JP2014214485A - Base isolating method of existing building - Google Patents

Base isolating method of existing building Download PDF

Info

Publication number
JP2014214485A
JP2014214485A JP2013092102A JP2013092102A JP2014214485A JP 2014214485 A JP2014214485 A JP 2014214485A JP 2013092102 A JP2013092102 A JP 2013092102A JP 2013092102 A JP2013092102 A JP 2013092102A JP 2014214485 A JP2014214485 A JP 2014214485A
Authority
JP
Japan
Prior art keywords
seismic isolation
existing
isolation device
pile
pile head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013092102A
Other languages
Japanese (ja)
Other versions
JP6171534B2 (en
Inventor
岸 浩行
Hiroyuki Kishi
浩行 岸
利光 坂井
Toshimitsu Sakai
利光 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2013092102A priority Critical patent/JP6171534B2/en
Publication of JP2014214485A publication Critical patent/JP2014214485A/en
Application granted granted Critical
Publication of JP6171534B2 publication Critical patent/JP6171534B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a base isolating method of an existing building capable of realizing a base isolation structure for enhancing safety, while reducing cost and a construction period.SOLUTION: The base isolating method comprises a pile head part exposure process of exposing a pile head part of an existing pile to an underground space by forming the underground space by excavating a foundation under a skeleton lower part of the existing building, a pressure-proof board construction process of constructing a pressure-proof board in a lower part of the underground space so as to surround the pile head part, a base isolation device installing process of installing a base isolation device in a state of maintaining the cross-sectional area when designing the existing pile, in a base isolation space determined above the pressure-proof board among the underground space, a base isolation device reinforcement part construction process of joining the pile head part and a base isolation device reinforcement part by constructing the base isolation device reinforcement part between a bottom surface of the skeleton lower part and an upper surface of the base isolation space, a load transfer process of transferring a vertical load of the existing building shared by the existing pile to the existing pile via the base isolation device reinforcement part, the base isolation device and the pressure-proof board and a pile head part cutting process of edge-cutting the pile head part within a height of the base isolation space.

Description

本発明は、既存建物の免震化工法に関する。   The present invention relates to a seismic isolation method for an existing building.

地震の揺れが直接建物に伝わらない構造とし、地震の際に建物の破壊を防止する免震構造が開発されている。また、既存建物に免震装置を組み込んで既存建物全体を免震構造化することも行われている。   A seismic isolation structure has been developed that prevents the shaking of the earthquake from being transmitted directly to the building and prevents the building from being destroyed in the event of an earthquake. In addition, seismic isolation devices have been incorporated into existing buildings to make the entire existing building seismically isolated.

既存建物を免震化する技術としては、例えば特許文献1に記載された工法が知られている。この免震化工法では、まず、既存建物の基礎下に地下空間を形成し、地下空間に既存杭(杭頭部)を露出させて杭頭部の外周部分を切除し、その切除箇所にジャッキを設置する。そして、杭頭部の中央部を切断除去してから、地下空間の下部に耐圧盤を形成するとともに上記中央部に免震装置を設置する。こうすることにより既存建物全体を免震構造化することができる。   As a technique for isolating existing buildings, for example, a construction method described in Patent Document 1 is known. In this seismic isolation method, an underground space is first formed under the foundation of an existing building, the existing pile (pile head) is exposed in the underground space, and the outer periphery of the pile head is excised. Is installed. And after cutting and removing the center part of a pile head, while forming a pressure | voltage resistant board in the lower part of underground space, installing a seismic isolation apparatus in the said center part. By doing so, the entire existing building can be seismically isolated.

特開平11−223028号公報Japanese Patent Laid-Open No. 11-2223028

しかしながら、上述したような免震化工法の場合、断面の大きい既存杭を切断し撤去及び廃棄するのにはコストが高く、また工期がかかるという問題があった。また、既存杭を切断することにより、既存杭の断面積が設計断面積よりも小さくなる状態が存在し、安全性に問題があった。   However, in the case of the seismic isolation method as described above, there is a problem that it is expensive to cut, remove and dispose of an existing pile having a large cross section, and it takes a construction period. Moreover, there existed a state where the cross-sectional area of the existing pile becomes smaller than a design cross-sectional area by cutting the existing pile, and there was a problem in safety.

本発明はかかる従来の課題に鑑みてなされたもので、その目的とするところは、コストや工期の低減を図りつつ、安全性を高めた免震構造化を行うことが可能な既存建物の免震化工法を提供することにある。   The present invention has been made in view of such conventional problems. The object of the present invention is to reduce the cost and the construction period and to improve the safety of existing buildings that can be seismically isolated. To provide a seismic construction method.

かかる目的を達成するために本発明の既存建物の免震化工法は、
既存建物の躯体下部の下の地盤を掘削することにより地下空間を形成し、当該地下空間に既存杭の杭頭部を露出させる杭頭部露出工程と、
前記地下空間の下部に前記杭頭部を囲むように耐圧盤を構築する耐圧盤構築工程と、
前記地下空間のうち前記耐圧盤よりも上に定められた免震空間に、前記既存杭の設計時の断面積を維持した状態で免震装置を設置する免震装置設置工程と、
前記躯体下部の底面と前記免震空間の上面との間に免震装置用補強部を構築し、前記杭頭部と前記免震装置用補強部とを接合させる免震装置用補強部構築工程と、
前記既存杭が負担していた前記既存建物の鉛直荷重を前記免震装置用補強部及び前記免震装置及び前記耐圧盤を介して前記既存杭に移行する荷重移行工程と、
前記免震空間の高さ内で前記杭頭部を縁切りする杭頭部切断工程と、
を有することを特徴とする既存建物の免震化工法である。
In order to achieve this object, the seismic isolation method for existing buildings of the present invention is:
Pile head exposure step of forming an underground space by excavating the ground below the lower part of the building's skeleton and exposing the pile head of the existing pile in the underground space;
A pressure-resistant panel construction step of constructing a pressure-resistant panel so as to surround the pile head at the lower part of the underground space;
A seismic isolation device installation step of installing a seismic isolation device in a state where the cross-sectional area at the time of designing the existing pile is maintained in the base isolation space defined above the pressure platen in the underground space,
A seismic isolation device reinforcement construction step of constructing a seismic isolation device reinforcement between the bottom surface of the lower body and the upper surface of the seismic isolation space, and joining the pile head and the seismic isolation device reinforcement. When,
A load transfer step of transferring the vertical load of the existing building that was borne by the existing pile to the existing pile via the reinforcing portion for the seismic isolation device, the seismic isolation device, and the pressure platen;
Pile head cutting step for cutting the pile head within the height of the seismic isolation space;
This is a seismic isolation method for existing buildings.

このような既存建物の免震化工法によれば、既存杭を切断する量を大幅に低減できる。また、これにより切断部分を撤去搬出し廃棄する作業も減るのでコストや工期の低減を図ることが可能である。また、免震装置を設置するまでに既存杭の断面積が設計断面積よりも小さくなる状態が存在せず、安全性を高めることが可能である。   According to such a seismic isolation method for existing buildings, the amount of cutting existing piles can be greatly reduced. In addition, this reduces the work of removing, carrying out and discarding the cut portion, so that the cost and construction period can be reduced. In addition, there is no state in which the cross-sectional area of the existing pile becomes smaller than the design cross-sectional area before the seismic isolation device is installed, and safety can be improved.

かかる既存建物の免震化工法であって、前記免震装置用補強部は、プレストレストコンクリートであることが望ましい。
このような既存建物の免震化工法によれば、既存建物の鉛直荷重を免震装置用補強部と既存杭との摩擦で支持することが可能である。
In such an existing building seismic isolation method, it is preferable that the reinforcing portion for the seismic isolation device is prestressed concrete.
According to such an existing building seismic isolation method, the vertical load of the existing building can be supported by friction between the seismic isolation device reinforcement and the existing pile.

かかる既存建物の免震化工法であって、前記免震装置設置工程では、前記免震装置の端面に薄型ジャッキを付設し、前記荷重移行工程の際に、前記薄型ジャッキにグラウトを充填してジャッキ載荷を行うことが望ましい。
このような既存建物の免震化工法によれば、簡易に且つ確実に、既存建物の鉛直荷重を免震装置用補強部及び免震装置及び耐圧盤を介して既存杭に移行することが可能である。
In this seismic isolation method for an existing building, in the seismic isolation device installation step, a thin jack is attached to an end surface of the seismic isolation device, and in the load transfer step, the thin jack is filled with grout. It is desirable to perform jack loading.
According to such a seismic isolation method for existing buildings, it is possible to easily and reliably transfer the vertical load of existing buildings to existing piles via the seismic isolation device reinforcement, seismic isolation device and pressure platen. It is.

かかる既存建物の免震化工法であって、前記耐圧盤構築工程の前に、前記既存杭を補強する既存杭補強工程を有していてもよい。
このような既存建物の免震化工法によれば、既存杭に損傷や強度不足がある場合でも可能である。
Such an existing building seismic isolation method may have an existing pile reinforcing step of reinforcing the existing pile before the pressure-resistant panel construction step.
According to such an existing building seismic isolation method, it is possible even if the existing pile has damage or insufficient strength.

かかる既存建物の免震化工法であって、前記免震装置は、前記既存杭の周りに3つ以上配置されることが望ましい。
このような既存建物の免震化工法によれば、鉛直方向の回転を抑制することができるので、既存建物の基礎の補強が大幅に低減できる。このため、さらにコストや工期の低減を図ることが可能である。
In such a seismic isolation method for an existing building, it is preferable that three or more seismic isolation devices are arranged around the existing pile.
According to such a seismic isolation method for an existing building, vertical rotation can be suppressed, so that the reinforcement of the foundation of the existing building can be greatly reduced. For this reason, it is possible to further reduce the cost and construction period.

本発明によれば、コストや工期の低減を図りつつ、安全に免震構造化を行うことが可能な既存建物の免震化工法を提供することが可能である。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to provide the seismic isolation construction method of the existing building which can perform a seismic isolation structure safely, aiming at reduction of cost and a construction period.

図1A〜図1Dは比較例における既存建物の免震化工法を説明するための図である。1A to 1D are diagrams for explaining a seismic isolation method for an existing building in a comparative example. 第1実施形態にかかる既存建物の免震化工法の手順を示すフロー図である。It is a flowchart which shows the procedure of the seismic isolation method of the existing building concerning 1st Embodiment. 図3A〜図3Hは、図2の各工程における断面を示す断面図である。3A to 3H are cross-sectional views showing cross sections in each step of FIG. 図4A〜図4Cは、薄型ジャッキ33についての説明図である。4A to 4C are explanatory views of the thin jack 33. FIG. 図3Eを上から見た図である。It is the figure which looked at FIG. 3E from the top. 図3FのA−A断面図である。It is AA sectional drawing of FIG. 3F. 第2実施形態にかかる既存建物の免震化工法の手順を示すフロー図である。It is a flowchart which shows the procedure of the seismic isolation method of the existing building concerning 2nd Embodiment. 既存杭補強工程についての説明図である。It is explanatory drawing about the existing pile reinforcement process.

===第1実施形態===
<比較例の免震化工法について>
まず、本実施形態について説明する前に比較例について簡単に説明する。
図1A〜図1Dは比較例における既存建物の免震化工法を説明するための図である。
=== First Embodiment ===
<About the seismic isolation method of the comparative example>
First, before describing this embodiment, a comparative example will be briefly described.
1A to 1D are diagrams for explaining a seismic isolation method for an existing building in a comparative example.

比較例の免震化工法では、図1Aに示すように既存建物10の基礎下の地盤を掘削して地下空間Hを形成する。こうして、地下空間Hに既存杭11の杭頭部を露出させる。なお、既存杭11は、例えば鉄筋コンクリートにより形成された大断面(例えば、直径が2m〜5m)の深礎杭である。   In the seismic isolation method of the comparative example, the underground space H is formed by excavating the ground under the foundation of the existing building 10 as shown in FIG. 1A. In this way, the pile head of the existing pile 11 is exposed in the underground space H. The existing pile 11 is a deep foundation pile having a large cross section (for example, a diameter of 2 m to 5 m) formed of, for example, reinforced concrete.

続いて、図1Bに示すように露出した既存杭11の杭頭部のうち中央部を残すようにして外周部分を切除し、その切除部分にジャッキ100を設置する。   Next, as shown in FIG. 1B, the outer peripheral portion is cut out so as to leave the central portion of the exposed pile head of the existing pile 11, and the jack 100 is installed in the cut portion.

ジャッキ100設置後、図1Cに示すように、既存杭11の杭頭部の中央部を切除し、地下空間Hの下部に耐圧盤20を構築する。   After the jack 100 is installed, as shown in FIG. 1C, the central part of the pile head of the existing pile 11 is cut out, and the pressure platen 20 is constructed in the lower part of the underground space H.

その後、図1Dに示すように、地下空間Hにおける上記中央部の位置に免震装置110(例えば積層ゴム)を設置し、ジャッキ100を除荷して荷重を免震装置110に移行した後に撤去する。   After that, as shown in FIG. 1D, the seismic isolation device 110 (for example, laminated rubber) is installed at the position of the central portion in the underground space H, the jack 100 is unloaded and the load is transferred to the seismic isolation device 110 and then removed. To do.

この比較例の場合、既存杭11(深礎杭)のような大断面のものを切断するのに要するコストが高い(例えば、ワイヤーソーにより切断する場合、切断面積あたりのコストが高い)という問題がある。また、地下空間Hのような狭い空間で既存杭11を切断(細分化)したり、切断した部分を撤去搬出したりするのには手間と工期がかかり、また、廃棄するのにもコストがかかるという問題がある。   In the case of this comparative example, there is a problem that the cost required to cut a large cross-sectional one such as the existing pile 11 (deep foundation pile) is high (for example, when cutting with a wire saw, the cost per cutting area is high). There is. Moreover, it takes time and labor to cut (split) the existing pile 11 in a narrow space such as the underground space H, and to remove and carry out the cut portion, and it is also costly to dispose of it. There is a problem that it takes.

また、比較例では既存杭11の外周を切除することにより、免震装置110の設置前に既存杭11の断面積が設計断面積よりも小さくなる状態が存在する。このため安全性を確保できないおそれがある。また、この比較例の場合、既存建物10の基礎において鉛直方向の回転に対して十分な強度が得られないおそれがあり、このため基礎(免震装置110直上の周囲の部分)を補強する必要がある。   In the comparative example, there is a state in which the cross-sectional area of the existing pile 11 becomes smaller than the design cross-sectional area before the seismic isolation device 110 is installed by cutting the outer periphery of the existing pile 11. For this reason, there is a possibility that safety cannot be secured. In addition, in the case of this comparative example, there is a possibility that sufficient strength against vertical rotation in the foundation of the existing building 10 may not be obtained, and therefore the foundation (a portion immediately above the seismic isolation device 110) needs to be reinforced. There is.

そこで、以下に示す本実施形態では、コストや工期の低減を図ると共に、安全性を高めるようにしている。   Therefore, in the present embodiment described below, the cost and work period are reduced, and the safety is enhanced.

<第1実施形態の免震化工法について>
以下、第1実施形態の既存建物の免震化工法の一例について図を用いて説明する。
図2は第1実施形態にかかる既存建物の免震化工法の手順を示すフロー図である。
また、図3A〜図3Hは、図2の各工程における断面を示す断面図である。
<About the seismic isolation method of the first embodiment>
Hereinafter, an example of the seismic isolation method of the existing building of 1st Embodiment is demonstrated using figures.
FIG. 2 is a flowchart showing the procedure of the seismic isolation method for an existing building according to the first embodiment.
3A to 3H are cross-sectional views showing cross sections in each step of FIG.

第1実施形態の既存建物10の免震化工法では、まず、既存建物10の周囲の土中に山留壁(不図示)を埋設し、既存建物10と山留壁との間の地盤を掘削する。その後、さらに既存建物10の躯体下部の地盤を掘削していき、図3Aに示すように既存建物10の下に地中空間Hを形成する。こうして、地中空間Hに既存建物10の既存杭11の杭頭部を露出させる(山留・掘削工程S101)。なお、山留・掘削工程S101は、杭頭部露出工程に相当する。   In the seismic isolation method for the existing building 10 of the first embodiment, first, a mountain retaining wall (not shown) is buried in the soil around the existing building 10, and the ground between the existing building 10 and the mountain retaining wall is buried. Excavate. Thereafter, the ground below the frame of the existing building 10 is further excavated to form an underground space H under the existing building 10 as shown in FIG. 3A. In this way, the pile heads of the existing piles 11 of the existing building 10 are exposed in the underground space H (Yamadome / excavation process S101). The mountain retaining / excavating step S101 corresponds to a pile head exposing step.

そして、図3Bに示すように、既存杭11を囲むようにして地中空間Hの下部に耐圧盤20を構築する(耐圧盤構築工程S102)。この耐圧盤20は、平面剛性を確保して、既存建物10の荷重を既存杭11に伝えるためのものである。なお、本実施形態の耐圧盤20は、鉄筋コンクリートにより形成されている。   And as shown to FIG. 3B, the pressure | voltage resistant board 20 is constructed | assembled in the lower part of the underground space H so that the existing pile 11 may be enclosed (pressure | voltage resistant board construction process S102). The pressure platen 20 is for ensuring the plane rigidity and transmitting the load of the existing building 10 to the existing pile 11. In addition, the pressure | voltage resistant board 20 of this embodiment is formed with the reinforced concrete.

その後、図3Cに示すように、耐圧盤20の上(より具体的には、耐圧盤20の上面のうち後述する免震装置32の設置箇所)にコンクリートを打設し、免震装置下部基礎31を形成する(免震装置下部基礎打設工程S103)。なお、本実施形態では、後述するように既存杭11の周りの4箇所に免震装置32を設置するので、その4箇所に免震装置下部基礎31を形成する(後述する図5参照)。   Thereafter, as shown in FIG. 3C, concrete is placed on the pressure platen 20 (more specifically, on the upper surface of the pressure platen 20 where a seismic isolation device 32 described later is installed), and the base of the seismic isolation device lower part is placed. 31 is formed (base isolation device lower foundation placing step S103). In addition, in this embodiment, since the seismic isolation apparatus 32 is installed in four places around the existing pile 11 so that it may mention later, the seismic isolation apparatus lower base 31 is formed in the four places (refer FIG. 5 mentioned later).

そして、図3Dに示すように免震装置下部基礎31上に免震装置32を設置する(免震装置設置・薄型ジャッキ設置工程S104)。本実施形態では免震装置32として積層ゴムが用いられている。また、免震装置32の上側の端面には薄型ジャッキ33が付設されている。   Then, as shown in FIG. 3D, the seismic isolation device 32 is installed on the lower base 31 of the seismic isolation device (seismic isolation device installation / thin jack installation step S104). In this embodiment, laminated rubber is used as the seismic isolation device 32. A thin jack 33 is attached to the upper end surface of the seismic isolation device 32.

図4A〜図4Cは、薄型ジャッキ33についての説明図である。図4Aは上面図、図4B、図4Cは図4AのB−B断面図である。   4A to 4C are explanatory views of the thin jack 33. FIG. 4A is a top view, and FIG. 4B and FIG. 4C are BB cross-sectional views of FIG. 4A.

図に示すように、薄型ジャッキ33は、上から見て円形状のジャッキであり、中空の軟鋼盤331と、支圧板332を有して構成されている。図4Bの状態において、薄型ジャッキ33の厚さは30〜40mmである。この軟鋼盤331の中に無収縮グラウト333を充填することにより、軟鋼盤331が図4Bの矢印方向に膨張(伸張)し、これにより薄型ジャッキ33は図4Cのようになる。なお、前述した免震装置設置・薄型ジャッキ設置工程S104の際には、薄型ジャッキ33への無収縮グラウト333の充填は行わない。つまり、免震装置設置・薄型ジャッキ設置工程S104において、薄型ジャッキ33は図4Bの状態である。   As shown in the figure, the thin jack 33 is a circular jack as viewed from above, and includes a hollow mild steel board 331 and a bearing plate 332. In the state of FIG. 4B, the thickness of the thin jack 33 is 30 to 40 mm. By filling the mild steel board 331 with the non-shrink grout 333, the mild steel board 331 expands (extends) in the direction of the arrow in FIG. 4B, and the thin jack 33 becomes as shown in FIG. 4C. In the above-described seismic isolation device installation / thin jack installation step S104, the thin jack 33 is not filled with the non-shrink grout 333. That is, in the seismic isolation device installation / thin jack installation step S104, the thin jack 33 is in the state shown in FIG. 4B.

次に、図3Eに示すように、薄型ジャッキ33の上面と、既存建物10の躯体下部の底面との間に、免震装置用補強部40を打設する(免震装置用補強部打設工程S105)。まず、免震装置用補強部40用の底型枠を組んで、鉄筋を配置する。また、このとき、後述するPC鋼棒42の挿通経路となるシース(不図示)を配置しておく。なお、PC鋼棒42の配置部分に既存杭11が位置する場合、コアドリルなどで既存杭11に貫通穴を設け、その貫通孔にシースを接続する。そして型枠にコンクリートを打設することにより免震装置用補強部40を形成する。なお、以下の説明において、地下空間Hのうちの耐圧盤20と免震装置用補強部40との間の空間(言い換えると、免震装置下部基礎31、免震装置32、薄型ジャッキ33が形成される空間)のことを免震空間と呼ぶ。   Next, as shown in FIG. 3E, the seismic isolation device reinforcement 40 is placed between the upper surface of the thin jack 33 and the bottom surface of the lower part of the existing building 10 (the seismic isolation device reinforcement is placed). Step S105). First, the bottom form for the seismic isolation device reinforcing portion 40 is assembled and the reinforcing bars are arranged. At this time, a sheath (not shown) serving as an insertion path for a PC steel rod 42 to be described later is disposed. In addition, when the existing pile 11 is located in the arrangement | positioning part of PC steel rod 42, a through hole is provided in the existing pile 11 with a core drill etc., and a sheath is connected to the through hole. And the reinforcement part 40 for seismic isolation apparatuses is formed by placing concrete in a formwork. In the following description, the space between the pressure platen 20 and the seismic isolation device reinforcing portion 40 in the underground space H (in other words, the seismic isolation device lower base 31, the seismic isolation device 32, and the thin jack 33 are formed). Space) is called seismic isolation space.

図5は、図3Eを上から見た図である。なお、同図では既存建物10を透過して見た状態を示している(既存建物10の図示を省略している)。図5に示すように、免震装置用補強部40は、既存杭11の周りにおいてほぼ正方形状に設けられている。また、免震装置用補強部40のコーナー付近の下(免震空間)には免震装置下部基礎31、免震装置32、薄型ジャッキ33がそれぞれ配置されている。   FIG. 5 is a top view of FIG. 3E. In addition, the figure has shown the state seen through the existing building 10 (illustration of the existing building 10 is abbreviate | omitted). As shown in FIG. 5, the seismic isolation device reinforcing portion 40 is provided in a substantially square shape around the existing pile 11. In addition, a seismic isolation device lower base 31, a seismic isolation device 32, and a thin jack 33 are disposed below the corner of the seismic isolation device reinforcement 40 (seismic isolation space).

なお、既存杭11の周りの表面に脆弱部分がある場合、その脆弱部分を除去する必要があるが、既存杭11の径(例えば2m〜4m)に対して、脆弱部分の厚さ(除去する厚さ)は無視できるほど小さい。つまり、脆弱部分の除去後においても既存杭11の有効断面積は確保されていることとできる。   In addition, when there exists a weak part in the surface around the existing pile 11, it is necessary to remove the weak part, but the thickness (removal of the weak part with respect to the diameter (for example, 2m-4m) of the existing pile 11 is removed. (Thickness) is negligibly small. That is, the effective cross-sectional area of the existing pile 11 can be secured even after the fragile portion is removed.

免震装置用補強部40を形成した後、図3Fに示すように、前述したシースの内部にPC鋼棒42を挿通して、PC鋼棒42の両端部にジャッキ(不図示)などで引張力(緊張)を付与する。そして、その状態でPC鋼棒42の両端部をナットなどの定着具で止めてプレストレスを与える。こうして、免震装置用補強部40を既存杭11の杭頭部と接合させる(PC緊張工程S106)。すなわち、免震装置用補強部40はプレストレスが付与されたプレストレストコンクリートである。なお、免震装置用補強部打設工程S105及びPC緊張工程S106は、免震装置用補強部構築工程に相当する。   After the seismic isolation device reinforcing portion 40 is formed, as shown in FIG. 3F, the PC steel rod 42 is inserted into the above-described sheath, and the both ends of the PC steel rod 42 are pulled with jacks (not shown) or the like. Gives strength (tension). In this state, both ends of the PC steel bar 42 are stopped with a fixing tool such as a nut to give prestress. Thus, the seismic isolation device reinforcing portion 40 is joined to the pile head of the existing pile 11 (PC tensioning step S106). That is, the seismic isolation device reinforcing portion 40 is prestressed concrete to which prestress is applied. The seismic isolation device reinforcing portion placing step S105 and the PC tensioning step S106 correspond to a seismic isolation device reinforcing portion construction step.

図6は、図3FのA−A断面図である。図に示すように免震装置用補強部40には水平面における縦方向及び横方向に沿って、それぞれ5本のPC鋼棒42が設けられている。これら5本のPC鋼棒42のうち真ん中のPC鋼棒42は既存杭11を貫通して設けられている。また、図3Fに示すように、PC鋼棒42はそれぞれ鉛直方向(図の上下方向)に3段に設けられている。これらのPC鋼棒42に引張力を付与することで、免震装置用補強部40を既存杭11の杭頭部に接合させることができる。さらに本実施形態では、PC鋼棒42は免震装置用補強部40と既存杭11(杭頭部)とを共に貫通する位置にも設けられているので、より確実に免震装置用補強部40と既存杭11を接合させることができる。これにより、既存杭11にかかる荷重(既存建物10の鉛直荷重)を免震装置用補強部40と既存杭11との摩擦で支持することが出来るようになる。   6 is a cross-sectional view taken along line AA in FIG. 3F. As shown in the drawing, the seismic isolation device reinforcing portion 40 is provided with five PC steel bars 42 along the vertical and horizontal directions in the horizontal plane. Among these five PC steel bars 42, the middle PC steel bar 42 is provided so as to penetrate the existing pile 11. Further, as shown in FIG. 3F, the PC steel bars 42 are provided in three stages in the vertical direction (the vertical direction in the figure). By applying a tensile force to these PC steel bars 42, the seismic isolation device reinforcing portion 40 can be joined to the pile head of the existing pile 11. Furthermore, in this embodiment, since the PC steel bar 42 is provided also in the position which penetrates both the seismic isolation apparatus reinforcement part 40 and the existing pile 11 (pile head), the seismic isolation apparatus reinforcement part more reliably. 40 and the existing pile 11 can be joined. Thereby, the load (vertical load of the existing building 10) applied to the existing pile 11 can be supported by the friction between the seismic isolation device reinforcing portion 40 and the existing pile 11.

その後、図3Gに示すように、薄型ジャッキ33に無収縮グラウト333を充填して、薄型ジャッキ33を鉛直方向に膨張(伸張)させる。こうして、既存杭11が負担していた既存建物10の鉛直荷重の80〜100%を、免震装置用補強部40、薄型ジャッキ33、免震装置32、免震装置下部基礎31、及び、耐圧盤20を介して既存杭11に移行させる(荷重移行工程S107)。こうして既存杭11の切断部にかかる荷重をほぼゼロにする。そして、免震空間の高さ内(耐圧盤20と免震装置用補強部40との間)の既存杭11の杭頭部を、水平方向に切断(縁切り)する(杭頭部切断工程S108)。本実施形態では、切断のスリット幅は30〜50mm程度である。   Thereafter, as shown in FIG. 3G, the thin jack 33 is filled with a non-shrink grout 333, and the thin jack 33 is expanded (expanded) in the vertical direction. Thus, 80 to 100% of the vertical load of the existing building 10 borne by the existing pile 11 is divided into the seismic isolation device reinforcing portion 40, the thin jack 33, the seismic isolation device 32, the seismic isolation device lower foundation 31, and the pressure resistance. It transfers to the existing pile 11 through the board | substrate 20 (load transfer process S107). Thus, the load applied to the cut portion of the existing pile 11 is made substantially zero. And the pile head of the existing pile 11 within the height of the seismic isolation space (between the pressure-resistant panel 20 and the seismic isolation device reinforcement 40) is cut (edge cut) in the horizontal direction (pile head cutting step S108). ). In the present embodiment, the slit width for cutting is about 30 to 50 mm.

このように、本実施形態では、既存杭11を切断するのはこのスリット(縁切り)の部分のみであり、比較例と比べて切断量を大幅に低減させることができる。これにより、コストや工期の低減を図ることができる。また、本実施形態では、スリット幅が小さいので、工事完了後に想定を超える大地震などのときに縁切りされた既存杭11が切断面で接地する。これにより、免震装置32が座屈したり建物が倒壊したりするのを防止することができる。   Thus, in this embodiment, it is only the part of this slit (edge cutting) that cuts the existing pile 11, and the cutting amount can be greatly reduced as compared with the comparative example. Thereby, cost and construction period can be reduced. Moreover, in this embodiment, since the slit width is small, the existing pile 11 cut off at the time of a large earthquake exceeding the assumption after completion of construction is grounded at the cut surface. Thereby, it can prevent that the seismic isolation apparatus 32 buckles or a building collapses.

以上説明したように、本実施形態の既存建物10の免震化工法では、地下空間Hにおいて既存杭11の周りに免震装置32を設置している。そして、免震装置用補強部40を構築し、既存杭11が負担していた既存建物10の鉛直荷重を免震装置用補強部40、薄型ジャッキ33、免震装置32、免震装置下部基礎31、及び、耐圧盤20を介して既存杭11に移行させた後に既存杭11の杭頭部をスリット状に切断(縁切り)している。よって、本実施形態では、比較例と比べて、既存杭11を切断する量を大幅に低減することができ、既存建物10を免震構造化する際のコストや工期の低減を図ることができる。また、本実施形態では免震化を行う際に既存杭11の断面積が変わらない(設計断面積を維持できる)ので、比較例よりも安全性を高めることができる。   As described above, in the seismic isolation method for the existing building 10 of this embodiment, the seismic isolation device 32 is installed around the existing pile 11 in the underground space H. And the seismic isolation device reinforcement part 40 is constructed, and the vertical load of the existing building 10 borne by the existing pile 11 is applied to the seismic isolation device reinforcement part 40, the thin jack 33, the seismic isolation device 32, and the seismic isolation device lower foundation. 31 and after making it transfer to the existing pile 11 via the pressure | voltage resistant board 20, the pile head of the existing pile 11 is cut | disconnected (edge cutting) in slit shape. Therefore, in this embodiment, compared with a comparative example, the quantity which cut | disconnects the existing pile 11 can be reduced significantly, and the cost at the time of making the existing building 10 a seismic isolation structure and reduction of a work period can be aimed at. . Moreover, in this embodiment, when performing seismic isolation, the cross-sectional area of the existing pile 11 does not change (a design cross-sectional area can be maintained), Therefore Safety can be improved rather than a comparative example.

また、本実施形態では、既存杭11の周りの4箇所に免震装置32を配置している。こうすることにより、鉛直方向の回転を抑制することができるので、既存建物10の基礎の補強が不要である。   In this embodiment, seismic isolation devices 32 are arranged at four locations around the existing pile 11. By carrying out like this, since the rotation of a perpendicular direction can be suppressed, reinforcement of the foundation of the existing building 10 is unnecessary.

===第2実施形態===
第2実施形態では、既存杭11の耐圧盤20よりも下側の部分の補強を行っている点が第1実施形態と異なっている。また第2実施形態では免震化の各工程の順序が第1実施形態と異なっている。
=== Second Embodiment ===
The second embodiment is different from the first embodiment in that the lower part of the existing pile 11 than the pressure platen 20 is reinforced. Moreover, in 2nd Embodiment, the order of each process of seismic isolation differs from 1st Embodiment.

図7は、第2実施形態にかかる既存建物の免震化工法の手順を示すフロー図である。なお、図7において、第1実施形態(図2)と同一工程のものについては同じ工程名で示している(ただしステップ番号は異なる)。   FIG. 7 is a flowchart showing the procedure of the seismic isolation method for an existing building according to the second embodiment. In FIG. 7, the same process names as those in the first embodiment (FIG. 2) are indicated by the same process names (however, the step numbers are different).

図7に示すように第2実施形態の免震化工法では、山留・掘削工程S201と耐圧盤構築工程S203との間に、既存杭11を補強するための既存杭補強工程S202を有している。   As shown in FIG. 7, the seismic isolation method of the second embodiment has an existing pile reinforcement step S202 for reinforcing the existing pile 11 between the mountain retaining / excavation step S201 and the pressure platen building step S203. ing.

図8は、既存杭補強工程についての概略説明図である。
図8に示すように、第2実施形態では、山留・掘削工程の後(図3A参照)、既存杭11の周りのみ土壌をさらに深く掘削する。そして、耐圧盤20の形成位置よりも下側の既存杭11の周囲を鉄板50で囲み既存杭11を補強する。その後、既存杭11の周りに土を埋め戻して耐圧盤構築工程S203を実行する。なお、耐圧盤構築工程S203は、第1実施形態の耐圧盤構築工程S102と同じなので説明を省略する。
FIG. 8 is a schematic explanatory diagram of the existing pile reinforcement process.
As shown in FIG. 8, in the second embodiment, after the mountain retaining / excavation process (see FIG. 3A), only around the existing pile 11 is excavated deeper. And the circumference | surroundings of the existing pile 11 below the formation position of the pressure | voltage resistant board 20 are enclosed with the iron plate 50, and the existing pile 11 is reinforced. Thereafter, the soil is backfilled around the existing pile 11 and the pressure-resistant panel construction step S203 is executed. In addition, since the pressure | voltage resistant board construction process S203 is the same as the pressure | voltage resistant board construction process S102 of 1st Embodiment, description is abbreviate | omitted.

また、第2実施形態では、耐圧盤構築工程S203の後に、免震装置用補強部打設工程S204及びPC緊張工程S205を行う。すなわち、免震装置32を設けるよりも前に、免震装置用補強部40を形成し、免震装置用補強部40と既存杭11を接合させる。   Moreover, in 2nd Embodiment, the seismic isolation apparatus reinforcement part placement process S204 and PC tension | tensile_strength process S205 are performed after the pressure | voltage resistant board construction process S203. That is, before providing the seismic isolation device 32, the seismic isolation device reinforcement 40 is formed, and the seismic isolation device reinforcement 40 and the existing pile 11 are joined.

そして、その後、免震装置下部基礎打設工程S206及び免震装置設置・薄型ジャッキ設置工程S207を行う。   Then, thereafter, a base isolation device lower foundation placing step S206 and a base isolation device installation / thin jack installation step S207 are performed.

以下、第1実施形態と同様に、荷重移行工程S208、杭頭部切断工程S209を実行する。   Hereinafter, similarly to 1st Embodiment, load transfer process S208 and pile head cutting process S209 are performed.

このように第2実施形態では、既存杭11に鉄板50を設けることにより既存杭11を補強しているので、既存杭11に損傷や強度不足がある場合においても可能である。   Thus, in 2nd Embodiment, since the existing pile 11 is reinforced by providing the iron plate 50 in the existing pile 11, it is possible even when the existing pile 11 has damage and insufficient strength.

また、第2実施形態では耐圧盤20を形成した後の施工順序が前述の第1実施形態と異なっているが、このように施工順序が異なっても第1実施形態と同様の効果を得ることができる。   Further, in the second embodiment, the construction order after the pressure-resistant board 20 is formed is different from that of the first embodiment, but the same effect as the first embodiment can be obtained even if the construction order is different. Can do.

なお、この第2実施形態では、既存杭11のうち耐圧盤20よりも下側の部分のみを補強していたが、当該部分よりも上側(耐圧盤20の形成位置)もさらに補強するようにしてもよい。   In the second embodiment, only the portion of the existing pile 11 that is lower than the pressure platen 20 is reinforced, but the upper side (the position where the pressure platen 20 is formed) is further reinforced. May be.

===その他の実施形態について===
上記実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることはいうまでもない。特に、以下に述べる実施形態であっても、本発明に含まれるものである。
=== About Other Embodiments ===
The above embodiment is for facilitating the understanding of the present invention, and is not intended to limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and it is needless to say that the present invention includes equivalents thereof. In particular, the embodiments described below are also included in the present invention.

<免震装置について>
前述の実施形態では、免震装置32には積層ゴムが用いられていたが、これには限られない。例えば、転がり支承タイプのものや滑り支承タイプのものであってもよい。
<Seismic isolation device>
In the above-described embodiment, laminated rubber is used for the seismic isolation device 32, but is not limited thereto. For example, a rolling bearing type or a sliding bearing type may be used.

また、前述の実施形態では免震装置32(免震装置下部基礎31、薄型ジャッキ33を含む)は既存杭11の周りの4箇所に配置されていたがこれには限られない。ただし、鉛直方向の回転を抑制するためには3箇所以上に配置することが望ましい。   Moreover, although the seismic isolation device 32 (including the seismic isolation device lower foundation 31 and the thin jack 33) is disposed at four locations around the existing pile 11 in the above-described embodiment, the present invention is not limited thereto. However, in order to suppress the rotation in the vertical direction, it is desirable to arrange at three or more locations.

<既存杭について>
前述の実施形態では既存杭11はRCコンクリートによる深礎杭であったがこれには限られず、他の種類の杭であってもよい。なお、既存杭11の断面積が大きい(径が大きい)ほど、コストや工期を低減させる効果が顕著になる。
<About existing piles>
In the above-described embodiment, the existing pile 11 is a deep foundation pile made of RC concrete, but is not limited thereto, and may be another type of pile. In addition, the effect which reduces cost and a work period becomes remarkable, so that the cross-sectional area of the existing pile 11 is large (a diameter is large).

<薄型ジャッキについて>
前述の実施形態では薄型ジャッキ33は免震装置32の上側の端面に付設していたが、これには限られない。例えば、免震装置32の下側の端面に付設してもよい。また、既存建物10の鉛直荷重が比較的小さい場合には、薄型ジャッキ33を用いないようにしてもよい。この場合、既存杭11の杭頭部を縁切りすることによって既存杭11が負担していた既存建物10の鉛直荷重が、免震装置用補強部40、免震装置32、免震装置下部基礎31及び耐圧盤20を介して既存杭11に移行することになる。
<About thin jacks>
In the above-described embodiment, the thin jack 33 is attached to the upper end surface of the seismic isolation device 32, but is not limited thereto. For example, you may attach to the lower end surface of the seismic isolation apparatus 32. FIG. Moreover, when the vertical load of the existing building 10 is relatively small, the thin jack 33 may not be used. In this case, the vertical load of the existing building 10 borne by the existing pile 11 by cutting off the pile head of the existing pile 11 is the seismic isolation device reinforcement 40, the seismic isolation device 32, and the seismic isolation device lower foundation 31. And it will transfer to the existing pile 11 through the pressure | voltage resistant board 20. FIG.

<免震装置用補強部補強部について>
前述の実施形態では免震装置用補強部40の形状は四角形であったがこれには限らない。また、プレストレスを与える緊張材はPC鋼棒42に限らずPC鋼より線でもよく、設置位置(既存杭11を貫通する位置の要否も含めて)および数も鉛直荷重に応じて自由に変更できる。
<About the reinforcement part for the seismic isolation device>
In the above-described embodiment, the shape of the seismic isolation device reinforcing portion 40 is a quadrangle, but is not limited thereto. Moreover, the tension material which gives prestress is not limited to the PC steel rod 42 but may be a stranded wire of PC steel, and the installation position (including the necessity of the position penetrating the existing pile 11) and the number can be freely set according to the vertical load. Can change.

また、既存杭11と免震装置用補強部40の接合面については、より摩擦力を高めるために目粗し処理を施したり、既存杭11の接合面に凹凸形状(コッター)を形成することによりせん断力による支持を付加させることもできる。   Moreover, about the joint surface of the existing pile 11 and the reinforcement part 40 for seismic isolation apparatuses, a roughening process is given in order to raise a friction force more, or uneven | corrugated shape (cotter) is formed in the joint surface of the existing pile 11 It is also possible to add support by shearing force.

10 既存建物
11 既存杭
20 耐圧盤
31 免震装置下部基礎
32 免震装置
33 薄型ジャッキ
40 免震装置用補強部
42 PC鋼棒
100 ジャッキ
110 免震装置
331 軟鋼盤
332 支圧板
333 無収縮グラウト
DESCRIPTION OF SYMBOLS 10 Existing building 11 Existing pile 20 Pressure-resistant board 31 Seismic isolation apparatus lower foundation 32 Seismic isolation apparatus 33 Thin jack 40 Reinforcement part 42 for seismic isolation apparatus PC steel rod 100 Jack 110 Seismic isolation apparatus 331 Mild steel board 332 Bearing plate 333 Non-shrink grout

Claims (5)

既存建物の躯体下部の下の地盤を掘削することにより地下空間を形成し、当該地下空間に既存杭の杭頭部を露出させる杭頭部露出工程と、
前記地下空間の下部に前記杭頭部を囲むように耐圧盤を構築する耐圧盤構築工程と、
前記地下空間のうち前記耐圧盤よりも上に定められた免震空間に、前記既存杭の設計時の断面積を維持した状態で免震装置を設置する免震装置設置工程と、
前記躯体下部の底面と前記免震空間の上面との間に免震装置用補強部を構築し、前記杭頭部と前記免震装置用補強部とを接合させる免震装置用補強部構築工程と、
前記既存杭が負担していた前記既存建物の鉛直荷重を前記免震装置用補強部及び前記免震装置及び前記耐圧盤を介して前記既存杭に移行する荷重移行工程と、
前記免震空間の高さ内で前記杭頭部を縁切りする杭頭部切断工程と、
を有することを特徴とする既存建物の免震化工法。
Pile head exposure step of forming an underground space by excavating the ground below the lower part of the building's skeleton and exposing the pile head of the existing pile in the underground space;
A pressure-resistant panel construction step of constructing a pressure-resistant panel so as to surround the pile head at the lower part of the underground space;
A seismic isolation device installation step of installing a seismic isolation device in a state where the cross-sectional area at the time of designing the existing pile is maintained in the base isolation space defined above the pressure platen in the underground space,
A seismic isolation device reinforcement construction step of constructing a seismic isolation device reinforcement between the bottom surface of the lower body and the upper surface of the seismic isolation space, and joining the pile head and the seismic isolation device reinforcement. When,
A load transfer step of transferring the vertical load of the existing building that was borne by the existing pile to the existing pile via the reinforcing portion for the seismic isolation device, the seismic isolation device, and the pressure platen;
Pile head cutting step for cutting the pile head within the height of the seismic isolation space;
A seismic isolation method for existing buildings, characterized by having
請求項1に記載の既存建物の免震化工法であって、
前記免震装置用補強部は、プレストレストコンクリートである、
ことを特徴とする既存建物の免震化工法。
A seismic isolation method for an existing building according to claim 1,
The seismic isolation device reinforcement is prestressed concrete,
A seismic isolation method for existing buildings.
請求項1又は請求項2に記載の既存建物の免震化工法であって、
前記免震装置設置工程では、前記免震装置の端面に薄型ジャッキを付設し、
前記荷重移行工程の際に、前記薄型ジャッキにグラウトを充填してジャッキ載荷を行う、
ことを特徴とする既存建物の免震化工法。
A seismic isolation method for an existing building according to claim 1 or claim 2,
In the seismic isolation device installation step, a thin jack is attached to the end surface of the seismic isolation device,
During the load transfer process, the thin jack is filled with grout and jack loaded.
A seismic isolation method for existing buildings.
請求項1乃至請求項3の何れかに記載の既存建物の免震化工法であって、
前記耐圧盤構築工程の前に、前記既存杭を補強する既存杭補強工程を有する
ことを特徴とする既存建物の免震化工法。
A seismic isolation method for an existing building according to any one of claims 1 to 3,
A seismic isolation method for an existing building, comprising an existing pile reinforcement step of reinforcing the existing pile before the pressure-resistant panel construction step.
請求項1乃至請求項4の何れかに記載の既存建物の免震化工法であって、
前記免震装置は、前記既存杭の周りに3つ以上配置される
ことを特徴とする既存建物の免震化工法。
A seismic isolation method for an existing building according to any one of claims 1 to 4,
Three or more seismic isolation devices are arranged around the existing piles.
JP2013092102A 2013-04-25 2013-04-25 Seismic isolation method for existing buildings Expired - Fee Related JP6171534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013092102A JP6171534B2 (en) 2013-04-25 2013-04-25 Seismic isolation method for existing buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013092102A JP6171534B2 (en) 2013-04-25 2013-04-25 Seismic isolation method for existing buildings

Publications (2)

Publication Number Publication Date
JP2014214485A true JP2014214485A (en) 2014-11-17
JP6171534B2 JP6171534B2 (en) 2017-08-02

Family

ID=51940524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013092102A Expired - Fee Related JP6171534B2 (en) 2013-04-25 2013-04-25 Seismic isolation method for existing buildings

Country Status (1)

Country Link
JP (1) JP6171534B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09151465A (en) * 1995-11-29 1997-06-10 Masatsugu Daishi Base isolation mechanism in pile-foundation joint part
JPH09170339A (en) * 1995-12-21 1997-06-30 Taisei Corp Base isolation method for existing building
JPH09228392A (en) * 1996-02-26 1997-09-02 Shimizu Corp Earthquake resistant reinforcing method for existing building
JPH10280705A (en) * 1997-03-31 1998-10-20 Hazama Gumi Ltd Installation method of vibration isolation laminated rubber and installation device
JP2001049873A (en) * 1999-08-13 2001-02-20 Taisei Corp Vibration-isolation construction method of existing building

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09151465A (en) * 1995-11-29 1997-06-10 Masatsugu Daishi Base isolation mechanism in pile-foundation joint part
JPH09170339A (en) * 1995-12-21 1997-06-30 Taisei Corp Base isolation method for existing building
JPH09228392A (en) * 1996-02-26 1997-09-02 Shimizu Corp Earthquake resistant reinforcing method for existing building
JPH10280705A (en) * 1997-03-31 1998-10-20 Hazama Gumi Ltd Installation method of vibration isolation laminated rubber and installation device
JP2001049873A (en) * 1999-08-13 2001-02-20 Taisei Corp Vibration-isolation construction method of existing building

Also Published As

Publication number Publication date
JP6171534B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP5728301B2 (en) Foundation structure
JP6230095B2 (en) Removal method of existing structure
JP5634931B2 (en) Construction method of underground structure
JP5038170B2 (en) How to rebuild a structure
JP2013032684A (en) Foundation form changing method for existing building
JP5728300B2 (en) Ground improvement body and piled raft foundation equipped with the same
JP6171534B2 (en) Seismic isolation method for existing buildings
JP5367452B2 (en) Underground wall construction method and underground wall body
JP7338119B2 (en) Floating control structure and reversed construction method
JP6302222B2 (en) Horizontal force support structure and method for constructing horizontal force support structure
JP4466418B2 (en) Soil cement wall pile, soil cement structure
JP2005082995A (en) Pile head connection structure
KR20100138455A (en) Block for backfilling and method backfilling by that
JP6630616B2 (en) Pile formation method, pile
JP2019157508A (en) Under-ground piled column and seismic base-isolated buildings
JP6534026B2 (en) Seismic isolation building and its construction method
JP7193065B2 (en) Reverse construction method
JP5116827B2 (en) Press-in caisson and press-in caisson method using this press-in caisson
JP6482207B2 (en) Building foundation structure
JP3648670B2 (en) Seismic isolation device installation method for existing foundation deep piles
JP2008303587A (en) Top-down construction method for base-isolated building
JP2008280803A (en) Pile foundation reinforcing construction method by additional pile
JP4546357B2 (en) A method to renovate the underfloor part of the projecting frame of an existing structure
JP3898929B2 (en) Liquefaction prevention structure
JP2015209744A (en) Seismic isolating modification method of pile foundation structure and temporary structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170619

R150 Certificate of patent or registration of utility model

Ref document number: 6171534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees