, the heat dissipation structure cooled and solidified in the state of FIGS. 10C and 11A, as shown in FIG. The direction of the thermal conductivity adjusting material 121 is orthogonal to the height direction of the heat radiating fins. For this reason, there exists a problem that the main heat conduction direction in the radiation fin of a resin-made heat radiating member turns into a direction orthogonal to the height direction of a radiation fin, and may cause a heat retention. The heat dissipation structure 100 according to the second embodiment solves such a problem by performing orientation control of the thermal conductivity adjusting material 121 by the above-described variation process.

さらに、図13に示すように、樹脂材料中の、熱伝導率に異方性を付与する熱伝導率調整材の配向度の向上は、該配向度に対する熱伝導率を向上させる。出願人は、熱伝導率に異方性を付与する熱伝導率調整材(アスペクト比を有する熱伝導率調整材)と、熱伝導率に異方性を付与しない熱伝導率調整材(アスペクト比を有しない(球状)熱伝導率調整材)をそれぞれ同率配合した樹脂材料を比較した各種検証により、熱伝導率に異方性を付与しない熱伝導率調整材(同図中:無配向材)の熱伝導率が、熱伝導率に異方性を付与する熱伝導率調整材の配向度0.25に対応する熱伝導率を超えることがないことを見出した。すなわち、熱伝導率に異方性を付与しない熱伝導率調整材と比較し、熱伝導率に異方性を付与する熱伝導率調整材の配向度が0.25を超えると熱伝達率に優位性を生じる。   Furthermore, as shown in FIG. 13, the improvement in the degree of orientation of the thermal conductivity adjusting material imparting anisotropy to the thermal conductivity in the resin material improves the thermal conductivity with respect to the degree of orientation. Applicant has a thermal conductivity adjusting material that imparts anisotropy to thermal conductivity (a thermal conductivity adjusting material having an aspect ratio) and a thermal conductivity adjusting material that does not impart anisotropy to a thermal conductivity (aspect ratio) (Spherical) thermal conductivity adjusting material) that does not give anisotropy to the thermal conductivity by various verifications comparing resin materials blended in the same ratio (spherical) (in the figure: non-oriented material) It has been found that the thermal conductivity does not exceed the thermal conductivity corresponding to the degree of orientation 0.25 of the thermal conductivity adjusting material imparting anisotropy to the thermal conductivity. That is, in comparison with a thermal conductivity adjusting material that does not impart anisotropy to thermal conductivity, when the degree of orientation of the thermal conductivity adjusting material that imparts anisotropy to thermal conductivity exceeds 0.25, Create an advantage.

本発明に係る放熱構造体及びその製造方法は、上述した実施形態に限定されるものではなく、本発明の技術思想を逸脱しない範囲内において種々の改変を行なうことができる。例えば、第1及び第2実施形態に係る放熱構造体において、樹脂製放熱部材の放熱部は、フィン形状に形成されるものとして説明したが、これに限定されず、熱源を目的温度に冷却可能な形状であれば、例えばピン形状などの任意の形状に形成することができる。このように任意の形状からなる樹脂製放熱部材を成形する場合においても、第1実施形態の説明において前述した種々の樹脂材料を好適に用いることができる。また、第1及び第2実施形態に係る放熱構造体では、10枚の第1放熱フィン部と、15枚の第2放熱フィン部とを図示したが、これに限定されず、第1放熱フィン部及び第2放熱フィン部の設置数は、任意の数とすることができる。さらに、受熱面側の第1放熱フィン部は、設けなくても良い。   The heat dissipation structure and the manufacturing method thereof according to the present invention are not limited to the above-described embodiments, and various modifications can be made without departing from the technical idea of the present invention. For example, in the heat dissipating structure according to the first and second embodiments, the heat dissipating part of the resin heat dissipating member has been described as being formed in a fin shape, but is not limited thereto, and the heat source can be cooled to the target temperature. Any shape can be used, for example, a pin shape. As described above, even when a resin heat dissipation member having an arbitrary shape is molded, the various resin materials described above in the description of the first embodiment can be suitably used. Further, in the heat dissipation structure according to the first and second embodiments, the ten first heat dissipating fin portions and the fifteen second heat dissipating fin portions are illustrated, but the present invention is not limited thereto, and the first heat dissipating fins are illustrated. The number of parts and the second radiating fins can be set to an arbitrary number. Furthermore, the first heat radiating fin portion on the heat receiving surface side may not be provided.

第1及び第2実施形態に係る放熱構造体では、金属部材の受熱部が、樹脂製放熱部材に開口が形成されることにより露出され、熱源と直接接触するものとして説明したが、これに限定されず、例えば熱伝導性を有する緩衝材等の中間部材を介して、受熱部が熱源から受熱する構成としても良い。   In the heat radiating structure according to the first and second embodiments, the heat receiving portion of the metal member has been described as being exposed by forming an opening in the resin heat radiating member and in direct contact with the heat source. For example, the heat receiving unit may receive heat from the heat source through an intermediate member such as a buffer material having thermal conductivity.

第1及び第2実施形態に係る放熱構造体では、金属部材の裏面が露出されているものとして説明したが、これに限定されず、金属部材の表面が露出される構成としても良く、また、金属部材の受熱部以外の領域を樹脂製放熱部材によって鋳包む構成としても良い。金属部材の受熱部以外の領域を樹脂製放熱部材によって鋳包む構成とする場合には、金属と樹脂の線膨張係数差による剥離をより一層防止することができる。更に、金属部材の受熱部以外の領域を樹脂製放熱部材によって鋳包む構成とする場合には、先に説明したように、放熱面側及び受熱面側のいずれか一方の構造体を、絶縁性を有する樹脂材料等から成形して取付部を設けたり、樹脂製放熱部材の周縁部に、放熱面側及び受熱面側の構造体の樹脂材料とは異なる機能(例えば絶縁性等)を有する樹脂材料からなる別の構造体を積層したりしても良い。   In the heat dissipation structure according to the first and second embodiments, the back surface of the metal member has been described as being exposed. However, the present invention is not limited thereto, and the surface of the metal member may be exposed. A region other than the heat receiving portion of the metal member may be cast with a resin heat radiating member. In the case where the region other than the heat receiving portion of the metal member is cast with the resin heat radiating member, peeling due to a difference in linear expansion coefficient between the metal and the resin can be further prevented. Furthermore, when the region other than the heat receiving portion of the metal member is cast with a resin heat radiating member, as described above, one of the structures on the heat radiating surface side and the heat receiving surface side is insulated. A resin having a function different from the resin material of the structure on the heat radiating surface side and the heat receiving surface side (for example, insulating properties) on the peripheral portion of the resin heat radiating member. Another structure made of a material may be laminated.

第1及び第2実施形態に係る放熱構造体において、金属部材の貫通孔は、千鳥配置となるように形成された複数の円形状の孔であるとしたが、これに限定されず、孔の形状及び孔の配置は、任意の形状及び配置とすることができる。また、第2実施形態に係る放熱構造体において、貫通孔が形成された金属部材を用いたが、これに限定されず、貫通孔が形成されていない板状の金属部材を用いても良い。この場合、金属部材を樹脂製放熱部材により鋳包むことにより、金属部材と樹脂製放熱部材との界面の密着性を確保することができる。   In the heat dissipation structure according to the first and second embodiments, the through hole of the metal member is a plurality of circular holes formed in a staggered arrangement, but is not limited thereto, The shape and arrangement of the holes can be any shape and arrangement. Further, in the heat dissipation structure according to the second embodiment, the metal member in which the through hole is formed is used. However, the present invention is not limited to this, and a plate-like metal member in which the through hole is not formed may be used. In this case, the adhesion of the interface between the metal member and the resin heat dissipation member can be ensured by casting the metal member with the resin heat dissipation member.

第2実施形態に係る放熱構造体では、可動金型を放熱フィンの高さ方向に少量だけ型開きさせ、金型内のキャビティ容積を変動させるものとして説明したが、これに限定されず、金型内のキャビティ容積の変動方向は、受熱部から熱的に接近若しくは離間する方向と概ね同方向であれば、任意の方向とすることができる。すなわち、金型内のキャビティ容積の変動方向は、受熱部により受けた熱源からの熱が放熱フィンを介して大気中に放散されるまでの熱の流れの最短経路の方向に概ね沿った方向であれば良い。また、第2実施形態に係る放熱構造体では、金型内のキャビティ容積を変動させる方法として、射出成形時に金型を少量だけ型開きさせる方法(拡張方法)を例に挙げて説明したが、これに限定されるものではなく、例えば射出圧縮成形や射出プレス成形等において実行される、射出成形時に金型を型閉じさせる方法(圧縮方法)を採用してもよい。さらに、金型内のキャビティ容積を変動させる方法として、可動金型を型開閉方向に移動させる態様を例に挙げて説明したが、これに限定されず、例えば金型内に配置される中子等の可動部により金型内のキャビティ容積を変動させる態様等、種々の態様を採用することができる。   In the heat dissipation structure according to the second embodiment, it has been described that the movable mold is opened by a small amount in the height direction of the heat dissipation fin, and the cavity volume in the mold is changed. The direction of variation of the cavity volume in the mold can be any direction as long as the direction is substantially the same as the direction of thermal approach or separation from the heat receiving portion. That is, the direction of variation of the cavity volume in the mold is substantially along the direction of the shortest path of the heat flow until the heat from the heat source received by the heat receiving part is dissipated into the atmosphere through the radiation fins. I just need it. Further, in the heat dissipation structure according to the second embodiment, as a method of changing the cavity volume in the mold, a method of opening the mold by a small amount at the time of injection molding (expansion method) has been described as an example. However, the present invention is not limited to this. For example, a method (compression method) of closing the mold at the time of injection molding performed in injection compression molding or injection press molding may be employed. Furthermore, as an example of a method for changing the cavity volume in the mold, the mode in which the movable mold is moved in the mold opening / closing direction has been described as an example. However, the present invention is not limited to this. For example, the core disposed in the mold Various modes such as a mode in which the cavity volume in the mold is changed by a movable part such as the above can be adopted.

第2実施形態に係る放熱構造体において、樹脂製放熱部材は、1種類の樹脂材料から形成されるものとして説明したが、これに限定されず、図7及び図8を用いて前述したとおり、2種以上の樹脂材料から成形しても良い。   In the heat dissipation structure according to the second embodiment, the resin heat dissipating member has been described as being formed from one type of resin material, but is not limited thereto, as described above with reference to FIGS. You may shape | mold from 2 or more types of resin materials.

1,100 放熱構造体、2 熱源、10 金属部材、12 第1の面(表面)、14 第2の面(裏面)、16 貫通孔、18 受熱部、20,20´,120 樹脂製放熱部材、22,22´,122 第1放熱フィン部(突出部,第1突出部)、24,24´,124 第2放熱フィン部(突出部,第2突出部)、26,26´ 板状部(係止部,第1係止部)、28,28a´,28b´,66 連結部、121 熱伝導率調整材   DESCRIPTION OF SYMBOLS 1,100 Heat dissipation structure, 2 Heat source, 10 Metal member, 12 1st surface (front surface), 14 2nd surface (back surface), 16 Through-hole, 18 Heat receiving part, 20, 20 ', 120 Resin heat dissipation member , 22, 22 ′, 122 First radiating fin portion (protruding portion, first protruding portion), 24, 24 ′, 124 Second radiating fin portion (protruding portion, second protruding portion), 26, 26 ′ (Locking part, first locking part), 28, 28a ', 28b', 66 connecting part, 121 thermal conductivity adjusting material

Claims (10)

熱伝導性を有する金属部材と、熱伝導性を有する樹脂製放熱部材とを備える放熱構造体であって、
前記金属部材は、熱源からの熱を受熱可能な受熱部を有し、
前記樹脂製放熱部材は、前記金属部材に射出成形により一体成形されており、前記受熱部と熱的に接触して設けられている
ことを特徴とする放熱構造体。
A heat dissipation structure comprising a metal member having thermal conductivity and a resin heat dissipation member having thermal conductivity,
The metal member has a heat receiving part capable of receiving heat from a heat source,
The heat dissipation structure is characterized in that the resin heat dissipation member is integrally formed with the metal member by injection molding and is in thermal contact with the heat receiving portion.
前記金属部材は、前記受熱部が設けられた第1の面と、前記第1の面と異なる方向を向く第2の面と、前記第1の面から前記第2の面に亘って貫通する複数の貫通孔とを有し、
前記樹脂製放熱部材は、前記第1の面側に設けられた係止部と、前記第2の面側に突出して設けられた複数の突出部と、前記貫通孔を介して前記係止部と各突出部とを連結する連結部とを有する
ことを特徴とする請求項1に記載の放熱構造体。
The metal member penetrates from the first surface on which the heat receiving portion is provided, a second surface facing a direction different from the first surface, and the first surface to the second surface. A plurality of through holes,
The resin heat radiation member includes a locking portion provided on the first surface side, a plurality of protruding portions provided protruding on the second surface side, and the locking portion via the through hole. The heat radiating structure according to claim 1, further comprising: a connecting portion that connects the protrusions to each other.
前記第1の面側に設けられた前記係止部に、複数の突出部が突出して設けられる
ことを特徴とする請求項2に記載の放熱構造体。
The heat dissipating structure according to claim 2, wherein a plurality of protrusions are provided to protrude from the locking part provided on the first surface side.
前記金属部材は、前記受熱部が設けられた第1の面と、前記第1の面と異なる方向を向く第2の面と、前記第1の面から前記第2の面に亘って貫通する複数の貫通孔とを有し、
前記樹脂製放熱部材は、前記第1の面側に設けられた第1係止部と、前記第2の面側に設けられた第2係止部と、前記貫通孔を介して前記第1係止部と前記第2係止部とを連結する連結部とを有し、
前記第1係止部及び前記第2係止部の少なくとも一方に、複数の突出部が突出して設けられる
ことを特徴とする請求項1に記載の放熱構造体。
The metal member penetrates from the first surface on which the heat receiving portion is provided, a second surface facing a direction different from the first surface, and the first surface to the second surface. A plurality of through holes,
The resin heat dissipating member includes a first locking portion provided on the first surface side, a second locking portion provided on the second surface side, and the first via the through hole. A connecting portion that connects the locking portion and the second locking portion;
The heat dissipating structure according to claim 1, wherein a plurality of projecting portions protrude from at least one of the first locking portion and the second locking portion.
前記樹脂製放熱部材は、熱伝導率に異方性を付与する熱伝導率調整材を含有しており、
前記受熱部から熱的に離れる方向への前記熱伝導率調整材の配向度が0.25を超える
ことを特徴とする請求項1〜4いずれか1項に記載の放熱構造体。
The resin heat radiating member contains a thermal conductivity adjusting material that imparts anisotropy to the thermal conductivity,
The heat dissipation structure according to any one of claims 1 to 4, wherein the degree of orientation of the thermal conductivity adjusting material in a direction thermally away from the heat receiving portion exceeds 0.25.
熱伝導性を有する金属部材と、熱伝導性を有する樹脂製放熱部材とを備える放熱構造体を射出成形により成形する放熱構造体の製造方法であって、
前記金属部材を金型内に配置させる配置工程と、
前記金属部材における熱源からの熱を受熱可能な受熱部となる領域を被覆した状態において、前記金型内に樹脂材料を充填させ、前記金属部材に前記樹脂製放熱部材を一体成形させる成形工程とを備える
ことを特徴とする放熱構造体の製造方法。
A heat dissipation structure manufacturing method comprising molding a heat dissipation structure comprising a metal member having thermal conductivity and a resin heat dissipation member having thermal conductivity by injection molding,
An arrangement step of arranging the metal member in a mold;
A molding step of filling a resin material into the mold and integrally molding the resin heat radiating member in the metal member in a state where a region to be a heat receiving portion capable of receiving heat from a heat source in the metal member is covered The manufacturing method of the heat radiating structure characterized by comprising.
前記配置工程は、前記受熱部が設けられる第1の面と、前記第1の面と異なる方向を向く第2の面と、前記第1の面から前記第2の面に亘って貫通する複数の貫通孔とを有する金属部材を金型内に配置させる工程であり、
前記成形工程は、前記金属部材の前記第1の面の前記受熱部となる領域を被覆した状態において前記金型内に樹脂材料を充填させ、前記金属部材に、前記第1の面側に設けられた係止部と、前記第2の面側に突出して設けられた複数の突出部と、前記貫通孔を介して前記係止部と各突出部とを連結する連結部とを有する樹脂製放熱部材を一体成形させる工程である
ことを特徴とする請求項6に記載の放熱構造体の製造方法。
The arranging step includes a first surface on which the heat receiving portion is provided, a second surface facing in a direction different from the first surface, and a plurality of penetrating from the first surface to the second surface. Is a step of arranging a metal member having a through hole in the mold,
In the molding step, a resin material is filled in the mold in a state where the region to be the heat receiving portion of the first surface of the metal member is covered, and the metal member is provided on the first surface side. And a plurality of protrusions provided to protrude toward the second surface side, and a connecting portion that connects the engagement part and each protrusion through the through hole. The method of manufacturing a heat dissipation structure according to claim 6, wherein the heat dissipation member is integrally formed.
前記成形工程は、前記金属部材の前記第1の面の前記受熱部となる領域を被覆した状態において前記金型内に樹脂材料を充填させ、前記金属部材に、前記第1の面側に設けられた係止部と、前記係止部上に設けられた複数の第1突出部と、前記第2の面側に突出して設けられた複数の第2突出部と、前記貫通孔を介して前記係止部と各第2突出部とを連結する連結部とを有する樹脂製放熱部材を一体成形させる工程である
ことを特徴とする請求項7に記載の放熱構造体の製造方法。
In the molding step, a resin material is filled in the mold in a state where the region to be the heat receiving portion of the first surface of the metal member is covered, and the metal member is provided on the first surface side. The plurality of first protruding portions provided on the locking portion, the plurality of second protruding portions provided to protrude to the second surface side, and the through hole. The method for manufacturing a heat radiating structure according to claim 7, wherein the step is a step of integrally forming a resin heat radiating member having a connecting portion that connects the locking portion and each second protrusion.
前記配置工程は、前記受熱部が設けられる第1の面と、前記第1の面と異なる方向を向く第2の面と、前記第1の面から前記第2の面に亘って貫通する複数の貫通孔とを有する金属部材を金型内に配置させる工程であり、
前記成形工程は、前記金属部材の前記第1の面の前記受熱部となる領域を被覆した状態において前記金型内に樹脂材料を充填させ、前記金属部材に、前記第1の面側に設けられた第1係止部と、前記第2の面側に設けられた第2係止部と、前記貫通孔を介して前記第1係止部と前記第2係止部とを連結する連結部と、前記第1係止部及び前記第2係止部の少なくとも一方に設けられた突出部とを有する樹脂製放熱部材を一体成形させる工程である
ことを特徴とする請求項6に記載の放熱構造体の製造方法。
The arranging step includes a first surface on which the heat receiving portion is provided, a second surface facing in a direction different from the first surface, and a plurality of penetrating from the first surface to the second surface. Is a step of arranging a metal member having a through hole in the mold,
In the molding step, a resin material is filled in the mold in a state where the region to be the heat receiving portion of the first surface of the metal member is covered, and the metal member is provided on the first surface side. A first locking portion, a second locking portion provided on the second surface side, and a connection for connecting the first locking portion and the second locking portion via the through hole It is the process of integrally forming the resin heat-radiating member which has a part and the protrusion part provided in at least one of the said 1st latching | locking part and the said 2nd latching | locking part. Manufacturing method of heat dissipation structure.
前記樹脂材料は、熱伝導率に異方性を付与する熱伝導率調整材を含有しており、
前記成形工程は、前記金型内に前記樹脂材料を充填させる際に、前記金型内のキャビティ容積を所定の方向に変動させ、前記キャビティ容積の変動方向への前記熱伝導率調整材の配向度を0.25より大きくさせる変動工程を更に備える
ことを特徴とする請求項6〜9いずれか1項に記載の放熱構造体の製造方法。
The resin material contains a thermal conductivity adjusting material that imparts anisotropy to the thermal conductivity,
In the molding step, when the resin material is filled in the mold, the cavity volume in the mold is changed in a predetermined direction, and the thermal conductivity adjusting material is oriented in the direction of change of the cavity volume. The manufacturing method of the heat radiating structure according to any one of claims 6 to 9, further comprising a fluctuating step of making the degree larger than 0.25.
JP2013107466A 2013-05-21 2013-05-21 Heat dissipation structure and manufacturing method of heat dissipation structure Active JP6242590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013107466A JP6242590B2 (en) 2013-05-21 2013-05-21 Heat dissipation structure and manufacturing method of heat dissipation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013107466A JP6242590B2 (en) 2013-05-21 2013-05-21 Heat dissipation structure and manufacturing method of heat dissipation structure

Publications (2)

Publication Number Publication Date
JP2014229714A true JP2014229714A (en) 2014-12-08
JP6242590B2 JP6242590B2 (en) 2017-12-06

Family

ID=52129314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013107466A Active JP6242590B2 (en) 2013-05-21 2013-05-21 Heat dissipation structure and manufacturing method of heat dissipation structure

Country Status (1)

Country Link
JP (1) JP6242590B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016157786A (en) * 2015-02-24 2016-09-01 三菱電機株式会社 Heat radiation structure
WO2017003677A1 (en) * 2015-06-29 2017-01-05 Microsoft Technology Licensing, Llc Differently oriented layered thermal conduit
JP2019062066A (en) * 2017-09-26 2019-04-18 トヨタ自動車株式会社 Semiconductor device
WO2019156018A1 (en) * 2018-02-07 2019-08-15 Necプラットフォームズ株式会社 Heat sink and assembly method for heat sink
DE102017212968B4 (en) 2016-08-05 2024-02-01 Robert Bosch Gmbh HOUSING STRUCTURE FOR AN ELECTRONIC CONTROL UNIT AND PRODUCTION METHOD

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222972A (en) * 2010-03-24 2011-11-04 Mitsubishi Engineering Plastics Corp Heat dissipating member and heat dissipating structure of exothermic body
JP2011238642A (en) * 2010-05-06 2011-11-24 Denso Corp Power semiconductor module
JP2012009498A (en) * 2010-06-22 2012-01-12 Fujitsu Ten Ltd Heat radiation structure of heating unit and audio amplifier equipped with heat radiation structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222972A (en) * 2010-03-24 2011-11-04 Mitsubishi Engineering Plastics Corp Heat dissipating member and heat dissipating structure of exothermic body
JP2011238642A (en) * 2010-05-06 2011-11-24 Denso Corp Power semiconductor module
JP2012009498A (en) * 2010-06-22 2012-01-12 Fujitsu Ten Ltd Heat radiation structure of heating unit and audio amplifier equipped with heat radiation structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016157786A (en) * 2015-02-24 2016-09-01 三菱電機株式会社 Heat radiation structure
WO2017003677A1 (en) * 2015-06-29 2017-01-05 Microsoft Technology Licensing, Llc Differently oriented layered thermal conduit
US10299407B2 (en) 2015-06-29 2019-05-21 Microsoft Technology Licensing, Llc Differently oriented layered thermal conduit
DE102017212968B4 (en) 2016-08-05 2024-02-01 Robert Bosch Gmbh HOUSING STRUCTURE FOR AN ELECTRONIC CONTROL UNIT AND PRODUCTION METHOD
JP2019062066A (en) * 2017-09-26 2019-04-18 トヨタ自動車株式会社 Semiconductor device
JP7039908B2 (en) 2017-09-26 2022-03-23 株式会社デンソー Semiconductor device
WO2019156018A1 (en) * 2018-02-07 2019-08-15 Necプラットフォームズ株式会社 Heat sink and assembly method for heat sink
US11355411B2 (en) 2018-02-07 2022-06-07 Nec Platforms, Ltd. Heat sink and assembly method for heat sink

Also Published As

Publication number Publication date
JP6242590B2 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
JP6242590B2 (en) Heat dissipation structure and manufacturing method of heat dissipation structure
JP6784844B2 (en) Power relay assembly
US8638027B2 (en) Lighting armature
CN106605310B (en) LED lamp for car radiator
JP4904732B2 (en) Thermally conductive molded body and method for producing the same
US7939975B2 (en) Over-mold stator assembly and process for preparation thereof
EP2715227B1 (en) Led plastic heat sink and method for making and using the same
CN105810400B (en) Cooling device for transformer
KR101457016B1 (en) Thermal conductive thermoplastic resin composition having excellent water-resistance and article using the same
JP5640507B2 (en) Reactor device
WO2016084397A1 (en) Metal-resin composite body
JP2013089718A (en) Heat sink with highly heat-conducting resin, and led light source
JP2009231495A (en) Reactor
TWI714379B (en) Sliding table device with heat dissipation effect and manufacturing method thereof
TW200945737A (en) Linear motor
KR101976588B1 (en) Assembly type heat dissipation cartridge and battery pack for electric vehicle using the same
JP7117108B2 (en) Cooling system
US20120000639A1 (en) Thermal energy steering device
US20230051560A1 (en) Housing, structural body, and method of manufacturing housing
WO2020196333A1 (en) Cooling structure
CN114830508A (en) Heat dissipation cover for stator, stator assembly comprising heat dissipation cover and motor
JP5733009B2 (en) Plastic molded product
JP2009136091A (en) Stator manufacturing method and stator
KR101976589B1 (en) Heat dissipation cartridge and battery pack for electric vehicle using the same
KR20120002356A (en) Synthetic resins heat sinks coated heat transfer material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171108

R150 Certificate of patent or registration of utility model

Ref document number: 6242590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250